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Range-based Target Localization and Pursuit with
Autonomous Vehicles: An Approach using Posterior

CRLB and Model Predictive Control
Nguyen T. Hung, Naveen Crasta, David M. Salinas, António M. Pascoal, Tor A. Johansen

Abstract—We address the general problem of multiple target
localization and pursuit using measurements of the ranges from
the targets to a set of autonomous pursuing vehicles, referred to
as trackers. We develop a general framework for targets with
models exhibiting uncertainty in the initial state, process, and
measurement noise. The main objective is to compute optimal
motions for the trackers that maximize the range-based informa-
tion available for target localization and at the same time yield
good target pursuit performance. The solution proposed is rooted
in an estimation-theoretical setting that involves the computation
of an appropriately defined Bayesian Fisher Information Matrix
(FIM). The inverse of the latter yields a posterior Cramér-
Rao Lower Bound (CRLB) on the covariance of the targets’
state estimation errors that can be possibly achieved with any
estimator. Using the FIM, sufficient conditions on the trackers’
motions are derived for the ideal relative geometry between the
trackers and the targets for which the range information acquired
is maximal. This allows for an intuitive understanding of the types
of ideal tracker trajectories.
To deal with realistic constraints on the trackers’ motions and the
requirement that the trackers pursue the targets, we then propose
a model predictive control (MPC) framework for optimal tracker
motion generation with a view to maximizing the predicted range
information for target localization while taking explicitly into
account the trackers’ dynamics, strict constraints on the trackers’
states and inputs, and prior knowledge about the targets’ states.
The efficacy of the MPC is assessed in simulation through the help
of representative examples motivated by operational scenarios
involving single and multiple targets and trackers.

Index Terms—Range-based target localization, Target track-
ing, Target pursuit, MPC, Fisher information matrix, Posterior
CRLB, Autonomous Vehicle

I. INTRODUCTION

The problem of target localization and pursuit has received
widespread attention due to its importance in a vast number of
applications in the areas of marine science, surveillance and
reconnaissance, search-and-rescue, and military operations,
see [1]–[4]. In the literature, localization usually refers to
the problem of finding the location of an unknown stationary
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target, while tracking refers to the task of estimating the
trajectory of a moving target. In the present paper, localization
includes both tasks. Pursuit, in what follows, has the more
control-oriented meaning of ensuring that in the course of their
motion the entities in charge of estimating the trajectories of
the targets stay in pre-defined neighborhoods of the targets.
In this context, target pursuit is a secondary task that aims
to enhance the “visibility” of the targets so as to yield better
quality of the information available for target localization. In
the present paper, this information consists of measurements
of the ranges between the trackers and the targets.
The simplest and most classical problem of range-based target
localization is that of computing the position of a single fixed
target using a network of fixed sensors equipped with range-
measuring devices. A fundamental problem arising in this
context is that of deciding on the number of sensors and how
to best place them so that the position of the target can be
uniquely estimated with a desired level of accuracy (optimal
sensor placement). A solution to this problem can be obtained
by adopting an estimation theoretical framework that involves
the computation of an appropriately defined Fisher information
matrix (FIM). See for example [5]–[7] for a discussion of these
issues. See also [8] for optimal sensor placement solutions in
the case of multiple static targets and sensors.
In recent years, there has been growing interest in exploiting
the use of single or multiple mobile sensors (called track-
ers) for target localization, focusing on applications with
unmanned aerial vehicles (UAVs) and autonomous marine
vehicles (AMVs), see for example [1], [9]–[13] and the refer-
ences therein. In this setup, the trackers carry range measuring
devices to acquire successive ranges to the targets of interest
and use the range information to estimate the state of each
target. Obviously, this approach has many advantages when
compared with the traditional method of using a fixed sensor
network. First, thanks to the mobility of the trackers, ranges
can be acquired from a large number of positions relative to
each target, thus potentially providing more information for
target localization [9]. Second, the visibility of the targets
can be facilitated by controlling the trackers to be close to
the targets. Lastly, the use of trackers in the form of AMVs
avoids the cumbersome and costly deployment of long baseline
(LBL) systems that are classically used in underwater target
localization.
This, however leads to the challenging problem of how to
plan the motion of the trackers such that their maneuvers
ensure that the measured ranges from the trackers to the
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targets yield, in a well defined mathematical sense, the in-
formation needed to estimate the position of the target with
a given level of accuracy through the use of an appropriately
designed estimator. Technically, the answer to this problem
should provide conditions on the motions of trackers that
yield target motion observability, given measurements of the
ranges between trackers and targets. A classical approach to
this problem reported in the literature is to utilize tools from
observability analysis, see for example [12], [14]–[17] and ref-
erences therein. For instance, in [14], the author shows that it
is impossible to observe a target moving at a constant velocity
vector if the tracker (observer) moves at a constant velocity
as well. However, if the tracker’s trajectory is composed of
at least two straight line segments with different orientations,
the target’s motion is observable if certain conditions on the
bearing between the tracker and the target are satisfied. This
analysis is further investigated in [15] where the trajectory of
the tracker is considered to be smooth. In [16], the author
analyzes the relative motion between the target and tracker
using observability rank condition given in the work of [18].
Recent work in [17] provides a set of necessary and sufficient
conditions on the motions of one or two trackers under which
different type’s of target’s motions are observable. In general,
the above approaches provide conditions on the tracker’s
trajectories that yield target state observability. However, these
are essentially qualitative result that do not provide a good
measure of how observable the target motions, a key requisite
for adequate tracker motion planning.
A quantitative approach to motion planning can be derived
using the celebrated Fisher Information Matrix (FIM), as
a means to quantify the amount of information that range
measurements carry about the motions of a target. Using
this approach, the target localization problem is converted
into that of finding conditions on the trackers’ trajectories
that maximize range-related information available to estimate
the target’s state. We recall that in an estimation theoretical
framework, the inverse of the FIM yields a lower bound (the
celebrated Cramér-Rao lower bound, abbreviated CRLB) on
the covariance of the target’s state estimation error that can
possibly be achieved with any practical estimator [4], [19],
[20]. In the context of range-based target localization, the
CRLB is mostly used to access the performance that can be
achieved with target state estimators [4], [21]. A number of
studies that exploit the use of the FIM for tracker motion
planning have been published in the literature, see [9], [13],
[22] and the reference therein for the case of one tracker
one target. More recently, similar tools have been used to
tackle the tracker motion planning problem in the case of
multiple tracker-multiple target configurations [13]. Notice,
however that in [13], [22] the authors resort to the use of
the so-called parametric FIM. In this context, the targets
evolve in a deterministic manner and the initial conditions
of the targets are viewed as parameters to be estimated. As
such, the work eschews the far more realistic case where the
initial state of the targets (prior information) is described by a
random variable that captures the uncertainty in their location,
a fact that mandates the use of so-called Bayesian FIM and
the computation of posterior CRLBs [19], explained later in

the present paper. Most approaches to tracker localization,
including those reported in [13], [22], also fail to address
explicitly the constraints introduced by the limitations in the
maneuverability of the trackers. In addition, the guidance law
proposed in [13], [22] for the trackers is based on the assump-
tion that the motions of the targets are known in advance,
which is unrealistic in the context of target localization. Still,
the results in [13] are valuable in terms of understanding at an
intuitive level, what kinds of optimal tracker trajectories are
suited to selected types of target motion patterns.
Motivated by the above considerations, in the present paper
we provide an answer to the question of “how to plan optimal
motions” for a set of trackers so as to maximize the range
information available to localize and pursue multiple unknown
targets by exploiting the properties of an appropriately defined
Bayesian FIM. Specifically, the main contributions of the paper
include the following:

(i) We construct a Bayesian FIM using the range mea-
surements from multiple trackers to multiple targets
as a means to quantify the range information for the
estimation of targets’ states. The formalism adopted
allows for the study of problems far more appropriate and
realistic than those addressed in [13]. First, we consider a
more general scenario (later denoted Scenario B) where
the velocity vectors of the targets are considered to be
unknown and must be estimated. Second, the motion of
targets are considered to be a dynamical system with
given prior information, allowing us to incorporate ex-
plicitly the prior knowledge of the targets’ states. Third,
the FIM in the current paper is the Bayesian FIM [19]
which is more suitable and appropriate for the problem
considered than the parametric FIM studied in [13]. The
Bayesian FIM takes into account the dynamics of the
trackers and the targets systematically and is computed
sequentially, making its computation is simpler, clean
and more transparent then the method adopted in [13].
Forth, the depths of the trackers and targets are explicitly
taken into account. Lastly, we derive sufficient conditions
on the relative geometry between the trackers and the
targets trajectory under which the range information
computed by the determinant of the FIM is maximum.

(ii) We also propose an MPC-based tracker motion planning,
control, and estimation strategy that takes into account
the trackers’ constraints explicitly, in order to plan opti-
mal motions for the trackers to localize and pursue the
targets. In the MPC framework adopted, the control and
planing processes are based on the estimated information
about the target, thus making the approach more realistic
than the guidance law given in [13] where the targets’
motions are assumed to be known in advance.

The paper is organized as follows. Section II summarizes
the basic notation. The general range-based multiple target
localization and pursuit problem is formulated in Section III.
Section IV describes the process of deriving an appropriate
Bayesian FIM in the context of range-based target localization.
Section V provides an analysis on the optimal motion of the
trackers for the special case when the prior knowledge and
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the process noise are neglected. Section VI presents an MPC-
based method to solve the range-based target localization and
pursuit problem in realistic contexts. Illustrative simulations
are presented in Section VII. Section VIII contains the main
conclusions.

II. NOTATION

We denote by In the identity matrix of size n and by
0m×n the zero matrix of size m × n. For two matrices
A,B ∈ Rn×n the notation A � B implies that A − B
is a positive semi-definite matrix. We further let det(·) and
Tr(·) denote the determinant and the trace of a square matrix,
respectively. The symbol ‖·‖ denotes the Euclidean norm of
a vector in Rn. Given x ∈ Rn and a symmetric positive-
definite matrix D ∈ Rn×n, ‖x‖2D , xTDx. Given a set of
matrices W1, ...,Wp ∈ Rn×m, the symbol Diag(W1, ...,Wp)
means the block diagonal matrix whose diagonal blocks are
the matrices Wk; k ∈ {1, .., p}. Given a set of vectors
x1, ...,xp, col(xi) = [xT

1 , ...,x
T
p ]T.

III. PROBLEM FORMULATION

A. System Model

Consider a group of trackers charged with the task of local-
izing and pursuing a group of moving targets whose motions
are partially unknown. As an example, Fig.III.1 illustrates
the situation where two autonomous surface vehicles (ASVs)
localize and pursue three autonomous underwater vehicles
(AUVs) using acoustic range measurements. In general, given
p, q ∈ N, we define S , {1, ..., p} and ST , {1, ..., q},
where p and q denote the number of trackers and targets,
respectively. In what follows, {I} = {xI , yI , zI} denotes an
inertial coordinate frame and {B}[i] = {x[i]

B , y
[i]
B , z

[i]
B } denotes

a body coordinate frame attached to tracker i; i ∈ S. We now
discuss the tracker and target models considered in this paper.

Tracker dynamics: For each i ∈ S, let z[i] be the zI

ASV  1
ASV  2

AUV  1 AUV  2

AUV  3

Figure III.1: An example of two trackers (ASVs) localizing
three targets (AUVs) using acoustic range measurements.

coordinate of tracker i in frame {I}. For the sake of simplicity,
when analyzing the geometry of the motion of trackers, we
assume that all trackers operate at known constant but possibly
different depths, that is, z[i](t) = z̄[i] for all t ≥ 0 and i ∈ S.

With the above assumptions, the planar motion of tracker i;
i ∈ S, can be described by the simplified kinematic model

ṗ[i] = v[i][cos(χ[i]), sin(χ[i])]T, χ̇[i] = r[i], (1)

where p[i] = [x[i], y[i]]T ∈ R2 is the horizontal position of
tracker i in {I}; v[i] =

∥∥v[i]
∥∥ is its total linear speed; χ[i]

is the course angle (see Fig. III.2), and r[i] is the course
angle rate. Notice that if the sideslip angle of the tracker
is sufficiently small to be ignored, than course angle and
course angle rate are equivalent to heading angle and yaw
rate, respectively. Our main objective is to find smooth linear
speed and course rate references for an autopilot to drive the
trackers along trajectories that yield rich range-information for
target localization. We introduce the following constraints

v̇[i] = a[i]
v , ṙ[i] = a[i]

r , (2)

where a[i]
v and a[i]

r denote the linear and angular acceleration
of the tracker, respectively, which we assume are bounded. In
state-space form, we let z[i] = [x[i], y[i], ψ[i], v[i], r[i]]T ∈ R5

be the state vector and v[i] = [a
[i]
v , a

[i]
r ]T ∈ R2 the input vector.

The tracker’s model (1) can now be rewritten as{
ż[i] = g(z[i],v[i]),

p[i] = Cz[i]
(3)

where g : R5 × R2 → R5 and C ∈ R2×5 are given by

g(z[i],v[i]) =


v[i] cos(χ[i])
v[i] sin(χ[i])

r[i]

a
[i]
v

a
[i]
r

 and C =
[
I2 02×3

]
.

respectively. Later, for the purpose of system design, (3) will
be discretized in time, yielding{

z
[i]
k+1 = gd(z

[i]
k ,v

[i]
k ),

p
[i]
k = Cz

[i]
k ,

(4)

where k ∈ N indexes discrete time instants and gd(·) is a
nonlinear function that depends on the chosen discretization
procedure. Due to physical limitations, the linear and the
rotational speeds and the accelerations of the trackers are
bounded. For this reason, we will impose the state and input
constraints

Figure III.2: Illustration of the planar motion of vehicle i .

v[i] ∈ V [i], z[i] ∈ Z [i], (5)
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where V [i] ⊆ R2 and Z [i] ⊆ R5 are input and state constraint
sets, respectively, for trackers i; i ∈ S.
Target model: Let z[α]

T be the zI coordinate of target α in
{I}. We assume that all targets move at known and constant
depths, that is, z[α]

T (t) = z̄
[α]
T for all t ≥ 0 and α ∈ ST.

Let also q
[α]
k = [x

[α]
T,k, y

[α]
T,k]T ∈ R2 be the projection of the

target position vector at discrete time k on the horizontal plane
xI − yI . We consider each target α as a point mass whose
motion is described by the discrete model

x
[α]
k+1 = f(x

[α]
k ,u

[α]
k ), (6)

where x
[α]
k ∈ Rn, (n ≥ 2) is the target’s state vector that

needs to be estimated, u[α]
k ∈ R2 is the input vector. Note that

x
[α]
k includes q[α]

k and possibly q̇
[α]
k . In this paper, we consider

two instances of (6) corresponding to the following practical
scenarios.
Scenario A: Target velocity vectors are known
To justify the assumption, consider a fleet of targets (AUVs)
performing a pre-defined mission underwater, for example, co-
operative path following [23], with known pre-defined velocity
vectors. Under this assumption, we adopt the following target
model:
Target model A

x
[α]
k+1 = x

[α]
k + Tsu

[α]
k , (7)

where x
[α]
k = q

[α]
k ∈ R2; u

[α]
k ∈ R2; α ∈ ST, is the target

velocity vector in the inertial frame that is known to all the
trackers; and Ts is the sampling interval. Consequently, in
this particular case only the positions of the targets need to
be estimated. We also assume that prior information on the
initial target’s state vector x[α]

0 is given in terms of a Gaussian
probability density function (PDF) described as

x
[α]
0 ∼ N (c

[α]
A,0, P

[α]
A,0) (8)

with some c
[α]
A,0 ∈ R2 and P [α]

A,0 ∈ R2×2;α ∈ ST.
Scenario B: Targets’ velocity vectors are unknown
In this case, the trackers need to estimate both the position
and velocity vectors of each target. We also consider the case
where the target’s velocity vector changes slowly, so that it can
be assumed to be approximately constant over the observation
window, i.e. q̇

[α]
k = 0 for all α ∈ ST. We thus let x

[α]
k =

[q
[α]
k ; q̇

[α]
k ] ∈ R4 be the state vector of the target α; α ∈ ST,

that must be estimated. The following model for each target,
named Target model B, can be rewritten explicitly from (6) as
follows:
Target model B:

x
[α]
k+1 = ABx

[α]
k , (9)

where

AB =

[
I2 TsI2

02×2 I2

]
∈ R4×4. (10)

Assume further that prior information on the initial target’s
state x

[α]
0 is given by the Gaussian PDF

x
[α]
0 ∼ N (c

[α]
B,0, P

[α]
B,0) (11)

with some c
[α]
B,0 ∈ R4 and P [α]

B,0 ∈ R4×4;α ∈ ST.
Measurement model: We assume that each tracker is equipped
with sensors that measure distances to all targets at the same
discrete instants of time. At each time k, let d[i,α]

k be the true
distance from tracker i; i ∈ S, to target α;α ∈ ST, defined as

d
[i,α]
k =

√∥∥∥p[i,α]
k

∥∥∥2

+
(
z̄[i] − z̄[α]

T

)2

, (12)

where
p

[i,α]
k , p

[i]
k − q

[α]
k . (13)

Further, let y[i,α]
k denote the range measurements which we

assume are corrupted by Gaussian white noise according to
the range measurement model

y
[i,α]
k = d

[i,α]
k + η

[i,α]
k , (14)

where η[i,α]
k ∼ N (0, σ2), i ∈ S and α ∈ ST. In practice, range

measurements can only be obtained up to a certain distance
that depends on the type of range-measuring device used and
the environmental conditions (see [8]). Therefore, we make
the following assumption.

Assumption 1: We assume that the farthest distance that
can be measured reliably by any range-measuring devices is
dmax > 0. We further assume that all range measurements are
taken within this distance, i.e. d[i,α]

k ≤ dmax for all k ∈ N, i ∈
S and α ∈ ST. These constraints will be addressed explicitly
in Section VI.

B. Problem Statement

The multiple target localization and pursuit problem can
now be formally defined as follows.
Problem [Target localization and pursuit]
Consider a set of multiple trackers and a set of multiple
targets. Assume the trackers’ dynamics are given by (1)
subject to input and state constraints (5), and the targets’
model is given by (6) where the targets’ states x

[α]
k ;α ∈ ST

are unknown. Further assume that the range measurement
model is given by (14). Under these conditions, design input
v[i]; i ∈ S for each tracker so that the following tasks are
fulfilled
• Localization task: Ensure that the range measurements

provide “sufficiently rich range information” to estimate
the targets’ states.

• Target pursuit: In addition to the localization task, guar-
antee that the trackers are in the vicinity of the targets,
that is, ensure that the distance from any tracker to any
target does not exceed r∗ ≤ dmax, where r∗ is a design
parameter.

A natural question that arises in this context is how to
quantify the range information required to estimate the states
of the targets with a desired level of accuracy. With this
objective in mind we adopt an estimation theoretical setting
that involves the computation of the FIM, whose definition and
construction in the context of target localization are presented
in the next section.

Remark 1: Notice that in the target localization and pursuit
problem, target localization is the primary task while target
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pursuit is secondary. The objective of the latter is to keep
the trackers close to the targets so as to acquire useful range
measurements.

IV. THE BAYESIAN FIM IN THE CONTEXT OF
RANGE-BASED TARGET LOCALIZATION

A. The Bayesian FIM for a general target model

We start by recalling the concept and construction of the
Bayesian FIM that arises in the context of estimation of
dynamical systems [19]. Consider the problem of estimating
the state of a discrete nonlinear system described by

xk+1 = f(xk,uk) + wk

yk = h(xk,φk) + ηk,
(15)

where xk ∈ Rn is the state, uk ∈ Rm is a known de-
terministic input, yk ∈ Rl is the measurement output at
discrete time k, φk is a known deterministic trajectory (to
be defined later) while wk ∼ N (0, Q) and ηk ∼ N (0, R)
are independent Gaussian random processes that describe the
state and measurement noises, respectively. In the context of
range-based target localization, h(·) are the distances from
the trackers to the targets and φk are the positions of the
trackers (see (12)). Let x̂k be an estimator of xk based on a
set of k measurements samples {yi,φi,ui−1}ki=1 and the prior
knowledge of the initial probability density function p(x0).
According to [20], the covariance matrix of x̂k, denoted Pk,
given by any estimator is lower bounded as

Pk = E{(x̂k − xk)(x̂k − xk)T} � I−1
k , (16)

where Ik is the so-called Fisher information matrix associated
with the estimation of the state xk and its inverse is the
posterior Cramér-Rao Lower Bound (CRLB). Applying the
methodology described in [19], the Bayesian FIM is given by
the recursive formula

Ik+1 = D22
k −D21

k (Ik +D11
k )−1D12

k , (17)

where

D11
k = E{

[
∇xk

fT(xk,uk)
]
Q−1

[
∇xk

fT(xk,uk)
]T}, (18)

D12
k = −E{∇xk

f(xk,uk)}Q−1 = [D21
k ]T, (19)

D22
k = Q−1 + Ωk+1, (20)

with
Ωk+1 = E{Hk+1(xk+1,φk+1)} (21)

and

Hk+1(xk+1,φk+1)

=
[
∇xk+1

hT(xk+1,φk+1)
]
R−1

[
∇xk+1

hT(xk+1,φk+1)
]T
.

(22)

In the above equations, E denotes the expectation operator and,
for a given x = [x1, ..., xn]T ∈ Rn, ∇x , [ ∂

∂x1
, ..., ∂

∂xn
]T.

Note that the expectation in (18) and (19) is with respect to
the distribution of xk while in (21) it is computed with respect
to the distribution of xk+1. The recursion in (17) is initialized
with the prior information of the initial state x0 as

I0 = E{[∇x0
log p(x0)][∇x0

log p(x0)]T}. (23)

We now consider a special case of (15) where the state
equation is linear, given by

xk+1 = Axk +Buk + wk

yk = h(xk,φk) + ηk.
(24)

With this model, it follows from (18) and (19) that D11
k =

ATQ−1A and D12
k = ATQ−1. Inserting the later in (17) yields

Ik+1 =Q−1 + Ωk+1

−Q−1A(Ik +ATQ−1A)−1ATQ−1.
(25)

Applying the matrix inversion lemma1, (25) can be simplified
as

Ik+1 = (Q+AI−1
k AT)−1 + Ωk+1. (26)

If A is non-singular and the process noise is absent, that is, if
Q = 0 in (26), then

Ik+1 = [A−1]TIkA−1 + Ωk+1. (27)

Since h(·) is a nonlinear function, in general it may be
impossible to compute Ωk+1 given by (21) analytically. In
practice, a Monte Carlo simulation method can be used to
approximate the expectation operator. The key idea behind the
Monte Carlo method is that, given x

(j)
0 ∼ p(x0); j = 1, ...,M

and a sequence of {ui,φi+1}ki=0, we carry out M simulations
of the system (24) to obtain M realizations of the trajectory
{x(j)

i+1}ki=0. Then, the expectation in (21) can be computed
approximately as

Ωk+1 ≈
1

M

M∑
j=1

Hk+1(x
(j)
k+1,φk+1). (28)

B. The Bayesian FIM for Target Model A

For each i ∈ S, let I [i,α]
A,k ∈ R2×2 be the Bayesian FIM

at time k, associated with the estimation of the state x
[α]
k of

target α with motion described by Target model A, using the
range measurements from tracker i. Notice that the system
that results from the combination of Target model A given by
(7) and the output model given by (12) is a special case of
(24) with A = I2, B = TsI2, R = σ, φk = p

[i]
k , Q = 0 and

h(·) = d
[i,α]
k , where d[i,α]

k is given by (12). Substituting the
above parameters in (27), I [i,α]

A,k is given by

I [i,α]
A,k+1 = I [i,α]

A,k + Ω
[i,α]
k+1 (29)

where Ω
[i,α]
k+1 is computed as in (21), yielding

Ω
[i,α]
k+1 = E

{
1

σ2

(
p

[i,α]
k+1

d
[i,α]
k+1

)(
p

[i,α]
k+1

d
[i,α]
k+1

)T}
(30)

with p
[i,α]
k is given in (13). Note that the expectation in (30)

is taken over the distribution of q[α]
k+1. We now consider I [α]

A,k,
the FIM for estimating x

[α]
k , using the range measurements

from all trackers, collectively. Compared with the case of a
single tracker, more range measurements are augmented to the
measurement output vector, i.e. h(·) = [d

[1,α]
k , ..., d

[p,α]
k ]T ∈

1(A+BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1
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Rp and R = Diag(σ, ..., σ) ∈ Rp×p. Inserting the above in
(27) yields

I [α]
A,k+1 = I [α]

A,k +

p∑
i=1

Ω
[i,α]
k+1 . (31)

It follows from (8) and (23) that the recursions (29) and (31)
start with the prior information

I [i,α]
A,0 = I [α]

A,0 = [P
[α]
A,0]−1, (32)

that is, the FIM iterations start with the prior information on
the target’s positions. Let xk = [x

[1]
k , ...,x

[q]
k ] ∈ R2q be the

states of all targets that need to be estimated. Also, let IA,k ∈
R2q×2q denote the total information available to estimate xk
using all range measurements from all the trackers to each of
the targets. Using the methodology mentioned in the previous
cases it can be shown that

IA,k = Diag(I [1]
A,k, ..., I

[q]
A,k), (33)

where each I [α]
A,k;α = 1, ..., q is computed using (31).

C. The Bayesian FIM for Target Model B

For every i ∈ S, let I [i,α]
B,k ∈ R4×4 be the FIM associated

with the estimation of the state x
[α]
k ∈ R4 of target α,

with motion described by Target model B, using the range
measurements from tracker i. Notice that Target model B given
by (7) is a special case of (24) with A = AB, where AB is
given by (10), R = σ, φk = p

[i]
k , Q = 0 and h(·) = d

[i,α]
k .

Substituting the above parameters in (27), I [i,α]
B,k is given by

I [i,α]
B,k+1 = [A−1

B ]TI [i,α]
B,k A

−1
B +

[
Ω

[i,α]
k+1 02×2

02×2 02×2

]
. (34)

Let I [α]
k be the FIM associated with the estimation of x

[α]
k

using the range measurements from all trackers, collectively.
Similar to the case of Target model A, I [α]

B,k can be computed
by the recursion formula

I [α]
B,k+1 = [A−1

B ]TI [α]
B,kA

−1
B +

p∑
i=1

[
Ω

[i,α]
k+1 02×2

02×2 02×2

]
. (35)

It follows from (11) and (23) that the recursions (34) and (35)
start with the prior information

I [i,α]
B,0 = I [α]

B,0 = [P
[α]
B,0]−1. (36)

Let xk = [x
[1]
k , ...,x

[q]
k ]T ∈ R4q be the state of all targets that

needs to be estimated. Also, let IB,k ∈ R4q×4q denote the total
information for estimating xk. Clearly, IB,k is given by

IB,k = Diag(I [1]
B,k, ..., I

[q]
B,k), (37)

where each I [α]
B,k;α = 1, ..., q is computed by (35).

Note that by construction, the FIM is symmetric and positive
semidefinite. In the context of the present paper, the informa-
tion carried by the FIM for estimation purposes is measured
by its determinant, the metric adopted in [6], [7].

V. PRELIMINARY ANALYSIS: IDEAL GEOMETRIES
FOR MAXIMUM RANGE-RELATED INFORMATION

In this section, we will analyze a special case of the
Bayesian FIMs derived for Target Model A and B where there
is no prior information on the initial state of the target2.
We will show that this special case leads to simplified FIMs
that allows us to derive analytically “ideal” condition on the
trackers’ trajectories that yield maximum achievable range-
information acquired to estimate the targets’ states. The results
in this section helps understand at a very intuitive level the
types of optimal relative tracker-target geometries that the
trackers should reach and maintain to maximize the range-
related information. Furthermore, they play an important role
in benchmarking the types of solutions that will be obtained
numerically using the far more realistic approach to target
localization and pursuit introduced in Section VI.
To analyze the Bayesian FIMs with the above assumptions,
their formulas in recursions (31) and (35) can be rewritten in
compact form as follows. Firstly, let

a[i,α]
n =

(
x[i]
n − x

[α]
T,n

)
/d[i,α]
n (38a)

b[i,α]
n =

(
y[i]
n − y

[α]
T,n

)
/d[i,α]
n , (38b)

for all n ∈ {1, ..., k}. Define also two vectors ai,α =

[a
[i,α]
1 , ..., a

[i,α]
k ]T ∈ Rk and bi,α = [b

[i,α]
1 , ..., b

[i,α]
k ]T ∈ Rk.

Lemma 1: Consider the Bayesian FIMs related to the
problem of estimating the state of target α computed by
recursions (31) and (35), corresponding to Target model A and
Target model B, respectively. If there is no prior information
on the initial target state, i.e. I [i,α]

A,0 in (32) and I [i,α]
B,0 in (36)

are zeros then,

I [α]
A,k =

p∑
i=1

1

σ2

[
‖ai,α‖2 aT

i,αbi,α
aT
i,αbi,α ‖bi,α‖2

]
(39)

and

I [α]
B,k =

[
Aα Bα
Bα Cα

]
, (40)

where Aα = I [α]
A,k with I [α]

A,k given by (39),

Bα = −
p∑
i=1

1

σ2

[
‖ai,α‖2D1

aT
i,αD1bi,α

aT
i,αD1bi,α ‖bi,α‖2D1

]
,

Cα =

p∑
i=1

1

σ2

[
‖ai,α‖2D2

aT
i,αD2bi,α

aT
i,αD2bi,α ‖bi,α‖2D2

]
,

(41)

D1 = Diag(τ1, ..., τk) ∈ Rk×k, D2 = Diag(τ2
1 , ..., τ

2
k ) ∈

Rk×k and

τn = (k − n)Ts, n = {1, ..., k}.

Proof: For Target model A, (39) is obtained by substituting
I [i,α]

A,0 = 0 and the relation in (38) in (31), while for Target
model B, (40) is obtained by substituting I [i,α]

B,0 = 0 and the
relation in (38) in (35). Notice also that since the process noise
is zero the target moves in a deterministic manner, thus, the

2Equivalent with I[i,α]
A,0 in (32), I[i,α]

B,0 in (36) are zero
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expectation in (30) was dropped to obtain (39) and (40). �
Before we proceed we introduce the variables

c[i,α] =

(
(z̄[i] − z̄[α]

T )

dmax

)2

(42)

and γ[i,α], with the latter defined by

cos(γ[i,α]
n ) =

(
x[i]
n − x

[α]
T,n

)
/
∥∥∥p[i,α]

n

∥∥∥ (43)

for all n ∈ {1, ..., k}. By definition, γ[i,α]
n is the angle between

the projection on the xI − yI plane of the relative position
vector from tracker i to target α and the xI-axis (see Fig.
V.1). The main results in this section are presented next.

A. Single tracker-single target

We start by considering the simple case of a single tracker
localizing a single target. In this configuration, i = p = 1
and α = q = 1. Therefore, for simplicity of notation we drop
the superscripts (subscripts) i and α wherever they appear in
this subsection. The following result provides a measure of
the range-related information available in this scenario.

Theorem 1: Consider the case of a single tracker localizing
a single target. Let assumptions in Lemma 1 hold. Then, the
following statements hold true.

i. For Scenario A, the range information quantified by the
determinant of IA,k is maximal when IA,k = I11A, where

I11A = (1− c)σ−2IoA, (44)

c is given by (42), and

IoA = kI2/2. (45)

ii. For Scenario B, the determinant of IB,k is maximal when
IB,k = I11B, where

I11B = (1− c)σ−2IoB, (46)

c is given by (42),

IoB =

[
kI2/2 ∆1I2/2

∆1I2/2 ∆2I2/2

]
, (47)

with ∆1 , −
∑k
n=1 τn, and ∆2 ,

∑k
n=1 τ

2
n.

The matrices I11A and I11B are called the optimal range
information matrices for Scenarios A and B, respectively.
Proof: See Appendix.

Remark 2: For Target model A, if the tracker and the target
are at the same depth, that is, c = 0, then the optimal FIM in
(44) recovers the result in [13] (see Lemma 2 in [13] for the
case one tracker-one target). This happens because, for this
particular case, we assumed that there is no prior information
on the initial state of the target therefore, the target can
be viewed as a deterministic process with unknown initial
target’s state. Thus, under these assumptions the simplified
Bayesian FIM associated with the estimation of the target
state at current time (xk) in the present paper is equivalent
to the parametric FIM associated with the estimation of the
initial target’s state (x0) in [13]. However, it is important
to stress that the parametric FIM in [13] is only applicable

to deterministic target, whereas as shown in the previous
section the Bayesian FIM in our present paper is applicable
to all types of target motion. Furthermore, the method used to
compute the Bayesian FIM in the present paper is a recursive
approach, which is simpler and more transparent than that
used to compute the parametric FIM in [13].
We now study possible target-tracker geometries that maxi-
mize the range-related information. We obtain the following
result.

Proposition 1: Consider the case of a single tracker
localizing a single target. In order to reach the maximal range
information, as characterized in Theorem 1, an optimal tra-
jectory for the tracker is obtained by encircling the projection
of the target on the xI−yI plan such that any two successive
range measurements are taken at positions that satisfy

γn+1 − γn = ω , ±2π/N (48)

for all n ∈ {1, ..., k}, where γn defined in (43) and some
natural number N ;N ≥ 3. Furthermore, if the tracker and
the target are at different depths, in addition to (48) the
tracker encircles the target along a circumference of radius
r ,

√
d2

max − (z̄ − z̄T)2.
Proof: See Appendix.
In (48), the symbol ± indicate the direction of the tracker’s
motion (“ + ” is counter-clockwise and “ − ” is clockwise).
Proposition 1 implies that if the target is fixed (stationary),
an ideal trajectory for the tracker is obtained by having the
tracker follow a circumference centered at the target with a
constant linear speed and a constant course rate, see Fig. V.1.

Figure V.1: Illustration of an ideal tracker-target geometry that
maximizes the range information. Successive positions and
respective trajectories of target (blue) and tracker (red).

B. Multiple trackers-single target

We now consider the case when more than one tracker is
used to localize a single moving target and derive the following
result.

Theorem 2: Consider the case of p trackers localizing a
single target, say α. Let assumptions in Lemma 1 hold. Then,
the following statements hold true.
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i. For Scenario A, the determinant of I [α]
A,k is maximal when

I [α]
A,k = Ī [α]

A,k, where

Ī [α]
A,k =

(
p−

p∑
i=1

c[i,α]

)
σ−2IoA, (49)

c[i,α] is given by (42), and IoA is given by (45).
ii. For Scenario B, the determinant of I [α]

B,k is maximal when
I [α]

B,k = Ī [α]
B,k, where

Ī [α]
B,k =

(
p−

p∑
i=1

c[i,α]

)
σ−2IoB, (50)

c[i,α] is given by (42), and IoB is given in (47).
Proof: See Appendix.
We now discuss possible geometries that maximize the range
information. To this end, we shall study the angle β[i,j;α]

formed by the two relative position vectors from the trackers
i and j to the target α in the xI − yI plane (see Fig. V.2).
We obtain the following result.

Figure V.2: Angle formed by the relative vectors between
trackers and target α in the xI − yI plane.

1) Geometry for two trackers- single target (p=2, q=1):
Proposition 2: Consider the case of two trackers localizing

a single target α. In order to obtain maximal range informa-
tion, as characterized in Theorem 2, an ideal trajectory for
the trackers is to maintain the relative position vectors from
the two trackers to the target orthogonal, that is,

β[1,2;α]
n = π/2 + lπ (51)

for all n ∈ {1, ..., k} and l ∈ N. Furthermore, if the
trackers and the target are at different depths, in addition
to the orthogonality condition above the condition given by∥∥∥p[i]

n − q
[α]
n

∥∥∥ =

√
d2

max − (z̄[i] − z̄[α]
T )2 for all i ∈ {1, 2} and

n ∈ {1, ..., k} applies.
Proof: See Appendix.
Fig. V.3 illustrates possible trackers-target trajectories that
maximize the range information when the trackers and the
targets are at the same depth.

2) Geometry for p trackers - single target (p ≥ 3, q = 1):
Proposition 3: Consider the case of p trackers localizing a

single target α. In order to obtain maximal range information,
as characterized in Theorem 2, an ideal trajectory for the
trackers is to keep them around the target in such a way that

β[i,j;α]
n = β[j,i;α]

n = 2π/p (52)

for all i, j ∈ {1, ..., p} and n ∈ {1, ..., k}. Furthermore,
if the trackers and the target are at different depths, in

Figure V.3: Example of an ideal relative trackers-target ge-
ometry that yields maximum achievable range information.
Trackers’ trajectories: tracker 1 (red), and tracker 2 (green).

addition to the condition in (52) the condition given by∥∥∥p[i]
n − q

[α]
n

∥∥∥ =

√
d2

max − (z̄[i] − z̄[α]
T )2 for all n ∈ {1, ..., k}

and i ∈ {1, ..., p} applies.
Proof: See Appendix.
Fig. V.4 illustrates, for the case of three trackers and one target,
possible tracker-target trajectories that yield the maximum
range information when all trackers and the target are at the
same depth. In this case, the trackers move in such a way as
to keep the target at the in-center of the equilateral triangle
formed by their positions, viewed as vertices of the triangle.

Figure V.4: Example of a relative trackers-target geometry that
maximizes range information. Trackers and target trajectories:
tracker 1 (red), tracker 2 (green), tracker 3 (black), and target
(blue).

C. Multiple trackers- multiple targets

We now consider the case of multiple trackers and multiple
targets. We first characterize the optimal range-related FIM,
as follows.

Theorem 3: Consider the situation of p trackers localizing q
targets. Let assumptions in Lemma 1 hold. Then, the following
statements hold true.

i. For Scenario A, the determinant of IA,k is maximal when
IA,k = ĪA,k, where

ĪA,k = Diag(Ī [1]
A,k, ..., Ī

[q]
A,k), (53)

Ī [α]
A,k;α = {1, ..., q} given by (49).

ii. For Scenario B, the determinant of IB,k is maximal when
IB,k = ĪB,k, where

ĪB,k = Diag(Ī [1]
B,k, ..., Ī

[q]
B,k), (54)

Ī [α]
B,k;α = {1, ..., q} given by (50).
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Proof: See Appendix.
We now discuss the ideal geometry for the case of two trackers
localizing multiple targets.

Proposition 4: Consider the case of two trackers localizing
q targets. In order to obtain maximal range information, as
characterized in Theorem 3, ideal trajectories for the trackers
correspond to maintaining the relative position vectors from
them to each target orthogonal. Furthermore, if the trackers
and the targets are at different depths, in addition to the
orthogonality condition the condition given by

∥∥∥p[i]
n − q

[α]
n

∥∥∥ =√
d2

max − (z̄[i] − z̄[α]
T )2 for all n ∈ {1, ..., k}, i ∈ {1, 2} and

α ∈ {1, ..., q} applies.
Proof: The proof is similar to that of Proposition 2. �
Fig. V.5 illustrates a possible tracker-target trajectory that
maximizes the range information for the case of two trackers
and two targets. It can be seen that, in order to obtain maximal
range information, the trackers move so that the circumscribed
circumference that is centered at the middle of the two trackers
goes through the positions the targets.

Figure V.5: Illustration of ideal trackers-targets trajectories that
maximizes the range information. Targets trajectories (blue).
Tracker 1 (red), tracker 2 (green).

VI. MPC FRAMEWORK FOR TARGET
LOCALIZATION AND PURSUIT

The previous section addressed the problem of multiple
target localization using multiple trackers by characterizing the
types of possible target-tracker geometries that yield maximum
range-based information. The results obtained characterizes
the ideal positions of the trackers with respect to the foreseeen
motion of the targets. The analysis provided valuable insight
into the types of ideal tracker trajectories required. However,

MPC 

Estimator

Trackers Targets 

Range measurement 
Noise

Figure VI.1: Receding horizon strategy for target localizing
and pursuit.

further work is required to bring these theoretical advances to
bear on the development of effective target localization and
pursuit systems. In fact, the analysis eschewed four key issues
that occur in real situations: i) The target’s motion might not
be deterministic and can not be known completely in advance,
ii) The motions of the trackers may be severely restricted due
to their dynamics and state/input constraints, iii) the trackers
should maneuver in the vicinity of the targets in order to ensure
that range measurements can be obtained using appropriate
acoustic sensors, and iv) the optimal target-tracker geometries
must be defined with respect to the estimated positions of the
targets (obtained with a properly designed estimator), since
the real states of the latter are unknown.
To address the above challenges, we propose a scheme that in-
volves the execution of three different phases: optimal tracker
motion planning based on prior information about the targets,
motion control of the trackers based on the planned motion,
and range- based target state estimation. To implement the first
two, an MPC-like framework is adopted whereby the motions
of the trackers are planned by resorting to a receding horizon
framework. In this set-up, the cost criterion adopted includes
in its structure a measure of the FIM constructed in Section IV.
The latter uses the prior knowledge of the targets to predict the
range-related information available for target localization over
a short prediction horizon, with the objective of maximizing
it by proper choice of the inputs to the trackers and, as a
consequence, of the tracker trajectories. Only the first term
in the optimal sequence of tracker inputs is used to drive the
trackers, after which the procedure is repeated.

The MPC scheme is illustrated in Fig. VI.1 and is described
as follows. Let z[i]

k be the state of the tracker i; i ∈ S at discrete
time k. Assume that at each time instant k the estimates of
the targets’ states, denoted x̂

[α]
k and their covariance matrices

P̂
[α]
k : α ∈ ST can be provided by an estimator (e.g. EKF).

Given this initial information at time k, the FIM based on N
range measurements ahead taken at instants k+1, ..., k+N can
be predicted using (33) for Target model A and (37) for Target
model B, where N is called the prediction horizon. From (33)
and (37), it can be seen that the predicted FIM depends on the
trackers’ inputs v[i]; i ∈ S and the initial information about the
targets. Therefore, the predicted FIM, denoted Ip is defined

Figure VI.2: Illustration of the predicted uncertainty of the
target’s position for Target model A. Recall that in this case
the target’s state only contains the target’s position.
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explicitly as

Ip(z
[i]
k , x̂

[α]
k , P̂

[α]
k , v̄[i]) ,

{
IA,N for Scenario A,
IB,N for Scenario B,

where IA,N and IB,N are computed using (33) and (37),
respectively while v̄[i] = [[v̄

[i]
k ]T, ..., [v̄

[i]
N−1]T]T; i ∈ S , are

the trackers’ inputs over the prediction horizon. It is important
to note that at every sampled time k, IA,N and IB,N are
initialized with the prior information P̂

[α]
k . Based on the

discussion in the previous section, the primary objective is to
find an optimal input to maximize the range-based information
that is defined by the cost

JFIM = − ln det
(
Ip(z

[i]
k , x̂

[α]
k , P̂

[α]
k , v̄[i]

)
. (55)

where ln det(·) and not simply det(·) is adopted due to
computational advantages [24]. Let P̄ [α]

n ;n = k + 1, ..., N be
the covariance of the target’ state predicted over the prediction
horizon, computed by using the initial covariance P̂ [α]

k and the
Target models (A or B). Let λ̄[α]

n be the length of the major
axis of the ellipse representing the predicted uncertainty region
of target’s position. Note that λ̄[α]

n is computed from P̄
[α]
n (for

Target model A, this is illustrated in Fig. VI.2). For the purpose
of ensuring that the trackers pursue the targets and remain in
the vicinity of the latter, as stated in task 2 (see Sub-section
III-B), we propose the tracking cost

JTrack =

p∑
i=1

q∑
α=1

k+N∑
n=k+1

− log(r∗ − d̄[i,α]
n − λ̄[α]

n − σ), (56)

where d̄[i,α]
n denotes the predicted distance from tracker i to

the estimated position of target α, which is computed using
(12) over the prediction horizon and r∗ is the upper bound for
the distance from each tracker to each target.
Let ē[i] = [v̄[i], r̄[i]], where v̄[i] and r̄[i] are the computed
linear and angular speeds of the ith tracker, respectively over
the prediction horizon. As a means to limit the above values,
collectively taken as a proxy for tracker energy consumption,
we consider the energy-related cost

JEnergy =

p∑
i=1

k+N−1∑
n=k

∥∥∥ē[i]
n

∥∥∥2

Ei

,

where Ei ∈ R2×2 is a diagonal matrix and Ei � 0 for all
i ∈ S. Finally, to control the smoothness of the linear speed
v̄[i] and the angular speed r̄[i] that can be used as references
for autopilots on board the trackers, we define the cost

JInput =

p∑
i=1

k+N−1∑
n=k

∥∥∥v̄[i]
n

∥∥∥2

Ki

,

where Ki � 0 for all i ∈ S.
With the above ingredients, the problem of computing the
trackers’ inputs over a given time-horizon with the purpose
of yielding good target localization and pursuit can be cast in
the form of the following optimal control problem:

Definition 1: The optimal control problem, denoted
OCP(z

[i]
k , x̂

[α]
k , P̂

[α]
k , v̄[i](·)), is stated as follows:

min
v̄[i](·);i∈S

JFIM + ρ1JTrack + ρ2JInput + ρ3JEnergy, (57)

subject to

z̄
[i]
n+1 = gd(z̄[i]

n , v̄
[i]
n ), i ∈ S, (58a)

p̄[i]
n = Cz̄[i]

n , i ∈ S, (58b)

z̄
[i]
k = z

[i]
k , i ∈ S, (58c)

z̄[i]
n ∈ Z [i], v̄[i]

n ∈ V [i], i ∈ S, (58d)

x̄
[α]
n+1 = f(x̄[α]

n , ū[α]
n ), α ∈ ST, (58e)

x̄
[α]
k = x̂

[α]
k α ∈ ST (58f)

d̄[i,α]
n =

∥∥∥p̄[i]
n − q̄[α]

n

∥∥∥, α ∈ ST, (58g)

for n ∈ {k, ..., k +N − 1}

where ρ1, ρ2, ρ3 ≥ 0 are weighing factors.
In the constraint equations (58), the variables with bar de-
note predicted variables, to distinguish them from the actual
variables, which are without bars. Equations (58a)-(58d) are
associated with the trackers’ dynamics and the trackers’ state
and input constraints, while (58e)-(58f) are the constraints
associated with the targets’ models. Notice how the optimal
solution for the trackers’ inputs depends on the initial con-
ditions (58c) and (58f), which are updated at very time k.
This implies that the trajectory of the trackers need to be re-
planned due to the changes in the initial conditions and justifies
our approach of using a receding horizon scheme (MPC) to
solve the target localization and pursuit problem. In the MPC
scheme, the optimal control problem OCP(·) is repeatedly
solved at every discrete sampling instant k. Let v̄[i]∗(·); i ∈ S
be the optimal solution of the optimal control problem. The
MPC control law for each tracker’s input is then defined as

v[i](t) := v̄
[i]∗
k for t ∈ [k, k + 1) (59)

for all i ∈ S.
In summary, the proposed receding horizon planing, control
and estimation for the target localization and pursuit problem
can be implemented using Algorithm 1.

Algorithm 1 Receding horizon planing, control and estimation
strategy for target localization and pursuit

1: Initialization (k = 0):
2: For target model A: x̂[α]

0 = c
[α]
A,0, P̂

[α]
0 = P

[α]
A,0

3: For target model B: x̂[α]
0 = c

[α]
B,0, P̂

[α]
0 = P

[α]
B,0

4: At every sampled time k, repeat the following procedure:
5: procedure PLANING, CONTROL AND ESTIMATION
6: Solve the OCP(·) defined by (57) and (58).
7: Collect all ranges from trackers to targets.
8: Run estimators (e.g. EKF) to update x̂[α]

k , P̂
[α]
k ;α ∈ ST

9: return v[i] for all i ∈ S using the MPC law (59) and
x̂

[α]
k , P̂

[α]
k for all α ∈ ST

VII. SIMULATION EXAMPLES

In this section, we present and discuss simulation results
with the objective of illustrating the performance of the
proposed MPC framework for localization and pursuit of
underwater targets (AUVs) using surface trackers (ASVs). We



NGUYEN T. HUNG et al.: TO APPEAR IN JOURNAL OF ROBOTICS AND AUTONOMOUS SYSTEM 2020 11

consider two situations. In the first situation, an ASV is used
for single target localization and pursuit, while in the second
situation two ASVs are used for localization and pursuit of
two targets. The simulation parameters are given in Table I.
Ranges measurement are available every Ts = 2s, within the
distance of dmax = 100m. Furthermore, the ASVs are required
to pursue the AUVs and stay inside each of the AUV’s vicinity,
with r∗ = 100m. The length of the prediction window is set
as N = 6. To solve the optimal control problem in the MPC
scheme, we use Casadi, an open source optimization tool [25].
To estimate the target states, an extended Kalman filter (EKF)
was employed. The design of the EKF is straightforward, thus
we omit its description.
To assess the performance of EKF for the localization task, we

Table I: Simulation setup

Parameters
Depths z̄[1] = 0m; z̄[2] = 0m

Trackers Vel. constraints v[i] ∈ [0, 4]m/s, r[i] ∈ [-0.2, 0.2]rad/s

(ASVs) Acc. constraints a
[i]
v ∈ [-0.1, 0.1], a[i]r ∈ [-0.01, 0.01]

for i ∈ {1, 2}
Depth z̄

[1]
T = 5m; z̄

[2]
T = 8m

Targets Velocity vector u[α] =

[
0.2 + 0.1 cos(0.1x

[α]
T )

0.2 + 0.1 sin(0.1x
[α]
T )

]
m/s

(AUVs) for α = {1, 2}
Initial positions q

[1]
0 = [5, -5]T,q

[2]
0 = [0, 0]Tm

RMNa Standard deviation σ = 0.5m

aRange measurement noise

define the position estimation and velocity estimation errors as
follows:

PosErr =

q∑
α=1

∥∥∥q[α]
k − q̂

[α]
k

∥∥∥,
VelErr =

q∑
α=1

∥∥∥u[α]
k − û

[α]
k

∥∥∥, (60)

where q̂[α] and û[α] are estimated position and velocity vectors
of the targets obtained from the EKF. The simulation results
are shown next.

A. Simulation 1: Single tracker-single target (p=1,q=1)

In this case, we use one ASV to localize and pursue a single
target, that is, p = q = 1 and we take the values corresponding
to i = α = 1 in Table I. For the MPC scheme, the weighting
parameters are set as ρ1 = 0.01 and ρ2 = ρ3 = 0. The EKF
is initialized with the prior information of the target given by
Table II.

The performance of the MPC scheme for target localization
and pursuit under with Scenarios A and B are plotted in
Fig. VII.1 and Fig. VII.2, respectively. It can be clearly seen
from the figures that the proposed MPC scheme performs
well in this simulation set-up. That is, the ASV’s trajectories
generate “sufficiently rich” range information to estimate the
target’s state. This can be verified by observing Fig.VII.1 (a,b)

a) Trajectories projected in 2D: tracker (p), target (q), target
estimates (q̂). Ellipses represent the uncertainty region of the
estimated target’s positions (computed from P̂k) at
k = 0, 10, ..., 400. The brick-red ellipse corresponds to
k = 0.
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Figure VII.1: Single tracker-single target for the case where
the target’s velocity vector is known (Target model A).

Table II: Prior information on the initial target’s sate
(Gaussian PDF)

Scenario Aa Scenario Bb

Mean c
[1]
A,0 = [-25, -20]T c

[1]
B,0 = [-25, -20, -0, 2, 0, 75]T

Cov. P
[1]
A,0 = Diag(200, 200) P

[1]
B,0 = Diag(200, 200, 0.5, 0.5)

aSee (8)
bSee (11)

and Fig.VII.2 (a,b), where it is evident that the target’s state
estimation errors converge to a small neighborhood of zero
quickly. Comparing Fig.VII.1(a,b) with Fig.VII.2(a,b) it can
be seen that in Scenario A, where the target’s velocity vector
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a) Trajectories projected in 2D: tracker (p), target (q), target
estimates (q̂). Ellipses represent the uncertainty region of the
estimated target’s positions (computed from P̂k) at
k = 0, 10, ..., 400. The brick-red ellipse corresponds to
k = 0.
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Figure VII.2: Single tracker-single target for the case where
the target’s velocity vector is unknown (Target model B).

is known, the estimated target’s position converges to the small
neighborhood of target’s position faster with higher accuracy.
Fig.VII.1 (c) and Fig.VII.2 (c) show that the distances from
the tracker to the target are kept below r∗, implying that the
pursuit task is also fulfilled.
Fig. VII.1(a) and Fig. VII.2(a) also show that, regardless of the
target model A or B, the ASV follows and encircles the target’s
uncertainty regions, which are represented by ellipses in the
figures. These trajectories are similar to the ideal trajectories
stated in Proposition 1 that maximize the range information.
Recall that the analysis in Proposition 1 neglected the tracker’s
constraints and dynamics and the target state is considered
to be deterministic. Nevertheless, the analysis provides an
intuitive understanding of the trajectories obtained in this

simulation when the tracker’s constraints and dynamics, and
the uncertainty of the target are taken explicitly into account.

B. Simulation 2: multiple trackers-multiple targets (p=2,q=2)

a) 3D-Trajectories: trackers (p[i]), targets (q[α]), target
estimates (q̂[α]); i, α = 1, 2. Dark and cyan ellipses describe
the uncertainty region in the initial positions of target 1 and
2, respectively.
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(in m). Dash-blue is r∗.

Figure VII.3: Two trackers and two targets for the case where
the targets’ velocity vector is known (Target model A).

In this simulation, two trackers (ASVs) are deployed to
localize and track two targets. For the MPC scheme, the
weighting parameters are set as ρ1 = 0.01, ρ2 = 0, ρ3 = 1,
and Ei = Diag(0.001, 0.01) for i = {1, 2}. In this simulation,
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a) 3D-Trajectories: trackers (p[i]), targets (q[α]), target
estimates (q̂[α]); i, α = 1, 2. Dark and cyan ellipses describe
the uncertainty region in the initial positions of target 1 and
2, respectively.
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Figure VII.4: Two trackers and two targets for the case where
the targets’ velocity vector is unknown (Target model B).

prior information about the initial targets state is used to con-
struct the predicted FIM. The performance of the MPC scheme
for target localization and pursuit under Scenarios A and B
are plotted in Fig. VII.3 and Fig. VII.4, respectively. It can
be clearly seen in Fig. VII.3(a,b) and Fig. VII.4(a,b) that the
estimated targets’ states quickly converge to the targets’ states
in both scenarios. It is also interesting to observe from Fig.
VII.3(c) and Fig. VII.4(c) that the angles between the relative

position vectors from the ASVs to each target converge to 90
degree, thus recovering the behavior predicted in Proposition 4
for trajectories that maximize range-information. Fig. VII.3(d)
and Fig. VII.4(d) show that the distances from the ASVs to
the targets are kept smaller than r∗ = 100m, thus implying
that the pursuit task is fulfilled in both scenarios. Finally, we
point out that unlike the case where a single ASV is used, the
trajectories of the ASVs are far less demanding in terms of
the types of maneuvers.

VIII. CONCLUSIONS

We proposed an optimization-based approach to the problem
of multiple target localization and pursuit using measurements
of the ranges between the trackers and the targets. The underly-
ing idea of the proposed method is to find optimal trajectories
for the trackers that maximize the range-related information
embodied in an appropriately defined FIM associated with
the problem of target state estimation. Analytically, we shown
that for the ideal case where the trackers’ motion constraints
are neglected and the targets evolve in a deterministic and
known manner, there exists an ideal relative geometry of
the trackers and the targets for which the range information
acquired is maximal. This geometry lends itself to a simple
intuitive interpretation. To deal with practical constraints and
to consider the fact that the targets’ states are random and
only estimated on-line, we proposed an MPC framework for
optimal tracker motion generation with a view to maximizing
the predicted range information for target localization, while
taking explicitly into account the trackers’ motion constraints,
the prior knowledge of the targets’ states, and the requirement
that the pursuing trackers remain in the vicinities of the targets.
By defining appropriate cost and constraints, the MPC scheme
is also capable of tackling more challenging cases such as: i)
the trackers must avoid obstacles and ii) collision avoidance
between the trackers. Future work will aim at decentralizing
the MPC scheme, and implementing it in a distributed manner,
making the proposed method more scalable for the case where
a larger numbers of trackers may be used.
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APPENDIX

Proofs of Theorems and Propositions

The following lemmas will be used in the proof:
Lemma 2: Let U, V ∈ Rn×n and U, V � 0. Then, det(U)+

det(V ) ≤ det(U + V ).
The lemma follows from Minkowski’s determinant inequality
(see [26], p. 510).

Lemma 3: If the trackers and the targets operate at the
same depth, that is, z̄[i] = z̄

[α]
T for all i ∈ S, α ∈ ST, then

a
[i,α]
n = cos(γ

[i,α]
n ) and b[i,α]

n = sin(γ
[i,α]
n ) for all i ∈ S, α ∈

ST and n ∈ {1, ..., k}.
The lemma follows directly from (12), (38), and (43).

A. Proof of Theorem 1

i. We first prove the result for Scenario A. In this case,
i = p = 1 and α = q = 1. Thus, (39) can be rewritten as

IA,k =
1

σ2

[
‖a‖2 aTb

aTb ‖b‖2
]
. (61)

Recall that in this simple case we dropped the superscript
(subscript) α in (39) for simplicity in notation. We define zn =
(z̄ − z̄T)2/d2

n for all n ∈ {1, ..., k}. It follows from (42) and
Assumption 1 that

zn ≥ c (62)

for all n. Let
z = [z1, ..., zk]T ∈ Rk (63)

and define

ZA = σ−2Diag(‖z‖2/2, ‖z‖2/2). (64)

Because of (62), it can be seen that

det(ZA) ≥ det(Z∗A) (65)

for all z, where Z∗A , cσ−2I2k/2 = cσ−2IoA. The equality
holds when ZA = Z∗A, that is, when zn = c for all n ∈
{1, ..., k}. We now consider the matrix

X , IA,k + ZA =
1

σ2

[
‖a‖2 + ‖z‖2/2 aTb

aTb ‖b‖2 + ‖z‖2/2

]
.

(66)
By definition, X is symmetric and has a constant trace, that
is, Tr(X) = σ−2(‖a‖2 + ‖b‖2 + ‖z‖2) = σ−2k for all a,b
and z. Using Theorem 1.2 in [27] it follows that

det(X) ≤ det(X∗), (67)

for all a,b and z, where X∗ , σ−2Diag(k/2, k/2) = σ−2IoA.
The equality holds when X = X∗. Because IA,k, ZA � 0,
it follows from Lemma 1 and (65)-(67) that det(IA,k) ≤
det(X)− det(ZA) ≤ det(X∗)− det(Z∗A). The equality holds
when X = X∗ and Z = Z∗A. In other words, IA,k is maximal
when IA,k = X∗−Z∗A = (1−k)σ−2IoA = I11A. This concludes
the proof for Scenario A.
ii. We now present the proof for Scenario B. To this end, define

Z =

[
ZA ZB

ZB ZC

]
∈ R4×4, (68)

where ZA is given by (64) and

ZB = −σ−2Diag(‖z‖2D1
/2, ‖z‖2D1

/2),

ZC = σ−2Diag(‖z‖2D2
/2, ‖z‖2D2

/2),
(69)

with z is as in (63). We now consider the matrix

Y , IB,k + Z =

[
A+ ZA B + ZB

B + ZB C + ZC

]
,

[
YA YB

YB YC

]
,

where A,B,C are given by (41). To show that det(IB,k) is
maximal when IB,k = I11B, we assume that the following
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hypotheses hold true (this will be shown later).
• Hypothesis 1: det(Z) ≥ det(Z∗) for all z, where

Z∗ = cσ−2IoB. The equality holds when Z = Z∗.
• Hypothesis 2: det(Y ) ≤ det(Y ∗) for all a,b and z, where

Y ∗ = σ−2IoB. The equality holds when Y = Y ∗.
Using the hypotheses and arguments similar to those presented
for Scenario A, we can show that det(IB,k) is maximal when
IB,k = Y ∗ − Z∗ = (1 − c)σ−2IoB = I11B. To complete
the proof for Scenario B we prove the hypotheses above as
follows.
Proof of Hypothesis 1. If z̄ = z̄T, it follows that Z = Z∗ = 0.
Thus, Hypothesis 1 holds trivially. Now consider the case
z̄ 6= z̄T. This implies that ZA � 0. Using the Schur’s
complement of matrix Z yields

det(Z) = det(ZA) det(ZC − ZBZ
−1
A ZB). (70)

From (69), we obtain

ZC − ZBZ
−1
A ZB = σ−2Diag(λ/2, λ/2), (71)

where λ = ‖z‖2D2
− (‖z‖2D1

)2/‖z‖2. Expanding λ yields

λ‖z‖2 =

(
k∑

n=1

z2
nτ

2
n

)(
k∑

n=1

z2
n

)
−

(
k∑

n=1

z2
nτn

)2

=
1

2

k∑
i,j=1

z2
i z

2
j (τi − τj)2

︸ ︷︷ ︸
,M

> 0.

From (64), (70), and (71) it follows that

det(Z) =

(
σ−4‖z‖4

4

)(
σ−4λ2

4

)
=
σ−8

16
M2 > 0.

It can be easily seen that when the sampling interval is fixed,
that is τn, n ∈ {1, ..., k} is constant, then M is lower bounded
by the lower bound of zn for n ∈ {1, ..., k}. Because of (62),
det(Z) is minimum when zn = c. Substituting zn = c for all
n ∈ {1, ..., k} in (68) we conclude that det(Z) is minimum
at Z = cσ−2IoB = Z∗.
Proof of Hypothesis 2. Consider the matrix Y . It can be
checked that the trace of each block of Y is always constant.
Specifically, Tr(YA) = Tr(A+ZA) = ‖a‖2 + ‖b‖2 + ‖z‖2 =
k/σ2. Similarly, Tr(YB) = Tr(B + ZB) = ∆1/σ

2 and
Tr(YC) = Tr(C + ZC) = ∆2/σ

2. Applying Theorem 1.2
in [27] it follows that det(Y ) is maximized if and only if
each block is a scaled identity matrix of the form YA =
Tr(YA)I2/2 = σ−2kI2/2, YB = Tr(YB)I2/2 = σ−2∆1I2/2
and YC = Tr(YC)I2/2 = σ−2∆2I2/2. Comparing with
(47), this proves Hypothesis 2, thus completing the proof for
Scenario B and Theorem 1. �

B. Proof of Proposition 1
The proof is done for Scenario A. The proof for Scenario

B is identical. Theorem 1 implies that the range information
is maximal when IA,k = I11A. This, together with (44), (45)
and (61) implies that

‖a‖2 = ‖b‖2 = (1− c)k/2, (72a)

aTb = 0. (72b)

We now show that the tracker’s trajectory stated in Proposition
1 satisfies (72).
i. We first consider the case where the tracker and the target
are at the same depth, that is, z = zT and therefore c = 0.
Using Lemma 3, (72) can be rewritten as

k∑
n=1

cos2(γn) =

k∑
n=1

sin2(γn) = k/2, (73a)

k∑
n=1

cos(γn) sin(γn) = 0. (73b)

For k ≥ 3, it is well-known that in order to satisfy (73) the
angle displacement between any two successive angles must
be equal and satisfy (γn+1 − γn)k = 2πl, where l = 1, 2, ...,
see [6], [7]. If the tracker can actually move so that (48) is
satisfied, then at discrete time instants k = 2πl/ω = Nl,
IA,k = I11A, where l = 1, 2, ....
ii. We now consider the case where the tracker and the target
are at different depths. A solution to (72a) is a2

n+b2n = 1−c for
all n ∈ {1, ..., k}. Further, as shown in the proof of Theorem 1,
in order to obtain the maximal range information, dn = dmax

for all n ∈ {1, ..., k}. Hence, it follows from (38) that the
trajectory of the tracker must satisfy (xn − xT,n)2 + (yn −
yT,n)2 = d2

max− (z− zT)2 for all n ∈ {1, ..., k}. This implies
that the tracker must encircle the target with a radius r ,√
d2

max − (z − zT)2. This completes the proof. �

C. Proof of Theorem 2

i. We first consider Scenario A. To this end, let

z[i,α]
n = (z̄[i] − z̄[α]

T )2/(d[i,α]
n )2 (74)

and define the vector z[i,α] = [z
[i,α]
1 , ..., z

[i,α]
k ]T ∈ Rk. Define

also the matrix

Zα =

p∑
i=1

1

σ2

[∥∥z[i,α]
∥∥2
/2 0

0
∥∥z[i,α]

∥∥2
/2

]
.

Consider now the matrix F , I [α]
A,k + Zα, where I [α]

A,k given
by (39). It can be checked that F has a constant trace,
that is, Tr(F ) =

∑p
i=1(‖ai,α‖2 + ‖bi,α‖2 +

∥∥z[i,α]
∥∥2

) =∑p
i=1 σ

−2k = pσ−2k. Using Theorem 1.2 in [27], we con-
clude that det(F ) is maximal when F = F ∗ , pσ−2kI2/2 =

pσ−2IoA. Furthermore, because z
[i,α]
n ≥ c[i,α] for all d[i,α]

n

it is obvious that det(Zα) is minimum when Zα=Z∗α ,∑p
i=1 c

[i,α]σ−2IoA. Similar to the proof of Theorem 1 for
Scenario A, we conclude that det(I [α]

A,k) is maximal when
I [α]

A,k = F ∗−Z∗α = Ī [α]
A,k. This concludes the proof for Scenario

A.
ii. The proof for Scenario B follows using the methodology
adopted in the proof for Scenario A. �

D. Proof of proposition 2

We prove this proposition by showing that the conditions
on the trackers’ trajectories given in Proposition 2 yield the
optimal range information matrices introduced in Theorem 2
for the case of two trackers (p = 2) and a single target.
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The proof is done for Scenario A, the methodology adopted
carrying over to the proof of Scenario B.
Theorem 2 implies that in order to maximize the range
information, one must have I [α]

A,k = Ī [α]
A,k. From (39) and (49),

this implies that
2∑
i=1

1

σ2

[
‖ai,α‖2 aT

i,αbi,α
aT
i,αbi,α ‖bi,α‖2

]
=

(
2−

2∑
i=1

c[i,α]

)
σ−2IoA.

(75)
Equation (75) is equivalent to

2∑
i=1

∥∥a2
i,α

∥∥ =

2∑
i=1

‖bi,α‖2 = (2−
2∑
i=1

c[i,α])k/2, (76a)

2∑
i=1

aT
i,αbi,α = 0 (76b)

i. We start by considering the case when the trackers and the
target are at the same depth, that is, z̄[i] = z̄[α] for all i ∈
{1, 2}. Using Lemma 3, (76b) can be rewritten as

k∑
n=1

cos(γ[1,α]
n ) sin(γ[1,α]

n )+

cos(γ[2,α]
n ) sin(γ[2,α]

n ) = 0

(77)

for all n ∈ {1, ..., k}. It can be easily checked that β[1,2;α]
n ,

γ
[1,α]
n − γ[2,α]

n = π/2 + lπ for all n ∈ {1, ..., k} and l ∈ Z
satisfies (77). This concludes the case where the trackers and
the target are at the same depth .
ii. We now consider the case when the trackers and the target
are at different depths. A solution to (76a) is (a

[i,α]
n )2 +

(b
[i,α]
n )2 = 1 − c[i,α] for all n ∈ {1, ..., k}. Further, as shown

in the proof of Theorem 2, d[i,α]
n = dmax for all i ∈ S and

n ∈ {1, ..., k} in order to obtain the maximal range infor-
mation. Hence, it follows from (38) that the trajectory of the

trackers must satisfy
∥∥∥p[i]

n − q
[α]
n

∥∥∥ =

√
d2

max − (z[i] − z[α]
T )2

for all i ∈ {1, 2} and n ∈ {1, ..., k}. This completes the proof.
�

E. Proof of Proposition 3

i. For the cases where the trackers and the targets have the
same depth, the proof can be found in Proposition 3 in [6].
ii. If the depths are different, the proof can be done analo-
gously. �

F. Proof of Theorem 3

i. For Scenario A, from (33) it follows that
det(IA,k) =

∏q
α=1 det(I [α]

A,k)). Hence, det(IA,k) is maximal
when each det(I [α]

A,k));α ∈ {1, ..., q} is maximal. In Theorem
2, it was shown that for each α, det(I [α]

A,k) is maximal when
I [α]

A,k = Ī [α]
A,k for all α ∈ {1, ..., q}. This implies that det(IA,k)

is maximal when IA,k = Diag(Ī [1]
A,k, ..., Ī

[q]
A,k). This concludes

the proof for Scenario A.
ii. The proof for Scenario B follows similar arguments. �


