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Abstract

This paper discusses the state estimation of the Under-Balanced Drilling (UBD)

system in the presence of parametric uncertainties. During this process, the pro-

duction indices of oil and gas from the reservoir into the well in the manual and

automatic control conditions are estimated by employing the nonlinear Moving

Horizon Estimation (MHE) based on a low-order lumped (LOL) model. The

LOL model has a low computational load and is suitable for reservoir character-

ization during UBD operations. The estimation algorithms are tested by using

a difficult scenario which is created by the OLGA multiphase flow simulator.

The simulation results indicate that the nonlinear MHE has a high performance

and can identify the production indices of gas and oil. Moreover, the method

has the capability to diagnose the rapid variation of the production constant

in different conditions, such as working with a manual or automatic controller.

The results of the scenario with the swift change in the production index of

gas demonstrate that the nonlinear MHE has a higher performance than the

Unscented Kalman Filter (UKF). The effect of uncertainties and errors in the

reservoir and well parameters on the nonlinear MHE is evaluated. It is revealed

that the presence of parametric uncertainty in the reservoir pore pressure can
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significantly affect the estimators’ performance.
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1. Introduction

Generally, for hydrocarbon production, conventional oil is more cost-effective

than unconventional oil such as shale oil, tight oil, or oil sands. Thus, conven-

tional oil continues to play a significant role in oil resources. In recent years,

the demand for advanced technologies to increase hydrocarbon recovery and de-5

crease the cost of oil and gas production is growing. Managed pressure drilling

(MPD)[1, 2, 3], dual gradient drilling[4, 5], and Under-Balanced drilling (UBD)

are some advanced drilling technologies that can handle reservoirs with challeng-

ing features such as deep water, high pressure, high-temperature, depleted reser-

voir, and reservoir with narrow pressure windows. Furthermore, these methods10

have the capability to solve drilling problems such as differential sticking, and

lost circulation. The UBD process is an advanced drilling system that tries to

maintain the bottom-hole circulating pressure less than the formation pressure.

The positive difference between the hydrostatic pressure of the well and the

reservoir pressure, which is known as the mud column, is the major barrier for15

safety in conventional drilling. Also, another essential barrier for safety is the

Blow-Out Preventer (BOP). In the UBD operation, since there is no mud col-

umn barrier, the BOP is the main barrier. Thus, it is necessary to focus on the

control and monitoring of this system.

In recent years, reservoir characterizations have been widely considered[6,20

7, 8, 9, 10, 11, 12, 13, 14], and the main attentions are on the estimation of

the reservoir properties under the assumption that the total flow rate from the

reservoir is completely known[15]. In[9], a method is proposed for the estima-

tion of both reservoir pore pressure and the reservoir permeability. However,

there are notable uncertainties in the estimation of the reservoir pore pressure,25
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such as the fluid flow behavior variations in the bottom-hole and the annu-

lus. In[12], the performance of the extended Kalman filter (EKF), the ensemble

Kalman filter and the unscented Kalman filter (UKF) is assessed for estima-

tion of the state and the production index based on a low order model in the

UBD process. In[16], an ensemble Kalman filter is proposed based on a drift-30

flux model to estimate the uncertain parameters of a two-phase flow model.

In[15, 13] for estimation of the reservoir pore pressure and the reservoir perme-

ability during the bottom-hole pressure excitation, an ensemble Kalman filter

and an off-line nonlinear least squares (LS) approach are applied by using the

Levenberg-Marquardt optimization algorithm. In[17], an adaptive observer is35

designed for parameters and state estimation of the well based on a drift-flux

model. This model consists of three partial differential equations (PDE’s) that

are developed based on the mass conservation in each phase and a combined

momentum equation. Furthermore, it guarantees that the parameters and state

estimates converge to their actual values. In[6], an EKF is used for the esti-40

mation of state and production index. The model uses an empirical slip law

instead of the flow-regime predictions. Also, the paper proposes an algorithm

which is combined with off-line calibration introduced in[15]. In[18], a UKF and

an EKF are designed to estimate the state, production, and slip parameters by

using the bottom-hole pressure and liquid and gas flow rates. The used model45

is a simplified drift-flux model. In[19], a Lyapunov-based adaptive observer,

a recursive least squares (RLS) estimator, and a UKF are presented based on

a low order lumped (LOL) model. The total mass of gas and liquid is used

for the estimation of state and parameters in the UBD operation. Moreover,

the performance of the adaptive estimators is assessed using a pipe connection50

scenario. In[20], the performance of the adaptive observer, which is proposed

in[19], is evaluated for state and parameter estimation based on the choke and

bottom-hole pressures. The method is evaluated using the drift-flux model for

typical drilling. In[21], a Lyapunov-based adaptive observer is compared with a

joint unscented Kalman filter (UKF) based on a low order lumped model. The55

real-time measurements of choke and bottom-hole pressures are obtained from
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the OLGA simulator. The robustness of the adaptive observers with respect to

the model parameters uncertainties such as the reservoir and well parameters is

investigated.

This paper is an extended version of work published in[22], which presents60

the design of the Nonlinear MHE based on the LOL model. In[22], a Nonlinear

Moving Horizon Estimator based on the LOL model is proposed to estimate

the total mass of gas and liquid in the annulus and geological properties of the

reservoir in the UBD operation. The considered scenario was a pipe connection

procedure using a simple simulation model which is simulated by MATLAB,65

and the process and observer model are the same.

State and parameter estimation of dynamical systems is a critical challenge

in control theory (e.g., see[23, 24, 25]). Nonlinear estimators such as unscented

Kalman filter (UKF), extended Kalman filter (EKF), nonlinear adaptive ob-

server, nonlinear MHE, etc. have been designed to handle this challenge. The70

nonlinear MHE that uses a window of the most recent measurements has the

capability to deal with some issues such as weak persistent excitation, model

uncertainty, and measurement noise[26, 27, 28, 29, 30].

Estimation of production indices of gas and liquid during UBD operations

by using the nonlinear MHE is the primary purpose of this paper. The non-75

linear MHE is implemented based on the LOL model. The bottom-hole and

choke pressures are the measurements that are obtained by different simulated

scenarios with the OLGA high-fidelity simulator. The OLGA dynamic multi-

phase flow simulator is one of the well-known benchmarks for hydraulic models

in drilling technologies. The main advantage of this paper is using the OLGA80

multiphase flow simulator that utilizes partial differential equations. However,

in [22], the process and observer models are precisely the same. The ability

of the algorithm to diagnose and track fast changes in the production index in

different conditions is a criterion for performance evaluation. There are vari-

ous conditions, such as working with a manual or automatic controller. The85

considered controller for bottom-hole pressure in the UBD operation is the PI

controller. The performance of the nonlinear MHE and UKF is compared by
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implementation on two challenging scenarios:

1) Changing the production index of gas with the manual controller

2) Changing the production index of gas with the automatic controller90

The results show that the nonlinear MHE has a better performance than the

UKF for the scenario with a rapid change in the production index. The robust-

ness of estimator with respect to the reservoir and well parameters uncertainties

is demonstrated.

The organization of this paper can be summarized as follows: Section 295

summarizes a LOL model which is based on mass and momentum balances

in the UBD system and the model of the reservoir. Section 3 describes the

nonlinear Moving Horizon Estimation and joint UKF for the estimation of state

and parameters of the LOL model by employing the obtained measurements

from the OLGA simulator. Simulation results are presented in Section 4. The100

simulations are carried out for different challenging conditions, such as working

with a manual or automatic controller. Finally, Section 5 concludes the paper.

2. Modeling

The model has a crucial role in the success and speed of MHE because the

prediction is performed based on this model. During drilling, since there are105

influx materials from the reservoir such as oil, gas, water, and rock cuttings, the

UBD operation should be considered as a multiphase flow system. The modeling

of UBD operation can be done through a distributed model or a simplified LOL

model. Distributed models for multiphase flow in the UBD system are developed

based on some nonlinear hyperbolic partial differential equations (PDE). This110

model is difficult to solve both analytically or numerically because the source

terms reflecting interphase drag are stiff and this can lead to significant problems

in the numerical computation[31]. Generally, the distributed models are utilized

for simulation purposes, but not for the model-based observer and controller

design. The LOL model is perhaps the simplest method for modeling multiphase115

flow in UBD. This simplified model comprises the primary dynamics of UBD
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systems in the presence of some simplifying assumptions. A LOL model is

suitable for conventional model-based control design methods and can be used

for prediction and estimation in an observer and controller algorithms. There

are some critical assumptions for the modeling of the UBD system that are120

presented below:

� Ideal gas behavior

� Simplified choke valve model for gas, mud, and liquid

� No mass transfer between phases

� Isothermal condition and constant system temperature125

� Constant mixture density with respect to pressure and temperature.

2.1. Low-Order Lumped (LOL) model

In this model, the mud, oil, and water are considered as a single-phase liquid.

The mass equations relevant to gas and liquid in the annulus are written based

on isothermal mass and momentum balances (see Fig. 1)[19].

ṁg = wg,d + wg,res(mg,ml)−
mg

mg +ml
wout(mg,ml) (1)

ṁl = wl,d + wl,res(mg,ml)−
ml

mg +ml
wout(mg,ml) (2)

where mg and ml are the total mass of gas and liquid, respectively. The liquid

and gas phases are considered incompressible and compressible, respectively.

The free volumes are occupied by the gas phase, wg,d and wg,res are the mass

flow rates of gas from the drill string and the reservoir, and wl,d and wl,res are

the mass flow rates of liquid from the drill string and the reservoir, respectively.

The total mass outflow rate is

wout = KcZ

√
mg +ml

Va

√
pc − pc0, (3)

where Z is the control signal related to the choke valve opening that belongs

to the interval (0, 1]. Kc is a constant that is determined by the choke valve
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Figure 1: Schematic of a UBD system[32]

characteristics. The atmospheric pressure is denoted by pc0, and Va is the

annulus volume. The choke valve pressure pc is given by the ideal gas equation

pc =
RT

Mgas

mg

Va − ml

ρl

, (4)

where R is the gas constant, ρl is the density of the liquid, T and Mgas are

the average temperature and the molecular weight of the gas, respectively. The

bottom-hole pressure is obtained by the following equation

pbh = pc +
(mg +ml)g cos(∆θ)

A
+ ∆pf , (5)

where A is the cross-sectional area of the annulus, and g is the gravitational

constant. The average angle between the positive direction of gravity and flow

of the well is denoted by ∆θ, and the friction pressure loss in the well ∆pf is
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computed by

∆pf = Kf (wg,d + wl,d)
2, (6)

where Kf is the friction coefficient.

2.2. Reservoir flow

The mass flow from the reservoir into the well for both phases can be modeled

by

wg,res =

Kg(pres − pbh), if pres > pbh

0, otherwise.

(7)

wl,res =

Kl(pres − pbh), if pres > pbh

0, otherwise.

(8)

where the production indices of the gas and liquid are indicated by Kg and Kl,130

and pres is the reservoir pore pressure.

The measurements and information of formation properties such as poros-

ity, gamma-ray, the thickness of bed, conductivity, acoustic velocity, etc. are

collected by using logging while drilling (LWD)[33]. Generally, these measure-

ments have some delays that can negatively affect automation systems. These135

measurements and geological properties of the reservoir are essential and are uti-

lized for some purposes, such as the controllers’ design, fault diagnosis systems,

and safety applications. Thus, it is necessary to estimate these parameters and

states on-line by employing appropriate Measurement While Drilling (MWD).

During UBD operations, reservoir engineers try to estimate the reservoir pres-140

sure by employing some flow rate tests. So long as the drilling is done through

one reservoir, the reservoir pressure is considered stationary[34, 35]. The reser-

voir pore pressure is assumed to be known, and the estimation of the unknown

production index of gas Kg and liquid Kl from the reservoir into the well is

necessary. Some parameters, such as the friction coefficient Kf and the choke145

constant Kc are supposed to be known because it is possible to estimate them
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off-line[34]. Other parameters such as density, temperature, and well volume

can be evaluated by well data.

3. Nonlinear Estimation

In this section, the nonlinear Moving Horizon Estimation is described for150

the simultaneous estimation of state and parameters using the LOL model in

the UBD operation. Afterward, a joint unscented Kalman filter is explained for

state and parameter estimation.

The equations (1)-(2) relevant to the LOL model can be formulated with

the discrete state-space equation

xk = f(xk−1, uk−1) + qk, (9)

where xk is the state vector, uk is the known input vector, qk ∼ N(0, Qk) is

assumed the zero-mean Gaussian process noise representing unknown distur-

bances and model uncertainties. The discrete measurement equation is given

by

yk = h(xk) + rk, (10)

h(xk) = [pc, pbh]T , (11)

where yk is the output vector, rk ∼ N(0, Rk) is the zero-mean Gaussian mea-

surement noise. The measurement and input variables are listed in Table 1.155

3.1. Nonlinear Moving Horizon Estimation

The nonlinear MHE calculates the unmeasured states and unknown param-

eters in each time step k by minimization of a constrained objective function

over the time horizon of the most recent measurements.160

At time t, the information vector It consists of N +1 last measurements and

N last inputs

It = col(yt−N , ..., yt, ut−N , ..., ut−1), (12)
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Table 1: Measurements and inputs

Variables Type

Choke pressure (pc) Measurement

Bottom-hole pressure (pbh) Measurement

Drill string mass flow rate of gas (wg,d) Input

Drill string mass flow rate of liquid (wl,d) Input

Choke opening (Z) Input

where N + 1 is the finite horizon. This information can be separated into two

vectors

Yt =


yt−N

yt−N+1

...

yt

 , Ut =


ut−N

ut−N+1

...

ut−1

 . (13)

The nonlinear MHE is formulated as an objective function

J(X̂t−N,t, X̄t−N,t, It) = ‖W (Yt −Ht(X̂t−N,t))‖2

+ ‖V (X̂t−N,t − X̄t−N,t)‖2, (14)

where V ∈ Rnx×(N+1) × Rnx×(N+1) and W ∈ Rny×(N+1) × Rny×(N+1) are the

positive definite weight matrices[36, 37]. These weight matrices and the finite

horizon are tuning parameters that should be adjusted to achieve an excellent

performance.

The objective function (14) comprises two main parts. The first part tries to165

minimize the output estimation error. It is reasonable that the weight matrix

W is chosen as a small value in the presence of an uncertain measurement model

and noisy measurements. The second part of the objective function minimizes

the deviation between the estimated state at the start of the horizon and its

prediction. Although choosing small tuning matrices V and large W will result170

in rapid convergence in the estimation, there will be more uncertainties. Choos-

ing larger tuning matrices V and small W will result in slow convergence, but a
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smother estimation. The nonlinear MHE minimizes the objective function (14)

using the current and historical measurements during a time window, subject to

nonlinear model equations. The solution to this optimization problem is Xo
t−N,t.175

The state estimation X̂i,t, (i = t−N, . . . , t) can be computed using the nonlinear

observer model, which is Eq. 9 without the process noise. Consequently, the

output estimation vector Ŷt can be written as follows

Ŷt = H(X̂t−N,t, Ut) =


h(X̂t−N,t)

h(fut−N (X̂t−N,t))
...

h(fut−1(. . . (fut−N (X̂t−N,t))))

 . (15)

By employing Xo
t−N−1,t−1 and the observer model, a one-step prediction X̄t−N,t

is obtained as follows

X̄t−N,t = f(Xo
t−N−1,t−1, ut−N−1) t = N + 1, N + 2, . . . . (16)

Because of the simultaneous estimation of unmeasured states x and unknown

parameters θ, they are augmented. The production indices of the gas Kg and

liquid Kl are denoted by θ1 and θ2, respectively. The discrete state-space equa-

tion of the augmented system is given by
x1,k

x2,k

θ1,k

θ2,k

 =


f1(Xk−1, θ1,k−1)

f2(Xk−1, θ2,k−1)

θ1,k−1

θ2,k−1

 = fa(Xk−1, θk−1, uk−1) + qk, (17)

where mg and ml in (1)-(2) are labeled respectively by x1 and x2.

3.2. Joint Unscented Kalman Filter180

The unscented Kalman filter (UKF) was presented by Julier and Uhlman[38].

The fundamental concept behind this approach is that it is easier to approxi-

mate a Gaussian distribution than an arbitrary nonlinear function. Then, the
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unscented transform, a deterministic sampling approach, was introduced to gen-

erate a minimal set of sample points (sigma points) around the mean for the185

estimation of the mean and covariance matrix of estimation error[39, 40]. Since

UKF does not need to use an explicit linearization of the model, the step relevant

to the computation of the explicit Jacobian or Hessian matrix is omitted.

There are two standard methods for parameter estimation by using the UKF.

The first method is a dual UKF that computes the state and parameters sep-190

arately by employing two UKFs. The state is calculated by state estimator,

and then it is utilized for parameter estimation[41, 42]. The second and more

common method is a joint UKF, which uses the augmentation of original state

variables and parameters. In this way, a single UKF estimates the augmented

state vector. The implementation of the second method is easier and more195

efficient than dual filtering[43, 40]. Details of UKF are provided in Appendix.

4. Simulation results

4.1. Simulation With Perfect Model Data

The results have been produced by using the OLGA simulator. The OLGA

dynamic multiphase flow simulator is a precise high-fidelity simulation tool200

which has the capability to simulate the oil and gas processes meticulously[44].

The parameter values related to the well and reservoir are presented in Table 2.

During simulations, the measurement sampling interval was chosen as 10 secs,

and the time step of the model was 10 secs.

4.2. Case 1: Tracking production index in the manual control condition205

Firstly, in the UBD operation, the reservoir pressure is estimated by reservoir

engineers. Then during process, this value is updated by performing flow rates.

During drilling through the same reservoir, the reservoir pressure is assumed

reasonably homogeneous. Also, the PI increases as progressively larger parts of

the production matrix is opened up, and the drilling bit potentially encounters210

faults[34, 35]. The considered scenario is the UBD operation of a vertical well
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Table 2: Parameter values for well and reservoir measurements

Name LOL Unit

Reservoir pressure (pres) 279 bar

Collapse pressure (pcoll) 155 bar

Well total length (Ltot) 2530 m

Drill string outer diameter (Dd) 0.1206 m

Well inner diameter (Da) 0.1524 m

Liquid pump flow rate (wl,d) 13.33 kg/s

Gas pump flow rate (wg,d) 0 kg/s

Liquid density (ρL) 1000 kg/m3

Gas average temperature (T ) 285.15 K

Average angle (∆θ) 0 rad

Choke constant (Kc) 0.0053 m2

drilled into an oil and gas reservoir, and the reservoir pressure is presumed

known. In the beginning, the drilling process is in the steady-state condition

with the choke opening of 8 %. After 2 hours, the production index of gas

increases rapidly from 0.07 to 0.13. The choke valve is opened to 9 % after 3215

hours for manual control of influx.

For performance assessment of the nonlinear MHE on the UBD operation,

UKF is utilized as a nonlinear estimator. In[32], it is shown that UKF has a

higher performance than other Kalman filters for the UBD system. More details

of UKF can be found in[40]. The parameter values of these nonlinear estimators220

are summarized in Table 3.

The tuning parameters of the nonlinear MHE and UKF are chosen based

on trial and error. Trade-offs in the UKF is determined by the process noise

covariance matrix Q. The covariance matrices of state Qs and parameter Qp
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Table 3: Parameter values for estimators

Parameter Value

W diag(0.1, 0.05)

V diag(0.1, 0.1, 100, 200)

N + 1 15

β 2

κ 0

α 0.1

are chosen based on the normal variations of states and parameters as

Q = diag (Qs, Qp) , (18)

Qs =

9× 10−4 0

0 10−2

 , (19)

Qp =

4× 10−9 0

0 8× 10−9

 . (20)

The measurements (the choke and the bottom-hole pressures) are corrupted by

additive white Gaussian noise. The measurement noise covariance matrix is

R =

0.22 0

0 0.42

 .
The actual values and the initial conditions of estimation relevant to the un-

known parameters are presented below.

Kg = 0.07, Kl = 0.1

K̂g = 0.098, K̂l = 0.13

Fig.2 and Fig.3 show the estimation of production indices of gas and liquid

from the reservoir into the well for both the nonlinear MHE and the UKF. The

results illustrate that the rapid change in the production index of gas is detected.

However, there is a small difference between the estimation of the production225

index of gas and its real value, which is resulting from the model uncertainties

such as the friction coefficient variations.
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Figure 2: Estimation of production index of gas

0 1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

Time (h)

k
l (

k
g
/s

/b
a
r)

 

 

OLGA
MHE 
UKF 

Figure 3: Estimation of production index of liquid

The root mean square error (RMSE) index is used for the performance as-

sessment of utilized nonlinear estimators. The RMSE metrics for the unknown

parameter estimation are summarized in Table 4. In this paper, it is found that230
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Table 4: RMSE metric

Method Kg Kl

UKF with manual control 0.0099 0.0089

MHE with manual control 0.0098 0.0060

this choice of the parameters gives the sensible performance of the estimator

algorithms. Still, we emphasize that the tunable parameters of the estimator

algorithms are not tuned to optimize the performances. Based on the RMSE

indices, the simulation results show that the nonlinear MHE has a higher per-

formance than the UKF in the estimation of the production constants of gas235

and liquid. The results illustrate that the proposed method can diagnose and

track the rapid change in the production index of gas.

4.3. Case 2: Tracking production index in the automatic control condition

A Proportional-Integral (PI) controller is used for bottom-hole pressure con-

trol in the UBD operation since it is a standard and useful industrial controller,240

and it can be tuned easily. The proportional and integral gains of the controller

are chosen as 0.005 and 0.001, respectively. More information about the de-

sign and tuning of the PI controller can be founded in[45, 46, 47]. Set-point is

selected as 245 bar for desired bottom-hole pressure.

The bottom-hole pressure pbh and the choke pressure pc with the manual245

controller and PI controller are shown in Fig. 4. It is illustrated that the PI

controller has a better performance than the manual controller for the bottom-

hole pressure. The PI controller has the capability to regulate the set-point

efficiently and mitigate the negative impacts of production index change. The

choke valve opening related to the two scenarios is presented in Fig. 5.250

The estimations of production indices of gas and oil with the manual con-

troller and PI controller by using the nonlinear MHE are shown in Fig. 6 and

Fig. 7. The nonlinear MHE has a good performance and high convergence rate

in the presence of the manual or PI controller. The RMSE metrics of the param-

eters Kg and Kl for the nonlinear MHE by using the manual and PI controller255
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Figure 4: Measured bottom-hole pressure and choke pressure for changing production index

scenario.
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Figure 5: Choke opening for changing production index scenario.

are summarized in Table 5.

Although generally, the type of controller does not affect the estimation

accuracy, the simulation results illustrate that the estimation accuracy of pro-
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Figure 6: Estimation of production index of gas.

0 1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

Time (h)

k
l (

k
g
/s

/b
a
r)

 

 

OLGA

MHE with PI controller

MHE with manual controller

Figure 7: Estimation of production index of liquid.

duction indices can be significantly improved by the PI controller since this

controller can considerably reduce the reservoir influx. However, the nonlinear260

MHE evaluates the unknown parameters with reasonable accuracy with either
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Table 5: RMSE metric for estimate of Kg and Kl for changing production index scenario

Method Kg Kl

MHE with manual control 0.0098 0.0060

MHE with PI control 0.0084 0.0059

Table 6: RMSE metric in case of error in the reservoir pressure value

Method Kg Kl pres model

UKF with manual control 0.0175 0.0144 282

UKF with PI control 0.0179 0.0143 282

MHE with manual control 0.0182 0.0122 282

MHE with PI control 0.0163 0.0122 282

manual or automatic controller.

4.4. Case 3: Robustness analysis of MHE in case of uncertainties and errors in

the reservoir and well parameters of the model

Two simulations are carried out to investigate the effects of uncertainties265

and errors in the model parameters. It is assumed that there are 1 % error

on the reservoir pore pressure pres and 5 % errors on liquid density ρL. The

RMSE metrics for the nonlinear estimators related to these two scenarios are

presented in Table 6 and Table 7, respectively. Because there is a direct relation

between the mass flow rates from the reservoir into the well and the reservoir270

pore pressure, the production constants estimation can be significantly affected

by small uncertainties in the reservoir pore pressure. Thus, the sensitivity of

the proposed method to the reservoir pore pressure uncertainties is extremely

high.

5. Conclusions275

The simultaneous estimation of state and geological properties of the reser-

voir (production parameters) based on the LOL model during the UBD process

using the nonlinear MHE is addressed in this paper. Using the OLGA simu-

lator, the real-time measurements of the choke and bottom-hole pressures are
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Table 7: RMSE metric in case of error in the liquid density value

Method Kg Kl ρl model

UKF with manual control 0.0119 0.0080 950

UKF with PI control 0.0121 0.0078 950

MHE with manual control 0.0127 0.0048 950

MHE with PI control 0.0110 0.0044 950

obtained. The nonlinear MHE can be used temporarily instead of the mud-280

pulse telemetry, which has a lot of difficulties such as transmission delay and

slow sampling rate. Moreover, during drill pipe connection operations, the non-

linear MHE can estimate the unmeasured state and reservoir characterizations

in the UBD operation. The geological properties of the reservoir are incredibly

crucial in this process and must be estimated. The results illustrate that the285

nonlinear MHE can estimate the production indices of gas and liquid and track

a change in the production index of gas either in manual or automatic control

mode. Moreover, the simulation results demonstrate the nonlinear MHE has

a higher performance than UKF in the estimation of production indices. The

nonlinear estimators have the capability to identify a rapid change in the pro-290

duction index in order of minutes. It is observed that the type of controller does

not affect estimation accuracy. Finally, the robustness of the estimators against

the errors in the reservoir pore pressure and liquid density is investigated. It

is shown that the methods are highly sensitive to the reservoir pore pressure

uncertainties.295

The nonlinear Moving Horizon Estimation (MHE) uses a history of mea-

surements and has this capability to assign different weights to different mea-

surements. Using adaptive weights in this method can be considered as future

work. During drill pipe connection operations, when the measurements are

noisy or unreliable, the proposed method can be used as a temporary approach300

and reduce impacts of these kinds of measurements by choosing a small weight.
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Appendix

The UKF consists of two separate steps: 1) prediction, 2) correction. The

state mean x̂−k and the error covariance P−
k are predicted in the first step as

follows

(χk)i = fa((χk−1)i), i = 0, ..., 2L (21)

x̂−k =

2L∑
i=0

W
(m)
i (χk)i, (22)

P−
k =

2L∑
i=0

W
(c)
i [(χk)i − x̂−k ][(χk)i − x̂−k ]T +Qk, (23)

where L and Qk are the dimension of the augmented state vector and process

covariance matrix, respectively. (χk−1)i is the ith column of the sigma point

matrix χk−1. W
(m)
i and W

(c)
i are the weighting matrices that affect the com-

putation of state mean and covariance, respectively.

W
(m)
0 =

λ

(L+ λ)
,

W
(m)
i =

1

2(L+ λ)
, i = 1, ..., 2L (24)

W
(c)
0 =

λ

(L+ λ)
+ (1− α2 + β),

W
(c)
i =

1

2(L+ λ)
, i = 1, ..., 2L (25)

The tuning parameter λ is given by

λ = α2(L+ κ)− L. (26)
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The constant α, which is chosen between 10−4 and 1, indicates the distribu-

tion of sigma points around the state estimation. The scaling parameter κ is

normally selected as 0[43]. The prior knowledge of state vector distribution is

incorporated by using the parameter β. The optimal value of β for Gaussian

distribution is 2[38]. In the correction step of the UKF, the predicted weighted

mean measurement is calculated by using

(Yk)i = h((χk)i), i = 0, ..., 2L (27)

ŷ−k =

2L∑
i=0

W
(m)
i (Yk)i. (28)

The Kalman gain of the UKF is calculated by

Kk = Px̂kŷkP
−1
ŷkŷk

, (29)

Px̂kŷk =

2L∑
i=0

W
(c)
i [(χk)i − x̂−k ][(Yk)i − ŷ−k ]T , (30)

Pŷkŷk =

2L∑
i=0

W
(c)
i [(Yk)i − ŷ−k ][(Yk)i − ŷ−k ]T +Rk, (31)

where Pŷkŷk is the covariance of the measurement, and Px̂kŷk is cross-covariance

of the state and measurement. The measurement noise covariance matrix is

denoted by Rk. Finally, the updated state mean x̂k and the updated error

covariance Pk are calculated by

x̂k = x̂−k +Kk(yk − ŷ−k ), (32)

Pk = P−
k −KkPŷkŷkK

T
k . (33)
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