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a b s t r a c t

Closed fish cages in the sea are proposed as a new concept in marine aquaculture,
replacing the conventional net cages in order to meet ecological challenges related to
fish lice and escapes. A closed fish cage can be compared to a floating tank structure
with an internal free surface. Several types of closed cages have been suggested, and
they are categorised according to structural properties as flexible membrane structures
(fabric), semi-flexible structures (glass fibre) and rigid structures (steel or concrete).
To be able to develop safe and reliable structures, more knowledge is required on the
seakeeping behaviour of closed cages in waves and the structural response to the wave
loads. This paper builds on a theory presented in Strand and Faltinsen (2019) on the
linear wave loads on a 2D closed flexible fish cage. A modelling error has been found
in Strand and Faltinsen (2019), however, all the main conclusions are in hold. The error
has been corrected in the model in the present paper. The present paper extends the
model to include bending in the structural model to be able to handle semi-flexible
structures where bending stiffness is significant. In this paper, the linear theory of a
2D semi-flexible closed fish cage in waves is developed and analysed to investigate
the structural response of the semi-flexible closed cage in waves. We have compared
a quasi-static analysis with a fully coupled hydroelastic analysis to investigate if it is
a valid and conservative assumption to assume that the stresses in the structure can
be assumed quasi-static. If a hydroelastic analysis is necessary or not, is dependent on
the stiffness of the structure. We have investigated what happens with the stress in
the curved beam part of the closed fish cage for increasing and decreasing stiffness
relative to a reference composite structure. One stiffer and two softer cases have been
analysed. One major concern for the structural stresses in a closed cage is the effect of
sloshing. Sloshing is internal wave motion inside the cage and have multiple resonance
periods. The results indicate that to use the quasi-static assumption in structural stress
calculation is conservative within the given frequency range for all examined stiffnesses
and frequencies, except the frequencies very close to the second sloshing frequency.
Close to the second sloshing frequency for all the examined stiffnesses, a localised peak
can be observed in the coupled hydroelastic results. The second sloshing frequency is a
frequency connected to a symmetric sloshing mode. Rigid body motion is not affected at
the symmetric sloshing frequency for an assumed rigid structure, and are therefore also
not visible in the stress results from the quasi-static analysis. The structural stress in
irregular sea was calculated. These results show no indication of increased stress close
to the second sloshing frequency. However, this is not a surprising result since the stress
peak is very localised in frequency, and the accumulated effect on the stress standard
deviation is therefore small.
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Nomenclature

Aw(ze) Waterplane area
bt Internal distance between the floater at the free surface of the cage
zB Coordinate of the centre of the buoyancy
zG Coordinate of the centre of gravity
∇ Displaced volume of water of the cage per unit length
ζ i Internal wave elevation
IBM Immersed boundary method

1. Introduction

Norway has become the World’s largest producer of Atlantic salmon through the use of open net structures in the
sea. The aquaculture facilities have grown in both size and number. Currently, the industry faces increased attention
on environmental challenges related to fish escapes, sea lice, diseases, and pollution. A possible solution is to use a
floating closed fish cage in the sea. A closed fish cage can be compared to a floating tank structure with an internal free
surface. Several types of closed cages have been suggested, and they are categorised according to structural properties
as flexible membrane structures, semi-flexible structures and rigid structures based on the degree of deformation of the
cage (Kristiansen et al., 2018). Several geometries for the closed cages have been considered by the industry, among them
both geometries resembling upright circular cylinders and half spheres.

Limited scientifically published material is available related to the effect of sea loads on closed fish cages. The authors
have previously analysed a closed flexible fish cage made of a fabric material. 3D model experiments for both still
water (Strand et al., 2014), current (Lader et al., 2015; Strand et al., 2016) and waves (Lader et al., 2017) have been
performed, for various filling levels and geometries. Resonant internal water motion (sloshing) was observed in model
tests with a closed flexible fish cage both by Solaas et al. (1993) and by Lader et al. (2017). The linear wave response of a
2D closed flexible fish cage was analysed in Strand and Faltinsen (2019). All the results showed that the closed flexible fish
cage is flexible, behaves hydro-elastically and that the response is highly dependent on both geometry and filling level.
Even less information is available for the rigid and semi-flexible closed fish cages than for the closed flexible fish cage
previously investigated by the authors. Kristiansen et al. (2018) ran dedicated model tests of the wave-induced motion
of rigid closed cages and compared to numerical simulations using linear potential theory in the frequency domain. The
results showed that the influence of sloshing on the rigid body motions was significant. Tan et al. (2019) run non-linear
numerical wave response simulations of a rigid cage shaped as an upright circular cylinder. The work was based on linear
radiation/diffraction theory for external hydrodynamics and single-dominant multimodal theory (Faltinsen and Timokha,
2009) for sloshing in the cage. They also showed that the sloshing inside the cage was significant and observed both planar
wave systems and non-linear swirling inside the cage. No published material has been found related to sealoads on the
semi-flexible closed fish cages. However, for rigid and semi-flexible cages, comparisons to ships and offshore structures
can be made. Sloshing is an essential phenomenon for closed cages in waves, and here the general theory of sloshing in
tanks can be used. Sloshing in tanks have been thoroughly studied in Faltinsen and Timokha (2009) and Ibrahim (2005).

To be able to develop safe and reliable structures, more knowledge is required on the seakeeping behaviour of closed
cages in waves and the structural stress response to the wave loads. To the best of the author’s knowledge, no previous
published works have investigated the structural stresses on any closed fish cage. The emphasis in the present paper will
be on the semi-flexible closed cage. Only two-dimensional flow is considered. The semi-flexible closed cage analysed here
is assumed made of a glass fibre composite material. It has two floaters on the top, and the bottom beam part is made in
a half circular shape, as illustrated in Fig. 1. The material that the closed fish cage is made of is considered impermeable,
and any water exchange for the real concept is through pipes. This water exchange is not modelled here.

The dynamics of a real closed fish cage in the sea is three-dimensional. However, to develop theory and understanding
of the coupling between structural response, and external and internal wave motions, we start with basics, and the
problem is simplified to a 2D problem. A 2D solution will not be representative of existing real-life cage but can be
used as a starting point to gather knowledge of the behaviour of this type of structure in waves.

To predict the response of a 2D semi-flexible closed cage in waves three coupled sub-problems must be solved:
the structure dynamics, the external problem with incident waves and the effect of the structure on the flow, and the
internal problem, which is an internal sloshing problem. It is crucial to understand the dependency between forces and
deformations to develop models, which predict the correct environmental forces and response. This article builds on the
model theory presented in Strand and Faltinsen (2019) on the linear wave loads on a 2D closed flexible fish cage. A
modelling error has been found in Strand and Faltinsen (2019). The consequence is that the computed results change,
particularly for low frequencies. However, all the main conclusions hold, more details are given in Section 2.1. This paper
extends the model, including bending in the structural model to be able to handle semi-flexible structures where bending
stiffness is significant. The structural model is now a half circular curved flexible 2D beam, including the effect of bending.
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Fig. 1. Illustration of the 2D semi-flexible closed fish cage in waves.

Fig. 2. Left: The two lowest natural sloshing periods related to cage radius R. Medium, high and extreme relates to the degree of wave exposure
of the aquaculture cage-, defined in the Norwegian standard NS9415, see Table 1. The reference cage used in the case analysed in the results has
R = 20 m. Right: Illustration of the free-surface shape of the two sloshing modes connected to the given sloshing periods versus y/R where y is
defined in Fig. 1.

Table 1
Norwegian aquaculture site classification scheme for waves from NS9415 (2009). Hs is significant wave
height and Tp is peak period of the wave spectrum.

Degree of Exposure Small Moderate Medium High Extreme

Hs (m) 0.0–0.5 0.5–1.0 1.0–2.0 2.0–3.0 >3.0
Tp (s) 0.0–2.0 1.6–3.2 2.5–5.1 4.0–6.7 5.3–18.0

Structurally this is in the coupling field between membrane theory and thin plate theory and inspiration has been drawn
from the analysis of curved floating bridges published in Li and Ren (2018) and Yang and Kuo (1987). The goal is that the
theory given in the present article is consistent with the previous work on closed flexible fish cages. Our formulations
are based on a linear perturbation about the static mean position of the structure. Potential flow of incompressible water
is assumed. The main emphasis in Strand and Faltinsen (2019) was on cage motions, deformations and internal sloshing
amplitudes. For a significantly more rigid cage, negligible changes compared to a rigid structure is expected in the rigid
body motions. The beam model is the best solution in 2D. If the cage had been modelled in 3D a curved plate theory
approach with membrane effects should have been used.
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One major concern for the structural stresses of a closed cage is the effect of sloshing. Sloshing is internal wave motion
inside the cage and have multiple resonance periods. The natural sloshing periods depend on the size, geometry and the
flexibility of the cage. Typical industry concept cage geometries are either ellipsoidal, rectangular or upright cylinders. The
excitation frequency of the sloshing is directly related to the wave period. The possible wave periods at an aquaculture
location is dependent on the degree of wave exposure of the cage. Traditionally the aquaculture net-cages in Norway have
been quite sheltered. The wave periods and wave heights encountered in sheltered areas are significantly smaller than in
the North Sea. The degree of wave exposure of an aquaculture fish farm is classified in a range from small to extreme as
given in Table 1. In Fig. 2 the first two sloshing periods T1 and T2 for a 2D half circular rigid cage is plotted versus varying
cage radius R along with a visualisation of how the first two sloshing modes appear. For a 2D semi-circular geometry, the
sloshing period increases for increasing radius. For cage radi smaller than R = 20 m the sloshing period can be excited
within a medium exposure. The radius of the reference cage is marked in Fig. 2 for comparison. The second sloshing period
of the reference cage will correspond to a high degree of exposure of the cage. There exist sloshing periods in the same
frequency range for 3D structures also. These sloshing periods will also increase with increasing radius as the presented
2D sloshing periods.

For floating large volume offshore structures second order slowly varying and mean wave forces in a stochastic sea
have great importance in the design of the mooring system. These effects will not be considered in the present analysis.
Since the semi-flexible closed cage causes non-negligible far-field waves, mean and slowly varying horizontal wave forces
are expected to matter also for the design of the mooring system of the semi-flexible closed cages. However, the mooring
system of a semi-flexible closed cage is not modelled. Ambient current and internal structures such as pumps and pipes
are neglected and would require that viscous flow is considered in a rational hydrodynamic model. It is possible and also
plausible that location of the internal free surface deviates from the external free surface, as was the case for the closed
flexible fish cage analysed in Strand and Faltinsen (2019). In the present work, the internal and external free surfaces are
equal. Due to operational considerations, it is also plausible with different internal and external water densities; this is
not considered in the present article. There are in reality several nearby cages, which means that multiple body–wave
interactions matters.

Standard procedure in the analysis of the structural stresses in ships and offshore structures is to consider the structure
deformation as quasi-static, meaning that the inertia and hydrodynamic effects of the structural deformations can be
neglected. Is it a valid and conservative assumption to assume that the stresses in a semi-flexible fish cages can be
computed with a quasi-static analysis? Alternatively, is it necessary with a complete hydroelastic analysis to find the
correct stresses in the structure? Will the stresses be affected by the internal sloshing in the cage? When can the structure
be assumed rigid in terms of stiffness? These are the questions we aim to solve in the following.

In this paper, the linear theory of a 2D semi-flexible closed cage in waves is developed and analysed to investigate the
structural response of the semi-flexible closed cage in waves. First, a general overview of the problem and the frequency-
domain equations of motions of the rigid body motions are presented. The theory for dynamic deformation of a 2D
membrane is developed next. Then, the theory for the pressure loads on the semi-flexible closed cage is investigated,
starting with the external hydrodynamic pressure forces, continuing with internal hydrodynamic pressure forces. The
numerical solution of the hydrodynamic problem is outlined before the model for the structural stress calculation for
both hydroelastic and quasi-static are given. Finally, the results from a 2D case study with relevant full-scale dimensions
considering a half circularly shaped semi-flexible closed cage with floaters in waves are presented. At last conclusions
with future suggested needed investigations are given.

2. Theory for wave-induced motions of a semi flexible closed fish cage

The 2D semi-flexible closed fish cage considered here is shaped in a half circular geometry with two floaters attached
at the top (see Fig. 1). An Earth-fixed Cartesian coordinate system Oyz with origin in the mean free surface is introduced.
The z-axis pointing upwards is in the centre-plane of the cage at rest. The vertical position of the free surface is the same
on the inside and outside of the cage.

The wave-induced body motions contain the rigid body motions ξ1, ξ2 and ξ3 in sway, heave and roll, respectively.
Sway and heave are for a point that coincides with the origin of the coordinate system Oyz when the body is at rest.
The motion of the cage is the sum of the structure deformations relative to the static shape and rigid body motions
described by ξ1, ξ2 and ξ3. It implies that the beam deformations are zero at the attachment points to the floaters. We
assume small rigid body motions of the cage and small structural deformations. Then the superposition principle can be
used. Potential flow of incompressible water with linear free-surface conditions are assumed. The external water has an
infinite horizontal extent and constant finite water depth. The water surrounding and inside the cage introduces pressure
forces on the combined structure.

2.1. Equation of motion

We start by formulating the equations of motions for the cage. The equations of rigid body motions follow from
Newton’s law and the equations of angular momentum. The cage consists of two floaters in the free surface. Attached to
the floaters is a half circular curved beam. The floaters are assumed rigid, i.e. rigidly connected above the water line. We
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must consider loads on the cage caused by the elastic deformations of the beam. These are expressed as coupled added
mass and damping loads caused by the elastic deformations. We must account for both internal and external hydro-
dynamic loads acting on the structure. The change in hydrostatic loads due to body motions are accounted for in addition
to dynamic weight considerations. Assuming steady-state oscillatory conditions, the rigid-body equations of motions of
the cage becomes:

(mT + a11)ξ̈1 + b11ξ̇1 + (a13 − zGmT )ξ̈3 + b13ξ̇3 = f exc1 + f Beam1 , (1)

(mT + a22)ξ̈2 + b22ξ̇2 + c22ξ2 = f exc2 + f Beam2 , (2)

(I33 + a33)ξ̈3 + b33ξ̇3 + c33ξ3 + (a31 − zGmT )ξ̈1 + b31ξ̇1 = f exc3 + f Beam3 . (3)

Here, mT is the total mass of the floater and beam per metre, and I33 is the combined moment of inertia of the beam and
floaters in roll defined as I33 =

∫
(y2+z2)dmT . ajk are 2D added mass coefficients associated with the internal and external

flow, bkj are 2D wave radiation damping coefficients and zG is the vertical centre of gravity of the structure (not including
internal water). The considered restoring coefficients cjk in the equation of motions of the cage are due to quasi-steady
change in the hydrostatic pressure and weight considerations, further described in Section 2.5. The effect of a mooring
system is not considered. Furthermore, f excj is wave excitation loads on the structure when restrained from oscillating.
f Beamj are caused by the flow due to the normal beam deformations acting on the cage and can be expressed in terms of
coupled added mass and damping coefficients. How to evaluate ajk, bjk and f excj are described in Section 2.6.

In Strand and Faltinsen (2019), there appear restoring coefficients due to membrane forces at the attachment between
the membrane and the floater. These internal loads will because of ‘‘action and reaction’’ be cancelled out, and should
therefore not be there when we formulate the equations of the rigid body motions of the combined floater and membrane.
If these terms are removed from the model, the consequence is that the computed results change, particularly for low
frequencies. However, all the main conclusions hold.

2.2. Beam structure

To analyse the deformations and stresses a structural model is needed. A linear structural model of the dynamic
deformations of a curved beam is developed and described below. The structural equations are based on Strand and
Faltinsen (2019) and further extended to allow for bending. For the development of the equations, the reader is referred
to Strand and Faltinsen (2019). The structural modelling is based on a curved beam, and the effect of bending is included
as described in Li and Ren (2018) and Yang and Kuo (1987).

In the presented equations we make a perturbation of the static curved beam equations about the static solution such
that

ψ(s, t) = ψ0(s) + ψ̂(s, t)

T (s, t) = T0(s) + τ (s, t) = T0(s) + EAê(s, t), (4)
∆p(s, t) = ∆p0 +∆p̂(s, t).

Here, the static tension T0 is a static beam tension per unit length in the perpendicular x-direction. ψ0 is the static angle
defined in Fig. 1. τ = EAê is the dynamic tension, E is the elasticity module, A is the area per metre (the thickness) of the
beam, ê is the dynamic strain following from the linear relation between strain and tension according to Hooke’s law and
ψ̂ is the dynamic angle defined in a similar way as ψ0. ∆p0 is the static pressure difference and ∆p̂ the dynamic pressure
difference across the beam. s is the curvilinear coordinate along the beam, starting from ψ0 = 0. Linear compatibility
relations between the tangential and normal deformations (u, v), the dynamic strain ê and the dynamic angle ψ̂ exist (e.g.
Ventsel, 2001):

ê =
∂u
∂s

− v
∂ψ0

∂s
, (5)

ψ̂ =
∂v

∂s
+ u

∂ψ0

∂s
. (6)

The static tension T0 is known from a static pressure analysis in calm water. For the given half circular configuration
only loaded by the weight of the beam in water, an analytical expression exists for the static tension in the beam. The
analytical expression for the static tension is developed based on the cable line equations by Faltinsen (1990, 258-261)
assuming a half circular given geometry. The expression for the static tension T0 is:

T0 = RAg
π

2
(ρs − ρw) − RAgρs cos 2(ψ0 + π/2) = T c

0 + T a
0 (ψ0), (7)

where ρs is the density of the structural material and ρw is the density of water. T0 is divided in one constant part T c
0 and

one angle dependent part T a
0 (ψ0).

We assume steady state oscillations and write the tangential deformations as u(ψ, t) = u(ψ)eiωt and the normal
deformations as v(ψ, t) = v(ψ)eiωt , where i2 = −1. It implies that u(ψ, t) and v(ψ, t) are complex variables and that it
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is the real parts of u(ψ, t)exp(iωt) and v(ψ, t)exp(iωt) that have physical meaning. The equation system for the normal
(v) and tangential (u) deformations is:

−ω2mBv = −
EIy
R4

(
d4v
dψ4 + 2

d2v
dψ2 + v

)
+

T0
R2

(
d2v
dψ2 +

du
dψ

)
+

EA
R2

(
du
dψ

− v

)
−∆p̂, (8)

−ω2mBu =
EA
R2

(
d2u
dψ2 −

dv
dψ

)
−

T c
0

R2

(
dv
dψ

+ u
)
. (9)

Here, Iy = 0.5πAR2 is the moment of inertia about the beams centreline assuming a thin beam. For a half circular
geometry, the static curvature is constant, then dψ0

ds =
1
R . It should be noted that when R → ∞ the effect of curvature in

(8) reduces to the known relations for a straight beam. In the given equations it have been used that 1
R
dT0
dψ = mBg sinψ0.

The hydrodynamic pressure difference ∆p̂ in (8) depends on v, the rigid body motions as well as the incident waves and
its diffraction (scattering) by the cage. Details are given in Section 2.6.

2.3. Modal representation of the beam’s deformation

We will solve (8) and (9) by a modal method. The curved beam is attached to the floater at both ends. We assume
a rigid floater and therefore require zero motion at the attachment point between the floater and the beam. In addition
we require that the floaters do not rotate locally. This means that there cannot be any moment at the attachment point,
which means a simply supported beam. The boundary conditions are then v(± π

2 ) =
d2v
dψ2 (±

π
2 ) = u(± π

2 ) = 0: The modal
representation must be complete in a mathematical sense. A complete Fourier series (modal) representations of v and u
that satisfy the boundary conditions with continuity of deformation at the attachment point are:

v =ℜ(
∞∑
j=4

ξjVj(ψ0)eiωt ) = ℜ(
∞∑
j=4

ξj sin((j − 3)(ψ0 + π/2))eiωt ) (10)

u =ℜ(
∞∑
n=1

µnUn(ψ0)eiωt ) = ℜ(
∞∑
n=1

µn sin(n(ψ0 + π/2))eiωt ) (11)

where ℜ means the real part and ξj for j > 3 and µn are the generalised complex structural mode amplitudes in normal
and tangential direction, respectively. In the following text we will omit the symbol ℜ and imply implicitly that we mean
the real part of a complex expression involving the complex time dependence.

The equations for the structural deformations of the beam by (8) and (9) combined with (10) and (11), multiplied with
the modes and integrated along the beam length SB, give a representation of the dynamics of the beam. Vj(ψ0) is written
as Vj and Uj(ψ0) is written as Uj.

−

∫ π
2

−
π
2

ω2mBvVjRdψ =

∫ π
2

−
π
2

(
−

EIy
R4

(
d4v
dψ4 + 2

d2v
dψ2 + v

)
+

T0
R2

(
d2v
dψ2 +

du
dψ

)
+

EA
R2

(
du
dψ

− v

)
−∆p̂

)
VjRdψ, (12)

−

∫ π
2

−
π
2

ω2mBuUjRdψ =

∫ π
2

−
π
2

(
EA
R2

(
d2u
dψ2 −

dv
dψ

)
−

T c
0

R2

(
dv
dψ

+ u
))

UjRdψ. (13)

We will use that the modes are orthogonal to each other.

2.4. Coupled system equations for the cage

The rigid body equation of motion given by (1)–(3) and the equations for the structural deformations of the beam by
(12) and (13), together give a representation of the dynamics of the cage. In ξ = {ξ,ξ2, ξ3, ξ4....}, the first three terms are
the rigid body motions, then the normal structural deformation modes follow. The beam influences the rigid body motion
through the hydrodynamic coupling terms between rigid body motions and the structural normal deformation modes.

The coupled equation system can be expressed as:
∞∑
j=1

(
−ω2(mξ

ij + aij) + iωbij + cMξij

)
ξj +

∞∑
n=1

cMξµin µn = f exci for i = 1....∞ (14)

∞∑
j=1

cMµξkj ξn +

∞∑
n=1

(
−ω2mµ

kn + cMµkn

)
µn = 0 for k = 1....∞ (15)

Here, the non-zero mξ

ij for i, j < 4 follow from (1)–(3) and are mξ

11 = mξ

22 = mT , m
ξ

33 = I33 and mξ

13 = mξ

31 = −zGmT .
The generalised mass coefficients mξ

ij for i, j > 3 associated with the normal deformation modes are given as mξ

ij =
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mB
∫
Ss
UiU(j−3)Rdψ . The generalised mass coefficient mµ

kn associated with the tangential deformation modes are given as
mµ

kn = mB
∫
Ss
UkUnds. Expressions for the structural stiffness coefficients cMξij , c

Mµ
kn , c

Mξµ
in and cMµξkj , for i, j > 3 are given as

cMξmj =

∫ π/2

−π/2

(
EIy
R4

(
d4Vm

dψ4 + 2
d2Vm

dψ2 + Vm

)
−

T0
R2

d2Vm

dψ2 +
EA
R2 Vm

)
V(j−3)Rdψ for j,m > 3, (16)

cMξµmj = −

∫ π/2

−π/2

(
T0
R2 +

EA
R2

)
dUm

dψ
V(j−3)Rdψ for j,m > 3, (17)

cMµξjm =

∫ π/2

−π/2

(
T c
0

R2 +
EA
R2

)
dVj

dψ
UmRdψ (18)

cMµjm =

∫ π/2

−π/2

(
−

EA
R2

d2Uj

dψ2 +
T c
0

R2 Uj

)
UmRdψ. (19)

aij are the total generalised added mass coefficients with contributions from the internal and external added mass and
bij are the generalised wave radiation damping coefficients from the external problem. Furthermore, cMξij for j, i < 4 are
the generalised hydrostatic restoring coefficients. The non-zero coefficients are cMξ22 , cMξ33 (see (20) and (21)) and cMξ4,2 (see
(20)), described in Section 2.5. f exci are the generalised wave excitation forces (see (29)). The evaluation of the restoring
coefficients will now be described in the following section.

2.5. Restoring forces and moments

If the hydrostatic pressure is integrated over the instantaneous position of the structure, it will contribute to restoring
forces and moments. The change of hydrostatic pressure does not contribute to any restoring in sway. The only restoring
in sway (ξ1) would come from a mooring system. Since heave (ξ2) causes the internal water to move vertically as a
rigid body, heave does not cause change in the internal hydrostatic pressure loading. When we consider roll, there are
important contributions from the internal water (Faltinsen and Timokha, 2009, page 79) following by considering the
internal free surface to be horizontal. The restoring coefficient in heave (c22) is

c22 = ρwgAw. (20)

The restoring coefficient in roll (c33) by considering both internal and external contributions is given by

c33 = −mTgzG + ρwg
(

∇zB +

∫
Aw

y2dy −

Tank correction terms  
2
3
R3

+

∫
Q (i)
0

zdQ
)
. (21)

When defining some of the variables in (20) and (21), we refer to a fictitious rigid body including the floaters, the beam
and the water inside. Then, Aw is the waterplane area of the fictitious body, defined in 2D as Aw = 2(R + RF ). g is the
gravitational acceleration. ∇ is the displaced volume of water of the fictitious body per unit length; zG is the z-coordinate
of the combined centre of gravity of the floaters and beam of the cage. zB is the z− coordinate of the centre of buoyancy
of the fictitious body, Q (i)

o is the internal water domain inside the cage.
The change in the hydrostatic pressure due to a heave motion integrated over the instantaneous body surface will give

a hydrostatic restoring force for the first normal structural deformation mode. Due to orthogonality between the normal
vector of heave and the normal vector of the normal deformation modes the hydrostatic pressure due to a heave motion
will only effect the first normal structural mode.

c4,2 = ρwg
∫
SB

nzU1(ψ0)ds = ρwgR
π

2
. (22)

This term was not included in Strand and Faltinsen (2019). The effect of the hydrostatic pressure change due to a roll
motion will not result in restoring forces on the normal structural modes, since the static pressure change inside and
outside the cage will cancel each other out.

The generalised pressure loads due to a change in the hydrostatic pressure integrated over the instantaneous body
surface will not give a hydrostatic restoring force for the normal structural deformation modes, if we assume that there is
no density difference between the inside and outside water, see Strand and Faltinsen (2019). Several papers have studied
the effect of hydrostatic restoring loads for elastic bodies; (Malenica et al., 2015, 2009; Senjanovic et al., 2008; Newman,
1994). The given result deviates from these studies. Common for all of the cited papers is that they define the structural
modes in a Cartesian Oxyz coordinate system. The alternative structural representation complicates the calculations and
leads to other terms. Senjanovic et al. (2008) and Newman (1994) only considered the restoring from the hydrostatic
pressure on the external body, and did not account for hydrostatic pressure from any internal liquid. Malenica et al.
(2015, 2009) considers hydrostatic pressure in both an internal and an external domain, but have a different free surface
condition for the internal domain, leading to a restoring term from the rise of the free surface, which is included in the
internal added mass expressions.

The evaluation of the generalised hydrodynamic pressure loads will now be described in the following section.
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2.6. Hydrodynamic pressure loads

The pressure loads are divided into external and internal pressure loads. We will start by looking at the external
pressure loads. The method for calculating the external and internal pressure loads are equal to the one used in Strand
and Faltinsen (2019). It is given here in a slightly shorter version for consistency.

2.6.1. Generalised hydrodynamic external pressure loads
To find the total dynamic pressure difference on the cage we start by finding the external flow and resulting

generalised pressure loads. We consider a 2D semi-flexible closed fish cage in incident regular waves of amplitude ζa,
with wavenumber k and frequency ω at constant depth h in steady state oscillatory conditions. The wave steepness is
small, and linear potential flow theory of incompressible water is assumed. It implies that the flow separation is neglected
and that viscous flow is concentrated in thin body boundary layers not affecting the potential flow. For linear waves
propagating in the y- direction, Faltinsen (1990) gives the velocity potential for incident waves at finite constant depth
h as φ0 =

gζa
ω

cosh k(z+h)
cosh kh e(iωt−iky), with the dispersion relation ω2

g = k tanh kh. The presence of the body modifies the flow
field in terms of a linear diffraction velocity potential φd and radiation velocity potentials φ(e)

j associated with the body
motions. The total external velocity potential Φe is given as:

Φe = φ0 + φd +

∞∑
j=1

φ
(e)
j ξj. (23)

Here j = 1, 2, 3 represent the rigid body motions in sway, heave and roll, and j = 4..∞ represent the normal deformation
modes of the beam. The tangential deformation modes cannot cause flow within linear potential flow theory.

The boundary value problem satisfies the Laplace equation, the combined kinematic and dynamic free surface condition
and no flow through the bottom at z = −h. Furthermore, a radiation condition ensures outgoing far-field waves caused
by the body. The body boundary condition for the diffraction potential is:

∂φd

∂n
= −

∂φ0

∂n
on S(e)s , (24)

where S(e)s = S(e)B + S(e)Fl and is the mean wetted external surface of the total structure. S(e)B and S(e)Fl are the mean wetted
external beam surface and floater surface, respectively. ∂

∂n denotes the normal derivative to the mean wetted external
body surface. The corresponding normal vector n⃗ has positive direction into the external water. Its components along the
y− and z− axes are denoted ny and nz , respectively. The body boundary conditions for the radiation problems are:

∂φ
(e)
j

∂n
= iωn(e)

j on S(e)s . (25)

Here j = 1, 2, 3 represent the rigid body motions in sway, heave and roll. It follows that

n(e)
j =

⎧⎨⎩
ny for j = 1
nz for j = 2
ynz − zny for j = 3.

(26)

Furthermore, j = 4..∞ are the prescribed normal deformation motions. It implies for j ≥ 4 that

n(e)
j =

{
Uj−3(ψ0) on S(e)B

0 on S(e)Fl .
(27)

Generalised added mass and damping terms for the external flow problem follows from properly integrating the time
derivative of φ(e)

j , originating from the linear dynamic pressure part −ρw∂Φe/∂t in Bernoulli’s equation. The expressions
are given by

iωρw

∫
S(e)s

φ
(e)
j n(e)

k ξjds =

(
ω2a(e)jk (ω) − iωb(e)jk (ω)

)
ξj (28)

where a(e)kj and b(e)kj are the external 2D added mass and damping contribution in the k direction, due to a motion in the j
direction.

The generalised wave excitation loads f exck are

iωρw

∫
S(e)s

(φ0 + φd)n
(e)
k ds = f exck (ω) (29)

Relations between the damping and the far-field wave amplitude, and between the generalised wave excitation force
components and damping, together with a symmetry relation based on Green’s second identity were used to verify the
correctness of the numerical code. Results from these tests can be found in Strand (2018).
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2.6.2. Internal water pressure loads
We assume linear potential flow theory of an incompressible liquid for the internal domain. For the internal flow, it

is most convenient to operate in a tank-fixed reference system. The coordinate axes of the tank-fixed coordinate system
at tank rest, are parallel to the axes of the global body-fixed coordinate system. Translatory motions are defined along
tank-fixed axes and related to the origin of the internal tank-fixed coordinate system. At rest, the origin of the tank-fixed
reference system is placed at the origin of the global inertial coordinate system, see Fig. 3. Since we assume small motions
and deformations, origins of the inertial reference system and tank-fixed reference system at rest are collocated. Due to
the assumptions of small motions and deformations, the difference in the representation of the rigid body motions and
membrane deformations are the same when considering the internal and external problems. In the tank-fixed coordinate
system, Bernoulli’s equation in its original form must be modified to an accelerated coordinate system (Faltinsen and
Timokha, 2009, page 47). As long as we operate with a linear system the linearised version of the pressure, or more
precisely excess pressure relative to atmospheric pressure will be

p = −ρw
∂Φi

∂t
− ρwgξ3y − ρwgz, (30)

with Φi as the internal velocity potential. The equation is consistent with that the excess pressure is zero at z = 0 when
the tank is at rest.

The internal velocity potential Φi can be expressed as

Φi =

∞∑
j=1

φ
(i)
j ξj. (31)

The velocity potential φ(i)
j satisfies

∂2φ
(i)
j

∂y2
+
∂2φ

(i)
j

∂z2
= 0 in Q (i)

0 , (32)

∂φ
(i)
j

∂n
= iωn(i)

j on S(i)s . (33)

Here Q (i)
0 is the mean internal liquid domain, S(i)s = S(i)Fl + S(i)B is the total internal mean wetted surface, where S(i)Fl is the

mean internal wetted floater surface and S(i)B is the internal wetted surface of the beam.
The internal normal vector n⃗(i)

= (n(i)
y , n

(i)
z ) has positive direction into the internal water. We define similarly as for the

external problem

n(i)
j =

⎧⎪⎨⎪⎩
n(i)
y for j = 1

n(i)
z for j = 2

yn(i)
z − zn(i)

y for j = 3,
(34)

and introduce for the prescribed normal deformation modes for j = 4.. that

n(i)
j =

{
−Uj−3(ψ0) on S(i)B

0 on S(i)Fl .
(35)

At the free surface, we linearise (30) at the internal free surface z − ζi = 0, where ζ i describes the internal wave
elevation relative to the movable, tank-fixed coordinate system. We then arrive at the linearised dynamic free surface
conditions in the body fixed coordinate system:

∂Φi

∂t
|
Σ

(i)
0

+ygξ3 + gζ i = 0. (36)

Here, Σ (i)
0 is the mean free surface inside the tank. The kinematic linearised free surface conditions is (Faltinsen and

Timokha, 2009, page 198):

∂Φi

∂z
− ξ̇2 − yξ̇3 −

∂ζ i

∂t
= 0 (37)

Eq. (37) is not the same as in an Earth-fixed coordinate system. Changes had to be made to include the inertial terms due
to the rigid body motions and due to the effect of the gravitational acceleration in the body-fixed coordinate system. In
addition, conservation of liquid mass∫

Σ
(i)
0

ζ idy =

∫
S(i)s

∑
j≥4

n(i)
j ξjds, (38)

must be satisfied.
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Fig. 3. Boundary conditions for the internal problem of a two-dimensional half circular closed flexible fish cage with floaters in the frequency
domain.

If
∫
S(i)M

n(i)
j ξjds ̸= 0 for j ≥ 4 for a given non-zero ξj, a constant change in the free surface exist, meaning that the mean

free surface will not be located at z = 0. By combining (37) with the time derivative of (36) in the frequency domain, we
get the linearised free surface condition

−ω2Φi + g
∂Φi

∂z
− iωgξ2 = 0. (39)

As a consequence of properly integrating the time derivative part of the pressure as given by Bernoulli’s equation
related to the tank-fixed coordinate system, we obtain the following added mass coefficients a(i)jk

iρwω
∫
S(i)s

φ
(i)
j nkξjds = ω2a(i)jk (ω)ξj (40)

where a(i)jk is the internal 2D added mass contribution in k direction, due to a motion in j direction. There are no
damping coefficients according to potential flow theory for the interior problem. The hydrodynamic damping coefficients
associated with viscous boundary layer at the wetted body surface will be neglected. However, this damping is in reality
small (Faltinsen and Timokha, 2009, page 377).

Symmetry of coefficients can also be used to verify the internal added mass coefficients, by using Green’s second
identity as was done for the external problem. Due to the free surface condition for heave, we will not have that a(i)jk = a(i)kj
for coupling terms between heave and the normal deformation modes.

The internal relative wave elevation ζ i follows from the dynamic free-surface condition (36):

ζ i = −
iω
g

∞∑
j=1

φ
(i)
j ξj|Σ (i)

0
−yξ3. (41)

2.6.3. Numerical flow method
A numerical solution using the Harmonic Polynomial Cell (HPC) method has been implemented to find the hydrody-

namic pressure loads on the cage. The HPC method is a field method initially described by Shao and Faltinsen (2014a,b) to
solve the Laplace equation with boundary conditions for an unknown velocity potential together with initial conditions in
the time domain and periodicity condition in the frequency domain. In the HPC method, the local expression of the velocity
potential within a cell uses harmonic polynomials. Hence, the governing equation is satisfied naturally. The connectivity
between different cells is built by overlapping the local expressions. A key feature of the HPC method is in using higher-
order local expressions satisfying Laplace equation, which means that we can expect better accuracy than for many other
low order field and boundary integral formulations presently used. Moreover, the HPC method operates with a sparse
coefficient matrix, so that many existing numerical matrix solvers can solve the associated problem efficiently. For more
description of the HPC method see Shao and Faltinsen (2014a,b) and Ma et al. (2017).

For the rectangular tank with a flexible wall analysed in Strand and Faltinsen (2017) the computational domain was
rectangular and easily discretised with quadratic cells. Since the geometry of the cage is not rectangular, a method to
account for a non-rectangular boundary must be used. Ma et al. (2017) have found that the traditionally used HPC method
has the best accuracy for quadratic grid cells and that severe stretching or distortion of the cells should be avoided. Inspired
by Hanssen et al. (2015), who successfully implemented an immersed boundary method (IBM) for a moving body, we use
a fixed Cartesian quadratic grid, with an immersed boundary method to capture the boundary.
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Two domains are used, one internal domain and one external domain. Inspired by Hanssen et al. (2017) ghost nodes
inside (for the external problem) and outside (for the internal problem) the body are applied to reconstruct the velocity
at the immersed boundary. The placement of nodes is equivalent to as done for the free surface in Hanssen et al.
(2017). Illustrations can be found there. The body-boundary condition on immersed boundaries are projected onto the
surrounding ghost nodes. The applied code uses one layer of ghost nodes and uses the harmonic polynomials of the HPC
method to interpolate the coordinate of the boundary to the ghost cell as done in Hanssen et al. (2017).

The numerical HPC framework was implemented in Python. To find the immersed boundary, the Python package
‘‘Shapely’’ was used. Based on predefined structural input points defining the geometry, a point on the boundary inside
the cell based on linear approximation between the predefined structural input points was found.

The external domain has infinite horizontal extent and constant water depth. The far field velocity potential is
expressed as outgoing waves, that are patched with the solution expressed by the HPC method near the body. According
to Billingham and King (2009), the far-field velocity potential in terms of outgoing waves is a good approximation as long
as l ≥ 4h, where l is the total length of the domain.

The different examined velocity potentials caused by the body have symmetric and antisymmetric properties with
respect to a symmetry line containing the z-axis. The latter fact follows from symmetry and antisymmetry properties
of the generalised normal components of the mean submerged body surface n(e)

j . n(e)
1 and n(e)

3 are antisymmetric while
n(e)
2 is symmetric. When j > 3, the odd membrane modes ((j − 3) = 1, 3, 5...) are symmetric while the even membrane

modes((j−3) = 2, 4, 6...) are antisymmetric. Furthermore, the body boundary condition for the diffraction potential can be
divided into symmetric and antisymmetric parts. The symmetric and antisymmetric properties allow us to only consider
half the water domain. When the body boundary condition is antisymmetric, the far-field complex wave amplitude
A(+)
j = −A(−)

j and φ(e)
j = 0 at the symmetry line. A(+) and A(−) represent far-field complex wave amplitudes and are

unknowns in solving the problem. The properties for symmetric potentials are A(+)
j = A(−)

j , and ∂φ(e)
j /∂y = 0 at the

symmetry line. These conditions are used as a boundary conditions at the symmetry line. Due to the symmetry and
antisymmetry properties of the system it is sufficient to only consider the right part of the tank. The boundary condition
on the right wall of the domain then becomes

∂φ
(e)
j

∂y
= −iωA(+)

j
cosh k(z + h)

sinh kh
e(iωt−ik l

2 ) on y =
l
2
. (42)

3. Calculating the structural stress and the quasi-static equations for the system

We wish to compare the stresses in the curved beam part of the structure when calculated as hydroelastic with a quasi-
static approach. To consider the structure deformation as quasi-static, mean that the inertia and hydrodynamic effects
of the structural deformations can be neglected. It means that one considers the structure rigid and find the resulting
dynamic pressure distribution along the body. The motions of the body is found from:

3∑
j=1

(
−ω2(mξ

ij + aij) + iωbij + cij

)
ξj = f exci for i = 1, 2, 3. (43)

The dynamic pressure distribution following from the rigid body motion is then used in a static structural analysis. When
the curved beam part of the cage is considered, the quasi-static equations (14)–(15) must be revised to the following
equation system:

∞∑
j=4

cMξij ξj +

∞∑
n=1

cMξµin µn = f exci +

3∑
j=1

(
ω2aij − iωbij − cij

)
ξj for i = 4....∞ (44)

∞∑
j=4

cMµξkj ξj +

∞∑
n=1

cMµkn µn = 0 for k = 1....∞ (45)

The right hand side of Eq. (44) is generalised pressure loads due to rigid body motions. The coupled added mass terms
connected to the rigid body motions comes from integrating the pressure terms resulting from the rigid body motions.

The stresses including the bending stresses are calculated according to:

σ1 =
E
R

(
du
dψ

+ v −
zL
R

(
d2v
dψ2 −

du
dψ

))
(46)

where zL is the local height of the beam. The stress is evaluated at zL = A/2 (Yang and Kuo, 1987).

4. Results

We aim to build knowledge of the structural response of the 2D semi-flexible closed fish cage in waves. A case study
based on the given system description has, therefore, been conducted. Full scale 2D structural values for a plausible semi-
flexible closed fish cage build in a composite material are given in Table 2. One geometry in terms of the cage radius R
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Table 2
Case dimensions for a 2D semi-flexible closed fish cage with floaters. R is the radius of the
semi-circular cage, A0 is the effective cross-dimensional area per metre (the thickness) of
the composite material, E0 is the effective elasticity module of the composite material,
ρs is the effective density of the structure, RF is the radius of the floaters, and mFl is the
mass of a floater per metre.
R A0 E0 ρs RF mFl

20 m 10 · 10−3 m 22.4 · 109 Pa 2000 kg/m3 1.5 m 2607.5 kg/m

and floater radius RF have been used for all the analysis. The composite structure is in 3D composed of multiple layers
and is stiffened, therefore an effective cross sectional area A0, elasticity modulus E0 and density ρs have been used in this
2D case. The external geometry is equivalent to the external geometry used in Strand and Faltinsen (2019) in a different
scale, while the internal geometry is not equal. The cage is in static equilibrium related to weight and buoyancy. The
mass of the floaters has been used to balance the structure so that the cage in equilibrium with the floaters is exactly
vertical at the free surface. The wave-induced response of a semi-flexible closed fish cage with a semi-circular curved beam
geometry has been analysed in the frequency domain, at finite water depth for water depth-to-radius ratio h/R = 4.0. We
have to use a finite water depth in the HPC-code, but the water depth in practice can be considered infinite for practical
wave frequencies. The used density of sea water is ρw = 1025 kg/m3. The non-dimensional squared frequency range
0.2 ≤ ω2R/g ≤ 5.6 is considered, which includes wave peak periods in the weather range from moderate to extreme
in NS9415 (2009) (Norwegian standard) for a semi-flexible closed fish cage with full scale radius R = 20 m. Furthermore,
the three lowest natural sloshing frequencies for the rigid body occur in the considered frequency domain. In principle,
the sloshing eigenfrequency for a flexible structure is dependent on the stiffness of the structure (Strand and Faltinsen,
2017). However, the effect is very small in the considered cases. Therefore, we have chosen to relate the results to the
sloshing eigenfrequencies of a rigid structure. For the given reference case, the effect of the static tension in the model
can be neglected. If the effect of overfilling or density difference is added, the tension will increase, and the effect will be
more significant. No structural damping has been included in the presented analysis. The structural damping is uncertain
and will be dependent on the material properties which changes for different stiffnesses.

A finite number of modes ξi, i = 1...I and µk, k = 1..K are considered, where I and K follow from convergence studies.
I = 20 normal and K = 20 tangential modes have been used in the analysis. The external resolution of the grid is 75 nodes
/R. The modes require high resolution, and it have been found that 20 nodes per modal wave length along the boundary
is sufficient to reach an acceptable convergence. The internal spacial resolution is 200 nodes/R. The internal domain is
much smaller (2RxR versus 16Rx4R )than the external domain, and a finer grid resolution can therefore be used without
significant extra cost.

The questions we aim to answer is: Is it a valid and conservative assumption to assume that the stresses in a semi-
flexible fish cages can be computed with a quasi-static analysis? Will the stresses be affected by the internal sloshing in
the cage? Alternatively, is it necessary with a complete hydroelastic analysis to find the correct stresses in the structure?
If a hydroelastic analysis is necessary or not, is dependent on the stiffness of the structure. For which stiffness will it
be necessary with a hydroelastic analysis? The investigation of the effect of changing the stiffness has been done by
varying the stiffness given by EA in the analysis. Four stiffnesses in terms of EA have been investigated, EA/E0A0 = 10
will correspond to a steel structure with the same thickness as the reference structure, EA/E0A0 = 1 is the reference
composite structure, EA/E0A0 = 10−1 is a softer composite structure and EA/E0A0 = 10−2 is comparable to the stiffness
of the fabric membrane structure analysed in Strand and Faltinsen (2019) without the extra tension due to overfilling.
Since the dynamic stresses depend on the rigid body motions we start with discussing them.

4.1. Body motions

The rigid body motion response of the cage for the lowest investigated stiffness (EA = E0A0 ×10−2) is plotted together
with the reference case in Fig. 4. Normal and tangential deformations for EA = E0A0 × 10−2 are plotted in Fig. 5. For the
reference stiffness, the rigid-body motions of the cage are almost identical to the rigid structure motions, and the cage
does not have significant deformations affecting the global rigid-body motions of the cage. However, for the smallest
stiffness, the elastic deformations are significant, and the rigid body motion of the structure is affected, as was the case
for the closed flexible fish cage studied in Strand and Faltinsen (2019).

When expressing the small-frequency asymptotic heave amplitude, velocity and acceleration dependent terms become
higher order. The wave excitation pressure at the body has an amplitude ρwgζa and is in phase with the incident wave
amplitude at y = 0 The inward normal deformation of the beam is in phase with heave and causes an internal rise up
of water due to conservation of water mass. The consequence is a heave force that is 180◦ out of phase with heave. The
symmetric normal and tangential elastic modes are coupled as a consequence of the radius of curvature of the elastic
beam in static conditions. Mathematical details can be found in Strand and Faltinsen (2019) when bending stiffness is
neglected. When the stiffness increases the deformations decrease, and the effect of the internal rise of the free surface
diminishes and we get the rigid body result that the asymptote of heave approaches one. The asymptote of sway and roll
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Fig. 4. Transfer functions of rigid-body motions of a semi-flexible closed fish cage for sway (top), heave(middle) and roll (bottom), with and without
the effect of the deformable membrane versus non-dimensional squared frequency ω2R/g . k1R, k2R and k3R are non-dimensional squared natural
sloshing frequencies for the rigid structure.

Fig. 5. Transfer functions of normal (top figures) and tangential (bottom figures) elastic modes for a semi-flexible closed fish cage versus non-
dimensional squared frequency ω2R/g , for the first 10 normal and tangential structural modes. k1R, k2R and k3R are non-dimensional squared
natural sloshing frequencies. EA = A0A0 × 10−2 .

when ω → 0 is not affected by the stiffness of the beam. Since sway and roll is not coupled to the symmetric normal
deformation modes, this is to be expected. The trough in Fig. 5 at kR around two are due to cancellations caused by
coupling between the first antisymmetric mode, sway and roll, effecting the tangential modes. Similarly, the trough at kR
around 0.6 are due to coupling between heave and the symmetric normal modes above the first normal structural mode.



14 I.M. Strand and O.M. Faltinsen / Journal of Fluids and Structures 94 (2020) 102909

Fig. 6. Transfer functions |ζi|/ζ of the internal wave amplitude at the right floater (left figure) and at the centre (right figure) of the semi-flexible
closed cage versus non-dimensional squared frequency ω2R/g for non-dimensional stiffness EA/E0A0 = 10−2 . The space-averaged wave amplitude
calculated by Eq. (38) is also presented. knR are non-dimensional squared natural sloshing frequencies.

We are particularly interested in the structural response close to the sloshing frequencies. The pressure at the sloshing
frequencies is theoretically infinite for sloshing in tanks with forced oscillations (Faltinsen and Timokha, 2009), while
they showed that the rigid body motions of a floating rigid structure with internal tanks are either zero or finite at the
antisymmetric non-dimensional sloshing frequencies k1 and k3. This is consistent with the results shown here. Sloshing
cannot be excited by heave according to linear theory. It should be noted that the heave response from the hydroelastic
analysis have a small peak response close to the second non-dimensional sloshing frequency (k2). This response is due to
an elastic response of the symmetrical normal structural modes, which experience a resonance at this frequency as can
be seen in Fig. 5. This was not observed in Strand and Faltinsen (2019). However, the total stiffness in this simulated case
is smaller than the total stiffness used in Strand and Faltinsen (2019), since the static tension T0 in (8) is much smaller
here. The tension is smaller because overfilling is not considered.

4.2. Internal sloshing in the cage

At the sloshing frequencies the wave elevation and the hydrodynamic pressure is theoretically infinite at k1 and k3
for forced oscillations of a rigid tank according to linear potential flow theory of an incompressible liquid. However,
due to the external wave radiation damping there will be some energy dissipation resulting in that the internal wave
elevation will be finite in our considered problem. The absolute internal wave elevation is plotted in Fig. 6 for stiffness
EA/E0A0 = 10−2 and a rigid cage. The numerical results for the rigid cage is consistent with the theoretical analysis given
in Faltinsen and Timokha (2009). For the deformable cage we see a resonance response of the wave elevation at all the
given non-dimensional squared sloshing frequencies including the second. The wave elevation response at the second
sloshing frequency is caused by symmetric flexible deformations. The results indicate that the elasticity of the tank has a
very small influence on the sloshing frequencies of the cage.

4.3. Transfer function of stress

We have investigated what happens with the stress in the curved beam part of the semi-flexible closed fish cage for
increasing and decreasing stiffness relative to the reference composite structure. The transfer function of the stress in the
curved beam is plotted in Fig. 7. |σmax|/ζaρwg is the maximum non-dimensional stress along the curved beam calculated
at zL = A/2 at a given non-dimensional frequency ω2R/g found from a hydroelastic analysis, while |σ

qs
max|/ζaρwg is the

maximum non-dimensional stress found from a quasi-static analysis. We will discuss to what extent the structural stress
can be considered quasi-steady according to linear frequency domain theory. Furthermore, do structural and sloshing
natural frequencies cause peaks in the transfer function.

One way of qualitatively examining if a structure should be examined with a quasi-static or a hydroelastic analysis is to
investigate where structural elastic frequencies are relative to the relevant wave frequency band. If the critical structural
elastic natural frequencies are sufficiently high relative to the relevant wave frequencies the problem is assumed quasi-
static. The structural natural frequencies increase with increasing mode number, therefore the first and second structural
eigenfrequencies will be examined. The first eigenfrequency is connected to a symmetric mode, and it will not have an
effect of bending, while the second eigenfrequency is connected to an antisymmetric mode and will have an effect of
bending. The eigenfrequencies of the uncoupled first (ω1) and second (ω2) structural normal mode can be expressed as:

ω1 =

√
π (T0 + EA)

R(πRmB + 2a44)
, ω2 =

√
π (T0 + EA + 9EI/R2)

R(πRmB + 2a55)
(47)
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Fig. 7. Plot of transfer function of the max stress in the circular beam part of the cage for varying stiffness EA. |σmax|/ζaρwg is the maximum non-
dimensional stress at a given non-dimensional squared frequency ω2R/g found from a full hydroelastic analysis, and |σ

qs
max|/ζaρwg is the maximum

non-dimensional stress found from a quasi-static analysis. knR are non-dimensional squared natural sloshing frequencies.

Fig. 8. Plot of the two lowest uncoupled eigenfrequencies ωn (for ξ4 and ξ5) as function of non-dimensional squared frequency ω2R/g for varying
non-dimensional stiffness EA/E0A0 . The relevant wave frequency band investigated here, is indicated on the top. The eigenfrequency of heave ξ2 is
added for reference.

For the non-dimensional frequencies above the examined range, the added mass of the structural mode ajj is assumed
constant and equal to the added mass of the last examined frequency (ajj(ωmax)) in the estimates. The uncoupled first
and second structural normal eigenfrequencies are plotted in Fig. 8. For the two lowest stiffnesses examined, the first
uncoupled structural eigenfrequency is within the relevant wave frequency band, for the two higher stiffnesses the
eigenfrequency is significantly higher than the relevant wave frequency band. While for the second mode only the
eigenfrequency for the lowest stiffness is within the wave frequency band. The eigenfrequencies for the stiffnesses not
shown are outside the given frequency range. Based on the criterion that the uncoupled eigenfrequency should be within
the frequency band alone, the two highest stiffnesses could be analysed by a quasi-static approach, and the two lowest
should be analysed with a hydroelastic analysis.

The system is coupled both between the normal and tangential modes and towards the rigid-body motions. Since
the structural modes are coupled, it is therefore not certain that the total system will have a resonance response at
the calculated uncoupled frequencies. For the lowest stiffness the normal and tangential deformations of the first ten
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Fig. 9. Calculated uncoupled damping ratios for the first and the second normal structural mode given as η =
bjj

√cjjajj
versus nondimensional frequency

ω2R/g for varying nondimensional stiffness EA/E0A0 .

modes are plotted in Fig. 5. At the calculated first eigenfrequency a small but clear top can be seen. This is close to the
eigenfrequency in heave, and appears to also influence the rigid-body motion in heave as can be seen in Fig. 4. That the
resonance response is small indicates that the damping level is high. The ratios η between the damping and the critical
damping for the first two modes for different stiffnesses are plotted in Fig. 9. The damping level of heave is added for
reference. If we look at the damping level for the first mode close to the first eigenfrequency, we see that the damping
ratio η is indeed large in the relevant frequency range. At the calculated second eigenfrequency for the lowest stiffness,
no response could be observed in either the rigid body motions or in the normal and tangential deformations.

From Fig. 7, we observe that the coupled hydroelastic results are in general lower than the quasi-static results. As
the stiffness decreases the stresses computed by the hydroelastic model decreases simultaneously. Based on the plotted
results, it can be concluded that to use the quasi-static assumption is conservative within the given frequency range, for
all examined frequencies except the frequencies close to the second sloshing frequency.

There are no peaks in the stress results at the sloshing frequencies corresponding to k1 and k3. Since the stresses are
functions of the rigid and elastic motion components, the stress results are consistent with the motion results. Close to
the second non-dimensional sloshing frequency (k2) for the examined stiffnesses, a localised peak can be observed in
the coupled hydroelastic results. The stress peak is very localised in terms of frequency. The stress is dependent on the
frequency resolution close to the sloshing frequency and the damping level of the relevant deformation modes at the
relevant frequency. The resolution is improved close to the second sloshing frequency. However, the exact stress level at
the sloshing frequency cannot be determined. The fact that the hydrodynamic pressure becomes very large at the natural
sloshing frequencies do not imply that the motions and hence the stress becomes very large. This has theoretically been
shown in Faltinsen and Timokha (2009) for the motions of a rigid tank. The reason for this behaviour is infinite added mass
due to sloshing at the natural sloshing frequencies. If the motion system is uncoupled, this leads to zero motion response at
the natural sloshing frequencies. If the motion system is coupled the behaviour of combination of coupled sloshing added
mass coefficient makes finite non-zero motion response possible at the natural frequencies. Since the sloshing added
mass coefficients associated with flexible normal modes are also infinite at the natural sloshing frequencies, it is plausible
that the response of the flexible normal modes are finite at the natural sloshing frequencies. However, such theoretical
analysis has not been performed. The second non-dimensional squared sloshing frequency k2R is a frequency connected
to a symmetric sloshing mode illustrated in Fig. 2 left part. Rigid body motions are not affected at the symmetric sloshing
frequency for an assumed rigid structure, and are therefore also not visible in the stress results from the quasi-static
analysis.

The structural stress is directly coupled to the normal and tangential deformation modes in (46). From Fig. 5 which
is the plot of the first ten normal and tangential modes for the lowest stiffness, we can clearly see that at the second
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Fig. 10. The relative difference (σ qs
1 − σ1)/σ

qs
1 of the standard deviation of the maximum dynamic stress along the beam by a quasi-steady (σ qs

1 )
and a hydroelastic (σ1) analysis for given exposure versus wave peak period Tp in sea states defined by a JONSWAP spectrum. The small, moderate,
medium and high refers the classification related to exposure as given in NS9415 (2009).

non-dimensional squared sloshing frequency (k1) both the normal and the tangential response are significant for the
symmetric normal modes (ξ3, ξ5, ξ7...) and the antisymmetric tangential modes (µ2, µ4, µ6...). This is consistent with the
stress peaks at the second non-dimensional squared sloshing frequency. The effect of the first and third sloshing frequency
is not evident in the stress transfer function. These two frequencies are anti-symmetric sloshing modes connected to sway
and roll, the antisymmetric normal modes (ξ4, ξ6, ξ8...) and the symmetric tangential modes (µ1, µ3, µ5...).

As the stiffness decreases the stresses computed by the hydroelastic model decreases, simultaneously, the deformations
increase. The deformations in the hydroelastic analysis increase to a point where the deformations are significant and
affect the motions of the structure (see Figs. 4 and 5) as could be seen for the closed flexible fish cage studied in Strand
and Faltinsen (2019), which were a membrane structure.

4.4. Structural stresses in a sea state

The dynamic structural stresses in a sea state are dependent on both the wave height and the wave frequency. The
response in irregular sea should be calculated to find the relevant stress level wave response. Then the squared stress
transfer function must be multiplied with a sea state spectrum and properly integrated to find the actual effect in a given
sea state. The standard deviation of the dynamic stress σ1 for a given sea state spectrum S(ω) in long crested waves can
be calculated as:

σ 2
1 =

∫
∞

0
S(ω)

(
σmax

ζa

)2

dω. (48)

where σmax/ζa is the transfer function of the maximum stress along the curved beam calculated at zL = A/2 based on hy-
droelastic analysis, and σ qs

1 /ζa can be calculated by Eq. (48) exchanging σmax with σ qs
max. The Norwegian standard (NS9415,

2009) for the design of aquaculture fish farm in the sea requires for calculation of response from irregular sea that the
JONSWAP spectrum shall be used with γ = 2.5 for wind-generated seas, where γ is the spectral peakedness parameter.
The JONSWAP spectrum is for limited fetch, and in the standard, it is required that a fully developed sea state is assumed.
A γ -value of 2.5 is lower than for ships and offshore structures where γ = 3.3.

The JONSWAP spectrum is

S(ω) =
αpg2

ω5 exp
(

−20π4

T 4
pω

4

)
γ Yp , (49)

where αp and Yp are given as:

αp =
5.061H2

s

T 4
p

(1 − 0.287 ln γ ),



18 I.M. Strand and O.M. Faltinsen / Journal of Fluids and Structures 94 (2020) 102909

Yp = exp
(

−
1
2

( ωTp
2π − 1
σp

)2)
,

with σp as the spectral width parameter given as

σp =

{
0.07 for ω ≤

2π
Tp

0.09 for ω > 2π
Tp
.

The relative difference (σ qs
1 − σ1)/σ

qs
1 of the standard deviation of the maximum dynamic stress along the beam by a

quasi-steady and a hydroelastic analysis are plotted in Fig. 10 versus wave peak period Tp for given significant wave
heights. The peak periods Tp and significant wave heights are related to the classification of wave exposure as given
in NS9415 (2009), see Table 1.

As long as the results are positive, the quasi-static assumption is conservative. From these results alone, the quasi-
static assumption appears to be conservative for all stiffnesses and frequencies considered. The degree of conservativity
increases with decreasing stiffness EA and increasing peak period Tp. The results do not appear to be particularly sensitive
to the wave period.

A very narrow peak response of the stress occurs at the second natural sloshing frequency. It could be expected that
the peak in the stress transfer function is visible in the stress standard deviation for irregular waves around Tp = 5.2 s
which is the second sloshing period. No peaks are visible in the presented results. The narrow peak response contribution
to the standard deviation in a sea state can be obtained by evaluating the area of the squared transfer function in the
narrow peak response frequency domain and multiplying it with the wave spectrum at the peak frequency. It follows
then that the influence on the standard deviation of stress is very small.

To assess if the stress level in itself is reasonable, the most probable largest value, which is roughly four times the
standard deviation should be compared to the yield stress. This has not been done. The investigation has only assessed
if the method is useable and not if the general stress levels are below the yield stress limit. This is because peak stresses
often form around holes and in intersections which has not been modelled here.

5. Conclusions

In this paper the linear theory of a 2D semi-flexible closed fish cage in waves is developed and analysed to investigate
the structural response of the semi-flexible closed cage in waves. The results from a 2D case study with relevant full scale
dimensions, considering a half circularly shaped semi-flexible closed fish cage with floaters were presented. Investigations
only consider the 2D case. However, the findings can be considered a starting point for analysing 3D structures.

We have compared a quasi-static analysis with a fully coupled hydroelastic analysis to investigate if it is a valid and
conservative assumption to assume that the stresses in the structure can be assumed quasi-static. We have investigated
what happens with the stress in the curved beam part of the closed fish cage for increasing and decreasing stiffness
relative to the reference composite structure. One stiffer and two softer cases have been analysed. One major concern for
the stresses on a closed cage is the effect of sloshing.

The results indicate that to use the quasi-static assumption is conservative within the given frequency range for all
examined stiffnesses and frequencies, except the frequencies very close to the second sloshing frequency. Close to the
second sloshing frequency for all the examined stiffnesses, a localised peak can be observed in the coupled hydroelastic
results. The second sloshing frequency is a frequency connected to a symmetric sloshing mode. Symmetric sloshing
frequencies is not excited by any rigid body motion for an assumed rigid structure, and is therefore not visible in results
from a quasi-static analysis. If a symmetrical sloshing eigenperiod is close to the wave peak period, the quasi-steady
assumption can be non-conservative dependent on the stiffness of the structure. The analysis should be extended to
3D. It should be investigated if any symmetric sloshing frequencies are in the relevant frequency range for a full-scale
cage at hand. Procedures, tables and figures for calculating sloshing frequencies for all these 3D geometries can be found
in Faltinsen and Timokha (2009). Fatigue could also be a problem close to symmetric sloshing frequencies, and should
be further considered. The response in irregular sea was calculated to find the relevant stress level wave response. These
results show no indication of increased stress close to the second sloshing frequency.

Future work should include to generalise the described results to a 3D cage. The results could be extended to 3D
using state of the art numerical methods, including the hydroelastic coupling and require dedicated work. Experimental
validation is needed. The linear potential flow calculations can be performed by a state-of-the-art method that considers
structural deformations. A further step would also be to account for non-linear sloshing, which can lead to swirling and
chaos in axisymmetric cages. Since a CFD method is time consuming and viscous effects play a secondary role as long as
wave breaking does not occur, the nonlinear multimodal method for potential sloshing flow of an incompressible liquid
as described by Faltinsen and Timokha (2009) should be attempted. An additional advantage of the multimodal method
is explicit acceleration dependent loads that stabilises numerical time integration in wave–body interaction analysis.
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