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ABSTRACT

Motion predictions of floating bodies in extreme waves rep-

resents a challenging problem in naval hydrodynamics. The so-

lution of the seakeeping problem involves the study of complex

non-linear wave-body interactions that require large computa-

tional costs. For this reason, over the years many seakeeping

models have been formulated in order to predict ship motions

using simplified flow theories, usually based on potential flow

theories.

Neglecting viscous effects in the wave-induced forces might

largely underestimate the energy dissipated by the system. This

problem is particularly relevant for unconventional floating bod-

ies at resonance. In these operating conditions the linear as-

sumption is no longer valid and conventional Boundary Element

Methods, based on potential flow, might predict unrealistic large

responses if not corrected with empirical viscous damping coef-

ficients.

∗Email: jaguila@mit.edu

The application considered in this study is an offshore plat-

form to be operated in a wind farm requiring operability even

in extreme meteorological conditions. In this paper, we com-

pare heave and pitch Response Amplitude Operators, predicted

for an offshore platform using three different seakeeping mod-

els of increasing complexity; namely a frequency-domain BEM,

a partly nonlinear time domain BEM and a non-linear fully vis-

cous model based on the solution of the Unsteady Reynolds Av-

eraged Navier-Stokes equations (URANS). Results are critically

compared in terms of accuracy, applicability and computational

costs.

NOMENCLATURE

Lp Length of the platform.

Bp Beam of the platform.

Dp Depth of the platform.

Tp Draft of the platform.

M Platform mass.
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A33 Added mass in heave.

η3 Heave motion.

Aw Waterplane Area.

F3(t) Vertical excitation force.

ξa Incident wave amplitude.

zt Coordinate of the top of the pontoons.

zm Coordinate of the geometric center of the pontoons.

B Distance between center planes of the two pontoons.

Vp Total volume of the pontoons.

ωn Natural circular frequency.

x Position vector, Cartesian coordinate system.

n Unit normal vector, Cartesian coordinate system.

Φ Mean base flow velocity potential.

φ Modulus in complex notation of the velocity potential.

ω Wave circular frequency.

k Wave number.

Tw Wave period.

λw Wave length.

Ts URANS time step.

g Acceleration of gravity.

φD Diffraction potential.

φR Radiation potential.

φI Incident wave potential.

ξ j Motion amplitude in direction j.

G(x,ξ ) Green function.

Sb The platform’s wet surface.

Ψ Total time-domain potential.

τi j Components of the averaged viscous force tensor.

u Averaged velocity.

p Averaged pressure.

u′iu
′
j Reynolds stresses.

ρ Fluid density.

µ Dynamic viscosity.

Bmax Maximum beam.

RAO Response Amplitude Operator.

φxi Frequency spectra associated with the ith DoF.

φξ Frequency spectra associated with free surface elevation.

1 Introduction
Over the last 25 years, there has been an ongoing effort

within the U.N. Framework Convention on Climate Change to

mitigate climate change and greenhouse emissions. The latest

example of these efforts is the Paris Climate Agreement, which

was adopted in November of 2015 by consensus at the 21st Con-

ference of Parties of the United Nations Framework Convention

on Climate Change (UNFCCC). As of May 2019, 194 states and

the European Union have ratified the agreement. These states

represent more than 88% of the global greenhouse gas emis-

sions. The increasing efforts to meet the objectives of interna-

tional agreements have led to significant developments of tech-

nologies to extract energy from clean renewable sources, mak-

ing them economically viable. Wind energy represents one of

the most promising renewable energy resources and it is demon-

strated by the increasing design and construction of onshore and

shallow water wind farms, as shown by the Global Wind Energy

Council and the European Wind Energy Association [7, 8]. This

has enabled some countries to produce more than 35% of their

electric demand from wind [7], which proves the opportunities

given by existing onshore and shallow water installations to re-

duce the amount of energy dependence on fossil fuels.

Space allocation represents one of the major limitations in

the development of new onshore and shallow water installations.

Regardless of higher installation costs, offshore wind energy ex-

traction is generally more efficient than it is for onshore instal-

lations. Higher and more sustained wind speeds have led to re-

duced operating condition uncertainty and have made offshore

wind farms a very attractive wind energy harvesting alternative.

In addition to higher construction and installation costs, the in-

tricacy in designing a complex interacting system composed of

floating structures and wind turbines operating in a marine envi-

ronment has limited the spread of this promising renewable en-

ergy.

Among other problems, the prediction of the seakeeping

behavior of offshore structures in adverse marine environment

represents one of the greatest challenges in the design of off-

shore wind farms. Motion predictions of floating platforms in

waves have been traditionally obtained by using potential flow

based numerical models. Most of these models are formulated

on the basis of a small amplitude assumption, which limits their

range of applicability in cases of practical interest. Nevertheless,

conventional linear seakeeping methods formulated in frequency

domain still represent the most widely used seakeeping mod-

els. Furthermore, consistent second-order potential-flow solvers

without accounting for current and forward speed represent state

of the art numerical methods for wave-induced response of ships

and other large-volume marine structures. Important viscous

damping effects such as for rolling of ships and slow-drift mo-

tions of moored structures are accounted for by empirical for-

mulas. Strongly nonlinear wave effects on ships are tradition-

ally highly simplified by only considering Froude-Krylov and

hydrostatic restoring terms. When slamming occurs, it is typi-

cally analyzed, for ships, by strip theory with a high-frequency

free surface condition based on either a von Karman or a general-

ized Wagner method. The latter simplifications are necessitated

due to computational efficiency. The stochastic response in rep-

resentative sea states each with a duration of 3-5 hours has to be

considered.

Fully viscous models such as URANS have been mostly ap-

plied to the solution of problems that have a large economical im-

pact (see [27, 29, 30, 35]) or to unconventional geometries where

conventional potential flow theories fail (see [31, 32, 36, 37]). A

drawback is that URANS depends on empirical modelling of tur-

bulence. Motion predictions obtained using fully viscous models
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are limited by the massive computational costs required to even

characterize Response Amplitude Operators (RAOs) of complex

geometries in 6 DoFs in regular waves. One of the major bot-

tlenecks in the application of Navier-Stokes models is that they

can hardly be used for shape optimization in the earliest design

stages, when there is still large uncertainty associated with the fi-

nal shape of the floating body. However, given the technological

improvements and cost reduction of mainstream wind energy, the

potential economic impact of deepwater offshore wind energy is

high enough to justify the employment of these computationally

expensive high-fidelity codes. To this end, research has been re-

cently focusing on developing computational models to enable

URANS simulations for motion prediction of offshore platforms,

considering non-linear effects in viscous flows. The use of higher

fidelity simulations in shape optimization studies will eventually

lead to improved designs capable of reducing motions in waves,

hence having extended operability.

In this paper, we first present a summarized overview of the

challenges related to solving the seakeeping problem and how

the capabilities of each type of computational model compare to

each other (Sec. 2). In Sec. 3, we provide a brief theoretical defi-

nition of the flow problem, summarizing for the applied potential

flow based BEM codes and the used URANS code. Given this

information, and the definition of the hydrodynamic coefficients

in the BEMs, it is possible to solve the motion problem. The re-

sults obtained are presented in Sec. 4, where we provide heave

and pitch RAOs predicted using the frequency-domain and time-

domain potential panel methods, and the high-fidelity viscous

model based on the solution of the Unsteady Reynolds Averaged

Navier-Stokes equations. The main findings are summarized in

the Sec. 5, where we also give an insight of what may enable

a wide application of URANS simulations to motion prediction

problems.

2 Challenges in Solving the Seakeeping Problem

The response of a floating body in a marine environment

largely depends on the external forces and moments induced by

incoming waves and on the characteristics of the system such as

geometry, inertia and mass distribution.

Fluid dynamic forces can be divided into three different cate-

gories according to their nature: inertia, gravity and viscous phe-

nomena. Model scale experiments can be performed in Froude

similarity, which ensures an accurate representation of gravity

related phenomena [9]. Due to the practical limitations of having

a fluid contemporary allowing Froude and Reynolds similarity,

viscous forces predicted in model experiments might be affected

by scale effects, in particular if flow separation does not occur

from sharp corners. Numerical simulations performed with vis-

cous solvers, allow to predict platform motions in full scale con-

sidering the effect of viscous dissipations.

BEMs are based on potential flow in a incompressible liq-

uid, hence they do not solve for viscous dissipations. Among

BEMs, the ones formulated in the frequency domain usually do

not consider non-linear effects such as the variation of the wet

surface of the offshore platform. However, second -order non-

linear frequency domain potential flow methods without current

and forward speed are state of the art. To this end, time-domain

BEMs have been introduced with the specific goal to improve

predictions in cases of large amplitude motions. Successful ex-

amples of time-domain motion predictions obtained with BEMs

that consider some non-linear effects can be found in the litera-

ture (see for instance [21–24]). Due to the potential flow assump-

tion, BEMs represent a valuable method to predict motions in

waves with a reasonable trade-off between computational costs

and prediction fidelity [10–12]. Limitations in BEMs due to their

simplified potential flow formulation are not important in most

situations. Therefore, URANS simulations should only be used

when viscous forces are important since they are at least two or-

ders of magnitude more computationally expensive than the po-

tential codes.

Cancellation effects occur in semi-submersible platforms

when the resultant forces acting on the underwater pontoons and

vertical pillars tend to cancel each other under linear undamped

motions. Usually, the highest cancellation period is the result

of the forces on the pontoons and the pillars compensating each

other. Other cancellation periods result from the particular spac-

ing of the vertical pillars. For the brazeless geometry analyzed in

this study, Eq. 6, gives an accurate prediction of this cancellation

period.

FIGURE 1: Sketch of a semisubmersible platform used in [2] to

show how cancellation effects in heave motions occur.

A detailed and instructive explanation of cancellation effects

can be found in [2]. This analysis is performed for a semisub-

mersible in beam seas and deep water waves in the frequency

domain. We will generalize the approach so that it is applicable

to our studied platform. An assumption is that the wave length

is sufficiently large for phase differences in the vertical hydro-

dynamic loads on different structural parts have negligible influ-

ence. A consequence is that the wave heading does not matter.

The starting point is the undamped heave (η3) equation of motion
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in the mass-force domain:

(M+A33)
d2η3

dt2
+ρgAwη3 = F3(t) (1)

Here M, A33 & Aw are the structural mass, heave added mass

and water plane are, respectively. Furthermore, ρ and g are mass

density of water and acceleration of gravity. The vertical excita-

tion forces, F3(t), can by potential flow be simplified as

F3(t) = ρgζa sinωtekzm

(

Awek(zt−zm)− k

(

Vp +
A33

ρ

))

(2)

where zt & zm are the z-coordinates of the top and geometric

center of the pontoons, Vp is the displaced volume of the pon-

toons. The free surface elevation at the center plane is expressed

as: ζa sinωt. Since k(zt − zm) is small, we approximate ek(zt−zm)

as 1+ k(zt + zm). Furthermore, by using M = ρ(Vp −Awzt) it

follows that

F3(t) = ζa sinωtekzm
(
ρgAw −ω2 (M+A33) −ρω2Awzm) (3)

Introducing the result from Eq. 3 in 1, we can express the

relation between the amplitudes of the vertical motion and the

free surface elevation as:

η3

ζa
= sinωtekεm




1−

kzm

1−
(

ω
ωn

)2




 (4)

where ωn is the natural circular frequency.

ωn =

(
ρgAw

M+A33

) 1
2

(5)

By exploring Eq. 4, we can obtain the situations where the

vertical heave motion is zero (η3 = 0). This happens when:

ω =
ωn

(1−|zm|ω2
n g)

1
2

(6)

In the particular geometry analyzed in this paper, this period

would correspond to Tw = 16.73s, which is accurately predicted

with Eq. 6. Furthermore, if we would like to change the heave

response characteristics, we can see from Eq. 4, that the param-

eters to vary would be ω/ωn and ω2
n |zm|/g.

The previous analysis shows how cancellation effects arise

when the vertical motion of semi-submersible platforms are stud-

ied considering linear undamped motions. This assumptions will

not hold when viscous drag forces, which influence excitation

and damping in a nonlinear manner, have a non-negligible ef-

fect. In the particular geometry analyzed in this paper, the nature

of this damping and viscous drag forces, is non-linear as the mag-

nitude of the shed vortexes can be expected to vary throughout

the motion and also with the amplitude of the motion. In this

case we will have to resort to viscous models such as URANS.

Nevertheless, modeling and numerical uncertainty might affect

the accuracy of the prediction of this higher fidelity models.

3 Numerical Methods

In this paper we employ three different seakeeping models,

providing an increasing level of accuracy and a good representa-

tion of the methods available to designers.

3.1 Linear Frequency-Domain Boundary Element
Method

The first code used to obtain the motions of the offshore

platform is ANSYS AQWA a linear BEM formulated in the fre-

quency domain. Potential flow of incompressible water is as-

sumed.

A basis of a BEM is Green’s theorem that enables the veloc-

ity potential to be represented as a distribution of sources and/or

normal dipoles over boundaries. The chosen linear BEM repre-

sents the velocity potentials due to radiation and scattering as a

distribution of sources and normal dipoles over the mean sub-

merged body surface. The sources and normal dipoles satisfy

the classical linearized free-surface condition and the radiation

condition in the frequency domain. Infinite water depth is con-

sidered. An integral equation follows by satisfying the linearized

body boundary conditions.

The mean submerged surface of the platform is represented

by a large number N of small quadrilateral panels. The source

strength and dipole moment are assumed constant on each panel

and give a total of N unknowns and a total of N linear equations

for the unknown source strengths. These equations are solved us-

ing methods from linear algebra. Once the potential is obtained,

the pressure can be computed and forces and moments can be

obtained to compute body motions.

The commented before is just a brief summary of the theory

used in linear frequency-domain BEMs to compute wave loads

on floating bodies. A very good reference for this theory is [14].

More information can also be obtained in [15–17].
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3.2 Time-Domain Boundary Element Method

The second code used, AEGIR, is a Boundary Element

Method that solves the potential flow past a moving or fixed float-

ing body in time domain. It considers non-linear effects such as

wet surface variation and it performs Taylor expansions of the

boundary conditions.

The time domain Boundary Element Method uses spline

functions to represent unknowns and solves the set of equations

on the exact body and free surface boundary for the spline co-

efficients. The geometry is represented by a set of surfaces on

the outer boundary of the platform. Moreover, the code is geo-

metrically independent because both the hydrodynamic and the

geometry representations are separate.

Within the time-domain Boundary Element Method, the

platform is free to sink, trim and surge. Hydrostatic and hydro-

dynamic forces and moments are computed from the platform’s

geometry and the boundary integral equation. During the non-

linear calculations, the intersection between the free surface and

the platform is calculated. Given the wet part of the platform’s

surface, a transformation is made to define the computational

space.

Normally, a low order Rankine BEM obtains a system of lin-

ear equations by discretizing the obtained equation after applying

Green’s 2nd identity to the Laplace equation. In the time domain

Boundary Element Method, the perturbation potential is approx-

imated as a B-Spline surface in the wet hull parametric space.

Moreover, an adaptive subdivision method is used to integrate in

the wet surface space.

In relation to the total time-domain potential, Ψ, it is decom-

posed into the sum of the mean base flow potential, Φ, and the

time-dependent wave potential, φ . The mean base flow poten-

tial is set to zero since our problem does not involve current and

forward speed.

The dynamic and kinematic free surface conditions are im-

posed separately. This is done to seek numerical stability. This

way the kinematic condition is solved explicitly and the dynamic

condition is solved implicitly.

The kinematic and dynamic free surface conditions are both

expanded in a Taylor-series about the base flow.

More details of the theory behind time domain nonlinear

Boundary Element Methods can be found in [21–24].

3.3 Time-Domain Fully Viscous Model

In this section, a description of the viscous Volume of Fluid

URANS code STAR-CCM+ is provided. Turbulent flow is im-

plicitly assumed and a smooth body surface is considered. The

equations solved are the averaged continuity and momentum

equations for incompressible fluids where there are no body

forces.

∂ (ρui)

∂xi

= 0 (7)

∂ (ρui)

∂ t
+

∂

∂x j

(ρuiu j +ρu′iu
′
j) =

∂ p

∂xi

+
∂τ i j

∂x j

(8)

τ i j = µ

(
∂ui

∂x j

+
∂u j

∂xi

)

(9)

Where τ i j in equation 8 are the components of the averaged vis-

cous force tensor, p is the averaged pressure and u are the Carte-

sian components of the averaged velocity. In equation 8, u′iu
′
j

are the Reynolds stresses, ρ the fluid density and µ the dynamic

viscosity. To obtain the desired mesh resolution in the boundary

layer, y+-values near the platform surface must remain below a

certain threshold. In [29], y+-values of around 50 provide a good

approximation. The definition of y+ is y+= y · v∗/ν , where y is

a coordinate perpendicular to the body surface with y=0 at the

body surface. v∗ is the friction velocity and is expressed as the

square root of the ratio between the absolute value of the wall

shear stress and the fluid density. Furthermore, ν = µ/ρ . The

viscous sublayer is assumed to be below the given y+ values.

Given y+ values in the simulations of 55 on average (Tab. 2),

the discretization of the integral formulation of the Navier-Stokes

equations requires a turbulence model. The two turbulence mod-

els mainly used are k-ε and k-ω . The model that has been used

in these simulations is a combination of the two, the SST k-ω
Menter turbulence model [33]. This turbulence model mixes the

two previous models using the k-ε in areas away from the walls

and the k-ω when calculating near to the walls, where the bound-

ary layer develops.

To model the free surface, the time-domain fully viscous

model uses a Volume of Fluid method (VOF) [33]. This model

assumes that the same equations governing the physics of one

of the phases can be solved for all phases present in the compu-

tational domain (each cell or finite volume). A good reference

for the theory behind this type of numerical method can also be

found in [26].

In order to simulate the behavior and to obtain realistic plat-

form motions, a Dynamic Fluid Body Interaction (DFBI) model

is used. The platform is allowed to move in three degrees of free-

dom, to translate in the longitudinal and vertical directions (surge

& heave) and to rotate around the transversal direction (pitch).

It is necessary to identify constraints to define the time step.

These constraints depend on the physics that have to be simu-

lated. The objective is to record the following physical phenom-

ena:
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FIGURE 2: For the wave mesh convergence three levels of mesh

resolution were used. The wave amplitude obtained through a

FTT is plotted in the figure above and compared to the theoretical

wave amplitude. The mesh used in the study is the second which

has a 3.5% difference with the theoretical wave amplitude.

1. Heave, pitch and surge platform motions.

2. The waves that travel on the free surface throughout time.

For the heave, pitch and surge movements, the ITTC recom-

mends at least 100 time steps per period of encounter with the

waves [27, 41, 42]. The period of encounter, and wave period,

ranges from 10−30s, so 0.1−0.3s is the minimum time step re-

garding the motions. Furthermore, the Courant Number (CNN)

on the free surface should stay below 0.1. A time step conver-

gence is performed analyzing both the CNN and the wave ele-

vation at one point using a wave probe. The resultant time steps

of the eleven cases simulated are presented in Tab. 1. The wave

probe is also used to perform the mesh convergence (Fig. 2)

giving data to compare with the theoretical wave output. An ex-

ample of the wave prove for the final mesh selected is presented

in Fig. 3.

The platform, as it can be seen in Fig. 4, is positioned 1 ·
λw from the velocity inlet. The platform is positioned with a

maximum distance to the symmetry plane of Bmax/2 to be able to

impose a symmetry condition and, regarding the length of Water

Ref 2 refinement (3.5 ·λw), it is advised that this length is at least

equal to twice the length of the wave simulated (Fig. 5).

An hexahedral volume mesh is used for the Background and

Overset regions which are overlapped (Chimera grid). Addition-

ally, prism layers are introduced in the Overset Region, around

the platform surface boundary.

The sizes of the domains Block Region and Overset Region

are chosen using best practices derived from previous seakeeping

studies with STAR-CCM+. Good examples are references [1]

Tw (s) λw (m) ξa (m) Ts (s)

10.00 156.131 2 × 0.3860 0.012

13.00 263.861 2 × 0.6515 0.0155

15.00 351.293 2 × 0.8675 0.0179

16.00 399.702 2 × 0.9855 0.0190

16.73 437.523 2 × 1.0800 0.0199

18.00 505.864 1.2490 0.023

19.00 563.633 1.3915 0.023

19.50 593.688 1.4660 0.023

20.00 624.524 1.5420 0.024

21.00 688.538 1.7000 0.025

30.00 1405.179 3.4695 0.036

TABLE 1: The columns indicate wave period (Tw), wave length

(λw), wave amplitude (ξa) and fixed time step (Ts) used in the

URANS solver, respectively. The waves are within the linear

assumption. A minimum wave amplitude was needed to keep

the quality of meshes and accelerate convergence.

and [27]. The dimensions of the platform and waves are used

to perform the necessary proportions. The water depth is 1/2 of

the largest wave length, which should give negligible finite water

depth errors. The final measures for this particular case, here

Lp = 63.5 is the length of the platform, are the following:

1. Length: 5.6 ·λw.

2. Width: 50 ·Lp.

3. Depth: 11 ·Lp.

A series of volume controls have been applied to generate

an unstructured grid with the necessary refinements to capture

the different physical scales that characterize the problem stud-

ied. These volume controls are described in the Fig. 5. The mesh

refinements in the volume controls have been defined in relation

to the wave dimensions and the estimated boundary layer size.

These dimensions are presented in Table 2. The volume refine-

ments used are:

1. Water Ref 1: the main purpose of this refinement is to estab-

lish continuity in the vertical dimension of the mesh while

providing an expansion of the mesh in the horizontal plane.

The expansion is done with the objective of creating numer-

ical dissipation at the end of the domain before the Pressure

Outlet. The objective is to damp out the waves that enter the

domain to eliminate any possible reflections in the Pressure

Outlet that introduce perturbations in the solution.
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Overset
Platform

Ref 1

Water

Ref 1

Water

Ref 2

# of cells

total

# of cells

Overset

y+ X Y Z X Y Z X Y Z X Y Z

M1(Tw = 10.00s) 6406710 861154 45 λw/255 λw/255 Hw17 λw85 λw85 Hw17 Expand Expand Hw17 λw85 λw85 Hw17

M2(Tw = 13.00s) 8064141 1051344 46 λw/255 λw/255 Hw17 λw85 λw85 Hw17 Expand Expand Hw17 λw85 λw85 Hw17

M3(Tw = 15.00s) 4918997 654759 51 λw/255 λw/255 Hw17 λw85 λw85 Hw17 Expand Expand Hw17 λw85 λw85 Hw17

M4(Tw = 16.00s) 4022589 1536357 73 λw/255 λw/255 Hw17 λw85 λw85 Hw17 Expand Expand Hw17 λw85 λw85 Hw17

M5(Tw = 16.73s) 3269859 1952057 55 λw/255 λw/255 Hw17 λw85 λw85 Hw17 Expand Expand Hw17 λw85 λw85 Hw17

M6(Tw = 18.00s) 4147718 2703786 49 λw/255 λw/255 Hw17 λw85 λw85 Hw17 Expand Expand Hw17 λw85 λw85 Hw17

M7(Tw = 19.00s) 7728123 2703715 50 λw/255 λw/255 Hw17 λw85 λw85 Hw17 Expand Expand Hw17 λw85 λw85 Hw17

M8(Tw = 19.50s) 4272912 1803118 48 λw/255 λw/255 Hw17 λw85 λw85 Hw17 Expand Expand Hw17 λw85 λw85 Hw17

M9(Tw = 20.00s) 4624096 1803118 46 λw/255 λw/255 Hw17 λw85 λw85 Hw17 Expand Expand Hw17 λw85 λw85 Hw17

M10(Tw = 21.00s) 4844652 1803120 40 λw/255 λw/255 Hw17 λw85 λw85 Hw17 Expand Expand Hw17 λw85 λw85 Hw17

M11(Tw = 30.00s) 4022589 1727886 55 λw/255 λw/255 Hw17 λw85 λw85 Hw17 Expand Expand Hw17 λw85 λw85 Hw17

TABLE 2: Mesh characteristics for each of the 11 URANS simulations. The mesh sizes range between 4 and 8 million cells and average

y+ values remain below 55, limiting the viscous sublayer along the body surface. The mesh refinements are defined in relation to the

wave length (λw) and wave height (Hw). The number of cells per wave height and wavelength remains constant through the different

cases. Within some spaces, the mesh is allowed to expand until the end of the domain, so as to create a numerical beach.

2. Water Ref 2: this volume control intends to provide an ade-

quate continuum for the wave to propagate uniformly, with

minimal numerical dissipation.

3. Platform refinement: the purpose of this volume control is to

provide higher grid resolution in the area near the platform.

The surface control used is the following:

1. Hull: the surface size control has been created to represent

the platform’s geometry accurately. Moreover, this enables

a good quality prism layer expansion.

The mesh and time convergence has been divided into three

steps:

1. Convergence of the Block Region mesh, for the monochro-

matic wave. This has proven the most important in the con-

vergence of the results. Best practices from previous valida-

tions have been taken to define the mesh refinements, such

as those found in Ref. [1]. According to this publication,

good results can be obtained with approximately 20 cells

per wave height and 100 cells per wavelength. The results

from the performed mesh convergence are presented in Fig.

2 and Tab. 3. The final mesh dimensions, relative to the

wave dimensions in the simulations, are exposed in Tab. 2.

The sharpening factor is left at 0.0, so there is no term for

numerical diffusion in the volume fraction transport equa-

tion.

2. Convergence of the remaining volume refinements. Addi-

tional volume refinements are created to provide the right

domain dimensions and appropriate refinement for the Over-

set Region, and a long enough numerical beach at the end of

the domain.

3. Convergence of the platform’s surface size and boundary

layer mesh (prism layer). As in the first point, recommen-

dations from Ref. [1] have again been followed. Ten prism

layers have been used, with a growth rate factor of 1.3 and

y+ values are 55 on average (Tabs. 2 and 3). Consequently

wall functions are necessary to perform the simulations.

Boundary conditions have been defined according to the par-

ticularities of the problem. Note that multiple boundary condi-

tions can be right for this same problem. Exploiting the symme-

try of the problem, given by the incoming head wave condition,

only half of the symmetric platform is modeled. The boundary

conditions used are illustrated in Fig. 4, using a color code.

A numerical beach has been created in the area before the

Pressure Outlet that is within the range of 2 ·λw times the wave-

length used, to avoid numerical wave reflections from the out-

let. This boundary condition reduces the vertical velocity of fluid

particles by applying damping to the movement in that direction.

The guidelines stated in reference [40] have been followed to set

up the induced damping.

Two reference frames are used for the computations. First,

the problem of flow and magnitude of the resultant force over the

7 Copyright c© 2018 by ASME



Mesh Sensitivity Analysis

Tw 18s 19s 19.5s

Mesh eRAO33
eRAO55

# cells y+ eRAO33
eRAO55

# cells y+ eRAO33
eRAO55

# cells y+

MR1 29% 5% 1986156 424 9% 11% 1535684 377 9% 6% 858326 356

MR2 30% 4% 2982100 317 7% 9% 2531821 315 11% 6% 2030050 305

MR3 8% 1% 5791269 167 4% 1% 6350109 157 2% 2% 3098014 137

Final 0% 0% 7169364 49 0% 0% 7728123 50 0% 0% 4272912 48

Tw 20s 21s 30s

Mesh eRAO33
eRAO55

# cells y+ eRAO33
eRAO55

# cells y+ eRAO33
eRAO55

# cells y+

MR1 3% 10% 868428 361 0% 15% 958777 351 0% 5% 806101 331

MR2 3% 10% 2040152 303 1% 11% 2130535 280 1% 2% 1978225 160

MR3 2% 3% 3449200 131 1% 4% 3669770 119 0% 0% 2727964 105

Final 0% 0% 4624096 46 0% 0% 4844652 40 0% 0% 4022589 55

TABLE 3: Results of the convergence of the RAOs in a mesh sensitivity analysis considering 4 levels of refinement. Convergence is

quickly reached in all wave periods except for Tw = 18s. For this reason mesh Final is used. eRAO33
& eRAO55

define errors relative to the

finest mesh simulated for each wave period (Tw).

body is calculated. Then forces and moments are translated to the

local reference system of the platform. This reference system has

its origin in the platform’s center of gravity, with the x-axis in the

fore-aft direction. Given these resultant forces, the movement of

the platform is calculated. There is no force restraining the model

to drift.

4 Results

In this section, we briefly illustrate the post-processing pro-

cess and give a critical overview of the results for each set of

simulations. The end result for each set is the heave and pitch

RAOs of the platform. By RAO we mean the amplitude of heave

and pitch at the incident frequency divided by the incident ampli-

tude in steady-state oscillatory conditions. Since the calculations

by the URANS solve non-linear effects, the RAOs will depend

on the incident wave amplitude.

Once RAOs are calculated with frequency and time-domain

BEMs, they are examined for areas with large motions and can-

cellation effects, where viscous phenomena is likely to be signif-

icant. As commented before, viscous forces are probable to be

important when the platform is oscillating near its natural period.

Importance of cancellation effects is given by the wave pe-

riods at which it occurs (Tw = 15−17s) and the unconventional

geometry analyzed, which may not have a cancellation period

as it has been shown in experiments for other unconventional ge-

ometries [28]. They correspond to severe weather conditions that

can have return periods clearly inferior to 50 years in many po-

tential locations for offshore wind energy. BEM methods with

no viscous dissipations give a particular misleading picture of

this situation. They predict negligible heave motions. Additional

difficulties have been encountered when correcting the potential

codes near the cancellation period. Unphysical amounts of em-

pirical damping would be needed to obtain a good approximation

in the proximity of the cancellation period. Therefore, the class

of functions approximated by potential numerical methods are

not rich enough to fully characterize RAOs of the studied semi-

submersible platform geometry.

In these situations, nonlinear phenomena such as vortex

shedding, will affect the motions by modifying pressure loads on

the platform (Fig. 11b). For this reason, this type of situations are

simulated in the high-fidelity viscous code. The motions of the

platform are calculated for 11 different monochromatic waves

(Tab. 1) that discretize the region around the natural heave, pitch

and heave cancellation periods of the platform, obtained from the

frequency-domain BEM, time-domain BEM and analytical rela-

tions (Tab. 4 & Eq. 6). The first and last waves are simulated to

ensure that the same RAO is obtained for cases where the viscous

and non-linear phenomena are not significant and all codes used

should output the same result. Tab. 4 contains a brief summary

of the main dimensions and mass properties of the platform.

8 Copyright c© 2018 by ASME
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FIGURE 3: Wave probe in the undisturbed region, longitudinally

located at the platform’s center of gravity (without the platform

present) and transversally located at 4
5

of the width of the com-

putational domain. The wave period is 30s and wave amplitude

1.7m. The signal obtained is compared to the theoretical profile

of a 1st order Stokes wave. Discrepancies are due to the surface

capturing technique and mesh resolution across the free surface.

To account for this, we consider the wave amplitude obtained by

applying a Fast Fourier technique (see Fig. 9b) to the numerical

wave profile (blue line).

FIGURE 4: Representation of the boundary conditions using a

color code. Relative dimensions between the floating body and

the computational domain have been modified to allow for better

visualization. (here and in Fig. 5).

The data obtained from the time domain programs needs to

be post-processed in order to be able to compare to the results of

the frequency-domain BEM. These intermediate results are:

1. Heave time history: longitudinal displacement along the ver-

tical direction of the platform.

2. Pitch time history: rotation around the transversal direction

FIGURE 5: Representation of the mesh volume controls using a

color code.

Length (Lp) 63.5 m

Beam (Bp) 36.0 m

Depth (Dp) 44.0 m

Radius of the Columns (Rc) 4.0 m

Height of the pontoons (Hp) 6.0 m

Width of the pontoons (Bp) 8.0 m

Length of the pontoons (Lp) 37.0 m

Draft (Tp) 30.0 m

Displacement (∆) 1.071 ·107kg

Radius of gyration (rxx) 26.4 m

Radius of gyration (ryy) 26.4 m

Radius of gyration (rzz) 20.5 m

Vertical center of gravity z-coordinate -20.3 m

Heave natural period 19.45 s

Pitch natural period 19.00 s

TABLE 4: Principal dimensions and mass properties of the

platform. The natural periods are estimated by: Tii = 2π ·√

(Mii +Aii)/Cii.

of the platform.

3. Surface elevation time history (incident wave): distance of

the free surface to the z=0 plane at a point located in the

undisturbed region, longitudinally located at the platform’s

center of gravity and transversally located at 4
5

of the width

of the computational domain.

To calculate the RAO from the time series of the movement

and wave elevation a Fast Fourier Transform is done. Then it

is just a matter of obtaining the RAO from the following well-

known formula in Spectral Analysis:
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FIGURE 6: Example of the computational domain of the shortest wave (Tw = 18s, Aw = 1.249m). The mesh expands transversally, in

the y-direction, starting approximately at the lateral mid-length and in the x-direction creating a numerical beach 2 ·λw long. Further

mesh refinements are done near the platform, the results of these refinements can be seen in Fig. 7.

φxi(ω) = RAO2 ·φξ (ω) (10)

To ensure that the time series is long enough, the conver-

gence of the RAO is analyzed throughout the length of the time

history recorded (Fig. 9d). In Fig. 9 an example of the interme-

diate and final outputs of the time histories’ analysis process is

provided.

When the post-processing is completed, the results can be

compared in a plot, such as in Fig. 10. In this figure, it can be

seen that there is a very good agreement between the frequency-

domain BEM and the time-domain BEM. On the other hand, al-

though the short (Tw = 18s) and the long (Tw = 30s) wave of

the URANS simulation set perfectly match (results are within

2%) the predicted RAO by the potential codes, the latter largely

overpredict the motions, which take the form of a spike, as you

approach the natural period. The reason for this is that potential

codes can only consider potential flow radiation damping which

tends to diminish with the wavelength and, in the particular case

of the geometry simulated, tends to be very small near the heave

and pitch natural periods (Tab. 4). In Fig. 14, the heave and pitch

potential damping is represented as a function of the wave pe-

riod, showing how small the potential radiation damping is near

the heave and pitch natural periods. Consequently, when we sim-

ulate the platform in wave periods near this minimum, adding on

top the strong coupling between the two motions, the response

is greatly augmented. A possibility to mitigate this is to add a

certain quantity of viscous damping.

An example of the captured vortex shedding in the URANS

simulations is presented in Fig. 11b. In this figure, the field

vorticity magnitude can be visualized in an xz-plane parallel to

one of the horizontal legs. The consequence of vortex shedding

is important viscous pressure loads.

In the calculation of RAOs, monocromatic waves are used

in the time domain numerical methods. In practice, wave spec-

tra should be used to capture second difference frequency ef-

fects [3–5], which can have important effects on the resonance

responses in heave and pitch. The choice of using monochro-

10 Copyright c© 2018 by ASME



FIGURE 7: Second example of a mesh near the platform at a time instant during the simulation.

FIGURE 8: Example of a mesh near the platform at a time instant during the simulation. The overset domain is 1.5 ·Lp long, 1.5 ·Bp

wide and 1.8 ·Dp deep. The platform is centered within the overset domain.
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(a) Spectrum of heave motion H(t) in amplitudes.
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(b) Spectrum of surface elevation ξ (t) in amplitudes.
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(c) Heave time history.
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(d) RAO convergence with the increase of time simulated.

FIGURE 9: Example of the output of the analysis process of the motion time histories. The time traces correspond to the URANS motion

analysis of the Tw = 20s wave. The data plotted in Figs. 9a and 9b is used to obtain the RAO through Eq. 10. This is done as the time

simulated increases to check for convergence (Fig. 9d). The wave elevation spectra is taken to consider any mesh effects and small

errors in the numeric calculations, as explained in Fig. 3.

matic waves was made to have an easier direct comparison of

all three numerical methods, when all predicted responses can

be considered as linear. This is done at the expense of narrow-

ing the range of non-linear phenomena that time domain solvers

could capture.

In the last step of the analysis, a viscous correction has been

introduced in the frequency and time-domain BEMs. Empirical

corrections can range 3− 10% of the critical damping [43, 44].

In this study, the best fit, for both frequency and time-domain

BEMs, is given by 6.25% and 6.6% of the critical damping, in

heave and pitch respectively. With this correction, it can be said

that potential codes provide a very good motion prediction only

requiring URANS near the resonance period.

4.1 Control

In order to assess viscous drag forces we will use exper-

imental [46] and numerical [45] drag coefficients for a facing

square at small Keulegan-Carpenter numbers. Since the con-

sidered Reynolds numbers are relatively small in their studies,

viscous shear forces due to laminar flow are not negligible even

though they are small relative to pressure loads. However, using

empirical formula for shear stress by [47] with ambient harmon-

ically oscillating flow along a fixed plane surface with turbulent

boundary layer flow show that the shear stress can be neglected

in full scale relative to pressure drag. This means that an esti-

mate of the drag coefficient for a facing square at small Keulegan

Carpenter numbers and full-scale conditions will be based on ne-
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(a) Heave motion RAOs.
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FIGURE 10: Comparison of the RAOs obtained from the frequency-domain BEM, time-domain BEM, corrected frequency-domain

BEM, corrected time-domain BEM and URANS code. The RAOs presented are referred to the COG and a complete transformation

matrix composed of Euler angles is implemented in the time-domain BEM and URANS simulations. Results from the potential codes

above 2 and 4 respectively are discarded, because they are the result of a minimum in the potential radiation damping detailed in Fig. 14.

At first, viscous corrections have not been included in the time-domain or frequency-domain potential flow based predictions, afterward,

additional damping is introduced. It is commonly accepted that heave and pitch viscous damping of semi-submersible platforms ranges

from 3−10% of critical damping, staying around 5% for pitch [43, 44]. In this study, the best fit, for both frequency and time-domain

BEMs, is given by 6.25% and 6.6% of the critical damping, in heave and pitch respectively. So with this conservative correction, both

potential codes provide a very good prediction for all cases, only requiring URANS near the resonance and the cancellation period.

(a) Wave elevation. (b) Module of the vorticity field.

FIGURE 11: In Fig. 11a, the wave elevation is plotted and, in Fig. 11b, non-linear phenomena at platform’s natural period (Tw = 19s)

can be seen. In Fig. 11b, the color map represents the module of the vorticity field. As it can be observed in the image, the vorticity is

mainly generated by the horizontal legs of the offshore platform.
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Heave Decay Test

FIGURE 12: Evolution of the heave motions during the heave

decay test performed in with the URANS solver. Drag coefficient

estimated by comparison with experiments (CD = 3).

glecting the effect of the shear stress in the boundary layer flow.

Furthermore, we assume that the pressure drag are the same in

model and full scale due to the fact that the separation points are

the same in model and full scale. Berthelsen and Faltinsen [45]

predict that the grid-independent drag coefficient is 3.42 for a

facing square at β = 213 and Keulegan-Carpenter number KC=

1.5. Here β = B2/(νT ) is the ratio between Reynolds number

and KC-number with B and T as the width of the section and

oscillation period of the ambient flow, respectively. We deduct

the in-line drag coefficient associated with the frictional force in

phase with the ambient velocity and get CD = 2.92. The fact that

the width to height ratio 8/6 for the pontoons is higher than for

a square section is likely to cause a higher drag coefficient [6].

They used a single vortex method which suggests a CD-value of

3.10 for the rectangular cross-section of the pontoons at KC= 1.5.

However, the KC dependence of CD is low at small KC-numbers.

The fact that the drag coefficient is KC-dependent will be indi-

rectly accounted for by considering how reasonable uncertainties

in the estimated drag coefficient affect the heave amplitude. It is

difficult in a simple way to account for the intersections between

the pillars and the pontoons. One consideration is the number

of corners where the flow separates at a cross-section of a pon-

toon. If we consider the pillars at the ends of the pontoons, then

there are four corners until we are one pillar radius from the end.

Two separation corners imply as a first approximation that the

drag coefficient is half of the drag coefficient with four separa-

tion points. Furthermore, we must notice the effect of different

width-to-height ratios of the cross-sections at one pillar radius

5 10 15 20 25 30

Wave Period (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
A

O
 (

m
/m

)

RAO

RAO 1 DOF

RAO URANS

FIGURE 13: Comparison between RAO predictions performed

with the decoupled heave differential equation (Eq. 12) and the

URANS solver. Significant differences can be seen by compar-

ison with URANS. Probably due to non-linear phenomena such

as vortex-shedding and perturbation to the velocity and pressure

fields due to platform motions

from the end of the pontoons. This has a small effect according

to [6]. Then comes 3D effects which is pronounced at the ends.

However, since the KC number is small and the shed vorticity

hence stays close to the pontoons, the 3D effect is expected to be

smaller than it for instance is for cross-flow past a ship in current

as discussed in [2].

We follow a rough approach to account for 3D end effects

of pontoons and introduce the projected area Ap = 935.1m2 of

the pontoons as seen from below. At the intersection between

the central pillar and the pontoons, we use the same drag coeffi-

cient as estimated for the rectangular cross-sections. At the other

intersections associated with a projected area Apl = 75.40m2 we

reduce the drag coefficients by using an average value that is half

of the value for the rectangular cross-sections. That means the

drag coefficient for the platform associated with vertical motions

is estimated as

CD =
0.5 ·3.1 ·Apl +3.1

(
Ap −Apl

)

Ap

= 2.99 (11)

Viscous effects matter at resonance and the potential-flow cancel-

lation period. In order to model both effects, we will express the

viscous loads in the terms of the relative velocity between heave

and the vertical incident wave velocity at the pontoon level. The

14 Copyright c© 2018 by ASME



6

0 10 20 30 40 50 60 70

Wave Period (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

B
3
3
 (

N
/(

m
/s

))
 &

 0
.0

0
1
·B

5
5
 (

N
.m

/(
ra

d
/s

))

105

Natural Periods

B
33

(T
w

)

0.001·B
55

(T
w

)

FIGURE 14: B33 and B55 radiation damping coefficients obtained

from the frequency-domain BEM. A minimum near the natural

period of oscillation generates unrealistically high motions (Fig.

10).

equation of heave motion is therefore expressed as

(M+A33)
d2η3

dt2
+0.5ρCDAp

︸ ︷︷ ︸

BV

(
dη3

dt
−w

)∣
∣
∣
∣

dη3

dt
−w

∣
∣
∣
∣
+ρgAW

︸ ︷︷ ︸

C33

η3 =F3(t)

(12)

Where

F3(t) = ρgξasin(ωt)ekzm

(

AW ek(zt−zm)− k

(

Vp +
A33

ρ

))

(13)

w = ωξaekzm cos(ωt) (14)

Eq. 12 is integrated with initial values and the heave amplitude

in steady state oscillatory conditions is found for different wave

periods.

Additionally, the estimated CD value from experimental re-

sults is compared against a CD value calculated from a decay test.

We consider the equation of motion ẍ+ p1ẋ+ p2|ẋ|ẋ+ p3x = 0.

The decay tests are performed with the URANS solver. By ana-

lyzing Fig. 12 we can fit Eq. 15 with least mean squares.

2

Tm
log

(
Xn−1

Xn+1

)

= p1 +
16Xn

Tm
p2 (15)

Where Tm is the mean oscillation period. Between Xn and

Xn+1 there is one half period Tm/2 for any n. The coefficients p1

and p2 are the linear and quadratic damping terms respectively.

Using the area of the platform as seen from below, we obtain

CD = 2.83 which confirms the previous estimations that predict

CD ∼ 3.00.

To evaluate the performance of this simplified model, the

heave motion predictions are plotted alongside the URANS pre-

dictions in Fig. 13. This comparison has allowed to provide a

rough measure of flow uncertainty which could prevent us from

extrapolating results of available experiments. This is especially

useful for analyzing the flow at heave cancellation and reso-

nance periods, due to linear waves. Keulegan–Carpenter num-

ber in these conditions is 1 inducing high variability in the CD

of the platform. While studying the difference in motion predic-

tions other non-linear phenomena has been observed, although

its overall influence in the platform motion has not been rigor-

ously quantified. The first observed non-linear phenomena are

vortexes that develop at the edges of the pontoons. These vor-

texes and the movement of the platform are seen to perturb the

wave velocity and pressure fields, potentially making Eq. 13 in-

accurate and requiring an increment of the drag coefficient to

account for a pressure correction. Average pressure has been

recorded on the top and bottom faces of the pontoons and com-

pared to those predicted by potential theory. The recorded pres-

sure is significantly smaller (probably due to vortex shedding)

and similar between the top and bottom faces at the heave can-

cellation period. This has eliminated the cancellation of forces

because of the larger bottom pontoon area. Similarly, the pre-

dicted excitation forces at the heave resonance period are smaller

in the URANS model than in the simplified non-linear potential

method.

5 Conclusions

This paper highlights the major characteristics of three dif-

ferent computational techniques and the modeling assumptions

at the basis of their formulations. In the performed motion anal-

ysis, we prove the feasibility for designers of combining the

information from three different numerical models. The pa-

per presents an interesting comparison of the existing numeri-

cal methods used for predicting motions of floating objects in

waves. Nevertheless, significant emphasis has been placed in the

description of the viscous flow solution, obtained using complex

multi-phase URANS solver. The paper correctly evidences the

limitation of potential flow models in predicting offshore plat-

form motions for waves having periods close to the natural fre-

quency of the system. Corrections coefficients can be included in

potential flow predictions, but their entity can just be estimated

according, for instance, to previous experimental measurements.

Here, we used URANS solver as a virtual replica of the system

with the final aim to calibrate the empirical corrections in or-

der to properly predict motions at resonance. We demonstrate

15 Copyright c© 2018 by ASME



FIGURE 15: Vortex sheets being shedded at the platform edges. Flow confinement between the columns introduces perturbation to the

vortex sheet development.

that the computational burden of the high-fidelity fully viscous

model with non-linear free surface is justified only when incom-

ing waves induce motions at the resonance frequency, being 175

times more expensive than the time-domain BEM and 700,000

times more expensive than the frequency-domain BEM. For this

particular operating condition, both frequency and time domain

models largely overestimate the response of the system, lead-

ing to large discrepancies if not corrected with empirical terms.

However, where there are relatively small motions (RAO≤ 1), all

codes predict the same motions (Fig. 10) only requiring URANS

near the resonance and cancellation periods.

The large computational burden largely limits the applica-

tion of URANS simulations in very important design processes

such as optimization. High-fidelity URANS predictions have

been recently included in the construction of stochastic surrogate

models used together with Bayesian optimization techniques. In

particular, the use of Gaussian processes have allowed to con-

struct accurate response surfaces by efficiently blending data-

sets coming from different fidelity sources (e.g. potential flow

and URANS predictions). These response surfaces (surrogate

models) are capable of describing quantities of interest such as

motions in high-dimensional spaces (for instance operating con-

ditions or designs). Some good examples of this are [38] where

the fidelity of a URANS model was tuned by changing the mesh

resolution and [39] where potential flow and RANSE calm water

predictions were used to optimize the shape of a SWATH vessel.

This proves that it is reasonable to think that such optimization

techniques can make URANS simulations a practical design and

optimization tool.
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