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Abstract

Transverse linearization-based approaches have become among the most prominent methods for orbitally
stabilizing feedback design in regards to (periodic) motions of underactuated mechanical systems. Yet, in an
n-dimensional state-space, this requires knowledge of a set of (n−1) independent transverse coordinates, which
can be nontrivial to find and whose definitions might vary for different motions (trajectories). In this paper,
we consider instead a generic set of excessive transverse coordinates which are defined in terms of a particular
parameterization of the motion and a projection operator recovering the “position” along the orbit. We present
a constructive procedure for obtaining the corresponding transverse linearization, as well as state a sufficient
condition for the existence of a feedback controller rendering the desired trajectory (locally) asymptotically
orbitally stable. The presented approach is applied to stabilizing oscillations of the underactuated cart-pendulum
system about its unstable upright position, in which a novel motion planning approach based on virtual constraints
is utilized for trajectory generation.
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I. INTRODUCTION

We consider the task of generating feedback controllers that orbitally stabilize periodic trajectories
of underactuated Euler-Lagrange systems, defined by

M(q)q̈ + C(q, q̇)q̇ + F(q)q̇ + G(q) = Bu. (1)

Here q ∈ Rnq and q̇ = d
dt

q are the generalized coordinates and velocities; u ∈ Rnu is a vector
of nu(< nq) control inputs; M : Rnq → Rnq×nq is the symmetric, positive definite inertia matrix;
C : Rnq × Rnq → Rnq×nq is the matrix of Coriolis and centrifugal terms that satisfies C(q, X)Y =
C(q, Y )X for any X, Y ∈ Rnq ; F : Rnq → Rnq×nq is a continuously differentiable matrix function of
damping and friction terms; G : Rnq → Rnq is the gradient of the system’s potential energy; while
B ∈ Rnq×nu is a constant matrix of full rank, i.e. rank B = min(nq, nu).

The general problem of stabilizing a predetermined motion (trajectory) of such systems can be highly
challenging due to both the nonlinear dynamics and the underactuation. For instance, this prohibits the
use of simplifying strategies such feedback linearization, while alternative techniques such as partial
feedback linearization [1] will result in some remaining internal dynamics, which can be (made) unstable
(non-minimum phase), and consequently must be considered in any control design.

Linearization of the dynamics along a nontrivial solution is also of limited use for the purpose of
control design. Indeed, unlike an equilibrium point whose (in-)stability can be determined simply from
the stability of the corresponding linearized (first approximation) system, the linear variational system
of an autonomous (closed-loop) system evaluated along a periodic solution can never be asymptotically
stable, even though the periodic orbit is [2]. This well-known fact can for instance be derived from the
Andronov-Vitt theorem, which states that the linear periodic system corresponding to the linearization
along a periodic trajectory always will have a non-vanishing, zero-characteristic exponent solution [3].

For such solutions, it can therefore be beneficial to instead consider the stability of the corresponding
orbit (the set of all states along the solution). This is the notion of orbital (Poincaré) stability [3], [4],
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in which asymptotic orbital stability simply means asymptotic convergence to the orbit itself, and not
to a specific point (moving) along it.

It is well known that a periodic orbit is exponentially stable in the orbital sense if and only if the
linearization of the dynamics transverse to the orbit is exponentially stable [5]. Indeed, this is true for
any orbit if the corresponding linearized system is regular [3], [6]. Thus, if one can find (2nq − 1)
independent transverse coordinates, which vanish on the nominal orbit, and then exponentially stabilize
the origin of the corresponding linearized transverse dynamics (the first approximation system), then
one simultaneously asymptotically stabilizes the trajectory in the orbital sense.

Finding a set of (2nq − 1) independent transverse coordinates for a particular motion can be
nontrivial though. That is, finding a set of coordinates x⊥ ∈ R2nq−1 together with a scalar variable, s,
parameterizing the trajectory, such that there exists a (local) diffeomorphism (q, q̇) 7→ (s,x⊥). However,
as we will see, there exists a generic choice of 2nq excessive transverse coordinates. Since these excessive
coordinates, by definition, are dependent on a minimal set of coordinates, the stability of their origin
implies the stability of the origin of the minimal coordinates, and consequently the orbital stability of
the desired trajectory.

The same set of excessive coordinates we consider in this paper, together with the linearization
of their dynamics, has previously been considered in [7] for stabilizing periodic motions of a fully-
actuated robot manipulator. Moreover, they were utilized in [8] for the stabilization of a hybrid walking
cycle of a three-link biped robot with two degrees of underactuation, where a particular choice of the
parameterizing variable allowed for one coordinate to be trivially omitted in order to obtain a minimal
set of transverse coordinates.

In this paper, we build upon and extend the aforementioned works by presenting several original
contributions which provide new insights into excessive transverse coordinates and the linearization of
their dynamics.

The main contributions of the present paper are:

• Providing analytical expressions for the transverse linearization of the excessive transverse coordi-
nates without the need to numerically solve a matrix equation as was required in [7];

• Allowing for the projection operator, which recovers the parameterizing variable of the nominal
orbit, to be implicitly defined, and which can depend on all of the system’s states, not only its
configuration as in [7];

• Illustrating that transverse coordinates need only to be locally transverse to the flow of the nominal
orbit rather than restricted to being locally orthogonal as in [5], [9];

• Providing an explicit procedure for obtaining an asymptotically orbitally stabilizing feedback
controller.

It is also worth noting that the proposed method is not sensitive to singularities in the reduced
dynamics (see e.g. [10]). Thus it can be utilized for the stabilization of a richer set of trajectories than
the method in [11], [12], such as trajectories whose generating equations have singularities [13] (see also
Sec. VI) and even certain non-periodic trajectories (assuming the linearization is regular). The method
is also easily applicable to systems of any degree of underactuation, as well fully- and even redundantly
actuated systems; and has the added benefit that any change in actuation will require minor changes in
the presented procedure.

A brief outline of the paper follows. We begin by defining a set of excessive transverse coordinates for
a given trajectory in Sec. II and then derive the linearization of their dynamics in Sec. III. We then state
the main result of this paper in Sec. IV on the form of Theorem 1, which gives sufficient conditions
for attaining an orbitally stabilizing controller. In Sec. V we provide conditions that allows for the
construction of projection operators. While lastly, in Sec. VI, we illustrate the proposed procedure by
stabilizing upright oscillations of the underactuated cart-pendulum system.



II. EXCESSIVE TRANSVERSE COORDINATES

Let x = [qT, q̇T]T ∈ R2nq denote the state vector of (1). Suppose a non-trivial (non-vanishing)
T -periodic trajectory

x∗(t,x0) = x∗(t+ T,x0), x∗(0,x0) = x0, T > 0,

is known, as well as the corresponding nominal control input u∗(t,x0). Further suppose that the
corresponding orbit (the set of all states along the trajectory), denoted η∗, admits a reparametrization in
terms of a (strictly) monotonically increasing scalar variable s ∈ S. We will refer to the parameterizing
variable, s, as the the motion generator (MG) of the reparameterized trajectory, defined by

xs(s) =

[
q∗(s)
q̇∗(s)

]
=

[
Φ(s)

Φ′(s)ρ(s)

]
. (2)

Here Φ′(s) = d
ds

Φ(s) with Φ : S → Rnq at least thrice continuously differentiable, while ρ : S → R
is a C2-function that recovers the nominal velocity of the MG along the orbit, i.e. ṡ∗(t) = ρ(s(t)) > 0,
and whose existence is guaranteed by the monotonicity of s and the existence of the orbit η∗.

Note that we will use the subscript-notation “s” throughout this paper to denote that a function is
evaluated along the trajectory parameterized by the MG, e.g. hs(s) := h(xs(s)) for any h : R2nq → H
and an arbitrary space H . Moreover, we use h′s(s) = dhs

ds
(s) for any smooth function hs : S → H .

Suppose that within some nonzero tubular neighbourhood X ⊂ R2nq of the orbit η∗, the MG, s, can
be found from a projection of the system states upon the orbit by an operator

P : R2nq → S, x 7→ P (x), ∀x ∈ X , (3)

which is twice continuously differentiable in X and satisfies s = P (xs(s)) for all s ∈ S. We will denote
by DP (·) = [∂P

∂q
(·), ∂P

∂q̇
(·)] the gradient of the mapping P (·) and by DDP (·) = ∂2P

∂x2 (·) its 2nq × 2nq
symmetric Hessian matrix.

The idea behind this projection operator is simply that it allows us to project the current state, at least
within some tubular neighbourhood, down upon the nominal orbit to recover the “position” along it.
This then allows us to define some measure of the distance to this orbit, which, unlike regular reference
tracking, will only depend on the current state of the system and not on some time-varying reference,
thus giving rise to a completely state-dependent feedback and consequently an autonomous closed-loop
system.

More specifically, consider
x⊥ := x− xs(s), (4)

which for a particular mapping P (·) are well defined for all x ∈ X . Differentiating (4) with respect to
time leads to

ẋ⊥ =
(
I2nq − x′s(s)DP (x)

)
ẋ =: Ω(x)ẋ, (5)

where Im is the m×m identity matrix. It follows that sufficiently close to the orbit, a small variation
in the states, δx, relates to a small variation of the coordinates (4) through

δx⊥ = Ωs(s)δx. (6)

Here the (Jacobian) matrix function Ωs(s) is of particular interest. We therefore state some of its key
properties next.

Lemma 1: Let P (·) be defined as in (3) and the curve xs : S → η∗ by (2). Then for all s ∈ S , the
matrix function

Ωs(s) := I2nq − x′s(s)DPs(s) (7)

is a projection matrix, that is Ω2
s(s) = Ωs(s), and its rank is always (2nq − 1). Moreover, DPs(s) and

x′s(s) are its left- and right annihilators, respectively.



All the properties of Ωs(·) in the above statement are just straightforward consequences of the relation
s = P (xs(s)), or equivalently ρ(s) = DPs(s)x

′
s(s)ρ(s), and hence

DPs(s)x
′
s(s) ≡ 1, ∀s ∈ S. (8)

Here x′s(s) = [Φ′(s)T,Λ(s)T]T with Λ(·) defined as

Λ(s) := Φ′(s)ρ′(s) + Φ′′(s)ρ(s). (9)

Note, however, that (8) does not necessarily imply that DPs(s) = x′s(s)
T/‖x′s(s)‖2 in general. Rather,

let θ(s) ∈ (−π
2
, π
2
) denote the angle between DPs(s) and x′s(s)

T in their common plane. Then there
exists a C1-vector function n⊥ : S → R2nq of unit length within the span of the kernel of x′s(s)

T, such
that from (8) and the definition of the dot product, we have that

DPs(s) =
x′s(s)

T

‖x′s(s)‖2
+ tan(θ(s))

n⊥(s)T

‖x′s(s)‖
. (10)

This simple observation is important, as by Lemma 1 and (6) we can infer that Ωs(s)δx⊥ = δx⊥,
and hence

DPs(s)δx⊥ = DPs(s)Ωs(s)δx⊥ ≡ 0

must hold for all s ∈ S. This, together with (10), thus allows us to conclude that, sufficiently close to the
orbit, the coordinates x⊥ are orthogonal to DPs(s) and thus transverse to the flow of the orbit; however,
they are not necessarily strictly orthogonal to it. Consequently, they constitute a valid set of transverse
coordinates, but as the matrix function Ωs(s) is not invertible (its rank is always (2nq−1)), they are an
excessive set of transverse coordinates. Nevertheless, as is implied by the following statement (see also
[7, Theorem 3]), if the origin of these coordinates is asymptotically stable, then so is also the nominal
periodic orbit.

Lemma 2: Let y⊥ : S × R2nq → R2nq−1 be a valid minimal set of transverse coordinates together
with a projection operator P (·) as defined in (3). That is, x 7→ (s,y⊥) is a local diffeomorphism and
y⊥ vanishes on η∗. Then the origin of y⊥ is asymptotically stable if, and only if, the origin of the
excessive coordinates x⊥ is asymptotically stable.

The proof of Lemma 2 is stated in Appendix A.
The value of these excessive transverse coordinates should therefore be evident: given a known

solution to (1), they are a valid set of transverse coordinates for any parameterization of the form
(2) and any projection operator (3). They also allow one to easily change between different sets of
coordinates by simply changing either (or both) the parameterization or the projection operator.

Thus, with the aim of asymptotically stabilizing the origin of these coordinates, and consequently
stabilizing the orbit, we will show next how one can derive the linearization (first approximation) of
their dynamics along the target motion.

III. DERIVING THE TRANSVERSE LINEARIZATION

Let B† ∈ Rnu×nq denote a left-inverse of B, that is B†B = Inu , and define the following matrix
function:

U(q, q̇, s) := M(q)Λ(s)ρ(s) + C(q, q̇)q̇ + F(q)q̇ + G(q).

It is not difficult to see that B†U(q,Φ′(s)ρ(s), s) corresponds to the nominal control input u∗ when on
the nominal orbit. Thus, consider the feedback transformation

u = B†Û(x, s) + v (11)

where Û : R2nq × S → Rnq is a smooth function satisfying Û(xs(s), s) ≡ U(Φ(s),Φ′(s)ρ(s), s) for
all s ∈ S, while v ∈ Rnu is some stabilizing control input to be defined.1

1Some natural choices for the function Û are U(Φ(s),Φ′(s)ρ(s), s), U(q,Φ′(s)ρ(s), s) or simply U(q, q̇, s).



Proposition 1 (Excessive transverse linearization): With the control law (11), the first approxima-
tion (linearization) of the dynamics of the transverse coordinates (4) along the trajectory (2) can be
written as the constrained (differential-algebraic) linear periodic system

d

dt
δx⊥ = A⊥(s)δx⊥ + B⊥(s)v, DPs(s)δx⊥ = 0, (12)

where

A⊥(s) := Ωs(s)A(s)− x′s(s)x
′
s
T
(s)DDPs(s)ρ(s),

A(s) :=

[
0nq Inq

M(q)−1 ∂Ũ
∂q

(x, s) M(q)−1 ∂Ũ
∂q̇

(x, s)

]∣∣∣∣
x=xs(s)

,

B⊥(s) := Ωs(s)

[
0nq×nu

M(q)−1B

]∣∣∣∣
x=xs(s)

,

and Ũ(x, s) := BB†Û(x, s)−U(q, q̇, s).
The proof of Proposition 1 is found in Appendix B.

Remark 1: The matrix function A⊥(s) in (12) is not unique. That is to say, as δx⊥ = Ωs(s)δx⊥
and DPs(s)δx⊥ ≡ 0, the matrix function A⊥(s)Ωs(s) + X(s)DPs(s) would also be a valid choice for
any smooth (bounded) vector function X : S → R2nq .

Remark 2: For computing A(·), it can be useful to note that, by defining z⊥ := q̇−Φ′(s)ρ(s), one
has

U(q, q̇, s) =U(q,Φ′(s)ρ(s), s) + C(q, z⊥)z⊥ + 2C(q,Φ′(s)ρ(s))z⊥ + F(q)z⊥

due to C(q, X)Y = C(q, Y )X for any X, Y ∈ Rnq .
The importance of Proposition 1 is that, by utilizing the structure of the mechanical system (1), it

provides explicit expressions for the linearized transverse dynamics of the excessive coordinates (4)
which are valid for any trajectory of the form (2), any feedforward-like input Û, and any projection
operator (3). The statement is of course also true for fully actuated systems (nu ≡ nq), in which, as then
BB† = Inq , one has the option of using the (partial-) feedback linearizing-like controller Û = U(q, q̇, s),
thus resulting in Ũ ≡ 0.

While it is known [7] that the system (12) can be successfully stabilized in the fully actuated case
by a linear feedback of the form v = Kδx⊥ for some constant K ∈ Rnq×2nq , this will in general not
be possible for underactuated systems. We therefore address this next.

IV. STABILIZATION OF THE TRANSVERSE DYNAMICS

Since we consider periodic orbits, for which it is well known that the (asymptotic) stability of the
first approximation implies (asymptotic) stability of the nonlinear system (see e.g. [3]), the following
statement naturally holds.

Lemma 3: Suppose that there exists a continuously differentiable matrix function K : S → Rnu×2nq

such v = K(s)δx⊥ asymptotically stabilizes the origin of (12). Then the control law (11) with v =
K(P (x))x⊥ renders the nominal orbit η∗ asymptotically stable, and consequently the desired solution
x∗(t,x0) asymptotically orbitally stable.

The question then arises as to how one can find such a matrix function K(·). If, for instance, the
pair (A⊥(·),B⊥(·)) were stabilizable, then it is known (see e.g. [14]) that an exponentially stabilizing
controller would be given by

v = −Γ−1BT
⊥(s)R(s)x⊥, (13)

where the matrix function R(·) is the symmetric, positive semi-definite solution of the differential Riccati
equation

Ṙ(s) + AT
⊥(s)R(s) + R(s)A⊥(s) + Q + κR(s)−R(s)B⊥(s)Γ−1BT

⊥(s)R(s) = 0,



for some Γ = ΓT � 0, Q = QT � 0 and κ ≥ 0.
Unfortunately, however, it can be shown [15, Proposition 9] (see also Sec. 4.2 in [2]) that the pair

(A⊥(·),B⊥(·)) can never be stabilizable even though the origin of the system (12) can be asymptotically
(exponentially) stabilized. More precisely, the system ẇ = A⊥(s)w + B⊥(s)v, corresponding to (12)
without the transversality condition DPs(s)w = 0, always has a non-vanishing solution in the direction
of x′s(s), regardless of the control input v.

Although this implies that no solution R(·) to the above (periodic) differential Riccati equation can
exist, we can instead try to find a solution of a modified Riccati equation, which, if found, allows for
the generation of a stabilizing controller. This leads us to the main result of this paper.

Theorem 1: Suppose there exists a symmetric, positive semi-definite solution R⊥(·) to the following
modified periodic differential Riccati equation

ΩT
s (s)

[
R′⊥(s)ρ(s) + AT

⊥(s)R⊥(s) + R⊥(s)A⊥(s) + Q + κR⊥(s)

−R⊥(s)B⊥(s)Γ−1BT
⊥(s)R⊥(s)

]
Ωs(s) = 0 (14)

with R′⊥(s) = d
ds

R⊥(s) and for some Γ = ΓT � 0, Q = QT � 0 and κ ≥ 0. Then taking

v = −Γ−1BT
⊥(s)R⊥(s)x⊥

in (11) renders the periodic orbit of the mechanical system (1) corresponding to (2) locally asymptotically
stable.
The proof of Theorem 1 is given in Appendix C.

Naturally, a solution to the projected periodic differential Riccati equation (14) can only exist if the pair
(A⊥(s),B⊥(s)) is stabilizable on the set of solutions satisfying the condition DPs(s)δx⊥ ≡ 0. However,
the question of the existence of solutions of this equation is, to our best knowledge, unknown. Although
should a solution exist, it is likely not to be unique as the example considered in [15] demonstrates.
Nevertheless, as we will see in the example of Sec. VI, we have been able to find accurate approximate
solutions using numerical methods.

V. ON OBTAINING A PROJECTION OPERATOR

So far, we have assumed that a projection operator of the form s = P (x), with the mapping P (·)
as defined in (3), is known and given as an explicit equation which is well defined within some
neighbourhood of the orbit. Yet, this might not necessarily always be the case. That is to say, if one has
found a feasible trajectory of the system (1) parameterized on the form (2), the corresponding motion
generator might only be known as a function of time, i.e. s = s(t); indeed, s = t is of course the
most commonly used parameterization of trajectories. Therefore, we will briefly show next how one
can generate projection operators given only knowledge of the nominal trajectory and the time evolution
of its parameterizing variable (MG).

In this regard, the following statement follows directly from the implicit function theorem.
Proposition 2: Assume that on a given subarc of the trajectory (2), denoted Sk ⊆ S, there exists a

smooth function hk : R2nq × Sk → R satisfying

hk(xs(s), s) ≡ 0 and
∂hk
∂s

(xs(s), s) 6= 0, ∀s ∈ Sk. (15)

Then, in some nonzero, tubular neighbourhood Xk ⊂ R2nq of the orbit η∗, there exists a function
Pk : Xk → Sk such that for all x ∈ Xk, we have hk(x, Pk(x)) = 0 as well as

DPk(x) = −
(
∂hk
∂s

(x, Pk(x))

)−1
∂hk
∂x

(x, Pk(x)).
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Fig. 1. Schematic of the cart-pendulum system, which consists of an unactuated pendulum attached to an actuated cart driven along the
horizontal by an external force u.

It follows that if a function hk(·) satisfying the conditions of Proposition 2 for x(t) ∈ Xk is found,
then one can take

s = Pk(x(t))

as the projection of the states at time t onto the Sk subarc of the orbit (2). Such a function h(·) can
often be found satisfying (15) on the whole trajectory. Indeed, s = arg mins∈S ‖x(t) − xs(s)‖2 is a
generic choice for any trajectory of the form (2). This choice, which has been considered several times
before in relation to stability analysis of autonomous dynamical systems (see e.g. [3], [16], [17], [5]),
results in the condition x′s(s)

Tx⊥ ≡ 0, and hence

DP (x) =
x′s(s)

T

‖x′s(s)‖2 − x′′s(s)x⊥
.

Consequently, the projection (3) can be found numerically by, for instance, a few iterations of Newton’s
method.

VI. EXAMPLE: UPRIGHT OSCILLATIONS OF THE CART-PENDULUM SYSTEM

We will now illustrate the procedure outlined in Sec. III-IV by stabilizing oscillations around the
unstable upright equilibrium of the cart-pendulum system. To keep the derivation short, we consider
unit masses, and consider the pendulum bob to be a point mass, while its rod is considered to be
massless and of unit length. With the generalized coordinates q = [x, θ]T as defined according to Fig. 1,
the equations of motion of the system are

2ẍ+ cos(θ)θ̈ − sin(θ)θ̇2 = u, (16a)

θ̈ + cos(θ)ẍ− g sin(θ) = 0, (16b)

where g = 9.81 m s−2 is the gravitational acceleration.
This task has previously been considered in [11] utilizing the virtual constraints approach, where a

feasible trajectory of the nonlinear system (16) was generated in the following way. Under the assumption
that along a nominal trajectory of the system a set of relations of the form (x∗, θ∗)

T = Φ(s) =
[φ1(s), φ2(s)]

T are kept invariant, one can write (16b) as

(φ′2 + φ′1 cos(φ2))︸ ︷︷ ︸
α(s)

s̈+ (φ′′2 + φ′′1 cos(φ2))︸ ︷︷ ︸
β(s)

ṡ2−g sin(φ2)︸ ︷︷ ︸
γ(s)

= 0. (17)

This constrains the time-evolution of the motion generator, s, for the particular choice of Φ(s) and its
initial velocity ṡ0 = ṡ(0). Moreover, the nominal velocity ρ(s) = ṡ∗ can be found as (17) is integrable
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Fig. 2. Solutions of (18) with the parameterization (19). The red curve represents the unique (positive) solution over the interval [0, 2π)
for the case of a2 = 0.5.

[11]; indeed, the equality

1

2
exp

{∫ s

s0

2δ(σ)

α(σ)
dσ

}
α2(s)ρ2(s)− 1

2
α2(s0)ρ

2(s0) +

∫ s

s0

exp
{∫ τ

s0

2δ(σ)

α(σ)
dσ

}
α(τ)γ(τ)dτ ≡ 0 (18)

must hold, where δ(s) := β(s) − d
ds
α(s). Consequently, the nominal control input u∗ = u∗(s) can be

found from (16a).
In [11], the holonomic relations Φ(θ) = [−1.5 sin(θ), θ]T were utilized, i.e. the motion generator is

simply s = θ, which results in a center at the equilibrium θ = θ̇ = 0.
While s = θ is clearly a convenient choice in this case, it is not consistent with our parameterization

(2) as we require ṡ∗ > 0. Thus, with s ∈ [0, 2π) and ṡ∗ = ρ(s) > 0, let us instead consider

Φ(s) =
[
− 1.5 sin

(
a2 cos(s)

)
, a2 cos(s)

]T
, (19)

which, as we will see, is not holonomic as the projection P (·) will depend on (some of) the generalized
velocities. Hence, we can pick a2 to get the appropriate amplitude of the oscillations of the pendulum,
compared to [11] in which the amplitude was determined by the initial conditions (θ0, θ̇0). Furthermore,
while the parameterization in [11] results in a family of periodic solutions around the equilibrium, there
exists a unique function ρ(s) for each choice of a2 in the parameterization (19). For example, the unique
solution for the case of a2 = 0.5 is the red curve highlighted in Fig. 2.

It is here worth to note that, even though α(ss) ≡ 0 for ss ∈ {0, π, 2π}, i.e. ss are singular points2

of the equation (17), the solution ρ(s) of (18) is well defined over the interval [0, 2π) if we take ρ(s0)
satisfying β(ss)ρ

2(ss) + γ(ss) = 0. Therefore, unlike most existing methods (see, e.g. [11]) which
require α(s) 6= 0 for all s ∈ S, the existence of such singularities is irrelevant for our method.

Now, with the parameterization (19), it is clear that we get θ̇∗(s) = φ′2(s)ρ(s) = −a2 sin(s)ρ(s).
Hence we can find s as the root of the implicit equation

h(x, s) = s− arctan2
(
θ̇/(−θρ(s))

)
= 0,

enabling us to use the method outlined in Section V. Here arctan2(·) denotes the four-quadrant arctangent
function.

In order to demonstrate the proposed control scheme, we found that taking a2 = 0.1129 resulted in
a periodic orbit very close to the one considered in [11]. Figure 3 shows the results from simulating
the system with the initial conditions (x0, θ0, ẋ0, θ̇0) = (0.1, 0.4,−0.1,−0.2) and with white noise
added to the measurements. The system is seen to converge to the orbit after approximately 13 s. Here

2Note here that the type of (simple) singularities presented here are just a product of the choice of parameterization and not due to the
non-uniqueness of (phase-space) solutions as in [13].



a feedback LQR-controller of the form (13) was used, which was generated by solving (14) with
Q = I4, Γ = κ = 0.1. This was achieved using the semi-definite programming method of [18] with
a trigonometric polynomial of order 40 and utilizing the YALMIP toolbox [19] and the SDPT3 solver
[20]. The resulting solution satisfied (14) within a maximum error norm of less than 2 × 10−4 for all
s ∈ [0, 2π).

VII. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have introduced a generic set of excessive transverse coordinates for the purpose of
asymptotically orbitally stabilizing periodic trajectories of underactuated Euler-Lagrange systems. We
have provided analytical expressions for the corresponding transverse linearization of these coordinates,
which are valid regardless of the choice of parameterization of the trajectory, of the choice of the
feedforward-like control input, as well as regardless of the choice of projection operator. In addition,
we have derived a sufficient condition for the existence of a stabilizing controller for this constrained
linear system, allowing for the construction of a feedback controller rendering the desired periodic
motion asymptotically (exponentially) stable in the orbital sense. The proposed scheme was applied
to the task of stabilizing oscillations of the cart-pendulum system around its unstable upright position
and was successfully tested in simulation. This example also illustrated that the proposed methodology
can, unlike most other methods, be used to stabilize trajectories for which the reduced dynamics have
singular points. Experimental validation of the proposed scheme is currently being pursued.

APPENDIX
APPENDIX A. PROOF OF LEMMA 2

It here suffices to show that the asymptotic stability of the variation δx⊥ is equivalent to that of δy⊥.
To this end, we note that by the hypothesis that the mapping (s,y⊥) 7→ x is a diffeomorphism in a
neighbourhood of η∗, it follows that

dy⊥
dx

(s,xs(s)) =
∂y⊥
∂x

(s,xs(s)) +
∂y⊥
∂s

(s,xs(s))DPs(s)

has full (row) rank for all s ∈ S . But as y⊥(s,xs(s)) ≡ 0, we have dy⊥
dx

(s,xs(s))x
′
s(s) ≡ 0, such that

by (8) and by defining Πs(s) := ∂y⊥
∂x

(s,xs(s)), we obtain the relation

Πs(s)x
′
s(s) = −∂y⊥

∂s
(s,xs(s)).

This further implies that

δy⊥ =
dy⊥
dx

(s,xs(s))δx = Πs(s)Ωs(s)δx,

such that from (6), i.e. δx⊥ = Ωs(s)δx, we obtain

δy⊥ = Πs(s)δx⊥. (20)

Therefore, from Lemma 1 and the fact that Πs(s)Ωs(s) is of full rank (2nq−1), it follows from (20)
that ‖δy⊥‖ → 0 as t → ∞ only if ‖δx⊥‖ → 0. Thus it just remains to show that the converse is true
as well, namely that ‖δx⊥‖ → 0 as t→∞ only if ‖δy⊥‖ → 0.

Take p⊥ : S → R2nq×(2nq−1) to be some differentiable basis of the the kernel of DPs(s). As then
p⊥(s) = Ωs(s)p⊥(s) and rank [Πs(s)Ωs(s)] = 2nq − 1, it follows that Πs(s)p⊥(s) is invertible for all
s ∈ S. Hence [

DPs(s)
Πs(s)Ωs(s)

] [
x′s(s) p⊥(s) (Πs(s)p⊥(s))−1

]
= I2nq−1,

which implies that
δx = p⊥(s) (Πs(s)p⊥(s))−1 δy⊥ + x′s(s)δs.
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Fig. 3. Results from simulating the cart-pendulum system with perturbed initial conditions and noisy measurements.



Left-multiplying the above equation by Ωs(s), we obtain

δx⊥ = p⊥(s) (Πs(s)p⊥(s))−1 δy⊥.

It follows that ‖δx⊥‖ → 0 only if ‖δy⊥‖ → 0.

APPENDIX B. PROOF OF PROPOSITION 1
Let z⊥ := q̇ −Φ′(s)ρ(s) and note that the dynamics of the system (1) then can be rewritten in the

form
ẋ = x′s(s)ρ(s) +

[
z⊥

−M(q)−1U(q, q̇, s)

]
+

[
0nq×nu

M(q)−1B

]
u.

Consider now the controller taken as in (11). We obtain

ẋ = x′s(s)ρ(s) + fŨ(x, s) +

[
0nq×nu

M(q)−1B

]
v,

where

fŨ(x, s) :=

[
0nq

M(q)−1
[
BB†Û(x, s)−U(q, q̇, s)

]]
.

Note that BB†Û(xs(s), s)−U(Φ(s),Φ′(s)ρ(s), s) ≡ 0.
Consider now (5), i.e. ẋ⊥ = Ω(x)ẋ. In order to linearize this system along the orbit, we note that

for a differentiable function h : R2nq → R2nq which, for all s ∈ S satisfies h(xs(s)) ≡ 02nq×1, then the
following relations always hold [7]:

∂h

∂s
(xs(s)) ≡ 0 and

∂h

∂x⊥
(xs(s))Ωs(s) =

∂h

∂x
(xs(s)).

Thus, if we write ẋ = f(x) +g(x)v, then the matrix B⊥(s) = Ωs(s)g(xs(s)) follows from the fact that
ẋ⊥ is affine in the control input v; whereas the matrix A⊥(s) must be a solution of the matrix equation

A⊥(s)Ωs(s) = Ωs(s)
∂f

∂x
(xs(s))− Ξ(s)ρ(s)

with Ξ(s) := x′s(s)x
′
s(s)

TDDPs(s)+x′′s(s)DPs(s). However, as Ωs(s)δx⊥ = δx⊥ and DPs(s)δx⊥ ≡ 0,
we must have A⊥(s)δx⊥ = A⊥(s)Ωs(s)δx⊥; hence, one can take A⊥(s) = Ωs(s)

∂f
∂x

(xs(s))−Ξ(s)ρ(s).
Lastly, using that ∂h(s)

∂x
δx⊥ = ∂h(s)

∂s
DPs(s)δx⊥ ≡ 0 for any h(s), we see that A⊥(s) in (12) is a solution

to this matrix equation.

APPENDIX C. PROOF OF THEOREM 1
We will show that if a solution to (14) exists, then the system (12) is rendered asymptotically stable

by
v = −Γ−1BT

⊥(s)R⊥(s)δx⊥,

letting us utilize Lemma 3. Towards this end, consider the following Lyapunov function candidate:

V = δxT
⊥R⊥(s)δx⊥.

Due to the condition DPs(s)δx⊥ ≡ 0, and consequently δx⊥ = Ωs(s)δx⊥, it can be equivalently
rewritten as

V = δxT
⊥ΩT

s (s)R⊥(s)Ωs(s)δx⊥.

Now note that
Ω̇s(s) = −[x′′s(s)DPs(s) + x′s(s)x

′
s(s)

T
DDPs(s)]ρ(s).



Hence

V̇ = −2δxT
⊥

[
ΩT
s R⊥x′′sDPsρ

]
δx⊥ + δxT

⊥

[
ΩT
s Ṙ⊥Ωs+

AT
⊥R⊥Ωs + ΩT

s R⊥A⊥ − 2ΩT
s R⊥B⊥Γ−1BT

⊥R⊥Ωs

]
δx⊥

which, by the fact that Ω2
s(s) = Ωs(s), is equivalent to

V̇ = δxT
⊥ΩT

s

[
Ṙ⊥ + AT

⊥R⊥ + R⊥A⊥ − 2R⊥B⊥Γ−1BT
⊥R⊥

]
Ωsδx⊥,

where Ṙ⊥(s) = R′⊥(s)ρ(s). Thus by (14), we obtain

V̇ = δxT
⊥ΩT

s

[
−Q− κR⊥ −R⊥B⊥(s)Γ−1BT

⊥R⊥
]
Ωsδx⊥

= δxT
⊥

[
−Q− κR⊥ −R⊥B⊥(s)Γ−1BT

⊥R⊥
]
δx⊥.

Consequently, for all ‖δx⊥‖ 6= 0 satisfying DPs(s)δx⊥ ≡ 0, we have V̇ < 0, which implies asymptotic
stability of the origin of (12).
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