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Abstract
The main challenge in ensemble-based filtering meth-
ods is the updating of a prior ensemble to a posterior
ensemble. In the ensemble Kalman filter (EnKF), a
linear-Gaussian model is introduced to overcome this
issue, and the prior ensemble is updated with a lin-
ear shift. In the current article, we consider how the
underlying ideas of the EnKF can be applied when the
state vector consists of binary variables. While the EnKF
relies on Gaussian approximations, we instead introduce
a first-order Markov chain approximation. To update the
prior ensemble we simulate samples from a distribution
which maximizes the expected number of equal compo-
nents in a prior and posterior state vector. The proposed
approach is demonstrated in a simulation experiment
where, compared with a more naive updating procedure,
we find that it leads to an almost 50% reduction in the
difference between true and estimated marginal filtering
probabilities with respect to the Frobenius norm.
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1 INTRODUCTION

A state-space model consists of a latent {xt}∞t=1 process and an observed {yt}∞t=1 process, where
yt is a partial observation of xt. More specifically, the yt’s are assumed to be conditionally
independent given the xt process and yt only depends on xt. Estimation of the latent variable at
time t, xt, given all observations up to this time, y1:t = (y1, … , yt), is known as the filtering or data
assimilation problem. In the linear Gaussian situation an easy to compute and exact solution is
available by the famous Kalman filter. In most nonlinear or non-Gaussian situations, however,
no computationally feasible exact solution exists and ensemble methods are therefore frequently
adopted. The distribution p(xt|y1:t) is then not analytically available, but is represented by a set
of realizations x̃t(1), … , x̃t(M) from this filtering distribution. Assuming such an ensemble of real-
izations to be available for time t − 1, the filtering problem is solved for time t in two steps. First,
based on the Markov chain model for the xt process, each x̃t−1(i) is used to simulate a correspond-
ing forecast realization xt(i), which marginally are independent samples from p(xt|y1:t − 1). This is
known as the forecast or prediction step. Second, an update step is performed, where each xt(i)

is updated to take into account the new observation yt and the result is an updated ensemble
x̃t(1), … , x̃t(M) which represents the filtering distribution at time t, p(xt|y1:t). The updating step is
the difficult one and the different strategies that have been proposed can be classified into two
classes, particle filters and ensemble Kalman filters.

In particle filters (Doucet, de Freitas, & Gordon, 2001) each filtering realization x̃t(i) comes
with an associated weight w̃t(i), and the pair (w̃t(i), x̃t(i)) is called a particle. In the forecast step a
forecast particle (wt(i), xt(i)) is generated from each filtering particle (w̃t−1(i), x̃t−1(i)) by generating
xt(i) from x̃t−1(i) as discussed above and by keeping the weight unchanged, that is, wt(i) = w̃t−1(i).
The updating step consists of two parts. First the weights are updated by multiplying each forecast
weight wt(i) by the associated likelihood value p(yt|xt(i)), keeping the xt component of the particles
unchanged. Thereafter a resampling may be performed, where (w̃t(i), x̃t(i)), i = 1, … ,M are gen-
erated by sampling the x̃t(i)’s independently from xt(i), i= 1, … , M with probabilities proportional
to the updated weights, and thereafter setting all the new filtering weights w̃t(i) equal to one. Dif-
ferent criteria can be used to decide whether or not the resampling should be done. The particle
filter is very general in that it can be formulated for any Markov xt process and any observation
distribution p(yt|xt). However, when running the particle filter one quite often ends up with parti-
cle depletion, meaning that a significant fraction of the particles ends up with negligible weights,
which in practice requires the number of particles to grow exponentially with the dimension of
the state vector xt. To cope with the particle depletion problem various modifications of the basic
particle filter described here have been proposed, for example, the equivalent-weights particle
filter of van Leeuwen (2010, 2011).

The ensemble Kalman filter (Burgers, van Leeuwen, & Evensen, 1998; Evensen, 1994) uses
approximations in the update step, and thereby produces only an approximate solution to the
filtering problem. In the update step it starts by using the forecast samples xt(i), i= 1, … , M, to
estimate a Gaussian approximation to the forecast distribution p(xt|y1:t − 1). This is combined with
an assumed Gaussian observation distribution p(yt|xt) to obtain a Gaussian approximation to the
filtering distribution p(xt|y1:t). Based on this Gaussian approximation the filtering ensemble is
generated by sampling x̃t(i), i = 1, … ,M independently from Gaussian distributions, where the
mean of x̃t(i) equals xt(i) plus a shift which depends on the approximate Gaussian filtering dis-
tribution. The associated variance is chosen so that the marginal distribution of the generated
filtering sample x̃t(i) is equal to the Gaussian approximation to p(xt|y1:t) when the forecast sample
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xt(i) is assumed to be distributed according to the Gaussian approximation to p(xt|y1:t − 1). The basic
ensemble Kalman filter described here is known to have a tendency to underestimate the variance
in the filtering distribution and various remedies have been proposed to correct for this, see for
example the discussions in Anderson (2007a, 2007b) and Sætrom and Omre (2013). The square
root filter (Tippett, Anderson, Bishop, & Hamill, 2003; Whitaker & Hamill, 2002) is a special vari-
ant of the ensemble Kalman filter where the update step is deterministic. The filtering ensemble
is then generated from the forecast ensemble only by adding a shift to each ensemble element.
Here the size of the shift is chosen so that the marginal distribution of the filtering realizations is
equal to the approximated Gaussian filtering distribution.

The Gaussian approximations used in the ensemble Kalman filter limit the use of this filter
type to continuous variables, whereas the particle filter setup can be used for both continuous
and categorical variables. In the literature there exists a few attempts to use the ensemble Kalman
filter setup also for categorical variables, see in particular Oliver, Chen, and Nævdal (2011). The
strategy then used for the update step is first to map the categorical variables over to continuous
variables, perform the update step as before in the continuous space, and finally map the updated
continuous variables back to corresponding categorical variables. In the present article, our goal
is to study how the basic ensemble Kalman filter idea can be used for categorical variables with-
out having to map the categorical variables over to a continuous space. As discussed above the
update step is the difficult one in ensemble filtering methods. The basic ensemble Kalman fil-
ter update starts by estimating a Gaussian approximation to the forecast distribution p(xt|y1:t − 1).
More generally one may use another parametric class than the Gaussian. For categorical variables
the simplest alternative is to consider a first-order Markov chain, which is what we focus on in
this article. Having a computationally feasible approximation for the forecast distribution we can
find a corresponding approximate filtering distribution. Given the forecast ensemble the ques-
tion then is from which distribution to simulate the filtering ensemble to obtain that the filtering
realizations marginally are distributed according to the given approximate filtering distribution,
corresponding to the property for the standard ensemble Kalman filter. In this article we develop
in detail an approximate way to do this when the elements of the state vector are binary vari-
ables, the approximate forecast distribution is a first-order Markov chain, and the observation
distribution has a specifically simple form.

The article has the following layout. First, in Section 2, we review the general state-space
model, the associated filtering problem, and present the ensemble Kalman filter. Next, in
Section 3, we describe a general ensemble updating framework. Then, in Section 4, we restrict
the focus to a situation where the elements of the state vector are binary variables and develop
in detail an algorithm for how to perform the update step in this case. After that, we present
two numerical experiments with simulated data in Section 5. Finally, in Section 6, we give a few
closing remarks and briefly discuss how the proposed updating method for binary vectors can be
generalized to a situation with more than two classes and an assumed higher order Markov chain
model for the forecast distribution.

2 PRELIMINARIES

In this section, we review some basic theoretical aspects of ensemble-based filtering methods.
The material presented should provide the reader with the necessary background for understand-
ing the proposed approach and it also establishes some of the notations used throughout the
article.
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F I G U R E 1 Graphical illustration of the state-space model behind the filtering problem

2.1 Review of the filtering problem

The filtering problem in statistics can be nicely illustrated with a graphical model, see Figure 1.
Here, {xt}∞t=1 represents a time series of unobserved states and {yt}∞t=1 a corresponding time series
of observations. Each state xt is n-dimensional and can take on values in a state space ΩX , while
each observation yt is k-dimensional and can take on values in a state space ΩY . The series of
unobserved states, called the state process, constitutes a first-order Markov chain with initial
distribution p(x1) and transition probabilities p(xt|xt − 1), t > 1. For each state xt, t ≥ 1, there is a
corresponding observation yt. The observations are assumed conditionally independent given the
state process, with yt depending on {xt}∞t=1 only through xt, according to some likelihood model
p(yt|xt). To summarize, the model is specified by

x1 ∼ p(x1),
xt|xt−1 ∼ p(xt|xt−1), t > 1,
yt|xt ∼ p(yt|xt), t ≥ 1.

The objective of the filtering problem is, for each t, to compute the so-called filtering distribu-
tion, p(xt|y1:t), that is, the distribution of xt given all observations up to this time, y1:t = (y1, … , yt).
Because of the particular assumptions about the state and observation processes, it can be shown
(see Künsch, 2000) that the series of filtering distributions can be computed recursively according
to the following equations:

i) p(xt|y1∶t−1) = ∫ΩX

p(xt|xt−1)p(xt−1|y1∶t−1)dxt−1, (1a)

ii) p(xt|y1∶t) = p(xt|y1∶t−1)p(yt|xt)
∫ΩX

p(xt|y1∶t−1)p(yt|xt)dxt
. (1b)

As one can see, the recursions evolve as a two-step process, each iteration consisting of (i) a predic-
tion step and (ii) an update step. In the prediction, or forecast step, one computes the predictive,
or forecast, distribution p(xt|y1:t − 1), while in the update step, one computes the filtering distribu-
tion p(xt|y1:t) by conditioning the predictive distribution on the incoming observation yt through
application of Bayes’ rule. The update step can be formulated as a standard Bayesian inference
problem, with p(xt|y1:t − 1) becoming the prior, p(yt|xt) the likelihood, and p(xt|y1:t) the posterior.

There are two important special cases where the analytical solutions to the filtering recursions
in (1a) and (1b) can be computed exactly. The first case is the hidden Markov model (HMM).
Here, the state space ΩX consists of a finite number of states, and the integrals in (1a) and (1b)
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reduce to finite sums. If the number of states in ΩX is large; however, the summations become
computer-intensive, rendering the filtering recursions computationally intractable. The second
case is the linear-Gaussian state space model, which can be formulated as follows:

x1 ∼ n(x1|"1,Σ1),

xt|xt−1 = Atxt−1 + #t, #t ∼ n(#|0,Σt),

yt|xt = Htxt + $t, $t ∼ k($|0,Rt), (2)

where At ∈ Rn×n and Ht ∈ Rk×n are nonrandom linear operators, Σt ∈ Rn×n and Rt ∈ Rk×k are
covariance matrices, and x1, $1, $2, … ,#1,#2, … are all independent. In this case, the predictive
and filtering distributions are all Gaussian, and the filtering recursions lead to the famous Kalman
filter (Kalman, 1960).

In general, we are unable to evaluate the integrals in (1a) and (1b). Approximate solu-
tions therefore become necessary. The most common approach in this regard is the class of
ensemble-based methods where a set of samples, called an ensemble, is used to empirically
represent the sequence of forecast and filtering distributions. Starting from an initial ensemble
{x1(1), … , x1(M)} of M independent realizations from the Markov chain initial model p(x1), the
idea is to advance this ensemble forward in time according to the model dynamics. As the original
filtering recursions, the propagation of the ensemble alternate between an update step and a pre-
diction step. Specifically, suppose at time t ≥ 1 that an ensemble {xt(1), … , xt(M)} of independent
realizations from the forecast distribution p(xt|y1:t − 1) is available. We then want to update this
forecast ensemble by conditioning on the incoming observation yt in order to obtain an updated,
or posterior, ensemble {x̃t(1), … , x̃t(M)} with independent realizations from the filtering distri-
bution p(xt|y1:t). If we are able to carry out this updating, we can proceed and propagate the
updated ensemble {x̃t(1), … , x̃t(M)} one time step forward by simulating xt+1(i)|x̃t(i) ∼ p(xt+1|x̃t(i))
for each i. This produces a new forecast ensemble, {xt + 1(1), … , xt + 1(M)}, with independent real-
izations from the forecast distribution p(xt + 1|y1:t). However, while we are typically able to cope
with the forecast step, there is no straightforward way for carrying out the update of the prior
ensemble {xt(1), … , xt(M)} to a posterior ensemble {x̃t(1), … , x̃t(M)}. Therefore, ensemble meth-
ods require approximations in the update step. Consequently, the assumption we make at the
beginning of each time step t, that is, that xt(1), … , xt(M) are exact and independent realizations
from p(xt|y1:t − 1), holds only approximately, except in the initial time step.

In the remains of this article, we focus primarily on the challenging updating of a prior ensem-
ble {xt(1), … , xt(M)} to a posterior ensemble {x̃t(1), … , x̃t(M)} at a specific time step t. We refer to
this task as the ensemble updating problem. For simplicity, we omit from now on the time super-
script t and the y1:t − 1 from the notations as these quantities remain fixed. That is, we write x
instead of xt, p(x) instead of p(xt|y1:t − 1), p(x|y) instead of p(xt|y1:t), and so on.

2.2 The ensemble Kalman filter

The ensemble Kalman filter (EnKF), first introduced in the geophysics literature by
Evensen (1994), is an approximate ensemble-based method that relies on Gaussian approxima-
tions to overcome the difficult updating of the prior ensemble. The updating is done in terms of
a linear shift of each ensemble member, closely related to the traditional Kalman filter update.
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The literature on the EnKF is extensive, but some basic references include Burgers et al. (1998)
and Evensen (2009). Here, we only provide a brief presentation. For simplicity, we restrict the
focus to the linear-Gaussian observational model in (2) which, if we omit the superscript t, can
be rewritten

y|x = Hx + $, $ ∼ k($; 0,R).

There exist two main classes of EnKFs, stochastic filters and deterministic, or so-called square root
filters, differing in whether the updating of the ensemble is carried out stochastically or determin-
istically. The stochastic EnKF is the most common version, and we begin our below presentation
of the EnKF by focusing on this method.

Consider first a linear-Gaussian state space model as introduced in the previous section.
Under this linear-Gaussian model, it follows from the Kalman filter recursions that the current
forecast, or prior, model p(x) is a Gaussian distribution, n(x;",Σ), with analytically tractable
mean " and analytically tractable covariance Σ. Furthermore, the current filtering, or posterior
model p(x|y) is a Gaussian distribution, n(x; "̃, Σ̃), with mean "̃ and covariance Σ̃ analytically
available from the Kalman filter update equations as

"̃ = " + K(y − H")

and

Σ̃ = (I − KH)Σ,

respectively, where K = ΣH′(HΣH′ + R)−1 is the Kalman gain. The stochastic EnKF update
is based on the following fact: If x ∼ n(x;",Σ) and $ ∼ k($; 0,R) are independent random
samples, then

x̃ = x + K(y − Hx + $) (3)

is a random sample from n(x; "̃, Σ̃). The verification of this result is straightforward. Clearly,
under the assumption that the prior ensemble {x(1), … , x(M)} contains independent samples from
the Gaussian distribution n(x;",Σ), one theoretically valid way to obtain the updated ensemble
is to simulate $(i) ∼ k($; 0,R) and replace (x, $) in (3) by (x(i), $(i)). The stochastic EnKF performs
an approximation to this update. Specifically, each prior sample x(i) is updated with a linear shift
identical to (3), but with the true Kalman gain K replaced with an empirical estimate K̂ inferred
from the prior ensemble,

x̃(i) = x(i) + K̂(y − Hx(i) + $(i)), i = 1, … ,M. (4)

In the EnKF literature, each term Hx(i) − $(i) is typically referred to as a perturbed observation.
Under the linear-Gaussian assumptions, the update in (4) returns approximate samples from the
Gaussian posterior model n(x; "̃, Σ̃). The update is in this case consistent in the sense that as the
ensemble size goes to infinity, the distribution of the updated samples converges to n(x; "̃, Σ̃),
that is, the solution of the Kalman filter.

Although the EnKF update is based on linear-Gaussian assumptions about the underlying
model, it can still be applied in nonlinear, non-Gaussian situations. Naturally, bias is in this case
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introduced, and the updated samples will not converge in distribution to the true posterior p(x|y).
However, since the update is a linear combination of the x(i)’s, non-Gaussian properties present
in the true prior and posterior models can, to some extent, be captured.

Deterministic EnKFs instead use a nonrandom linear transformation to update the ensemble.
In the following, let "̂ and Σ̂ denote estimates of " and Σ, respectively, obtained from the prior
ensemble. Furthermore, let ̂̃" and ̂̃Σ denote the mean and covariance, respectively, of the Gaus-
sian posterior model n(x; ̂̃", ̂̃Σ) corresponding to the Gaussian prior approximation n(x; "̂, Σ̂).
Generally, the update equation of a square root EnKF can be written as

x̃(i) = "̂ + K̂(y − H"̂) + B(x(i) − "̂), i = 1, … ,M, (5)

where B ∈ Rn×n is a solution to the quadratic matrix equation

BΣ̂B′ = (I − K̂H)Σ̂.

Note that B is not unique except in the univariate case. This gives rise to a variety of square root
algorithms, see Tippett et al. (2003). As such, several square root formulations have been proposed
in the literature, including, but not limited to, Anderson (2001), Bishop, Etherton, and Majum-
dar (2001), and Whitaker and Hamill (2002). The nonrandom square root EnKF update in (5)
ensures that the sample mean and sample covariance of the posterior ensemble equal ̂̃" and ̂̃Σ
exactly. This is different from stochastic EnKFs where, under linear-Gaussian assumptions, the
sample mean and sample covariance of the posterior ensemble only equal ̂̃" and ̂̃Σ in expectation.

3 A GENERAL ENSEMBLE UPDATING FRAMEWORK

In this section, we present a general ensemble updating framework. Both the EnKF and the updat-
ing procedure for binary vectors proposed in this article can be viewed as special applications of
the framework.

3.1 The framework

For convenience, we first give a brief review of the ensemble updating problem. Starting out, we
have a prior ensemble, {x(1), … , x(M)}, which is assumed to contain independent realizations
from a prior model p(x). The prior model p(x) is typically intractable in this context, either compu-
tationally or analytically, or both. Given an observation y and a corresponding likelihood model
p(y|x) the goal is to update the prior ensemble according to Bayes’ rule in order to obtain a pos-
terior ensemble, {x̃(1), … , x̃(M)}, with independent realizations from the posterior model p(x|y).
However, carrying out this update exactly is generally unfeasible and approximate strategies are
required.

Conceptually, the proposed framework is quite simple. It involves three main steps as follows.
First, we replace the intractable model p(x|y)∝ p(x)p(y|x) with a simpler model f (x|y)∝ f (x)p(y|x).
Here, f (x) is an approximation to the prior p(x) and is constructed from the samples of the prior
ensemble, while f (x|y) is the corresponding posterior distribution which follows from Bayes’ rule.
In the remains of this article, we refer to the model f (x|y)∝ f (x)p(y|x) as the assumed model. Notice
that the likelihood model p(y|x) has not been replaced; for simplicity, we assume that this model
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already has a convenient form. Second, we put forward a distribution conditional on x and y,
denoted q(x̃|x, y), obeying the following property:

f (x̃|y) = ∫ΩX

f (x)q(x̃|x, y)dx. (6)

Third, we update the prior ensemble by generating samples from this conditional distribution,

x̃(i) ∼ q(x̃|x(i), y), i = 1, … ,M.

To understand the framework, note that under the assumption that the assumed model is cor-
rect, the prior samples have distribution f (x) and the updated samples should have distribution
f (x|y). If one is able to compute and sample from f (x|y), one straightforward way to obtain the
updated samples is to sample directly from f (x|y). However, since the assumed model is not really
the correct one, this is probably not the best way to proceed. The prior ensemble contains valuable
information about the true model p(x) that may not have been captured by the assumed model
f (x), and by straightforward simulation from f (x|y) this information is lost. To capture more infor-
mation from the prior ensemble, it is advantageous to simulate conditionally on the prior samples.
This is why we introduce the conditional distribution q(x̃|x, y). The criterion in (6) ensures that
the marginal distribution of each updated sample x̃(i) generated by q(x̃|x, y) still is f (x|y) given that
the assumed model is correct. However, since the assumed model is not the correct model, the
marginal distribution of the updated samples is not f (x|y), but some other distribution, hopefully
one closer to the true posterior model p(x|y).

There are two especially important things about the proposed framework that must be taken
care of in a practical application. First, we need to select an assumed prior f (x) which, combined
with the likelihood model p(y|x), returns a tractable posterior f (x|y). Second, we need to construct
the updating distribution q(x̃|x, y). Typically, there are many, or infinitely many, distributions
q(x̃|x, y) which all fulfill the constraint in (6). A natural strategy for choosing a solution q(x̃|x, y) is
then to define a criterion of optimality and set q(x̃|x, y) equal to the corresponding optimal solu-
tion. Below, we present two special cases of the proposed framework. The first case corresponds
to the EnKF where f (x), p(y|x), and q(x̃|x, y) are all Gaussian distributions. In the second case,
f (x) and p(y|x) constitute a hidden Markov model with binary states xi ∈ {0,1}, and the updating
distribution q(x̃|x, y) is a transition matrix.

3.2 The EnKF as a special case

The EnKF can be seen as a special case of the proposed framework. The assumed prior model
f (x) is in this case a Gaussian distribution. Combined with a linear-Gaussian likelihood model
p(y|x) the corresponding assumed posterior model f (x|y) is also Gaussian. The conditional distri-
bution q(x̃|x, y) in the EnKF arises from the linear update, and takes a different form depending
on whether the filter is stochastic or deterministic. In stochastic EnKF, the linear update (4) yields
a Gaussian distribution q(x̃|x, y) with mean equal to x + K̂(y − Hx) and covariance equal to K̂RK̂′,
that is,

q(x̃|x, y) =  (x̃; x + K̂(y − Hx), K̂RK̂′).
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In square root EnKF, the case is a bit different. Because the linear update in (5) is deterministic,
q(x̃|x, y) has zero covariance and becomes a degenerate Gaussian distribution, or a delta function,
located at the value to which x is moved, that is

q(x̃|x, y) = &(x̃; "̂ + K̂(y − H"̂) + B(x − "̂)).

As mentioned in Section 2.2, the matrix B in square root EnKF is not unique except in the uni-
variate case. This gives rise to a class of square root EnKF algorithms. When choosing a particular
filter, one could proceed as briefly suggested at the end of Section 3.1 and choose the matrix B so
that it is optimal with respect to some criterion.

3.3 The proposed method for binary vectors as a special case

Suppose x = (x1, … , xn) is a vector of n binary variables, xi ∈ {0,1}, and that x is spatially arranged
along a line. A possible assumed prior model for x is then a first-order Markov chain,

f (x) = f (x1)f (x2|x1) · · · f (xn|xn−1).

Furthermore, suppose that for each variable xi there is a corresponding observation, yi, so that
y= (y1, … , yn), and suppose that the yi’s are conditionally independent given x, with yi depending
on x only through xi,

p(y|x) = p(y1|x1) · · · p(yn|xn).

This combination of f (x) and p(y|x) constitutes a hidden Markov model as introduced in Section 2.
It follows that the corresponding assumed posterior model f (x|y) is also a first-order Markov chain
for which all quantities of interest are possible to compute. Note that we can also handle likeli-
hood models p(y|x) where only a selection of the x′i s are observed, as long as the observed y′js are
conditionally independent and each yj is only connected to one variable xi of x.

Now, since ΩX = {0, 1}n is a discrete sample space, we rewrite the constraint in (6) as a sum,

f (x̃|y) =
∑

x∈ΩX

f (x)q(x̃|x, y). (7)

Because of the discrete context, q(x̃|x, y) represents a transition matrix, not a density as in
EnKF. The size of this transition matrix is 2n × 2n since there are 2n possible configurations of
the state vector x. Brute force, the specification of q(x̃|x, y) involves the specification of 2n(2n − 1)
parameters, and the constraint in (7) leads to a system of 2n − 1 linear equations in these parame-
ters. The number of unknowns (parameters) is larger than the number of equations, so there are
infinitely many valid solutions of q(x̃|x, y). To choose a specific solution, we proceed as suggested
in Section 3.1 and seek a solution which is optimal with respect to a certain criterion; we consider
this in full detail in the next section.

Even for moderate n, dealing with the problem outlined above is too complicated. Therefore,
we need to settle with an approximate approach. Specifically, instead of seeking a solution q(x̃|x, y)
which retains the whole Markov chain model f (x|y) cf. the constraint (7), we pursue a solution
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which only retains all the marginal distributions f (xi,xi+ 1|y) of f (x|y). For convenience, let

'(x̃, x|y) = f (x)q(x̃|x, y) (8)

denote the distribution of x and x̃ under the assumption that x is distributed according to f (x) and
x̃ is generated from q(x̃|x, y). Mathematically, the requirement that q(x̃|x, y) must retain all the
marginal distributions f (xi,xi+ 1|y) can then be expressed as

'(x̃i, x̃i+1|y) = f (x̃i, x̃i+1|y), i = 1, … ,n − 1. (9)

In the next section, we consider in full detail how to compute a distribution q(x̃|x, y)which ful-
fills (9). In particular, we impose Markov properties on q(x̃|x, y), formulate an optimality criterion
for q(x̃|x, y), and use dynamic programming to construct the optimal solution.

4 ENSEMBLE UPDATING OF BINARY STATE VECTORS

This section continues on the situation introduced in Section 3.3. The main focus is on the con-
struction of the updating distribution q(x̃|x, y). In Section 4.1 we formulate an optimality criterion
and enforce Markov properties on q(x̃|x, y). Thereafter, in Section 4.2, we present a dynamic pro-
gramming (DP) algorithm for constructing the optimal solution of q(x̃|x, y). Finally, in Section 4.3,
we take a closer look at some more technical aspects of the DP algorithm.

4.1 Optimality criterion

As mentioned in the previous section, there are infinitely many valid solutions of q(x̃|x, y). For us,
however, it is sufficient with one solution, preferably an optimal solution, q∗(x̃|x, y), with respect to
some criterion. To specify an appropriate optimality criterion, we argue that in order for q(x̃|x, y)
to retain information from the prior ensemble and capture important properties of the true prior
and posterior models, it should not make unnecessary changes to the prior samples. That is, as
we update each prior sample x(i), we should take new information from the incoming observation
y into account and, to a certain extent, push x(i) toward y, but the adjustment we make should be
minimal. We therefore propose to define the optimal solution q∗(x̃|x, y) as the one that maximizes
the expected number of variables, or components, of x that remain unchanged after the update to
x̃. Mathematically, that is

q∗(x̃|x, y) = argmax
q(x̃|x,y)

E'

[ n∑
i=1

1(xi = x̃i)
]
, (10)

where the subscript ' is used to indicate that the expectation is taken over the joint distribution
'(x̃, x|y) in (8).

The problem of computing the optimal solution q∗(x̃|x, y) in (10) given the original constraint
in (7) can be interpreted as a discrete version of an optimal transport problem (Villani, 2009). Brute
force, the optimization problem is a linear programming problem since (10) defines an objective
function which is linear in q(x̃|x, y) and (7) yields a set of equations that are linear in q(x̃|x, y).
However, since the number of variables involved is so large, the problem is too demanding to cope
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F I G U R E 2 Graphical illustration of the updating distribution q(x̃|x, y)

with. Therefore, we resort to an approximate approach. As mentioned in the previous section, we
replace the requirement (7) with the less strict requirement (9). Moreover, to reduce the number
of parameters involved, we enforce Markov properties on '(x̃, x|y) as illustrated graphically in
Figure 2. Given this structure, q(x̃|x, y) can be factorized as

q(x̃|x, y) = q(x̃1|x1, y)q(x̃2|x̃1, x2, y)q(x̃3|x̃2, x3, y) · · · q(x̃n|x̃n−1, xn, y). (11)

Consequently, the number of parameters reduces from 2n(2n − 1) = (4n) to 2 + 4(n − 1) =(n), namely, two parameters for the first factor q(x̃1|x1, y), and four parameters for each
q(x̃k|x̃k−1, xk, y), k= 2, … , n. Another, and just as important, consequence of the Markov prop-
erties is that the optimal solution q∗(x̃|x, y) can be efficiently computed using dynamic program-
ming. Following (11), the optimal solution can be factorized as

q∗(x̃|x, y) = q∗(x̃1|x1, y)q∗(x̃2|x̃1, x2, y)q∗(x̃3|x̃2, x3, y) · · · q∗(x̃n|x̃n−1, xn, y). (12)

The next section presents a DP algorithm where the n factors in (12) are constructed recur-
sively.

4.2 Dynamic programming

Here, we describe a DP algorithm for constructing the optimal solution q∗(x̃|x, y) introduced in the
previous section. The algorithm involves a backward recursion and a forward recursion. The main
challenge is the backward recursion and the details therein are a bit technical. For simplicity, this
section provides an overall description of the algorithm, while the more technical aspects of the
backward recursion are considered separately in Section 4.3. Following the notation introduced in
(8), we use the notation '(x̃i∶j, xk∶l|y), 1≤ i≤ j≤n, 1≤ k≤ l≤n, to denote the joint distribution of
x̃i∶j = (x̃i, … , x̃j) and xk:l = (xk, … , xl) under the assumption that x is distributed according to f (x)
and x̃ is simulated using q(x̃|x, y). Furthermore, we introduce the following simplifying notations:

'k =
{
'(x1|y), k = 1,
'(x̃k−1, xk|y), 2 ≤ k ≤ n,

qk =
{

q(x̃1|x1, y), k = 1,
q(x̃k|x̃k−1, xk, y), 2 ≤ k ≤ n.
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The backward recursion of the DP algorithm involves recursive computation of the quantities

max
qk∶n

E'

[ n∑
i=k

1(xi = x̃i)
]

(13)

for k=n,n− 1, … ,1. In words, (13) represents the largest possible contribution of the partial
expectation E'

[∑n
i=k 1(xi = x̃i)

]
to the full expectation E'

[∑n
i=1 1(xi = x̃i)

]
that can be obtained

for a fixed '(x̃1∶k−1, x1∶k|y). The recursion uses the fact that, for k≥ 2, the Markov properties of
'(x̃, x|y) yield

max
q(k−1)∶n

E'

[ n∑
i=k−1

1(xi = x̃i)
]
= max

q(k−1)∶n
E'

[
1(xk−1 = x̃k−1) +

n∑
i=k

1(xi = x̃i)
]

= max
qk−1

[
E'[1(xk−1 = x̃k−1)] + max

qk∶n
E'

[ n∑
i=k

1(xi = x̃i)
]]

(14)

suggesting that the full maximum value in (10) can be computed recursively by recursive
maximization over qn, qn− 1, … , q1.

An essential aspect of the backward recursion are the distributions '1, … ,'n. At each step
k, we compute (13) as a function of 'k. Essentially, each 'k, k≥ 2, consists of four numbers, or
parameters, one for each possible configuration of the pair (x̃k−1, xk). However, one parameter is
lost since '(x̃k−1, xk|y) is a distribution so that the four numbers must sum to one. Another two
parameters are lost since we require that '(x̃k−1, xk|y) retains the marginal distributions f (x̃k−1|y)
and f (xk), that is, we require

∑
x̃k−1

'(x̃k−1, xk|y) = f (xk)

and
∑

xk

'(x̃k−1, xk|y) = f (x̃k−1|y).

Thereby only one parameter, which in the following we denote by tk, remains. This parameter tk is
free to vary within an interval [tmin

k , tmax
k ], where the bounds tmin

k and tmax
k are determined by the

probabilistic nature of 'k. An example parametrization is to set tk = '(x̃k−1 = 0, xk = 0|y), which
is the approach taken in this work. Below, the notation 'tk (x̃k−1, xk|y) will, when appropriate, be
used instead of '(x̃k−1, xk|y), in order to express the dependence on tk more explicitly. The chosen
parameter tk leads to a parametrization of 'k as follows,

'tk (x̃k−1 = 0, xk = 0|y) = tk,
'tk (x̃k−1 = 0, xk = 1|y) = f (x̃k−1 = 0|y) − tk,
'tk (x̃k−1 = 1, xk = 0|y) = f (xk = 0) − tk,
'tk (x̃k−1 = 1, xk = 1|y) = 1 − f (xk = 0) − f (x̃k−1 = 0|y) + tk,

and the bounds of the interval [tmin
k , tmax

k ] are given as

tmin
k = max {0, f (xk = 0) + f (xk−1 = 0|y) − 1}, (15)
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tmax
k = min {f (xk = 0), f (xk−1 = 0|y)}. (16)

For k= 1, the situation is a bit different, since there is only one variable, x1, involved in '1 =
'(x1|y). In fact, due to (8), we have '(x1|y) = f (x1). Consequently, t1 is not a parameter free to vary
within a certain range, but a fixed number. Here, we set t1 = f (x1 = 0).

Apart from the parametrization of 'k, an essential feature of each 'k, for k≥ 2, is its depen-
dence on 'k−1 and qk− 1. This connection is due to the particular structure of '(x̃, x|y). Generally,
for k≥ 3, we know that 'k, or '(x̃k−1, xk|y), can be computed by summing out the variables x̃k−2
and xk− 1 from the joint distribution '(x̃k−2, x̃k−1, xk−1, xk|y),

'(x̃k−1, xk|y) =
∑
x̃k−2

∑
xk−1

'(x̃k−2, x̃k−1, xk−1, xk|y), (17)

and the distribution '(x̃k−2, x̃k−1, xk−1, xk|y) can be written in the particular form

'(x̃k−2, x̃k−1, xk−1, xk|y) = '(x̃k−2, xk−1|y)q(x̃k−1|x̃k−2, xk−1, y)f (xk|xk−1).

Similarly, for the special case k= 2, we can compute '(x̃1, x2|y) by summing out x2 from
'(x̃1, x1, x2|y),

'(x̃1, x2|y) =
∑

x1

'(x̃1, x1, x2|y), (18)

where '(x̃1, x1, x2|y) can be written as

'(x̃1, x1, x2|y) = f (x1)q(x̃1|x1, y)f (x2|x1). (19)

Inserting x̃k−1 = 0 and xk = 0 in (17), and using that 'k−1 is parametrized by tk− 1, we obtain a
formula for tk in terms of tk− 1 and qk− 1, k≥ 3. Likewise, inserting x̃1 = 0 and x2 = 0 in (18), and
using that f (x1 = 0)= t1, we obtain a formula for t2 in terms of t1 and q1. To express the dependence
of tk on tk− 1 and qk− 1, k≥ 2, we will use the notation

tk = tk(tk−1, qk−1).

In some of the following equations, it will be necessary to explicitly express that (13) is a function
of tk. We therefore define

E∗
k∶n(tk) = max

qk∶n
E'

[ n∑
i=k

1(xi = x̃i)
]
.

Similarly, we need a notation for the argument of the maximum in (14) as a function of tk:

q∗
tk
(x̃k|x̃k−1, xk, y) = argmax

qk

[
E'[1(xk = x̃k)] + max

q(k+1)∶n
E'

[ n∑
i=k

1(xi = x̃i)
]]

, 2 ≤ k ≤ n,

q∗
t1
(x̃1|x1, y) = argmax

q1

[
E'[1(x1 = x̃1)] + max

q2∶n
E'

[ n∑
i=1

1(xi = x̃i)
]]

.
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If q∗
tk
(x̃k|x̃k−1, xk, y) and q∗

t1
(x̃1|x1, y) are discussed in a context where the specific values of the

involved variables are not important, simpler notations are preferable. In this regard, we also
introduce

q∗
k(tk) =

{
q∗

tk
(x̃k|x̃k−1, xk, y), 2 ≤ k ≤ n,
q∗

t1
(x̃1|x1, y), k = 1.

Also, we need a notation for E'[1(xk = x̃k)] indicating that this is a function of both tk and qk,

Ek(tk, qk) = E'[1(xk = x̃k)].

The backward recursion computes E∗
k∶n(tk) recursively for k=n,n− 1, … ,1. Each step performs

a maximization over qk as a function of the parameter tk. The recursion is initialized by

E∗
n(tn) = max

qn
[En(tn, qn)] (20)

and

q∗
n(tn) = argmax

qn

[En(tn, qn)]]. (21)

Then, for k=n− 1,n− 2, … ,1, the recursion proceeds according to

E∗
k∶n(tk) = max

qk
[Ek(tk, qk) + E∗

(k+1)∶n(tk+1(tk, qk))], (22)

q∗
k(tk) = argmax

qk

[Ek(tk, qk) + E∗
(k+1)∶n(tk+1(tk, qk))]. (23)

Note that at the final step of the backward recursion, where k= 1, we compute E∗
1∶n(t1) and

q∗
1(t1). Now, since we have one specific value for t1, we also obtain one specific value for E∗

1∶n(t1)
and corresponding specific values for q∗

1(t1). This completes the backward recursion.
After the backward recursion, the forward recursion can proceed. Here, we recursively com-

pute specific values for t2,t3, … , tn. Hence we recursively obtain the optimal values q∗(x̃2|x̃1, x2, y),
q∗(x̃3|x̃2, x3, y), … , q∗(x̃n|x̃n−1, xn, y) in (12). The forward recursion is initialized by

t∗1 = t1

and

q∗(x̃1|x1, y) = q∗
t∗1
(x̃1|x1, y).

Then, for k= 2,3, … , n, the recursion proceeds according to

t∗k = tk(t∗k−1, q∗
k−1(t

∗
k−1)),

q∗(x̃k|x̃k−1, xk, y) = q∗
t∗k
(x̃k|x̃k−1, xk, y).

When the forward recursion terminates, the optimal solution q∗(x̃|x, y) is readily available.
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4.3 Parametric, piecewise linear programming

In this section, we look further into the backward recursion of the DP algorithm described in
Section 4.2. As we shall see, each step of the recursion involves the setup of an optimization
problem that we refer to as a parametric, piecewise linear program, namely, an optimization
problem with a piecewise linear objective function subject to a set of linear constraints, which we
solve as a function of the parameter tk. For simplicity of writing, we now introduce the following
notations:

qij
k = q(x̃k = 0|x̃k−1 = i, xk = j, y), (24a)

qi
1 = q(x̃1 = 0|x1 = i, y), (24b)

f ij
k = f (xk−1 = i, xk = j|y), (24c)

'ij
k (tk) = 'tk (x̃k−1 = i, xk = j|y), (24d)

q∗ij
k (tk) = q∗

tk
(x̃k = 0|x̃k−1 = i, xk = j, y), (24e)

(i|j
k−1 = f (xk = i|xk−1 = j), (24f)

for i,j∈ {0,1} and k≥ 2.
Reconsider the initial step of the backward recursion. The goal of this step is to compute E∗

n(tn)
in (20) and q∗

n(tn) in (21). The objective function at this step, En(tn,qn), can be computed as

En(tn, qn) = '00
n (tn)q00

n + '01
n (tn)(1 − q01

n ) + '10
n (tn)q10

n + '11
n (tn)(1 − q11

n ). (25)

Since '01
n (tn) + '11

n (tn) = f (xn = 1), we can, after rearranging the terms, rewrite (25) as

En(tn, qn) = '00
n (tn)q00

n − '01
n (tn)q01

n + '10
n (tn)q10

n − '11
n (tn)q11

n + f (xn = 1). (26)

As a function of the parameter tn ∈ [tmin
n , tmax

n ], we are interested in computing the solution
of qn which maximizes (26). In this regard one needs to take the constraint in (9) into account.
Specifically, the constraint entails at this step that

'(x̃n−1, x̃n|y) = f (x̃n−1, x̃n|y)

for all x̃n−1, x̃n ∈ {0, 1}. Hence, using that '(x̃n−1, x̃n, xn|y) = '(x̃n−1, xn|y)q(x̃n|x̃n−1, xn, y), and that
'(x̃n−1, x̃n|y) follows by summing out xn from '(x̃n−1, x̃n, xn|y), we see that qn must fulfill

f (x̃n−1, x̃n|y) =
∑

xn

'(x̃n−1, xn|y)q(x̃n|x̃n−1, xn, y).

This requirement leads to four linear equations of which two are linearly independent, one where
we set x̃n−1 = 0 and one where we set x̃n−1 = 1. Using the notations in (24a)–(24d), the two linearly
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independent equations can be written as

f 00
n = '00

n (tn)q00
n + '01

n (tn)q01
n , (27a)

f 10
n = '10

n (tn)q10
n + '11

n (tn)q11
n . (27b)

Additionally, we know that q00
n , q01

n , q10
n , and q11

n can only take values within the interval [0,1],

0 ≤ qij
n ≤ 1, for all i, j ∈ {0, 1}. (28)

To summarize, we want, as a function of the parameter tn ∈ [tmin
n , tmax

n ], to compute the solu-
tions of q00

n , q01
n , q10

n , and q11
n which maximize the function (26) subject to the constraints in (27)

and (28). For any fixed tn, this is a maximization problem where both the objective function and
all the constraints are linear in q00

n , q01
n , q10

n , and q11
n . As such, the maximization problem can, for

a given value of tn, be formulated as a linear program and solved accordingly. In Appendix A,
we show that the optimal solutions q∗00

n (tn), q∗01
n (tn), q∗10

n (tn), and q∗11
n (tn) are piecewise-defined

functions of tn and easy to compute analytically. Furthermore, we show that the correspond-
ing function E∗

n(tn), obtained by inserting q∗00
n (tn), q∗01

n (tn), q∗10
n (tn), and q∗11

n (tn) into (26), is a
continuous piecewise linear (CPL) function of tn.

Next, consider the intermediate steps of the backward recursion, that is, k=n− 1,n− 2, … ,2.
At each such step, the aim is to compute E∗

k∶n(tk) in (22) and q∗
k(tk) in (23). The objective function

at each step reads

Ek∶n(tk, qk) = Ek(tk, qk) + E∗
(k+1)∶n(tk+1(tk, qk)), (29)

and this function is to be maximized with respect to qk. The first term, Ek(tk,qk), in (29) can be
computed as

Ek(tk, qk) = '00
k (tk)q00

k − '01
k (tk)q01

k + '10
k (tk)q10

k − '11
k (tk)q11

k + f (xk = 1). (30)

The second term, E∗
(k+1)∶n(tk+1(tk, qk)), is a CPL function of tk+ 1. For k=n− 1, this result is

immediate, since we know from the first iteration that E∗
n(tn) is CPL. For k < n− 1, the result is

explained in Appendix A. Since tk+ 1(tk,qk) is linear in qk, it follows that E∗
k+1(tk+1(tk, qk)) is CPL

in qk for any given tk ∈ [tmin
k , tmax

k ]. Hence, the objective function in (29) is also CPL in qk for
any tk ∈ [tmin

k , tmax
k ]. As in the first backward step, we have the following equality and inequality

constraints for qk:

f 00
k = '00

k (tk)q00
k + '01

k (tk)q01
k , (31a)

f 10
k = '10

k (tk)q10
k + '11

k (tk)q11
k (31b)

and

0 ≤ q00
k , q01

k , q10
k , q11

k ≤ 1. (32)

Additionally, we now need to incorporate constraints ensuring that qk and tk return a value
tk+ 1 within the interval [tmin

k+1 , tmax
k+1 ], where tmin

k+1 and tmax
k+1 are given by (15) and (16), respectively.
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That is, we require

tmin
k+1 ≤ tk+1(tk, qk) ≤ tmax

k+1 , (33)

where tk+ 1(tk,qk) follows from (17) as

tk+1(tk, qk) = '00
k (tk)q00

k (0|0
k + '01

k (tk)q01
k (0|1

k + '10
k (tk)q10

k (0|0
k + '11

k (tk)q11
k (0|1

k . (34)

Clearly, for any fixed tk ∈ [tmin
k , tmax

k ], all the constraints (31)-(33) are linear in qk. However,
the objective function in (29) is only piecewise linear. As such, we are not faced with a standard
linear program, but a piecewise linear program. Piecewise linear programs are a well-studied
field of linear optimization and several techniques for solving such problems have been proposed
and studied, see for instance Fourer (1985, 1988, 1992). The most straightforward approach is to
solve the standard linear program corresponding to each line segment of the objective function
separately, and afterward compare the solutions and store the overall optimum. This technique
can be inefficient and is not recommended if the number of pieces of the objective function is
relatively large. However, in our case, the objective functions normally consist of only a few pieces.
For example, in the simulation experiment of Section 5.2, where a model q(x̃|x, y) is constructed
as much as 1,000 times, the largest number of intervals observed is 10 and the average number of
intervals is 4.35. We therefore consider the straightforward approach as a convenient method for
solving the piecewise linear programs in our case, but we note that more elegant strategies exist
and may have their advantages. Further details of our solution are presented below.

First, some new notations needs to be introduced. For each 2≤ k≤n, we let Mk denote the
number of pieces, or intervals, of E∗

k∶n(tk), and we let tB(j)
k , j= 1, … , Mk + 1, denote the cor-

responding breakpoints. Note that for the first and last breakpoints, we have tB(1)
k = tmin

k and
tB(Mk+1)
k = tmax

k . Furthermore, we let I(j)k = [tB(j)
k , tB(j+1)

k ] ⊆ [tmin
k , tmax

k ] denote interval number j, andk = {1, 2, … ,Mk} the set of interval indices. For each j ∈ k, E∗
k∶n(tk) is defined by a linear

function, which we denote by E∗(j)
k (tk), whose intercept and slope we denote by a(j)

k and b(j)
k ,

respectively.
Each linear piece, E∗(j)

k+1(tk+1), of the piecewise linear function E∗
(k+1)∶n(tk+1) leads to a stan-

dard parametric linear program. Specifically, if E∗
(k+1)∶n(tk+1(tk, qk)) in (29) is replaced with

E∗(j)
(k+1)∶n(tk+1(tk, qk)), we obtain an objective function

E(j)
k∶n(tk, qk) = Ek(tk, qk) + E∗(j)

(k+1)∶n(tk+1(tk, qk)), (35)

which is linear, not piecewise linear, as a function of qk. The corresponding constraints for qk
are given in (31) and (32), but instead of (33), we require that tk and qk return a value tk+ 1(tk,qk)
within the interval I(j)k+1,

tB(j)
k+1 ≤ tk+1(tk, qk) ≤ tB(j+1)

k+1 . (36)

Using (30), (34), and that E∗(j)
k+1(tk+1) = a(j)

k+1 + b(j)
k+1tk+1, we can for each j ∈ k+1 rewrite (35) as

E(j)
k∶n(tk, qk) = *00(j)

k (tk)q00
k + *01(j)

k (tk)q01
n−1 + *10(j)

k (tk)q10
k + *11(j)

k (tk)q11
k + +(j)

k , (37)
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where

*00(j)
k (tk) = (b(j)

k+1(
0|0
k + 1)'00

k (tk),

*01(j)
k (tk) = (b(j)

k+1(
0|1
k − 1)'01

k (tk),

*10(j)
k (tk) = (b(j)

k+1(
0|0
k + 1)'10

k (tk),

*11(j)
k (tk) = (b(j)

k+1(
0|1
k − 1)'11

k (tk),

and

+(j)
k = a(j)

k+1 + f (xk = 1).

To summarize, we obtain for each j ∈ k+1 a standard parametric linear program, with the objec-
tive function given in (37) and the constraints given in (31), (32), and (36). Solving the parametric
linear program corresponding to each j ∈ k+1, yields the following quantities:

Ẽ(j)
k∶n(tk) = max

qk
E(j)

k∶n(tk, qk), (38)

q̃(j)
k (tk) = argmax

qk

E(j)
k∶n(tk, qk). (39)

The overall maximum value E∗
k∶n(tk) and corresponding optimal solution q∗

k(tk) are then
available as

E∗
k∶n(tk) = Ej∗k+1(tk)

k∶n (tk)

and

q∗
k(tk) = q̃(j∗k+1(tk))

k (tk)

where

j∗k+1(tk) = argmax
j∈k+1

Ẽ(j)
k∶n(tk).

As previously mentioned, and as shown in Appendix A, E∗
k∶n(tk) is a CPL function of tk. As such,

E∗
k∶n(tk) is fully specified by its breakpoints and the function values at those points. The break-

points of E∗
k∶n(tk) can be computed prior to the maximization. Thereby, we can obtain E∗

k∶n(tk)
for all values of tk quite efficiently since we only need to solve the parametric, piecewise linear
program at the breakpoints of E∗

k∶n(tk).
Finally, consider the last step of the backward recursion, k= 1. Here, the goal is to compute

q∗
t1
(x̃1|x1, y) and E∗

1∶n(t1). Essentially, this step proceeds in the same fashion as the intermediate
steps, but some technicalities are a bit different since there are only two variables involved in q1,
namely, q0

1 = q(x̃1 = 0|x1 = 0, y) and q1
1 = q(x̃1 = 0|x1 = 1, y). Also, t1 is not a parameter free to

vary within a certain range, but a fixed number, namely t1 = f (x1 = 0), meaning that we obtain spe-
cific values for q∗

t1
(x̃1|x1, y) and E∗

1∶n(t1). The function we want to maximize at this final backward
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step, with respect to q1, is

E1∶n(t1, q1) = E1(t1, q1) + E∗
2∶n(t2(t1, q1)), (40)

where now, recalling that '(x1|y) = f (x1), the first term, E1(t1,q1), can be written as

E1(t1, q1) = t1q0
1 + (1 − t1)(1 − q1

1). (41)

Again, as in the intermediate steps, we have a piecewise linear, not a linear, objective function.
To determine the constraints for q1, we note that the requirement (9) for q(x̃|x, y) entails that

f (x̃1|y) = '(x̃1|y).

Thereby, since t1 = f (x1 = 0) and using that f (x̃1|y) = ∑
x1
'(x̃1, x1|y) and '(x̃1, x1|y) =

f (x1)q(x̃1|x1, y), we see that the following requirement must be met by q(x̃1|x1, y):

f (x̃1|y) = t1q(x̃1|x1 = 0, y) + (1 − t1)q(x̃1|x1 = 1, y). (42)

Additionally, we have the inequality constraints

0 ≤ q0
1, q1

1 ≤ 1. (43)

So, we are faced with a piecewise linear program, with the piecewise linear objective function
(40) and the linear constraints (42) and (43). Again, we proceed by iterating through each linear
piece of E∗

2∶n(t2(t1, q1)), solving the standard linear program corresponding to each piece sepa-
rately. That is, for each j ∈ 2, we replace E∗

2∶n(t2(t1, q1)) in (40) by E∗(j)
2∶n(t2(t1, q1)) and consider

instead the objective function

E(j)
1∶n(t1, q1) = E1(t1, q1) + E∗(j)

2∶n(t2(t1, q1)), (44)

which is linear, not piecewise linear, as a function of q1. As we did for each subproblem j ∈ k+1
in every intermediate backward iteration, we must for each subproblem j ∈ 2 incorporate the
inequality constraints

tB(j)
2 ≤ t2(t1, q1) ≤ tB(j+1)

2 , (45)

where now t2(t1,q1) follows from (18) and (19) as

t2(t1, q1) = t1q0
1(

0|0
1 + (1 − t1)q1

1(
0|1
1 . (46)

Using (41), (46), and that E∗(j)
2∶n(t2) = a(j)

2 + b(j)
2 t2, we can rewrite the function in (44) as

E(j)
1∶n(t1, q1) = *0(j)

1 (t1)q0
1 + *1(j)

1 (t1)q1
1 + +(j)

1 (t1), (47)

where

*0(j)
1 (t1) = t1(1 + b(j)

2 (0|0
1 ),
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*1(j)
1 (t1) = (1 − t1)(1 + b(j)

2 (0|1
1 ),

+(j)
1 (t1) = 1 − t1 + a(j)

2 .

To summarize, we obtain for each j ∈ 2 a standard linear program, where the aim is to maximize
the objective function (47) with respect to q1 subject to the constraints (42), (43), and (45). This
program is solved for t1 = f (x1 = 0). Analogously to (38) and (39), let

Ẽ(j)
1∶n(t1) = max

q1
E(j)

1∶n(t1, q1),

q̃(j)
1 (t1) = argmax

q1

E(j)
1∶n(t1, q1).

Ultimately, we obtain

E∗
1∶n(t1) = Ẽ(j∗2)

1∶n(t1)

and

q∗
1(t1) = q̃(j∗2)

1 (t1)

where

j∗2 = argmax
j∈2

[Ẽ(j)
1∶n(t1)].

5 NUMERICAL EXPERIMENTS

In this section, we demonstrate the proposed ensemble updating method for binary vectors in
two simulation experiments. In Section 5.1, we present a toy example where the assumed prior
f (x) is a given stationary Markov chain of length n= 4. Here, we focus on the construction of
q(x̃|x, y) for this assumed prior model, not on the application of it in an ensemble-based context.
In Section 5.2, we consider a higher dimensional and ensemble-based example, inspired by the
movement, or flow, of water and oil in a petroleum reservoir.

5.1 Toy example

Suppose the assumed prior f (x) is a Markov chain of length n= 4 with homogenous transi-
tion probabilities f (xk = 0|xk− 1 = 0)= 0.7 and f (xk = 1|xk− 1 = 1)= 0.8 for k≥ 2, and initial dis-
tribution f (x1) equal to the associated limiting distribution. The Markov chain f (x) is then a
stationary chain with marginal probabilities f (xk = 0)= 0.40, f (xk = 1)= 0.60 for each k= 1,2,3,4.
Furthermore, suppose every factor p(yi|xi) of the likelihood model p(y|x) is a Gaussian dis-
tribution with mean xi and standard deviation , = 2, and consider the observation vector
y= (− 0.681,− 1.585,0.007,3.103). The corresponding posterior Markov chain model f (x|y) then
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T A B L E 1 Results for the optimal solution q∗(x̃|x, y) of the toy example in
Section 5.1, in (a) for the first factor q∗(x̃1|x1, y), and in (b) for the remaining factors
q∗(x̃k|xk, x̃k−1, y), k= 2,3,4

(a) (b)

k 1 k 2 3 4
t∗k 0.400000 t∗k 0.305356 0.308676 0.281108

q∗0
k (t∗k) 1.000000 q∗00

k (t∗k) 1.000000 1.000000 0.853968

q∗1
k (t∗k) 0.211299 q∗01

k (t∗k) 0.481489 0.212926 0.000000

q∗10
k (t∗k) 1.000000 0.860986 0.546043

q∗11
k (t∗k) 0.097118 0.000000 0.000000

have the transition probabilities

f (x2 = 0|x1 = 0, y) = 0.7821, f (x2 = 1|x1 = 1, y) = 0.7223,
f (x3 = 0|x2 = 0, y) = 0.6600, f (x3 = 1|x2 = 1, y) = 0.8278,
f (x4 = 0|x3 = 0, y) = 0.5490, f (x4 = 1|x3 = 1, y) = 0.8846, (48)

and marginal distributions

f (x1 = 0|y) = 0.526779,
f (x2 = 0|y) = 0.543379,
f (x3 = 0|y) = 0.437279,
f (x4 = 0|y) = 0.304977. (49)

Given the prior model f (x) and the posterior model f (x|y), we can construct q∗(x̃|x, y) as
described in Section 4. For this simple example, this involves computing 14 quantities, namely,
q∗0

1 (t∗1) = q∗(x̃1 = 0|x1 = 0, y), q∗1
1 (t∗1) = q∗(x̃1 = 0|x1 = 1, y), q∗ij

k (t∗k) = q∗(x̃k = 0|x̃k−1 = i, xk = j, y),
for k= 2,3,4, and i,j= 0,1. As described in Section 4 the construction of q∗(x̃|x, y) involves a
backward recursion and a forward recursion. In the backward recursion, we compute E∗

k∶n(tk)
and q∗00

k (tk), for k= 4,3,2. The results for these quantities are presented in Figure 3. In the for-
ward recursion, we start out computing the optimal solution of the first factor, q∗(x̃1|x1, y), and
then compute the remaining optimal parameter values t∗2 , t∗3 , and t∗4 and corresponding optimal
solutions q∗ij

k (t∗k), k= 2,3,4, i,j= 0,1. The results from the forward recursion are given in Table 1.
Taking a closer look at the results for the optimal solution q∗(x̃|x, y), we see that many of

the probabilities q∗ij
k (t∗k) are either zero or one. This feature can be formally explained mathe-

matically (see Appendix A), but is also quite an intuitive result which has to do with how the
probabilities of the prior model f (x) differ from the probabilities of the posterior model f (x|y).
Often, if f (xk = 0) < f (xk = 0|y), we obtain q∗00

k (t∗k) = 1 and q∗10
k (t∗k) = 1, while q∗01

k (t∗k) and q∗11
k (t∗k)

take values somewhere between zero and one. Thus, if we have a prior sample x with xk = 0, the
update of x to x̃ is always such that x̃k = 0. Specifically, in our toy example, this is the case for
k= 2, that is, we have f (x2 = 0) < f (x2 = 0|y), and obtained q∗00

2 (t∗2) = 1 and q∗10
2 (t∗2) = 1. Likewise,

if f (xk = 0) > f (xk = 0|y), we often obtain q∗01
k (t∗k) = 0 and q∗11

k (t∗k) = 0, while q∗00
k (t∗k) and q∗10

k (t∗k)
take values somewhere between zero and one. Thus, if we have a prior sample x with xk = 1, the
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F I G U R E 3 Results from the toy example of Section 5.1. (a–c) E∗
k∶4(tk) for k= 2,3, and 4, respectively, with

the breakpoints highlighted as black dots. (d–f) q∗00
k (tk) (solid) and q∗01

k (tk) (dashed) for k= 2,3, and 4,
respectively. (g–i) q∗10

k (tk) (solid) and q∗11
k (tk) (dashed) for k= 2,3, and 4, respectively. The vertical line in each

figure represents the optimal parameter value t∗k

update of x to x̃ is always such that x̃k = 1. In our toy example, this is the case for k= 4, that
is, we have f (x4 = 0) > f (x4 = 0|y), and obtained q∗01

4 (t∗4) = 0 and q∗10
4 (t∗4) = 0. However, the model

q(x̃|x, y) is not only constructed so that the marginal probabilities in (49) are fulfilled, but also so
that the posterior transition probabilities in (48) are reproduced. In our toy example, we see, for
example, that for k= 3 we obtained q∗10

3 (t∗3) < 1 even if f (x3 = 0) < f (x3 = 0|y). Instead, we observe
another deterministic term, namely q∗11

3 (t∗3) = 0.

5.2 Ensemble-based, higher dimensional example with simulated
data

Until now, we have focused on the ensemble updating problem at a specific time step of
the filtering recursions. However, in a practical application, one is interested in the filtering
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problem as a whole and needs to cope with the ensemble updating problem sequentially for
t = 1,2, … , T. In this section we address this issue and investigate the application of the pro-
posed approach in this context. More specifically, we reconsider the situation with an unobserved
Markov process, {xt}T

t=1, and a corresponding time series of observations, {yt}T
t=1, and at every

time step t = 1, … , T, we construct a distribution q(x̃t|xt, y1∶t) for updating the prior ensem-
ble {xt(1),xt(2), … , xt(M)} to a posterior ensemble {x̃t(1), x̃t(2), … , x̃t(M)}. Below, we first present
the experimental setup of our simulation example in Section 5.2.1, and thereafter study the
performance of the proposed updating approach in Sections 5.2.2 and 5.2.3.

5.2.1 Specification of simulation example

To construct a simulation example we must first define the {xt}T
t=1 Markov process. We set T = 100

and let xt = (xt
1, … , xt

n) be an n= 400 dimensional vector of binary variables xt
i ∈ {0, 1} for each

t = 1, … , T. To simplify the specification of the transition probabilities p(xt|xt − 1) we make two
Markov assumptions. First, conditioned on xt − 1 we assume the elements in xt to be a Markov
chain so that

p(xt|xt−1) = p(xt
1|xt−1)

n∏
i=2

p(xt
i |xt

i−1, xt−1).

The second Markov assumption we make is that

p(xt
i |xt

i−1, xt−1) = p(xt
i |xt

i−1, xt−1
i−1 , xt−1

i , xt−1
i+1 ),

for i= 2, … , n− 1, that is, the value in element i at time t only depends on the values in elements
i− 1, i, and i+ 1 at the previous time step. For i= 1 and i=n we make the corresponding Markov
assumptions

p(xt
1|xt−1

1 , xt−1
2 ) and p(xt

n|xt
n−1, xt−1

n−1, xt−1
n ).

To specify the xt Markov process we thereby need to specify p(xt
i |xt

i−1, xt−1
i−1 , xt−1

i , xt−1
i+1 ) for

t = 2, … , T and i= 2, … , n and the corresponding probabilities for t = 1 and for i= 1 and i=n.
To get a reasonable test for how our proposed ensemble updating procedure works we want an

{xt}T
t=1 process with a quite strong dependence between xt − 1 and xt, also when conditioning on

observed data. Moreover, conditioned on y1:t, the elements in xt should not be first-order Markov
so that the true model differ from the assumed Markov model defined in Section 3.3. In the fol-
lowing we first discuss the choice of p(xt

i |xt
i−1, xt−1

i−1 , xt−1
i , xt−1

i+1 ) for t = 2, … , T and i= 2, … , n and
thereafter specify how these are modified for t = 1 and for i= 1 and n. When specifying the prob-
abilities we are inspired by the process of how water comes through to an oil producing well in
a petroleum reservoir, but without claiming our model to be a very realistic model for this situa-
tion. Thereby t represents time and i the location in the well. We let xt

i = 0 represent the presence
of oil at location or node i at time t and correspondingly xt

i = 1 represents the presence of water.
In the start we assume oil is present in the whole well, but as time goes by more and more water is
present and at time t =T water has become the dominating fluid in the well. Whenever xt−1

i = 1
we therefore want xt

i = 1 with very high probability, especially if also xt
i−1 = 1. If xt−1

i = 0 we corre-
spondingly want a high probability for xt

i = 0 unless xt
i−1 = 1 and xt−1

i−1 = xt−1
i+1 = 1. Trying different
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T A B L E 2 Probabilities defining the true model p(xt|xt − 1) used to simulate a true chain
{xt}T

t=1 in the simulation experiment presented in Section 5.2

xt−1
i−1 xt−1

i xt−1
i+1 p(xt

i = 1|xt
i−1 = 1, xt−1

i−1∶i+1) p(xt
i = 1|xt

i−1 = 0, xt−1
i−1∶i+1)

0 0 0 .0100 .0050

1 0 0 .0400 .0100

0 1 0 .9999 .9800

1 1 0 .9999 .9900

0 0 1 .0400 .0400

1 0 1 .9800 .0400

0 1 1 .9999 .9800

1 1 1 .9999 .9800

F I G U R E 4 Results from the simulation experiment of Section 5.2: Grayscale images of (a) the unobserved
process {xt}t=1, (b) {p̂c(xt

i |y1∶t)}100
t=1, (c) {p̂q(xt

i |y1∶t)}100
t=1, and (d) {p̂a(xt

i |y1∶t)}100
t=1. The colors black and white

correspond to the values zero and one, respectively

sets of parameter values according to these rules we found that the values specified in Table 2 gave
realizations consistent with the requirements discussed above. One realization from this model is
shown in Figure 4a, where black and white represent 0 (oil) and 1 (water), respectively. The corre-
sponding probabilities when t = 1 and for i= 1 and n we simply define from the values in Table 2
by defining all values lying outside the {(i,t):i= 1, … , n;t = 1, … , T} lattice to be zero. In partic-
ular this implies that at time t = 0, which is outside the lattice, oil is present in the whole well. In
the following we consider the realization shown in Figure 4a to be the (unknown) true xt process.

The next step in specifying the simulation example is to specify an observational process. For
this we simply assume one scalar observation yt

i for each node i at each time t, and assume the
elements in yt = (yt

1, … , yt
n) to be conditionally independent given xt. Furthermore, we let yt

i be
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Gaussian with mean xt
i and variance ,2. As we want the dependence between xt − 1 and xt to be

quite strong also when conditioning on the observations, we need to choose the variance ,2 rea-
sonably large, so we set ,2 = 22. Given the true xt process shown in Figure 4a we simulate yt

i values
from the specified Gaussian distribution, and in the following consider these values as observa-
tions. An image of these observations is not included, since the variance ,2 is so high that such
an image is not very informative.

Pretending that the {xt}T
t=1 process is unknown and that we only have the observations

{yt}T
t=1 available, our aim with this simulation study is to evaluate how well our proposed

ensemble based filtering procedure is able to capture the properties of the correct filtering dis-
tributions p(xt|y1:t),t = 1, … , T. To do so we first need to evaluate the properties of the correct
filtering distributions. It is possible to get samples from p(xt|y1:t) by simulating from p(x1:t|y1:t)
with a Metropolis–Hastings algorithm, but to a very high computational cost as a separate
Metropolis–Hastings run must be performed for each value of t. Nevertheless, we do this to get the
optimal solution of the filtering problems to which we can compare the results of our proposed
ensemble based filtering procedure. In our algorithm for simulating from p(x1:t|y1:t) we combine
single site Gibbs updates of each element in x1:t with a one-block Metropolis–Hastings update
of all elements in x1:t. To get a reasonable acceptance rate for the one-block proposals we adopt
the approximation procedure introduced in Austad and Tjelmeland (2017) to obtain a partially
ordered Markov model (Cressie & Davidson, 1998) approximation to p(x1:t|y1:t), propose poten-
tial new values for x1:t from this approximate posterior, and accept or reject the proposed values
according to the usual Metropolis–Hastings acceptance probability. For each value of t we run
the Metropolis–Hastings algorithm for a large number of iterations and discard a burn-in period.
From the generated realizations we can then estimate the properties of p(xt|y1:t). In particular we
can estimate the marginal probabilities p(xt

i = 1|y1∶t) as the fraction of realizations with xt
i = 1. We

denote these estimates of the correct filtering probabilities by p̂c(xt
i = 1|y1∶t). In Figure 4b all these

estimates are visualized as a grayscale image, where black and white correspond to p̂c(xt
i = 1|y1∶t)

equal to zero and one, respectively. It is important to note that Figure 4b is not showing the solu-
tion of the smoothing problem, but the solution of many filtering problems put together as one
image.

Given the simulated observations {yt}100
t=1 and the model specifications described above, the

proposed ensemble filtering method is run using the ensemble size M = 20. This is quite a small
ensemble size compared with n= 400. The reason for choosing the ensemble size this small is to
keep the simulation experiment as realistic as possible, and in real-world problems it is often nec-
essary to set M rather small for computational reasons. A problem, however, when the ensemble
size is this small compared with n, is that results may vary a lot from one run to another. To quan-
tify this between-run variability, we therefore rerun the proposed approach a total of B= 1,000
times, each time with a new initial ensemble of M = 20 realizations from the initial model p(x1).
At each time step t we thus achieve a total of MB= 20,000 posterior samples of the state vector xt

which can be used to construct an estimate, denoted p̂q(xt|y1∶t), for the true filtering distribution
p(xt|y1:t).

An important step of the proposed approach is the estimation of a first-order Markov chain
f (xt|y1:t − 1) at each time step t. Basically, this involves estimating an initial distribution f (xt

1|y1∶t−1)
and n− 1 transition matrices f (xt

i+1|xt
i , y1∶t−1), i= 1, … , n− 1. Since each component xt

i is a binary
variable, the initial distribution f (xt

1|y1∶t−1) can be represented by one parameter, while the transi-
tion matrices f (xt

i+1|xt
i , y1∶t−1) each require two parameters. In this example, we pursue a Bayesian

approach for estimating these parameters. Specifically, if we let -t represent a vector contain-
ing all the parameters required to specify the model f (xt|y1:t − 1), we put a prior on -t, f (-t), and
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then set the final estimator for -t equal to the mean of the corresponding posterior distribution
f (-t|xt,(1), … , xt,(M)). In the specification of f (-t) we assume that all the parameters in the vec-
tor -t are independent and that each parameter follows a Beta distribution (+, *) with known
hyperparameters + = 2, * = 2.

To get a better understanding of the performance of the proposed approach, we also imple-
ment another, more naïve procedure to which our results can be compared. The naïve procedure
is essentially the same as the proposed approach but at each time step t we do not construct a
q(x̃t|xt, y1∶t) and instead update the prior ensemble by simulating independent samples from the
assumed Markov chain model f (xt|y1:t). Below, we refer to this method as the assumed model
approach. As with the proposed approach, we rerun the assumed model approach B= 1,000 times.
This yields a total of MB= 20,000 posterior samples of each state vector xt, t = 1, … , T, which can
be used to construct an estimate, denoted p̂a(xt|y1∶t), for the true filtering distribution p(xt|y1:t). By
comparing p̂a(xt|y1∶t) and p̂q(xt|y1∶t) with the MCMC estimate p̂c(xt|y1∶t), which essentially rep-
resents the true model p(xt|y1:t), we can get an understanding of how much we gain by executing
the proposed approach instead of the much simpler assumed model approach. In the next two
sections we investigate how well p̂q(xt|y1∶t) and p̂a(xt|y1∶t) capture marginal and joint properties
of the true distribution p(xt|y1:t) for which the MCMC estimate p̂c(xt|y1∶t) works as a reference.

Before we present our results, we mention that we also tried to implement the method of
Oliver et al. (2011). This method has the advantage of being relatively easy to implement and
slightly less computer-demanding than the proposed approach. However, we could not obtain
useful results with this method when the ensemble size was as small as M = 20. For simplicity, the
results are therefore not included in the next sections. We note, however, that the results obtained
with larger ensemble sizes were more promising. In our implementation of the algorithm, we
used a first-order Markov chain as the prior model, and to estimate this Markov chain we used
the Bayesian procedure described above, that is, the same procedure that was used to estimate the
first-order Markov chain at every time step in the two other updating methods. Perhaps using a
higher order Markov chain, which indeed is possible in the method of Oliver et al. (2011), could
help to improve the results for the small ensemble size M = 20. Moreover, we only applied a basic
EnKF in our implementation. It is possible that using a more advanced EnKF scheme which for
example incorporates inflation and/or localization could improve the results.

5.2.2 Evaluation of marginal distributions

In this section, we are interested in studying how well the proposed approach estimates the
marginal filtering distributions p(xt

i |y1∶t), i= 1, … , n, t = 1, … , T. Following the notations intro-
duced above, we let p̂q(xt

i |y1∶t) and p̂a(xt
i |y1∶t) denote estimates of the marginal distribution

p(xt
i |y1∶t) obtained with the proposed approach and the assumed model approach, respectively.

The values of p̂q(xt
i = 1|y1∶t) and p̂a(xt

i = 1|y1∶t) are in each case set equal to the mean of the
corresponding set of samples of xt

i . Figure 4c,d presents grayscale images of {p̂q(xt
i = 1|y1∶t)}100

t=1
and {p̂a(xt

i = 1|y1∶t)}100
t=1, respectively. From a visual inspection, the image of {p̂q(xt

i = 1|y1∶t)}100
t=1

is more gray and noisy than that of {p̂c(xt
i = 1|y1∶t)}100

t=1 shown in Figure 4b which contains more
tones closer to pure black and white. This is to be expected, since {p̂c(xt

i |y1∶t)}100
t=1 essentially is

the ideal solution, and we cannot expect an approximate method to perform this well. However,
the image of {p̂a(xt

i = 1|y1∶t)}100
t=1 is even more gray and noisy than that of {p̂q(xt

i = 1|y1∶t)}100
t=1, so

it seems that we do gain something by running the proposed approach instead of the simpler
assumed model approach. To investigate this further, we compute the Frobenius norms of the
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two matrices obtained by subtracting the true marginal probabilities p̂c(xt
i = 1|y1∶t) from the cor-

responding estimates p̂q(xt
i = 1|y1∶t) and p̂a(xt

i = 1|y1∶t). We then obtain the numbers 35.38 and
63.00, respectively. That is, the Frobenius norm of the difference between the true and the esti-
mated marginal filtering distributions is reduced to almost the half with the proposed approach
compared with the assumed model approach. This clearly suggests that we overall obtain much
better estimates of the marginal distributions p(xt

i |y1∶t) with the proposed method than with the
assumed model approach.

To look further into the accuracy of the marginal estimates p̂q(xt
i = 1|y1∶t) and p̂a(xt

i = 1|y1∶t)
and to study their variability from run to run, we take a closer look at the results for some spe-
cific time steps. For each of these time steps we compute a 90% quantile interval for each of
the estimates p̂q(xt

i = 1|y1∶t) and p̂a(xt
i = 1|y1∶t), i= 1, … ,400. To compute the quantile intervals,

recall that the proposed approach and the assumed model approach were both rerun B= 1,000
times. This means that from each run b= 1, … , B of the proposed approach, we have an esti-
mate p̂(b)

q (xt
i |y1∶t) of p(xt

i |y1∶t) for each i. Likewise, from each run b= 1, … , B of the assumed
model approach, we have an estimate p̂(b)

a (xt
i |y1∶t) of p(xt

i |y1∶t) for each i. Hence, for each marginal
distribution p(xt

i |y1∶t), we have B= 1,000 estimates {p̂(b)
q (xt

i |y1∶t)}B
b=1 obtained with the proposed

approach and B= 1,000 estimates {p̂(b)
a (xt

i |y1∶t)}B
b=1 obtained with the assumed model approach.

From these two sets of samples, corresponding quantile intervals for p̂q(xt
i = 1|y1∶t) and p̂a(xt

i =
1|y1∶t) can be constructed. Figure 5 presents the computed results for time step t = 60. For simplic-
ity, we do not include corresponding figures from the other time steps that we studied, since they
look very much the same as those obtained for time t = 60. According to Figure 5a,b, it seems that
the essentially true value p̂c(x60

i |y1∶60) typically lies within the 90% quantile interval correspond-
ing to p̂q(x60

i |y1∶60), but often closer to one of the interval boundaries rather than the estimate
p̂q(x60

i |y1∶60) itself. In particular, we note that p̂c(x60
i |y1∶60) often is close to either zero or one, while

p̂q(x60
i |y1∶60) is a bit higher than zero or a bit lower than one. This is not unreasonable, since we

have used approximations to construct p̂q(x60
i |y1∶60). Thereby, we loose information about the true

quantity p̂c(x60
i |y1∶60) and end up with estimated values closer to 0.5. From Figure 5c,d, we observe

that this is even more the case for the estimate p̂a(x60
i |y1∶60) whose quantile interval often not even

covers p̂c(x60
i |y1∶60).

5.2.3 Evaluation of joint distributions

In this section, we want to evaluate how well the proposed approach manages to capture prop-
erties about the joint distribution p(xt|y1:t). To do so, we select three specific time steps to study,
namely t = 60, t = 70, and t = 80. For each of these steps, we perform two tests on our samples,
both concerning a feature we refer to as contact between a pair of nodes of xt. Consider two com-
ponents xt

i and xt
j of xt at a given time step t. Given that xt

i is equal to one, that is, xt
i = 1, we say

that there is contact between node i and node j in xt if all components of xt between and includ-
ing node i and node j are equal to one. That is, there is contact between node i and j, given that xt

i
is equal to one, if the function

.ij(xt) =
{

1(xt
j = 1 ∩ xt

j+1 ∩ … ∩ xt
i = 1), if j ≤ i,

1(xt
i = 1 ∩ xt

i+1 ∩ … ∩ xt
j = 1), if j > i,

is equal to one.
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F I G U R E 5 Results obtained at time step t = 60 in the numerical experiment of Section 5.2. (a,b) Marginal
estimates p̂q(xt

i = 1|y1∶t) (dashed) and corresponding 90% quantile intervals (dotted), in (a) from i= 1 to i= 200,
and in (b) from i= 201 to i= 400. (c,d) Corresponding results for p̂a(xt

i = 1|y1∶t). The solid line in each plot
represent the MCMC estimate p̂c(xt

i |y1∶t)

Keeping i fixed, we are in our first test interested in studying the probability that there is con-
tact between node i and node j for various values of j, given that xt

i is equal to one. Mathematically,
that means we are interested in

pt(i, j) = Prob(.ij(xt) = 1|xt
i = 1, y1∶t). (50)

It is most informative to study (50) for a node i whose corresponding component xt
i has a high

probability of being equal to one. Therefore, we concentrate on estimating (50) for three specific
choices of i, each corresponding to a component xt

i with a relatively high probability of being equal
to one. According to the grayscale images in Figure 4 this appears to be the case for the three
nodes i= 115, i= 210, and i= 290 at all three time steps t = 60, t = 70, and t = 80. For each i and t,
we can then use our three sets of samples of xt to obtain three different estimates of (50) for all
j. Following previous notations, we let p̂t

c(i, j) denote the MCMC estimate of pt(i,j), while p̂t
q(i, j)

and p̂t
a(i, j) denote the estimates obtained with the proposed approach and the assumed model
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F I G U R E 6 Results from the numerical experiment of Section 5.2. The graphs present p̂t
c(i, j) (solid), p̂q(i, j)

(dashed), and p̂a(i, j) (dotted) for the three components i= 115, i= 210, and i= 290 at time steps t = 60 (left
column), t = 70 (middle column), and t = 80 (right column)

approach, respectively. Figure 6 presents the computed results. Comparing the curves represent-
ing the estimates p̂t

c(i, j), p̂t
q(i, j), and p̂t

a(i, j), we observe that p̂t
q(i, j) and p̂t

a(i, j) typically decrease
to zero for increasing values of j quicker than p̂t

c(i, j) does. However, we see that p̂t
a(i, j) decreases

considerably faster than p̂t
q(i, j). This makes sense, since the posterior samples used to construct

the estimate p̂t
a(i, j) are drawn independently from the assumed model f (xt|y1:t), not taking the

state of the prior samples into account.
In our second test, we focus on the total number of nodes an arbitrary node i with xt

i = 1 is in
contact with. We denote this quantity by Li(xt). Mathematically, Li(xt) can be written

Li(xt) = max
j≥i

{j; .ij(xt) = 1} − min
j≤i

{j; .ij(xt) = 1} + 1.

For each of the time steps t = 60, t = 70, and t = 80, we want to study the cumulative distribution
of Li(xt),

F(l) = Prob(Li(xt) ≤ l|xt
i = 1), (51)

when randomizing over both i and xt, with i∼unif{1,n} and xt ∼ p(xt|y1:t). Again, we can use
our three sets of samples to construct three different estimates of (51). That is, we can construct
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F I G U R E 7 Results from the numerical experiment of Section 5.2. Estimates of F(l) = P(Li(xt) ≤ l|xt
i = 1)

with i∼unif{1,n} and xt ∼ p(xt|y1:t). The graphs present F̂c(l) (solid), F̂q(l) (dashed), and F̂a(l) (dotted) at time
steps (a) t = 60, (b) t = 70, and (c) t = 80

F̂c(l) from the MCMC samples, F̂q(l) from the samples generated with the proposed approach,
and F̂a(l) from the samples generated with the assumed model approach. Figure 7 presents the
results. Here, we see that F̂a(l) is above F̂c(l) at all three time steps t = 60, 70, and 80, indicating
that Li(xt) typically is too small and that the assumed model approach underestimates the level
of contact between nodes. This makes sense and agrees with the behavior of p̂t

a(i, j) discussed
above. According to Figure 7b,c, the estimate F̂q(l) obtained with the proposed approach appears
to do a better job since it is relatively close to F̂c(l). We note, however, that this is not the case
in Figure 7a; here, the curve for F̂q(l) is below F̂c(l), suggesting that Li(xt) typically is too high.
To investigate this further we also examined corresponding output from other time steps t. We
then observed that for smaller values of t, typically smaller than 60, the curve for F̂q(l) tends to
be below F̂c(l), while for larger values of t, it tends to be quite close to F̂c(l). This is in fact not
so unreasonable, since it is for higher values of t that the value one (i.e., water) is dominant in
xt. For smaller values of t, the value zero (i.e., oil) becomes more and more dominant, and the
length of one-valued chains is not supposed to be very high. Perhaps our optimality criterion of
maximizing the expected number of unchanged components in this case results in keeping too
much information from the prior samples.

6 CLOSING REMARKS

An approximate and ensemble-based method for solving the filtering problem is presented. The
method is particularly designed for binary state vectors and is based on a generalized view of the
well-known EnKF. In the EnKF, a Gaussian approximation f (x) to the true prior is constructed
which combined with a linear-Gaussian likelihood model yields a Gaussian approximation f (x|y)
to the true posterior. The prior ensemble is then updated with a linear shift such that the dis-
tribution of each updated sample is equal to f (x|y) provided that the distribution of the prior
samples is equal to f (x). In the proposed approach for binary vectors we instead choose f (x) as a
first-order Markov chain. Combined with a particular likelihood model, a corresponding posterior
Markov chain f (x|y) can be computed. To update the prior samples, we construct a distribution
q(x̃|x, y) and simulate the updated samples from this distribution. Similarly to the EnKF, we want
to construct q(x̃|x, y) so that the updated samples are distributed according to f (x|y) given that
the prior samples are distributed according to f (x). However, constructing such a q(x̃|x, y) differ-
ent from f (x|y) itself is generally too intricate and we therefore consider an approximate solution.
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Specifically, instead of requiring that q(x̃|x, y) retains the Markov chain model f (x|y) exactly, we
require only that it retains all the marginal distributions f (xi,xi+ 1|y), i= 1, … n− 1. Based on the
optimality criterion of maximizing the expected number of unchanged components, an optimal
solution of q(x̃|x, y) is computed with dynamic programming techniques. According to the results
from a simulation experiment, the performance of the proposed updating method is promising.

The focus of this article is on binary state vectors with a one-dimensional spatial arrange-
ment. Clearly, this is a simple situation with limited practical interest since most real problems
involve at least two spatial dimensions and multiple classes for the state variables. Nevertheless,
we consider the work of this article as a first step toward a more advanced method, and in the
future we would like to explore possible extensions of the proposed method. Conceptually, most
of the material presented in the article can easily be generalized to more complicated situations.
Computationally, however, it is more challenging. A generalization of the material in Sections 3
and 4 to a similar situation with more than two possible classes, involves a growing number of
free parameters in the construction of each factor q(x̃k|x̃k−1, xk, y). Specifically, in the case of three
classes there will be four parameters involved, while in the case of four classes there will be nine
parameters involved. We believe, however, that it is possible to cope with a situation with more
than one free parameter via an iterative procedure. Specifically, one can start with some initial
values for each of the free parameters and thereafter iteratively optimize with respect to one of
the parameters at a time, keeping the other parameters fixed. By iterating until convergence we
thereby obtain the optimal solution. How many parameters we are able to deal with using this
strategy will depend on how fast convergence is reached and, of course, how much computation
time one is willing to use.

Another possible extension of our method is to pursue a higher order Markov chain for the
assumed prior model f (x). If this is possible, a further generalization to two spatial dimensions
may be possible by choosing a Markov mesh model (Abend, Harley, & Kanal, 1965) for f (x). Being
able to cope with higher order Markov models will also allow the use of more complicated likeli-
hood models where, for example, each observation is a function of several xi’s. However, similarly
to the case with multiple classes, the computational complexity grows rapidly with the order of
the Markov chain. The higher the order, the higher the number of free parameters there will be
in the construction of each factor q(x̃k|x̃k−1, xk, y). Computationally we can again imagine to cope
with this situation by adopting an iterative optimization algorithm as discussed above.

An optimality criterion needs to be specified when constructing q(x̃|x, y). In our work we
choose to define the optimal solution as the one that maximizes the expected number of equal
components. To us this seems like an intuitively reasonable criterion, since we want to retain as
much information as possible from the prior samples. However, there may be other criteria that
are more suitable and which might improve the performance of our procedure. What optimality
criterion that gives the best results may even depend on how the true and assumed distributions
differ. One may therefore imagine to construct a procedure which at each time t use the prior
samples to estimate, or select, the best optimality criterion within a specified class.

In the future, we would also like to investigate more thoroughly the EnKF and its part within
the proposed ensemble updating framework. In the present article, we impose an optimality crite-
rion for the updating of a binary state vector, but do not focus on appropriate optimality conditions
in the EnKF. For the square root filter, the matrix B in the linear update (5) is not unique except
in the univariate case, which gives rise to a class of square root algorithms. It would be interesting
to investigate the solution of B under different optimality conditions. One possible criterion is a
continuous equivalent to the optimality criterion considered in the binary case, namely, to mini-
mize the expected change between a prior and posterior state vector. For the stochastic EnKF, the
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situation is different. Here, there is no flexibility and the filter is already optimal in some sense.
It is, however, not straightforward to understand specifically what the corresponding optimality
criterion is.
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APPENDIX A

This appendix provides an informal proof of that E∗
k∶n(tk), 2≤ k≤n, is continuous piecewise linear

(CPL). Every iteration of the backward recursion, except the first, relies on this result. The proof
is an induction proof and consists of two main steps. First, in Section A.1, we consider the first
step of the backward recursion and prove that E∗

n(tn) is CPL. This corresponds to the “base case”
of our induction proof. Next, in Section A2, we consider the intermediate steps and prove that
E∗

k∶n(tk) is also CPL, given that E∗
k+1∶n(tk+1) is CPL, 2≤ k < n. This corresponds to the “inductive

step” of our induction proof. In Section A3 of the appendix, we explain how to determine the
breakpoints of E∗

k∶n(tk), 2≤ k < n, prior to solving the corresponding parametric, piecewise linear
program. This is crucial in order to avoid a numerical computation of E∗

k∶n(tk) on a grid of tk-values.
Throughout the appendix, we assume the reader is familiar with all notations introduced in the
previous sections of the article.

The first iteration
The parametric linear program of the first backward iteration can easily be computed analytically.
Because of the equality constraints in (27) we can reformulate the optimization problem in terms
of two variables instead of four. More specifically, we can choose either q00

n or q01
n from (27a),

together with either q10
n or q11

n from (27b), and then reformulate the problem in terms of the two
chosen variables. Here, we choose q00

n and q10
n . By rearranging terms in (27a) and (27b) we can

write

'01
n (tn)q01

n = f 00
n − '00

n (tn)q00
n , (A1)

'11
n (tn)q11

n = f 10
n − '10

n (tn)q10
n . (A2)

Now, if we replace the terms '01
n (tn)q01

n and '11
n (tn)q11

n in the objective function En(tn,qn) in
(26) with the right-hand side expressions in (A1) and (A2), respectively, we can rewrite En(tn,qn)
in terms of q00

n and q10
n as

En(tn, qn) = 2'00
n (tn)q00

n + 2'10
n (tn)q10

n + cn, (A3)

where cn is a constant given as

cn = f (xn = 1) − f (xn = 0|y).
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Furthermore, combining (A1) and (A2) with the inequality constraints (28) allows us to reformu-
late the constraints for q00

n and q10
n as

max
{

0, f 00
n − '01

n (tn)
'00

n (tn)

}
≤ q00

n ≤ min
{

1, f 00
n

'00
n (tn)

}
, (A4)

max
{

0, f 10
n − '11

n (tn)
'10

n (tn)

}
≤ q10

n ≤ min
{

1, f 10
n

'10
n (tn)

}
. (A5)

To summarize, we have now obtained a linear program, where we want to maximize the objec-
tive function in (A3) with respect to the two variables q00

n and q10
n , subject to the constraints (A4)

and (A5).
If for some fixed tn ∈ [tmin

n , tmax
n ] we consider a coordinate system with q00

n along the first axis
and q10

n along the second axis, the constraints in (A4) and (A5) form a rectangular region of feasible
solutions, with two edges in the q00

n -direction and two edges in the q10
n -direction. The optimal

solution lies in a corner point of this region. Since '00
n (tn) and '10

n (tn) are nonnegative for any
tn ∈ [tmin

n , tmax
n ], it is easily seen from (A3) that En(tn,qn) is maximized with respect to qn when

q00
n and q10

n are as large as possible. Consequently, the optimal solutions of q00
n and q10

n must equal
the upper bounds in (A4) and (A5), corresponding to the upper right corner of the rectangular
feasible region. That is,

q∗00
n (tn) = min

{
1, f 00

n
'00

n (tn)

}
,

q∗10
n (tn) = min

{
1, f 10

n
'10

n (tn)

}
.

Clearly, q∗00
n (tn) and q∗10

n (tn) are continuous and piecewise-defined functions of tn, since '00
n (tn)

and '10
n (tn) are linear functions of tn. Specifically, for tn-values such that '00

n (tn) > f 00
n , we get

q∗00
n (tn) = f 00

n ∕'00
n (tn), while for tn-values such that '00

n (tn) ≤ f 00
n , we get q∗00

n (tn) = 1. Likewise,
for tn-values such that '10

n (tn) > f 10
n , we get q∗10

n (tn) = f 10
n ∕'10

n (tn), while for tn-values such that
'10

n (tn) ≤ f 10
n , we get q∗10

n (tn) = 1.
Inserting the optimal solutions q∗00

n (tn) and q∗10
n (tn) into (A3), returns E∗

n(tn). Doing this, it is
easily seen that E∗

n(tn) is a CPL function of tn, consisting of maximally three pieces, each piece
having a slope equal to either −2, 0, or 2.

The intermediate iterations
At each intermediate iteration of the backward recursion, we are dealing with a parametric,
piecewise linear program, whose analytic solution is, generally, more intricate than that of the
parametric linear program of the first iteration. However, proving that the resulting function
E∗

k∶n(tk) is CPL, provided that E∗
k+1∶n(tk+1) is CPL, is not too complicated. Below, we present a proof

which can be summarized as follows. First, for each subproblem j ∈ k+1 corresponding to the
jth linear piece of the previous CPL function E∗

k+1∶n(tk+1), we explain that the corners (or possibly
edges) of the feasible region that may represent the optimal solution yield a CPL function in tk
when inserted into the objective function E(j)

k∶n(tk, qk). Second, we argue that since the boundary
of the feasible region evolves in a continuous way as a function of tk and since also E(j)

k∶n(tk, qk) is
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continuous in tk and qk, any infinitesimal change in tk can only induce an infinitesimal change in
the location of the optimal solution. Third, we conclude from these observations that Ẽ(j)

k∶n(tk) is
CPL for each subproblem j ∈ k+1. This means that the final function E∗

k∶n(tk) is the maximum of
multiple CPL functions. Therefore, E∗

k∶n(tk) itself must be piecewise linear. The additional fact that
E∗

k∶n(tk) is continuous is an immediate consequence of the continuity of the whole optimization
problem and the connection between the subproblems.

As in the first backward step, the equality constraints (31) for qk allow us to reformulate the
optimization problem in terms of the two variables q00

k and q10
k . Specifically, for each subproblem

j ∈ k+1, we can use the equality constraints to write the objective function E(j)
k∶n(tk, qk) cf. (35) in

terms of q00
k and q10

k as

E(j)
k∶n(tk, qk) = *̃(j)k '00

k (tk)q00
k + *̃(j)k '10

k (tk)q10
k + +̃(j)

k , (A6)

where

*̃(j)k = 2 + b(j)
k+1((

0|0
k − (0|1

k )

and

+̃(j)
k = f (xk = 1) − f (xk = 0|y) + a(j)

k+1 + b(j)
k+1(f

00
k + f 10

k )(0|1
k .

The corresponding constraints for q00
k and q10

k read

max
{

0,
f 00
k − '01

k (tk)
'00

k (tk)

}
≤ q00

k ≤ min
{

1,
f 00
k

'00
k (tk)

}
, (A7)

max
{

0,
f 10
k − '11

k (tk)
'10

k (tk)

}
≤ q10

k ≤ min
{

1,
f 10
k

'10
k (tk)

}
, (A8)

and

tB(j)
k+1 ≤ ((0|0

k − (0|1
k )'00

k (tk)q00
k + ((0|0

k − (0|1
k )'10

k (tk)q10
k + (f 00

k + f 10
k )(0|1

k ≤ tB(j+1)
k+1 . (A9)

If for some fixed tk ∈ [tmin
k , tmax

k ] we consider a coordinate system with q00
k along the first axis

and q10
k along the second axis, we see that the feasible region formed by the constraints (A7)–(A9)

is a polygon with maximally six corners. The region is enclosed by two lines in the q00
k -direction

cf. (A7), two lines in the q10
k -direction cf. (A8), and two parallel lines with a negative slope of

−'00
k (tk)∕'10

k (tk) cf. (A9). Figure 8 illustrates some of the possible shapes that the region can
take. Clearly, the optimal solution is located in a corner of the feasible region, possibly along a
whole edge.

To understand where along the boundary of the feasible region the optimal solution is located,
we note from (A6) that if *̃(j)k is positive, then E(j)

k∶n(tk, qk) is maximized when q00
k and q10

k are as
large as possible, while if *̃(j)k is negative, then E(j)

k∶n(tk, qk) is maximized when q00
k and q10

k are as
small as possible. For simplicity, we assume in the following that the feasible region is nonempty.
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F I G U R E 8 Illustrations of some possible shapes for the feasible regions of the linear programs at the
intermediate steps of the backward recursion. The polygons are drawn in a coordinate system with q00

k in the
horizontal direction and q10

k in the vertical direction

First, consider the case with *̃(j)k positive. Then, we need to check whether or not the upper of the
two lines corresponding to the two inequality constraints in (A9) forms an edge of the feasible
region. If this line does not form an edge of the feasible region, see, for example, the shapes in
Figure 8a,c,e; we observe that the point (q00( )

k (tk), q10( )
k (tk)), where

q00( )
k (tk) = min

{
1,

f 00
k

'00
k (tk)

}
, (A10)

q10( )
k (tk) = min

{
1,

f 10
k

'10
k (tk)

}
, (A11)

is a corner. Moreover, this corner represents the optimal solution, since q00
k and q10

k jointly take
their maximal values in this point. Now, if we insert the functions in (A10) and (A11) into the
objective function E(j)

k∶n(tk, qk), we obtain a CPL function in tk. Thereby, given that (A10) and (A11)
represent a corner of the feasible region for all values of tk, the resulting function Ẽ(j)

k∶n(tk) is CPL
in tk. If, on the other hand, the upper of the two lines of the constraints (A9) does represent an
edge of the feasible region, see for instance Figure 8b,d,f, g; then this whole edge represents the
optimal solution. That is, any point along the edge is optimal. This result is due to that the slope of
the objective function and the slope of the line for this edge are equal, from which it follows that
the objective function takes the same maximal value anywhere along the edge. Now, if we insert
(q00

k , q10
k )-coordinates located on the edge into the objective function E(j)

k∶n(tk, qk), we get a function
which is constant, and hence CPL, in tk. Thereby, given that the edge is part of the feasible region
for all values of tk, the resulting function Ẽ(j)

k∶n(tk) is CPL in tk. Next, consider the case with *̃(j)k
negative. Then, the situation is equivalent to the case with *̃(j)k positive, but we need to consider
the lower part of the feasible region instead of the upper. That is, we need to check whether or not
the lower of the two lines corresponding to the constraints in (A9) forms an edge of the feasible
region. If this line does not represent an edge, see, for example, Figure 8a,d,f; the optimal solution
is found in the lower left corner point, (q00()

k (tk), q10()
k (tk)), where

q00()
k (tk) = max

{
0,

f 00
k − '01

k (tk)
'00

k (tk)

}
, (A12)

q10()
k (tk) = max

{
0,

f 10
k − '11

k (tk)
'10

k (tk)

}
. (A13)
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Again, if we insert the functions in (A12) and (A13) into the objective function E(j)
k∶n(tk, qk),

we obtain a CPL function in tk. Thereby, given that (A12) and (A13) represent a corner of the
feasible region for all values of tk, the resulting function Ẽ(j)

k∶n(tk) is CPL in tk. If, on the other hand,
the lower of the two lines of the constraints (A9) does represent an edge of the feasible region,
then this edge also represents the optimal solution since the objective function takes the same
maximal value anywhere along this edge. Now, if we insert (q00

k , q10
k )-coordinates located on the

optimal edge into the objective function E(j)
k∶n(tk, qk), we obtain a function which is constant, and

hence CPL, in tk. Thereby, given that the edge is part of the feasible region for all values of tk, the
resulting function Ẽ(j)

k∶n(tk) is CPL in tk.
Because the objective function, E(j)

k∶n(tk, qk), as well as all the constraints (A7)–(A9) are contin-
uous in tk and qk, it follows that any infinitesimal change &tk in tk can only induce corresponding
infinitesimal changes in the shape of the feasible region and the value of the objective function.
Hence, the optimal solution at any tk-value t′k must be located in the same corner (or along the
same edge) as the optimal solution at the tk-value t′k + &tk. We note, however, that it is possible that
the infinitesimal change &tk may have added or deleted an edge from the region. In this case, it is
possible that a single corner represented the optimal solution at t′k, while a whole edge represents
the optimal solution at t′k + &tk, or vice versa. However, this will not cause any discontinuities in
the resulting function Ẽ(j)

k∶n(tk) because of the continuity of the optimization problem as a whole.
We have already showed that the coordinates describing the evolution of every potentially opti-
mal corner (or edge) as a function of tk return a CPL function in tk. Hence, we understand that
Ẽ(j)

k∶n(tk) must be CPL.
Finally, we obtain the function E∗

k∶n(tk) by taking the maximum of the Ẽ(j)
k∶n(tk)’s. Taking the

maximum of a set of continuous piecewise linear functions necessarily produces another piece-
wise linear, but not necessarily a continuous, function. However, it is obvious without a further
proof that E∗

k∶n(tk) must be continuous, since all functions in the whole optimization problem are
continuous. Thereby, we can conclude that E∗

k∶n(tk) is CPL.
According to numerical experiments, it seems that q∗00

k (tk) and q∗10
k (tk) are analytically given

as q∗00
k (tk) = q00( )

k (tk) and q∗10
k (tk) = q10( )

k (tk), just as in the first backward iteration. However,
we have not proved this result, since it is not really important for our application. Yet, we note
that if this result can be proved, the computation of q(x̃|x, y) becomes particularly simple.

Computing the breakpoints of E∗
k∶n(tk)

This section concerns computation of the breakpoints of the CPL function E∗
k∶n(tk) at each inter-

mediate iteration 2≤ k < n of the backward recursion. The breakpoints of E∗
k∶n(tk) should be

computed prior to solving the corresponding parametric piecewise linear program in order to
avoid numerical computation of E∗

k∶n(tk) on a grid of tk-values. However, it can in some cases be
a bit cumbersome and technical to compute the explicit set of tk-values representing the break-
points of E∗

k∶n(tk). Fortunately, it is an easier task to compute a slightly larger set of tk-values
representing potential breakpoints of E∗

k∶n(tk), which includes all of the actual breakpoints. For
convenience, we denote in the following the set of actual breakpoints by Ak and the larger set
of potential breakpoints by A′

k ⊃ Ak. Having computed the set A′
k, we can solve our parametric

piecewise linear program for the tk-values in this set, and afterward go through the values of the
resulting function E∗

k∶n(tk) to check which of the elements in A′
k that represent actual breakpoints

that must be stored in Ak, and which points that can be omitted.
As explained in Section A1, the function E∗

n(tn) of the first backward iteration consists of maxi-
mally three linear pieces. Hence it has maximally two breakpoints in addition to its two endpoints
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tmin
n and tmax

n . Since at each intermediate iteration we consider a more complicated parametric
piecewise linear program, additional breakpoints can occur in E∗

k∶n(tk), with the number of possi-
ble breakpoints for E∗

k∶n(tk) increasing with the number of breakpoints for E∗
k+1∶n(tk) computed at

the previous step of the recursion. To compute the set A′
k of potential breakpoints for E∗

k∶n(tk), we
need to check for which tk-values the corners of the rectangular region formed by the constraints
in (A7) and (A8) intersect with the lines of the constraints in (A9) for each j ∈ k+1. Each tk-value
that causes such an intersection must be included in the set A′

k. To understand why, consider a
subproblem j ∈ k+1, and assume *̃(j)k is positive. Furthermore, suppose that for all tk ∈ [tmin

k , tmax
k ]

the feasible region has a rectangular shape as shown in Figure 8a, meaning that the region is only
enclosed by the constraints (A7) and (A8), while the extra constraints in (A9) do not contribute
to the shape of the region. Then, from Section A2, we know that the optimal solution lies in the
upper right corner given by (A10) and (A11) for all tk. Moreover, we know that Ẽ(j)

k∶n(tk) is CPL
with breakpoints corresponding to the breakpoints of (A10) and (A11). Now, suppose instead that
after some specific value t′k the shape of the feasible region changes from a rectangular shape as in
Figure 8a to a pentagon shape as in Figure 8f. This means that the upper of the two lines formed
by the extra constraints in (A9) at the tk-value t′k intersects with the upper right corner point given
by (A10) and (A11), while for tk > t′k the constraints results in that an extra edge is added to the
feasible region. From Section A2, we then know that for tk > t′k this extra edge represents the
optimal solution and the value of the objective function remains constant as a function of tk > t′k.
Thereby, we understand that a breakpoint may occur in Ẽ(j)

k∶n(tk), and hence possibly in E∗
k∶n(tk),

at the tk-value t′k. If the feasible region were to evolve in a different way than the one considered
here, similar arguments can be formulated. In A′

k, we must also include the breakpoints of the
functions in (A10)–(A13), that is, the breakpoints of the functions describing the coordinates for
the lower left and upper right corner points of the feasible region when the constraints (A9) do
not contribute.


