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Abstract
Arctic ungulates are experiencing the most rapid climate warming on Earth. While 
concerns have been raised that more frequent icing events may cause die-offs, and 
earlier springs may generate a trophic mismatch in phenology, the effects of warming 
autumns have been largely neglected. We used 25 years of individual-based data from 
a growing population of wild Svalbard reindeer, to test how warmer autumns enhance 
population growth. Delayed plant senescence had no effect, but a six-week delay in 
snow-onset (the observed data range) was estimated to increase late winter body 
mass by 10%. Because average late winter body mass explains 90% of the variation 
in population growth rates, such a delay in winter-onset would enable a population 
growth of r = 0.20, sufficient to counteract all but the most extreme icing events. This 
study provides novel mechanistic insights into the consequences of climate change 
for Arctic herbivores, highlighting the positive impact of warming autumns on popu-
lation viability, offsetting the impacts of harsher winters. Thus, the future for Arctic 
herbivores facing climate change may be brighter than the prevailing view.

This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd

www.wileyonlinelibrary.com/journal/gcb
mailto:
https://orcid.org/0000-0003-4804-2253
https://orcid.org/0000-0001-8763-4361
mailto:leif.egil.loe@nmbu.no
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.15458&domain=pdf&date_stamp=2020-12-15


2  |    LOE Et aL.

1  |  INTRODUC TION

Climate change affects ecosystems and animal populations world-
wide via altered temperature and precipitation regimes (Scheffers 
et al., 2016), causing changes in the timing, duration and character-
istics of seasons. Phenological changes due to climate warming, in 
particular the earlier onset of spring, have received much attention 
because of a high incidence of asynchrony across trophic levels 
(Kharouba et al., 2018), where mismatches may have population 
and evolutionary consequences (Visser & Gienapp, 2019), and  
potentially disrupt the function, persistence and resilience of eco-
systems (Thackeray et al., 2010). In contrast, the effects of delays 
in the onset of autumn remain understudied (Gallinat et al., 2015), 
despite their potential importance for population dynamics in a wide 
range of species (mammalian herbivores: Hurley et al., 2014; insect 
herbivores: Ekholm et al., 2019; birds: Therrien et al., 2017; bears: 
Hertel et al., 2018) and ecosystem processes (Piao et al., 2019).

The Arctic is the most rapidly warming biome on the planet 
(IPCC, 2019; Serreze & Barry, 2011). Summers have become longer, 
partly driven by the reduction in sea ice cover, which has increased 
the heat flux from the ocean to atmosphere in autumn and early 
winter (Vihma, 2014). In recent decades, sea ice formation in the 
autumn has been delayed more than spring break-up (Bhatt et al., 
2017). Despite the changing seasons, the role of autumn warming 
has received surprisingly little attention given the rapid lengthening 
of an extremely short growing season (Ernakovich et al., 2014), and 
shortening of a correspondingly long snow-covered season.

Delayed autumns are likely to enhance the nutritional landscape 
of herbivores (Hurley et al., 2014; Parker et al., 2009), which may ex-
plain why warmer autumns are associated with higher body mass of 
Svalbard reindeer Rangifer tarandus platyrhynchus (Albon et al., 2017). 
Yet, the focus, both in the scientific literature and in media, has been 
on the negative effects of winter warming in the Arctic, because 
conditions are often harsher for resident herbivores due to more ex-
treme ‘rain-on-snow’ (ROS) events which may encase forage in ice 
(Putkonen & Roe, 2003; Rennert et al., 2009). These icing events 
can cause starvation and result in catastrophic die-offs (Gunn, 1995; 
Hansen et al., 2011; Kohler & Aanes, 2004) and, more generally, ROS 
reduces population growth rates (Hansen et al., 2013, 2019), through 
its impact on late winter body mass (Albon et al., 2017). Concerns 
have even been raised that increased winter severity under current 
and future global warming can pose a threat to the long-term viability 
of caribou and reindeer (Mallory & Boyce, 2018; Vors & Boyce, 2009).

Thus, an important but under-studied question is whether 
warmer autumns, leading to shorter winters, can counteract the ef-
fect of harsher winters in the Arctic. Furthermore, the causal mech-
anism driving the strong association between autumn weather and 
body mass development remains unknown (Albon et al., 2017). One 

possible explanation is that higher autumn temperatures delay the 
senescence of plants allowing herbivores to access higher-quality 
forage later into the year (Marchand et al., 2004). Alternatively,  
delayed onset of snow may allow a higher intake of forage (i.e. more 
days of unrestricted forage access), regardless of the nutritional 
quality of those food resources. Either way, given the absence of 
predation, Svalbard reindeer are very likely regulated ‘bottom-up’, 
through their interaction with their food supply.

In this study, we used late winter body mass data of known-
aged female Svalbard reindeer from 1995 to 2019, to test the two 
hypotheses posited above to explain the positive relationship be-
tween higher autumn temperatures and increased late winter body 
mass. Specifically, we predicted that variation in late winter body 
mass was explained by an index of plant senescence (derived from 
the Enhanced Vegetation Index—EVI: Huete et al., 2002), if the rela-
tionship between autumn temperature and body mass was driven by 
prolonged access to high-quality forage (Livensperger et al., 2019). 
Alternatively, or in addition, late winter body mass could be ex-
plained by onset of snow, if the relationship was driven by availability 
of forage later into the autumn, rather than strictly by forage quality 
(i.e. a shortening of winter). We extracted environmental informa-
tion from the habitat used by a subset of GPS individuals, based on 
detailed location data (hereafter referred to as tracks), to test the 
relative importance of shared environmental effects (weather) and 
conditions on individual tracks. Upon identifying snow-onset as an 
important autumn variable, we analysed the relative importance of 
snow-onset and ROS for the full 25-year dataset to evaluate if later 
autumns counteract the effect of more frequent icy winters, which 
could explain the observed population increase. By evaluating the 
effects of changes in autumn snow and forage conditions on Arctic 
ungulates, our study contributes to our understanding of the impact 
of continued climate warming on these keystone species.

2  |  MATERIAL S AND METHODS

2.1  |  Study area, vegetation and climate

The study area is located in Nordenskiöld Land, Svalbard (78°N, 
15°E; 150 km2). Although the mountains rise above 1000 m, there 
is little vegetation above 250 m, vascular plants mostly grow inter-
spersed in moss carpets and except in the valley bottoms do not 
generally reach >35% ground cover (Van der Wal & Stien, 2014). The 
plant growing season typically lasts from the start of June to mid-
August, but with large year-to-year variation caused by variation in 
temperature (Vickers et al., 2016).

Mean daily July temperature was 6.7 °C ± 0.9 SE in the first 
two decades of the study, and then increased (Albon et al., 2017). 
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Over the same period (1994–2014), mean daily January temperature 
was −10.7°C ± 5.1 SE, and, also increased significantly (Albon et al., 
2017). Snow typically covers most of the ground from October to 
June, with some windblown ridges remaining partially snow-free 
year-round (Hansen et al., 2010). The onset of winter snow fall has 
been delayed more than spring-melt has advanced (van Pelt et al., 
2016): changes associated with the greater warming in autumn than 
spring, or summer (Figure 1).

2.2  |  Reindeer

The non-migratory Svalbard reindeer live in small groups often con-
sisting of two to five individuals (Loe et al., 2006) in an almost pred-
ator-free environment (only seven documented kills made by polar 
bears [Ursus maritimus] including two in our study area; Derocher 
et al., 2000). Movement decisions are likely made at the individual 
level and driven primarily by the search for food (Loe et al., 2016), 
although with greater snowmobile traffic associated with increasing 
winter tourism, there could be locally increased disturbance from 
some feeding sites (Reimers et al., 2003; Tyler, 1991).

Female reindeer were initially captured and marked as calves 
in April (Omsjø et al., 2009), hereafter referred to as ‘late winter’. 
They were subsequently recaptured and weighed in late winter 
throughout their lives (Figure 2a). Between 1995 and 2019, 2875 
captures were made of 839 known age individuals. Since 2009, a 
subset of 65 adults (3–13 years of age, mean 7.3) have been tagged 
with GPS-collars (Vectronic Aerospace), giving positions in the land-
scape at 2- or 8-h intervals (total 152 reindeer-years). The capturing 
followed ethical requirements in Norway and was approved by the 

F I G U R E  1  2010-2019 increase in monthly mean temperature 
above climate standard period 1961–1990. Temperatures are 
measured at Svalbard airport, 20 km from the study area

F I G U R E  2  Time series of (a) late winter body mass of Svalbard 
reindeer in the Colesdalen-Semmeldalen-Reindalen study area  
(b) population size estimated by capture-recapture methods,  
(c) October degree-days at Svalbard airport, (d) amount of rain-on-
snow (mm) falling from November through March, and (e) day of 
year of snow-onset date in autumn. Note that the year provided on 
the x-axis are aligned according to impact on reindeer April mass in 
year t. Autumn effects are from year t − 1 and ROS from November 
t − 1 through March year t
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Norwegian Food Safety Authority (permit number 17/237024) and 
the Governor of Svalbard (permit number 16/01632-9).

Reindeer population size was estimated using capture–mark– 
recapture methods from both the April capture and count data from 
a survey conducted over c. 10 days in late July/early August each 
year (Lee et al., 2015). The population estimate includes females and 
calves of both sexes. During the 25-year study, the population has 
increased markedly varying from a low of 768 in summer 1996 to a 
high of 2266 in summer 2018 (Figure 2b). Although some animals 
are shot each year in Colesdalen and Reindalen by local hunters 
(mean = 30 females and calves per year), this is too few to substan-
tially affect the population growth.

2.3  |  Environmental data

We extracted daily temperature and precipitation from a nearby 
(20 km) weather station (Svalbard airport; http://www.eklima.met.
no). Following Albon et al. (2017), we calculated annual measures of 
October degree-days (sum of all positive daily mean temperatures; 
Figure 2c) and ROS (defined as the sum of precipitation in mm that 
fell on days with mean air temperature above 0°C; Figure 2d) from 
November through March. We utilized a spatially distributed snow-
evolution modelling system, SnowModel (Liston & Elder, 2006), to 
simulate snow depth (m) and snow density (kg/m3) within grid incre-
ments of 100 × 100 m at daily intervals. In situ snow depth and den-
sity were extracted for all reindeer GPS-locations, ensuring matching 
of reindeer use and snow characteristics in space and time (i.e. along 
the track). For each individual's autumn track, we (1) calculated the 
snow-water-equivalent (SWE) depth (mm; SWE = snow depth × snow 
density/water density, and converted that from m to mm); (2) iden-
tified the day-of-year (DOY; 1–365 or 366 for leap years) when the 
SWE exceeded 15 mm for the first time in autumn (with typical snow 
densities, this equates to snow approximately 5 cm deep); and (3) de-
fined this DOY to be the ‘snow-onset’ date (Figure 2e). The threshold 
value of 15 mm was selected because the resulting snow-onset dates 
centred around mid-October (median: 19 October, 95% quantiles 
22 Sep–7 Nov), thus matching the period of the previously reported 
October degree-day effect (Albon et al., 2017).

Ground ice thickness was measured at 128 fixed locations once, 
each April between 2010 and 2019. Continuous spatial ice thick-
ness maps were developed by creating nearest-neighbour polygons 
(Hijmans et al., 2017). Exploration of ground temperature data sub-
stantiates ground ice developing in January and early February in most 
years; ground ice thickness established during this time remains con-
sistent through March and April (Loe et al., 2016). Therefore, we felt 
that our application of April ice measurements to previous time periods 
was appropriate. As a measure of individual variation in exposure to 
ground ice, we extracted estimated ground ice thickness on individual 
tracks from February 1st through March 31 to capture the typical time 
period during which animals are exposed to this phenomenon.

Finally, to represent plant senescence, we used the autumn in-
flection point for the annual EVI curve (the point where the function 

changes from being convex to concave) following the protocol de-
veloped by Beck et al. (2006; the point A in their figure 3). Across 
all years, the median date for the autumn inflection point was 21st 
September (95% quantiles 7 Sep–7 Oct).

2.4  |  Statistical analyses

We conducted all statistical analyses using R software version 3.6.2 
(R Core Team, 2019). We first focussed on the subset of GPS-animals, 
because it enabled detailed assessment on the effect of on-track en-
vironment, and also, to tease apart between and within-year effects 
of the environment on late winter body mass. Upon finding evidence 
for strong between-year effects of autumn and winter conditions in 
step 1, we tested the relative importance of autumn and winter ef-
fects on body mass for all marked adult females collected 1995–2019.

2.4.1  |  Models using the subset of GPS-individuals 
in years 2010–2019

Prior to model selection, we adjusted the response variable, late 
winter body mass of GPS-tagged females, by removing the effects 
of cost-of-reproduction (i.e. calf at heel the year before; two-level 
factor variable), age (as a spline function to capture growth and 
senescence of individuals) and capture date (linear negative effect) 
in a generalized additive model (Wood, 2006). In the process of re-
moving these three effects and generating an adjusted mass value, 
we took advantage of the larger dataset of all adult female body 
masses (including non-GPS-tagged individuals), because these 
well-known effects are more robustly estimated for a large dataset 
spanning more years and individuals. Effect sizes of these three 
covariates are presented as part of the global model using all indi-
viduals (see description below and Table 2).

Using adjusted mass of GPS-tagged females as the response 
variable, we subjected a limited set of candidate variables (see 
Table S1 for a correlation matrix) to model selection and used 
the corrected Akaike information criterion (AICc) to rank mod-
els (Burnham & Anderson, 2002). We tested a combination of 
population-level variables (population size, ROS and October 
degree-days) and individual-level variables extracted along GPS-
tracks of individual reindeer (plant senescence, autumn snow- 
onset and ground ice thickness). Note that population size and 
the autumn covariates (plant senescence date, snow-onset and 
October degree-days) reflect values occurring immediately be-
fore the effect of winter covariates (ROS and ground ice) and the 
response variable, late winter body mass, because we are evalu-
ating the influence of autumn in year t − 1, on subsequent body 
mass in year t. ROS, ground ice thickness, October degree-days 
and snow-onset were all log+1 transformed to reduce heterosce-
dasticity, before they were scaled (to zero mean and unit variance) 
to facilitate comparison of effect sizes. To account for repeated 
observations across years, we included individual as a random 

http://www.eklima.met.no
http://www.eklima.met.no
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factor. All models were fitted using the function ‘lmer’ in the lme4 
R package (Bates et al., 2015) and predicted confidence intervals 
were estimated using ‘predictInterval’ in the ‘merTools’ R package 
(Knowles & Frederick, 2019). Correspondence between predicted 
and observed fit was plotted for the final model (Figure S1).

Because the selected model of late winter body mass variation of 
GPS-tagged females included only variables with individual-level infor-
mation (snow-onset and ground ice thickness), we could tease apart 
between-year vs. within-year variation in a subsequent step. We com-
puted annual means, and individual deviations from annual means, for 
snow-onset and ground ice thickness. We then tested their relative 
contribution in explaining variation in body mass in a mixed model 
using year as random effect, following van de Pol and Wright (2009).

2.4.2  |  Models using all individuals in years  
1995–2019

Finally, we tested the effect of snow-onset on late winter body 
mass for the extended dataset of all marked animals dating back 
to 1995, using an additive mixed-effects model fitted with the 
function ‘gamm4’, using unadjusted body mass as response vari-
able and individual and year as random intercepts. Predictor vari-
ables consisted of cost-of-reproduction, age, capture date and 
ROS (as specified above). Additionally, the effects of October 
degree-days and snow-onset were fitted in two competing mod-
els and the most parsimonious model selected based on AIC 
(Burnham & Anderson, 2002). A main aim was to compare the 
relative effects of later snow-onset and harsher winters (ROS) on 
body mass. We based the comparison on the scaled effect sizes 
which estimate the change in one mass unit when increasing the 
predictor variable by one SD unit. To obtain estimates of snow-
onset from years pre-dating GPS-tagging (1995–2009), we pooled 
all GPS-data sampled between 15 September and 15 November 
from all available years (2010–2019) and all marked reindeer. Our 
assumption was that this is a better representation of locations 
likely to be used in autumn, in years where GPS-data were not 
available, instead of extracting snow from the entire study area 
that would also include unused areas. After extracting the snow-
onset date on all these locations we computed the annual means, 
which was used as the estimate of annual snow-onset.

3  |  RESULTS

The 10-year subset of GPS-tagged individuals enabled the extrac-
tion of plant phenology, snow-onset and empirically measured 
ground ice on the maximum level of detail (individual tracks) and was 
used to test the plant senescence versus snow-onset hypothesis. 
The positive effect of October degree-days, and negative effects of 
ROS and population density (Albon et al., 2017; Hansen et al., 2019) 
on late winter body mass was significant also for this 10-year subset 
(M1; Table 1). Variation in the apparent date of plant senescence did TA
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not improve model fit, neither when fitted additionally, nor when 
replacing October degree-days (M2; Table 1). However, replacing 
October degree-days and ROS with on-track measures of snow-on-
set and ground ice thickness resulted in a more parsimonious model 
(ΔAICc = −3.6; M4; Table 1), in support of the snow-onset hypoth-
esis. Because both snow-onset and ground ice are spatially explicit 
variables and show individual variation within year, we teased apart 
the relative effect sizes of between-year and within-year (individual 
tracks) variation on body mass. For both ground ice and snow-on-
set, the effect on late winter body mass occurred mainly through 
between-year variation, with effect sizes of within-year varia-
tion close to zero (Figure 3), implying that the positive effect of a  
delayed winter and negative effect of an icy winter is shared among 
all individuals in a given year.

Upon identifying snow-onset as the key autumn variable in 
the subset of GPS-individuals, we tested this effect for the full 
dataset spanning 25 years. Females had higher body mass in years 
following later snow-onset (scaled effect size = 1.92; SE = 0.51) 
and replacing the effect of October degree-days (see Albon et al., 
2017) with snow-onset resulted in a more parsimonious model 
of late winter body mass (ΔAIC = −4.8). For this full dataset, the 
positive effect of late snow-onset more than offset the negative 
effect of ROS on mass (scaled effect size = −1.49, SE = 0.53; see 
Table 2 for the full model). A 6-week delay in snow-onset, that is, 
the approximate data range, enhanced late winter body mass by 
around 5 kg (Figure 4).

F I G U R E  3  Separating the effects of ground ice and snow-onset 
into between-year and within-year effects on variation in late 
winter body mass of 65 GPS-marked female Svalbard reindeer 
from 2009 to 2019, by using a mixed effects variance partitioning 
approach. Error bars are 95% confidence limits

F I G U R E  4  Late winter body mass (April) of adult female 
Svalbard reindeer (adjusted for variation in age, cost-of-
reproduction, capture-date and rain-on-snow) as a function of 
snow-onset date (in day of year; DOY) in the years 1995–2019. The 
solid black line represents the predicted regression line and the 
polygon represents the 95 CI. Grey dots are individual body mass 
values (n = 2875), black large points are annual means and black 
bars are ±1 SD of the mean

TA B L E  2  Variation in late winter body mass (kg) of female 
Svalbard reindeer captured between 1995 and 2019 (including non-
GPS-tagged individuals; n = 2875) as a function of age, capture date, 
cost of reproduction, snow-onset and rain-on-snow (ROS). Age was 
fitted using a spline function and individual and year was included 
as random intercepts. Snow-onset and ROS were scaled after log-
transformation to a mean of zero and unit variance allowing direct 
comparison of the effects of warmer autumns with delayed snow-
onset versus harsher winters with higher ROS. Adjusted R2 was 0.86

Parametric 
coefficients Estimate SE T p

Intercept 48.5 0.871 55.65 <0.001

Capture date (days) −0.096 0.0150 −6.42 <0.001

Calf last year (Yes vs.  
No)

−3.55 0.246 −14.41 <0.001

Calf last year 
(Unknown vs. No)

−1.76 0.20 −8.98 <0.001

Snow-onset (log-
transformed and 
scaled)

1.92 0.51 3.75 <0.001

ROS (mm; log-
transformed and 
scaled)

−1.49 0.53 −2.83 0.005

Population size (log-
transformed and 
scaled)

−0.614 0.574 −1.07 0.285

Random effects (intercepts) Variance SD

Individual 6.89 2.62

Year 5.87 2.42

Approximate significance of 
smooth terms edf F p

Age (years) 8.48 2411 <0.001
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4  |  DISCUSSION

An extended snow-free season is a key element of climate change in 
many temperate and Arctic ecosystems (Piao et al., 2019). Combining 
rare long-term life-history data of an Arctic herbivore with a spa-
tially explicit snow modelling approach, we demonstrated that the 
positive effect of delayed snow on late winter body mass, to a large 
extent counteracts the negative effects of harsher, icy winters and 
higher population densities. Our study enhances the mechanistic 
understanding of the ecological impacts of climate change (Morales 
et al., 2010; Tomkiewicz et al., 2010).

In contrast to many other Rangifer populations (Mallory & 
Boyce, 2018; Vors & Boyce, 2009), Svalbard reindeer are increas-
ing throughout the archipelago (Le Moullec et al., 2019). However, 
in contrast to many Rangifer populations, especially in North 
America, there is virtually no predation because there are no 
wolves on Svalbard, and polar bear attacks are rare (Derocher et al., 
2000). Also, hunting accounts for a mere 2% reduction in numbers. 
Thus, the most likely explanation for the population growth is that 
a delay in snow-onset provides a mechanism by which a warmer 
climate could enhance the plane of nutrition. Predicted late win-
ter body mass increased by 5 kg (10%) over the observed 6-week 
variation in snow-onset, an effect size which would raise the pop-
ulation growth rate (r) by 0.20 (figure 6 in Albon et al., 2017). Our 
finding aligns with research in other ecosystems and suggests that 
the length of winter is a key driver of fitness in ungulates. For in-
stance, Grøtan et al. (2005) found that population growth of roe 
deer (Capreolus capreolus) in Norway was higher in years with low 
snow depth in early winter, while Hurley et al. (2014) found that 
body mass of mule deer (Odocoileus hemionus) fawns in Idaho, USA 
was more strongly influenced by autumn foraging conditions than 
by spring foraging conditions. Our study suggests that the quantity 
of available forage that remains accessible later in the season plays 
a key role in allowing ungulates to accrue additional body mass 
prior to the forage-limited winter months.

Mechanistically, the effect of snow-onset on herbivore fitness 
has been explained by a range of factors. In prey species, off-season 
snow may reduce survival because of poorer camouflage (snowshoe 
hare Lepus americanus; Zimova et al., 2016) or reduced ability to 
escape predators in deep snow (Lendrum et al., 2018; Nilsen et al., 
2009). For the predator-free environment of Svalbard reindeer, 
reduced late winter body mass could either result from increased 
energy expenditure or from reductions in energy intake. The added 
energy cost of moving in up to 30 cm of snow (the highest mean 
SnowModel snow depth estimate on any October GPS-track) is ex-
pected to result in only a marginal increase in locomotion cost in 
Rangifer spp (Fancy & White, 1987). Instead, the positive effect of 
delayed snow-onset was most likely associated with higher energy 
intake afforded by extended periods of snow-free grazing, which 
increased late winter body mass in Svalbard reindeer.

The between-year variation in snow-onset and ground ice 
thickness explained much more of the variation in body mass than 
did the conditions experienced on individual tracks (within-year 

variation). First, snow accumulation ultimately results from synoptic- 
scale weather conditions (Sturm et al., 1995), so while snow distri-
butions and properties across our study area varied in space and 
time, the relative annual characteristics (e.g. snow-rich or snow-
poor year, early or late snow-onset) were widespread, meaning 
that animals experienced comparable winter conditions in a given 
year. In simple terms, it was probably impossible to entirely es-
cape from an early winter within our relatively small study area 
of 150 km2. The annual variation in snow-onset was also very 
large, spanning 6 weeks over our 25-year study period. Second, 
behavioural responses to local spatial variation in early snow accu-
mulation (i.e. moving from areas with early to areas with late snow 
accumulation) may be shared by most individuals, further dimin-
ishing individual variation. Previous research has demonstrated a 
shared rapid behavioural response to ROS-events in an earlier set 
of GPS-tagged individuals that were included in this study (Loe 
et al., 2016). Most population studies do not use GPS-collars and 
must rely on environmental data at the study area level and not 
from individual tracks. Our study suggests that, as with other 
meteorological measurements, environmental data at the study 
area level may often suffice as explanatory variables of individual 
fitness.

Remotely sensed vegetation indices have been found to cor-
relate well with ground-truth measures of green-up and peak 
vegetation productivity (Pettorelli et al., 2011), including in polar 
environments (Karlsen et al., 2018; Santin-Janin et al., 2009). 
However, to our knowledge, no one has explicitly investigated 
remotely sensed vegetation senescence (browning) in the Arctic. 
Conditional that our EVI-based measurements provided a reliable 
metric, annual variation in plant senescence did not affect late 
winter body mass in the period EVI was available (autumn 2000 
onwards). Autumn warming effects on plant senescence are highly 
complex. In temperate trees, it has recently been shown that the 
effect is nonlinear and that night-time warming delayed plant se-
nescence while daytime warming advanced senescence by causing 
drought (Chen et al., 2020). Also, it is possible that autumn warm-
ing results in more efficient nutrient resorption in plants (Estiarte 
& Penuelas, 2015), retarding the decline in quality of the forage 
remaining available on winter pastures. Furthermore, timing of au-
tumn phenology is in some cases positively correlated with spring 
phenology (Keenan & Richardson, 2015; Liu et al., 2016), but in 
many other cases, ambiguous (Menzel et al., 2006). For the ‘bot-
tom-up’ regulated Svalbard reindeer, it is likely that large changes 
in plant phenology will ultimately impact on body mass and popu-
lation dynamics, but the directionality of the putative impact re-
quires research on the link between warming and phenology of key 
forage plants. More generally, our findings support the importance 
of ecologists studying the impacts of climate change in the autumn 
window (Gallinat et al., 2015).

In conclusion, we have demonstrated that warmer autumns com-
pensate for winters being warmer and icier. Although most North-
American caribou populations are sampled at multi-year intervals, 
hampering detailed studies of population dynamics, it is likely that 
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many of the apparent long-term population declines attributed 
to climate change are caused, at least partly, by factors related to 
change in human land use (Uboni et al., 2016), rather than climate 
change per se. In addition to the short-term gain of higher plant 
productivity, we anticipate two other positive warming effects. 
First, vegetation communities are predicted to change from moss- 
dominated, to graminoid-dominated swards, where the reduction 
in moss layer reinforces soil warming and mineralization, to further 
increase productivity (Ravolainen et al., 2020). This process is driven 
partly by positive feedback mechanisms from the greater density of 
reindeer (Van der Wal & Brooker, 2004). Second, a positive effect of 
continued winter warming may arise when reaching the temperature 
threshold where ROS results in exposure of pastures, rather than 
ground ice formation (Tyler, 2010). Thus, the future for Arctic herbi-
vores facing climate change may be brighter than the prevailing view 
in the scientific literature (Mallory & Boyce, 2018; Vors & Boyce, 
2009) and media.
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