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Conventional superconductors respond to external magnetic fields by generating diamagnetic screening
currents. However, theoretical work has shown that one can engineer systems where the screening current is
paramagnetic, causing them to attract magnetic flux—a prediction that has recently been experimentally
verified. In contrast to previous studies, we show that this effect can be realized in simple superconductor-
normal-metal structures with no special properties, using only a simple voltage bias to drive the system out
of equilibrium. This is of fundamental interest, since it opens up a new avenue of research, and at the same
time highlights how one can realize paramagnetic Meissner effects without having odd-frequency states at
the Fermi level. Moreover, a voltage-tunable electromagnetic response in such a simple system may be
interesting for future device design.
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Introduction.—The defining properties of conventional
superconductors [1,2] are their perfect conductance of
electric currents and the Meissner effect, whereby dissipa-
tionless electric currents screen magnetic fields. Both
properties arise due to a coherent condensate of electron
pairs (Cooper pairs) which exhibits spontaneous symmetry
breaking, and it is of fundamental interest to understand
both in depth.
In bulk superconductors, the Meissner effect is diamag-

netic, meaning that the screening currents try to expel
magnetic flux. The story is more complicated in proximity
structures, where superconductors and nonsuperconductors
are combined to engineer novel device functionality.
Diamagnetic screening in such structures has been inves-
tigated [3,4], and several interesting impurity effects have
been found [5,6]. A cylindrical geometry can increase the
diamagnetic so-called overscreening [7]. At ultralow temper-
atures, a reentrant effect was observed experimentally [8],
and even an overall paramagnetic response in thermal
equilibrium [9]. Other systems with unexpected properties
are superconductor/ferromagnet (S=F) devices, where
Cooper pairs can leak from S to F. The Cooper pairs of a
conventional superconductor are singlet even-frequency
pairs, i.e., they carry nonet spin and respect time-permutation
symmetry.Once they leak intoF, someof these are converted
into triplet odd-frequency pairs, which have fundamentally
different properties [10–17]. One example is that odd-
frequency pairs can give rise to a paramagnetic Meissner
effect, where the screening currents attract magnetic flux
[17–23]. This effect has been predicted for a variety of S=F
setups, and has been confirmed experimentally via muon-
rotation experiments [24]. It has also been predicted in, e.g.,

metals with repulsive electron–electron interactions [25] and
at the interfaces of d-wave superconductors [26,27]. In these
systems, the effect is caused by midgap states which are
linked to odd-frequency pairing [17].
We consider a fundamentally different way of realizing

the paramagnetic effect: by driving a superconductor-
normal-metal (S=N) bilayer out of equilibrium via a voltage
bias. Our suggested setup is visualized in Fig. 1, and
explained in detail in what follows. The mechanism is again
related to odd-frequency superconductivity; wewill see that
an essential ingredient is large subgap peaks in the normal-
metal density of states (DOS), and these appear at energies
where odd-frequency pairs dominate [17,28]. However,
our setup does not require that these reside precisely at the
Fermi level (midgap states). Instead, the Meissner response
in our setup is determined by the DOS at a voltage-
controlled finite energy. Our predictions can be verified
via the same setup as Ref. [24]. The excited distribution
decays over the inelastic scattering length, which can be
several micrometers at low temperatures [29]. This is the
limiting factor for the lateral dimensions of the device.
A related idea was discussed in Refs. [30,31], where

they suggested that a microwave-irradiated superconductor
might become paramagnetic. However, they concluded that
the paramagnetic state would be unstable, and could
therefore not be realized. In contrast, our system avoids
this instability by realizing the paramagnetic effect in a
proximity system instead of a bulk system. Moreover,
voltage control may be more desirable than microwave
control for potential applications.
A similar setup to ours was investigated in Ref. [32],

where they calculated the Meissner response of S=N
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structures driven out of equilibrium using a voltage-
controlled quasiparticle injector. However, they did not
find a paramagnetic response, and the main reason appears
to be their parameters. We analytically predict the effect for
clean materials, thick superconductors, and low temper-
atures. In contrast, Ref. [32] considered dirty materials, thin
superconductors, and high temperatures. This suppresses
the subgap peaks in the DOS which are essential for a
paramagnetic response.
Motivation.—Consider a superconducting system that is

exposed to a weak magnetic field B ¼ ∇ × A, which we
describe via a vector potential A. For concreteness, let us
consider a geometry where a thin film at 0 < z < d is
subjected to a magnetic field B ∼ ey, which we describe via
the vector potential A ¼ AðzÞex. This is identical to the

experimental geometry employed in Ref. [24]. In the clean
and nonlocal limits, the linear-response screening current is
given by [3,33]

J ¼ −KhAiz ¼ −
K
d

Z
d

0

dz0Aðz0Þ: ð1Þ

Here, we have introduced the screening kernel

K ¼ 1

3
e2v2F

�
NF −

Z þ∞

−∞
dεNðεÞ

�
−
∂f
∂ε

��
; ð2Þ

where ε is the quasiparticle energy, fðεÞ the distribution
function, NðεÞ the DOS, NF the Fermi-level DOS in the
nonsuperconducting state, vF the Fermi velocity, and e the
electron charge. Note that J is not a function of position z in
the nonlocal limit. These equations are derived in standard
textbooks on superconductivity [1,34], and have previously
been used to, e.g., predict paramagnetic effects in materials
with repulsive electron interactions [25], d-wave super-
conductors [26], and microwave-irradiated superconduc-
tors [30,31]. We provide a simple and compact derivation
of this equation within the quasiclassical formalism in the
Supplemental Material [35].
Many well-known results for Meissner effects can be

seen directly from Eqs. (1) and (2). In equilibrium, the
distribution has a Fermi-Dirac form, which at low temper-
atures reduces to a step function fðεÞ ≈ θð−εÞ. Substituted
into Eq. (2), this produces the simplified equation
K ∼ NF − Nð0Þ. For a BCS superconductor, there is a
gap around the Fermi level ε ¼ 0, and Nð0Þ ¼ 0 causes
K > 0. This produces a diamagnetic response. On the other
hand, in systems with odd-frequency pairing, one can have
a zero-energy peak in the DOS, and Nð0Þ > NF causes
K < 0. This produces a paramagnetic response.
We are interested in a new way to realize the para-

magnetic Meissner effect: by manipulating the distribution
fðεÞ instead of the DOS NðεÞ. Before we discuss its exact
physical origin, let us just assume that one can induce a
two-step Fermi-Dirac-like distribution, which at low tem-
peratures reduces to

fðεÞ ≈ ½θðþΩ − εÞ þ θð−Ω − εÞ�=2: ð3Þ

We note that the effect ofΩ is essentially to excite electrons
in the range 0 < ε < Ω and holes in the range −Ω < ε < 0,
resulting in an excited energy mode or increased effective
temperature. Substituting the above into Eq. (2), and using
the electron-hole symmetry of the DOS NðþεÞ ¼ Nð−εÞ,
we get

K ¼ 1

3
e2v2F½NF − NðΩÞ�: ð4Þ

In other words, if we can tune Ω, it is now sufficient
that NðεÞ > NF at some energy ε for us to realize a

FIG. 1. Top figure: Suggested experimental setup. The left end
features a quasiparticle injector (gray). The voltage source forces
an electric current Jext through a normal-metal wire, causing an
excess of electrons and holes to accumulate in the middle of the
wire. This drives a diffusion Hqp of excess quasiparticles onto an
adjacent normal-metal film (yellow), thus driving it out of
equilibrium. Note that no charge is injected into the yellow
device by the voltage source: the gray wire connects two
reservoirs at �V=2, so its midpoint has zero net charge accu-
mulation. The diffusion Hqp thus consists of an equal number of
electrons and holes. This film is also proximitized by a conven-
tional superconductor underneath (purple), causing Andreev
bound states to form there. The combination results in a para-
magnetic effect, whereby an external magnetic field B0 is
enhanced by the screening currents in the normal metal. Since
whether the film reacts dia- or paramagnetically depends on the
voltage, the device can be tuned between these Meissner
responses in situ. Bottom figure: cross-sectional view of the
device during operation, showing how the magnetic field B is
deformed by the screening currents Jscreen. The normal metal can
have a paramagnetic response, whereby it attracts magnetic flux.
The superconductor underneath remains diamagnetic, and there-
fore expels magnetic flux.
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paramagnetic state. For example, consider the DOS of a
BCS superconductor,

NSðεÞ ¼ NF
jεjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2 − Δ2
0

p θðjεj − Δ0Þ: ð5Þ

Clearly, the step function indicates that NSðΩÞ ¼ 0 within
the gap jΩj < Δ0, resulting in a purely diamagnetic
response there. However, if we can increase its value to
jΩj > Δ0, suddenly we find that NSðΩÞ ≫ NF due to the
BCS coherence peaks, resulting in a strong paramagnetic
response instead. It would therefore be interesting if we
could find a system whereΩ could be tuned in situ, making
it possible to actively toggle between diamagnetic and
paramagnetic Meissner responses. Note that we use Δ to
denote a general superconducting gap, while Δ0 denotes
the gap of a bulk superconductor at zero temperature. In
Eq. (5), we therefore haveΔ ¼ Δ0, but in general proximity
systems we can get a position-dependent gap satisfying
0 ≤ ΔðzÞ ≤ Δ0.
Model system.—One way to realize the distribution in

Eq. (3) is to voltage bias a normal-metal wire. At low
temperatures, the distributions at the two ends of the
voltage source are just f�ðεÞ ≈ θð�eV=2 − εÞ, which we
use as our boundary conditions. If the wire is short
compared to the inelastic scattering length of the material,
which diverges at low temperatures [43], the Boltzmann
equation for the distribution reduces to a Laplace equation
∇2f ¼ 0 [36,37]. Near the center of the wire, the solution is
just f ¼ ðfþ þ f−Þ=2. In other words, this allows us to
realize Eq. (3), where Ω ¼ eV=2 is a voltage-tunable
control parameter. This result is robust to the presence
of superconductivity and for resistive interfaces [38,39].
If the center of such a wire is now connected to a different

material, the wire functions as a quasiparticle injector.
Essentially, the electrons and holes that are excited in the
normal-metal wire diffuse into the adjacent material, thus
inducing the distribution f ¼ ðfþ þ f−Þ=2 there as well.
This is just one way to excite a distribution like in Eq. (3).
Other alternatives that may be experimentally relevant
include applying the voltage bias directly to the other
material via tunneling contacts [38], or using microwaves
to excite the quasiparticles [30,31].We also note that Eq. (3)
has previously been shown to induce other interesting effects
in superconducting systems [6,38,39,44–54], including a
superconducting transistor [6,44–47], and a loophole in the
Chandrasekhar-Clogston limit [38].
If we could simply connect the quasiparticle injector

to a BCS superconductor, the combination of Eqs. (4) and
(5) should have a paramagnetic response for voltages
eV=2 > Δ0. Unfortunately, for such large voltages, the
superconducting state becomes energetically unfavoura-
ble [38,39,53,54], a phenomenon that is intimately related
to Chandrasekhar-Clogston physics [38,54–56]. The solu-
tion is to consider S=N proximity systems, where we can

produce peaks with NðεÞ > NF at subgap energies
ε < Δ0=2. Note that these peaks correspond to energies
where odd-frequency pairing dominates [17,28]. In this
way, we can induce a paramagnetic response in N, while
S remains diamagnetic and stable. Figure 1 visualizes the
experimental setup suggested based on the arguments above.
We takeS to lie in−∞ < z < 0, andN to lie in 0 < z < d.

We emphasize that the interface at z ¼ d borders to vacuum.
The system is assumed to be infinite and translation invariant
in the xy plane and the effect of the quasiparticle injector has
been included by having a two-step distribution function in
the N layer. Furthermore, to make analytical progress, we
assume that there is a negligible inverse proximity effect so
that ΔðzÞ ≈ Δ0θð−zÞ, that the S=N interface at z ¼ 0 is
completely transparent, that the normal-metal/vacuum inter-
face at z ¼ d is specularly reflecting, and that the materials
are clean. In these limits, the DOS in S is just given by
Eq. (5). Assuming Δ ≈ Δ0 in S even outside of equilibrium
should be reasonable: at low temperatures, this is known to
hold for voltages eV=2 up to∼70% of the bulk gapΔ0 [39],
and we are only interested in subgap voltages here. InN, the
DOS has Andreev bound states below the gap, which for
ε ≪ Δ0 produces the DOS

NNðεÞ ¼ NFðε=2εAÞψ1ðbε=2εA þ 1=2c þ 1=2Þ; ð6Þ

where the Andreev energy εA ¼ πvF=4d and ψ1 is the
trigamma function (see Fig. 2). Technically, Eq. (6) is only
valid for ε ≥ 0, but the negative-energy solution follows
trivially from the symmetry NNðþεÞ ¼ NNð−εÞ. We pro-
vide a complete derivation of this result within the quasi-
classical formalism in the Supplemental Material [35]. This
result was originally derived via the Bogoliubov–de Gennes
formalism in Ref. [40]; their results are identical to ours in
the limit ε ≪ Δ0 if we use the series representation of the
polygamma function. It is worth noting that for ε < εA, the
result is just linear: NNðεÞ ¼ NFðπ2=4Þðε=εAÞ.

FIG. 2. Density of states in the normal metal. The energy is
normalized to the Andreev energy, which for, e.g., d ¼ 3ξ would
be εA ≈ Δ0=4. Note that the peaks where N > NF correspond to
energies where odd-frequency Cooper pairs dominate in the
normal metal [17,28].
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Let us now consider the screening kernels in this
proximity system using Eq. (4) with Ω ¼ eV=2 and the
densities of states derived above. In S, we have already
established that NSðΩÞ ¼ 0 yields a purely diamagnetic
response. This is usually described via the magnetic
penetration depth λ ¼ 1=

ffiffiffiffiffiffi
KS

p
,

KS ¼
1

λ2
¼ 1

3
e2v2FNF: ð7Þ

Equation (6) gives a more interesting expression,

KN ¼ 1

λ2
½1 − ðV=2VAÞψ1ðbV=2VA þ 1=2c þ 1=2Þ�; ð8Þ

where we reused the penetration depth λ defined in S, and
introduced the Andreev voltage VA ¼ 2εA=e ¼ πvF=2ed.
Now that we have an expression for the screening

kernels, we can solve the Maxwell equation −∇2A ¼ J
together with the screening equation J ¼ −KhAiz. As
boundary conditions, we have ∇ × AðdÞ ¼ B0 at the vac-
uum boundary, and Að−∞Þ ¼ 0 deep inside S. We have
considered a geometry where we can write A ¼ AðzÞex,
which means that the applied magnetic field B0 ¼ A0ðdÞey.
As an approximation, one might also set Að0Þ ≈ 0 to make
analytical progress, meaning that S is assumed to perfectly
screen fields near its interface. Thus, the equations for the
gauge field inside N can be written

A00ðzÞ ¼ KNhAiz;
A0ðdÞ ¼ B0;

Að0Þ ¼ 0: ð9Þ

The solution to the differential equation is AðzÞ ¼ az2 þ
bzþ c with a ¼ KNhAiz=2. The boundary conditions then
provide the constraints b ¼ B0 − 2ad and c ¼ 0. Together,
these yield

AðzÞ ¼ KNhAizðz2=2 − zdÞ þ B0z: ð10Þ

We can then calculate the average hAiz. Using the moments
hziz ¼ d=2 and hz2iz ¼ d2=3, and solving for hAiz, we find

hAiz ¼
B0d=2

1þ KNd2=3
: ð11Þ

We now go back to Eq. (10) to calculate the magnetic field

BðzÞ ¼ A0ðzÞ ¼ B0 þ KNhAizðz − dÞ: ð12Þ

Substituting Eq. (11) into this result, we obtain an analytical
result for the magnetic field inside N:

BðzÞ ¼ B0

�
1þ KNðz − dÞðd=2Þ

1þ KNd2=3

�
: ð13Þ

The net magnetic field change ΔB ¼ Bð0Þ − BðdÞ induced
by the screening currents can then be calculated as

ΔB
B0

¼ −
KNd2=2

1þ KNd2=3
: ð14Þ

To obtain the final results, we just have to substitute in
Eq. (8)

ΔB
B0

¼ −
ρ=2

λ2=d2 þ ρ=3
;

ρðVÞ ¼ 1 − ðV=2VAÞψ1ðbV=2VA þ 1=2c þ 1=2Þ: ð15Þ

This provides us with a simple analytical result for the linear
responseΔB of a clean proximitizedmetal to an applied field
B0. The result is expressed in terms of the Andreev voltage
VA ¼ πvF=2ed. This can be put into more familiar terms by
introducing the superconducting coherence length ξ ¼
vF=Δ0; for instance, an N of length d ¼ 3ξ would yield
VA ≈ Δ0=2e. This magnetic shift as a function of voltage is
shown in Fig. 3.
Discussion.—Our main result is Eq. (15), which provides

a simple analytical solution for the magnetic field shift ΔB
that occurs for a given external magnetic field B0 and
voltage V. These predictions can be tested using a muon-
rotation experiment to directly probe the local magnetic
field at different points inside the device, using a similar
setup as in Ref. [24].
The striking results are shown in Fig. 3, wherewe see that

for sufficiently thick normal metals, ΔB appears to diverge
as the voltage V approaches the Andreev voltage VA. Since
we considered a completely clean material at zero temper-
ature, there is an abrupt transition between paramagnetism
and diamagnetism as the voltage is increased beyond the
Andreev voltage. In realistic systems, such sharp features are

FIG. 3. Magnetic shift in the normal metal as a function of the
applied voltage. Different curves correspond to different thick-
nesses d of the normal metal. Note that when d > λ, the para-
magnetic effect produces a field B0 þ ΔB many times larger than
the applied field B0.
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smeared by finite temperature, elastic scattering, and inelas-
tic scattering. We provide some numerical results and
discussion showing these effects of nonideal systems in
the Supplemental Material [35].
The small ratio of the injector-N contact area to the full

area of the N film allows one to ignore the injection process
itself when considering the N=S bilayer. Since we assume a
mean free path much larger than the size of the N film, the
injected electrons spread over the whole film. We have also
assumed perfect transparency at the S=N interface. Since a
finite interface resistance can be expected to dampen the
resonance peaks in the DOS of N, we would expect the
paramagnetic Meissner effect to become weaker for opaque
interfaces. We also note that in regions where ΔB ≫ B0, a
linear-response calculation is not technically valid any-
more, and a full nonlinear-response calculation is warranted
if one requires quantitatively rigorous results. Nevertheless,
we would expect our results to remain qualitatively valid in
such systems, and investigating this rigorously would be an
interesting avenue for further research. For instance, to
determine whether a spontaneous magnetic flux can appear
or not would require a nonlinear-response calculation [25].
Another interesting proposition for further research would
be to investigate whether a paramagnetic Meissner effect
can be induced in dirty systems as well. While no such
effect was detected in Ref. [32], they focused on high
temperatures and thin superconductors, while the opposite
limit may be the relevant one.
Conclusion.—Using a linear-response calculation, we

have demonstrated how nonequilibrium effects can give
rise to a paramagnetic Meissner response. Moreover, we
have provided a specific experimental proposal where the
magnetic response can be controlled in situ via an applied
voltage. In addition to being relevant to the fundamental
study of the Meissner effect and odd-frequency super-
conductivity, our results demonstrate a way to control the
interaction between superconducting structures and mag-
netic fields via nonequilibrium effects which may be
relevant to future superconducting device design.
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