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Abstract. We construct two tightly secure signature schemes based on
the computational Diffie-Hellman (CDH) and factoring assumptions in
the random oracle model. Our schemes are proven secure in the multi-user
setting, and their security loss is constant and does not depend on the
number of users or signing queries. They are the first schemes that achieve
this based on standard search assumptions, as all existing schemes we are
aware of are either based on stronger decisional assumptions, or proven
tightly secure in the less realistic single-user setting. Under a concrete
estimation, in a truly large scale, the cost of our CDH-based scheme is
about half of Schnorr and DSA (in terms of signature size and running
time for signing).
Keywords. Digital signature, tight reduction, multi-user security, search
assumption.

1 Introduction

In modern public-key cryptography, a scheme is usually proposed together with
a reduction-based security analysis. In such an analysis, a security model is
defined to capture the security required in the real world. Then a reduction is
constructed to show that if there is an adversary can break the security of the
scheme, then the reduction can use this adversary to break some well-studied
hardness assumption.

This analysis provides not only a mathematically proof for the security of
a scheme, but also guidelines for theoretically sound parameter setup, namely,
setting up parameters for a scheme so that it can offer the proven security
guarantee.
Concrete Security. To deploy a scheme in a theoretically sound manner, we
need to know the scheme’s concrete security. The reduction-based analysis offers
a way to do so. More precisely, it establishes the following relation between the
success ratio ΓA of an adversary A (which is defined as the quotient of its success
probability and running time) attacking scheme S, and that of a reduction B
breaking the underlying assumption P :

ΓA ≤ L · ΓB. (1)
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The parameter L is called the security loss. Equation (1) guides us in deriving pa-
rameters that can provably guarantee a k-bit security for the scheme1. According
to the current cryptanalysis results, we derive suitable parameters for the hard-
ness problem P to compensate the security loss L and have ΓA ≤ L · ΓB ≤ 2−k.
Thus a smaller L can give us shorter key lengths, and potentially more efficient
schemes.

We call a reduction (or the scheme’s security) tight if L is a small constant. Re-
cently, a relaxed notion, called almost tight security, was considered in [18,25,26],
where L could be a linear or logarithmic function of the security parameter.
In this paper, we only consider fully tight security. In non-tight schemes, the
security loss can depend on the scale of applications, for instance the number of
users and/or issued signatures for digital signatures. To provide the same level of
security guarantee, one needs to reasonably estimate the scale of an application
and derive larger parameters to compensate for the security loss. Such an increase
in parameters will inevitably slow down computations.

Thus, a large amount of attention has recently been drawn towards research
on tight security, which has spanned from theoretical (such as [31,13,4]) to more
practical aspects (such as [27,20], and covered different primitives including
(identity-based) encryption [25,18,14], digital signatures [28,31,30,26,27] and non-
interactive zero-knowledge proofs [3,2].

In this paper we focus on digital signatures, which has numerous applications
both on its own, and as a basic building block for advanced cryptographic
protocols (for instance, TLS).
Multi-User Security. The classical security model (or definition) for signature
schemes is unforgeability against chosen-message attacks (UF-CMA) [29], where
an adversary attempts to forge a signature on a fresh message after it adaptively
asks for signatures on multiple different messages. The UF-CMA security is defined
in the single-user setting, namely, an adversary can only see the public key of a
single user. We believe this is less desirable in practice.

In practice, (independent) public keys of multiple users are exposed to an
adversary. Presumably, it will output a valid forgery under one of these public
keys in a meaningful way after asking multiple signatures. This is captured by
the UF-CMA security in the multi-user setting (denoted by MU-UF-CMA).

Although the MU-UF-CMA security is more desirable than the UF-CMA
security, most signature schemes are typically proven in the UF-CMA model. We
believe there are two main reasons: Firstly, adversaries in the UF-CMA model
have less capabilities and thus the security proof in this model is easier; secondly,
asymptotically speaking, the UF-CMA security implies MU-UF-CMA according
to a generic reduction in [24]. However, this is problematic when we consider
concrete security and derive theoretically sound parameters for the scheme in
practice, since the generic reduction in [24] is not tight.

Concretely, it loses a factor of `, which is the number of users: It only proves
that attacking a scheme in the MU-UF-CMA model with ` users does not increase
1 Usually, “k-bit security” means that there is no adversary can break the scheme with
success ratio larger than 2−k (see discussions in [7,17]).
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the success ratio of the adversary by more than a factor of `, compared to attacking
the same scheme in the UF-CMA model. Thus, via this non-tight generic reduction,
a signature scheme with k-bit security guarantee in the UF-CMA model does not
gives us the same level of provable security guarantee in the MU-UF-CMA model.

As a concrete example, we reasonably assume ` := 230 (about 1 billion)2. For
a signature scheme, if the best adversary attacking it in the UF-CMA model has
success ratio ΓU := 2−80 (i.e. 80-bit UF-CMA security), then the argument in [24]
shows that the best adversary against the same scheme in the MU-UF-CMA model
has success ratio ΓMU = 230 · 2−80 = 2−50, which is not a safe margin for current
large-scale applications. To provide the same level of security in the MU-UF-CMA
model, we need to increase the key length accordingly to compensate the security
loss, which is ` := 230 in the above case.
Difficulty: Tight Security from Search Assumptions. In recent years,
several signature schemes with tight security in the single-user setting (aka.
UF-CMA security) have been created, such as [28,31,30,18,14,13,34,26]. The
schemes in [4,38,27,44,43] are the only ones we know of that have tight se-
curity in the multi-user setting (aka. MU-UF-CMA security). We note that [43]
is based on the one-more CDH assumption, which is a non-static interactive
assumption in pairing groups.

Furthermore, most of all the known tightly secure schemes (in both single-user
and multi-user settings) require decisional assumptions. Inherently, decisional
assumptions seem crucial for tight security. Different to the non-tight and guessing
proof strategy, decisional assumptions and their random self-reducibility give
security reductions the advantage to switch the distribution of signatures to
random “at once”, and then argue that even for an unbounded adversary there
is no chance to win. This advantage cannot be easily achieved by search assump-
tions (such as the Computational Diffie-Hellman (CDH) and Factoring (FAC)
assumptions), although search assumptions are more standard and reliable. For
instance, the CDH assumption is more standard and weaker than the Decisional
Diffie-Hellman assumption. It is similar for the FAC and the decisional Phi-Hiding
assumption used in [34].

There are a few notable exceptions including the Rabin-William scheme [11]
and the Micali-Reyzin scheme [40,6] based on FAC, the “selector bit” variants of
RSA-PSS [35], and the Chevallier-Mames [19] and its later abstraction by Kiltz,
Loss, and Pan [37]. However, their tight security is established in the less realistic
single-user setting.

As a result of the above discussion, we raise the question of whether it
is possible to construct an efficient and tightly MU-UF-CMA-secure signature
scheme based on standard search assumptions. We are interested in schemes
in the random oracle model [8]. In the random oracle model, a cryptographic
hash function is modeled as an oracle that responds a random value in its
output domain for each unique query. Although there is some limitation with the
2 Nowadays many applications involve billions of users. For instance, Facebook
has about 2 billion active users daily, according to https://about.fb.com/
company-info/.

https://about.fb.com/company-info/
https://about.fb.com/company-info/
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model [16], security proofs in the model still give strong evidence of the scheme’s
practical security. Moreover, schemes in the random oracle model are usually
more efficient than their counterparts in the standard model.

1.1 Our Contribution: Multi-User Security from Search
Assumptions

We construct two tightly secure signature schemes from standard (static) search
assumptions (namely, CDH and FAC) in the multi-user setting. The security is
proven in the random oracle model and the security loss is the constant 1. Our
schemes improve upon those from the framework of Kiltz, Loss, and Pan at
Asiacrypt 2017 [37] in the sense that our schemes have tight multi-user security.
Asymptotically, our schemes have the same number of elements in a signature
as [37], but, since our schemes are tightly secure in the multi-user setting, at
the concrete security level our elements will be shorter and our schemes will
have smaller signature size and achieve more efficient computation, in particular,
for settings with large number of users. In fact, our CDH-based scheme is the
Chevallier-Mames scheme [19]. Another interpretation of it is that we give a new
tight security proof of the original Chevallier-Mames scheme in the multi-user
setting.

In the following efficiency analysis, it shows that our CDH-based scheme
is more efficient than Schnorr and DSA in a truly large setting. Moreover, our
CDH-based scheme can offer offline pre-computation to speed up signing, namely,
most of the work can be done offline before receiving the signing messages.
Efficiency Analysis. We compare the asymptotic efficiency of known tightly
secure signature schemes (in both single-user and multi-user settings) in the
random oracle model in Table 1. We are precise about the security loss from the
single-user to the multi-user setting. The multi-user security of some schemes
is established by the non-tight reduction in [24] and thus we need to choose a
larger group to compensate the non-trivial security loss. We will mark those
group sizes with G`. We also include the two famous signature schemes Schnorr
and DSA in our comparison. By the optimal security proof in [38], the security
loss of Schnorr is 12Qh, where Qh is the number of hash queries an adversary
makes, and the loss of the Katz-Wang scheme (KW) [28] is 4. We note a recent
work on Schnorr in the (idealized) generic group model (GGM) [15]. While a
proof in the GGM certainly provides certain degree of confidence in the scheme’s
security, its scope is rather limited, for instance, it does not capture algorithms
that make use of the representation of the group. Thus, we do not include their
result in our comparison. The provable security result for DSA [36] is established
by [22] in the single-user setting, and we believe it is hard to prove it tightly in
the multi-user setting. We will give more details about this in Appendix A.

To provide the concrete efficiency comparison, we estimate the schemes
based on the DLOG and Diffie-Hellman assumptions in Table 2. We consider
exponentiation as the dominating factor in the running time cost. We use elliptic
curves when estimating the schemes, as group elements have a much shorter
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Scheme Approx. Size Off-line Exp. On-line Exp. Loss Ass. Search?
Schnorr [42] n+ |p| 1 0 12Qh DLOG 3

DSA [36] 2|p| 1 0 `Qh DLOG 3

KW [28,38] n+ |p| 2 0 4 DDH 7

GJKW [28] G` + n+ |p| 1 2 ` CDH 3

FSCDH [37] G` + n+ |p| 1 2 ` CDH 3

OFCDH [37] G` + n+ |p| 3 0 ` CDH 3

AFLT [1] 2n+ c 1 0 ` DSDL 7

FSSCDH [37] G` + 2n+ c 1 2 ` SCDH 3

OFSCDH [37] G` + 2n+ c 3 0 ` SCDH 3

GJ [27] 2G+ n+ 4|p| 0 7 3 CDH&DDH 7

WLGSZ [43] 2G′ + 1 1 1 1 OMCDH (3)
Ours (Fig. 2) G+ n+ |p| 3 0 1 CDH 3

MR [40, §4.3] n+ |N | 1 1 ` FAC 3

BR [9] n+ |N | 0 0 ` FAC 3

RSA-FDH [33] |N | 0 1 ` ΦH 7

FSFAC [37] G` + n+ |N | 1 2 ` FAC 3

Ours (Fig. 4) G+ n+ |N | 1 2 1 FAC 3

Table 1. Comparison between some known signature schemes in the random oracle
model. Top: schemes in a cyclic group G of prime order p. Bottom: schemes over ZN

for composite N . We detail the security loss of the schemes in the multi-user setting
with ` users. Qh is the maximum number of hash queries an adversary can make.
Elements of G have bit length G and n denotes the security parameter. We take the
security loss into account, and, for non-tight schemes, we write their group size as G`.
G′ denotes the bit length of a pairing-friendly group. c < |p| is a parameter for the
short Diffie-Hellman assumptions. We count the numbers of offline (“Off-line Exp.”)
and online exponentiation (“On-line Exp.”) during signing, respectively.

representation there than over finite fields. To have a k-bit secure DLOG problem,
we need to choose a 2k-bit elliptic curve, according to the baby-step giant-step
algorithm. As in [27], we assume k + 1 bits to represent a k-bit elliptic curve
group element, and k bits to represent the corresponding discrete log. Thus, we
need 257 bits to represent a group element of the NIST P256 curve.

For the running time in Table 2, similar to [27], we run “openssl speed
ecdh” on a computer with a 2.4 GHz Quad-Core Intel Core i5 CPU, 16 GB RAM
and MacOS 10.15.3. This command offers speed estimation for one operation
(namely, exponentiation in the language of this paper) for curves NIST P192
(takes 0.3 milliseconds), P224 (0.4ms), P256 (0.4ms), P384 (1.0ms), P521 (2.2ms),
K233 (2.6ms), B163 (1.3ms) and so on. We use NIST P-curves for estimation, as
they are more efficient than the other curves providing the same security level.
We note that the security of Schnorr and DSA is dependent on Qh, which is
problematic, since an adversary can compute as many hash values as he would
like offline. Computing hash functions is very cheap, and for instance, one can
easily compute 229 (≈0.5 billion) SHA-512 of 8192 byte messages per second with
a normal PC. This is estimated by running “openssl speed sha”. Thus, Qh can
be much larger than the number of users. According to [38], Qh is estimated
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in the range between 240 to 280. We consider a setting with roughly a billion
users (` := 230), and take DSA as an example to show how we estimate: For
(`,Qh) = (230, 240) and 128-bit security, the security loss is 270, and we require a
198-bit secure DLOG. Thus we need a 396-bit curve, and we suggest NIST P521
as the appropriate choice, for which one signing (which requires 1 operation)
takes 2.2ms.

We note that the WLGSZ scheme uses Type 1 (symmetric) pairings [23].
Usually, in pairing-friendly groups, the group size is larger and operations (in
particular, computing pairings) are less efficient than those in groups without
pairings. For 128-bit security of WLGSZ, we should choose a Supersingular Curve
over GF (21223), where 1 group operation takes 2.57ms, and 1 pairing takes
19.00ms.3 We also put the estimation of it in Table 2.

Scheme Qh Curve Sig. Size (in bits) Sig. Time (in milliseconds)
Schnorr [42] 240 P384 768 1.0
Schnorr [42] 280 P521 1024 2.2
DSA [36] 240 P521 1024 2.2
DSA [36] 280 P521 1024 2.2
GJKW [28] – P384 1153 3.0
FSCDH [37] – P384 1153 3.0
OFCDH [37] – P384 1153 3.0
WLGSZ [43] – SS 2447 5.14
Ours (Fig. 2) – P256 769 1.2
KW [28,38] – P256 512 0.4
GJ [27] – P256 1794 2.8

Table 2. Concrete efficiency estimation of some known signature schemes based on the
DLOG-related assumptions for 128-bit security and 230 (≈ 1 billion) users. Top: schemes
using search assumptions. Bottom: schemes using decisional assumptions. For the same
security level, we focus on the signature size (“Sig. Size”) and running time for signing
(“Sig. Time”). ‘–’ means the security of the corresponding scheme is independent of
that parameter.

Interpretation and Open Problems. According to Table 2, for a medium
scale ((`,Qh) = (230, 240)), our scheme based on CDH (cf. PF-OFCDH in Figure 2)
is comparable to the Schnorr signature, but for a truly large scale ((`,Qh) =
(230, 280)) our scheme is significantly more efficient than other schemes based on
search assumptions (either DLOG or CDH).

It is worth mentioning that the KW scheme achieves the best efficiency at the
cost of using a stronger assumption (DDH). CDH is more standard and weaker
than DDH. For instance, in symmetric pairing groups, CDH is still hard, while
DDH is easy. In fact, for certain primes, CDH is equivalent to DLOG [21,39].

3 Taken from the benchmarks in https://github.com/miracl/MIRACL/blob/master/
docs/miracl-explained/benchmarks.md (2020-03-26)

https://github.com/miracl/MIRACL/blob/master/docs/miracl-explained/benchmarks.md
https://github.com/miracl/MIRACL/blob/master/docs/miracl-explained/benchmarks.md


Signatures with Tight Multi-User Security from Search Assumptions 7

Our schemes live in harmony with the existing impossibility results about
tightness [5,41,20]. Firstly, our schemes are not unique with respect to [5, Def-
inition 1] and [41, Definition 1], and thus we do not contradict their results.
Secondly, Cohn-Gordon et al.[20] showed the tightness impossibility result about
authenticated key exchange protocols in a model where an adversary is allowed to
corrupt a user’s secret key, while our model does not allow signing key corruptions.
This is a disadvantage of our schemes, since if one combines our schemes with the
framework in [27] to construct an AKE protocol, the resulting protocol cannot
provide any tight forward secrecy. We leave improving our schemes to allow
signing key corruptions in a tight manner as the main open problem.

Another natural open problem is to further improve the efficiency of our
schemes.
Our Approach. We provide a brief overview of our technique. The starting
point of our work is the work of Kiltz, Loss, and Pan (KLP) [37], which tightly
transforms a five-move identification (ID) scheme into a signature scheme with
programmable random oracles in the single-user setting. Before them, a similar
work of Kiltz, Masny, and Pan (KMP) [38] has been done for the three-move
identification schemes in the multi-user setting, and the Schnorr signature is a
well-known example from this transformation. In particular, the KMP framework
proves that the UF-KOA security implies the MU-UF-CMA security for signatures
(cf. Appendix B and Theorem 3.2 in [38]). The UF-KOA security is the same as
UF-CMA, except that an adversary cannot ask any signing queries. Naturally,
one is tempted to transform the single-user security (UF-KOA) to multi-user
(MU-UF-CMA) one for KLP signatures by using the KMP method.

In the “UF-KOA → MU-UF-CMA” for SIG[ID] 4, the security reduction gets
a public key pk from the UF-KOA challenger. By the random self-reducibility
(RSR) of ID, the reduction can randomize pk and derive public keys (pk1, ..., pk`),
which is given to the adversary A against the MU-UF-CMA security. Due to some
technical reason, only about half of (pk1, ..., pk`) are computed using pk and
the other half are generated honestly. Signing queries from A is generated by
the honest-verifier zero-knowledge property of ID and programming the random
oracle. To correctly map a MU-UF-CMA forgery to a UF-KOA one, the RSR
property of ID allows, given the randomization trapdoor τi (for a 1 ≤ i ≤ `),
a valid transcript t1 := (R, h, s) under pki to be turned into another valid
transcript t2 := (R, h, s∗) under pk . The reduction crucially requires that only
the value s∗ in t2 is different to s in t1.

The five-move ID schemes in KLP only have a weaker form of RSR, namely,
given τi, a valid transcript (R1, h1, R2 , h2, s) under pki can be converted to
another valid transcript (R1, h1, R

′
2 , h2, s

∗) under pk for R2 6= R′2, since R2

is dependent of pki. Unfortunately, this is problematic for converting a valid
MU-UF-CMA forgery to a UF-KOA one: For a valid UF-KOA forgery under pk, h2
has to be equal to H2(R′2,m) and, in particular, H2 is simulated by the UF-KOA
4 SIG[ID] is the signature scheme constructed from a three-move identification scheme

ID via the Fiat-Shamir transformation.
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challenger; However, before the reduction receives A’s MU-UF-CMA forgery of
messagem under public key pki, h2 has been defined as h2 := H2(R2,m) in one of
the random oracle queries. Clearly, H2(R2,m) 6= H2(R′2,m) with overwhelming
probability. Our solution is to apply the key-prefixing technique [12] and append
R1 and a public key in H2, namely, we compute H2(R1, R2, pk,m) in our schemes.
By knowing this additional information, we can carefully modify how the reduction
queries the random oracle H2, and make sure that h2 = H2(R1, R

′
2, pk,m). We

will refer to Sections 3 and 4 for technical details.

2 Preliminaries

Notations. For a prime p, Zp is the residual ring Z/pZ. If A is a set, then
a $← A denotes picking a from A according to the uniform distribution. All our
algorithms are probabilistic polynomial time, otherwise, we will state it. Let A
be an algorithm and a $← A(b) denote the output of A on input b.

We present our definitions and proofs in the code-based game-playing frame-
work [10,14]. A game G contains procedures Initialize and Finalize, and some
additional procedures P1, . . . ,Pn, which are defined in pseudo-code. Initially
all variables in a game are undefined (denoted by ⊥) and all sets are empty
(denoted by ∅). An adversary A is executed in game G (denoted by GA) if it
first calls Initialize, obtaining its output. Next, it may make arbitrary queries
to Pi (according to their specification), again obtaining their output. Finally, it
makes one single call to Finalize(·) and stops. We use GA ⇒ d to denote that
G outputs d after interacting with A, and d is the output of Finalize.

2.1 The Computational Diffie-Hellman Assumption

A cyclic group generator G is an algorithm that takes 1n as input (where n is
the security parameter), and returns a n-bit prime p, a cyclic group G of order p,
and a generator of the group. We denote the output as (p, g,G) $← G(1n).

Definition 1 (Computational Diffie-Hellman Assumption). The compu-
tational Diffie-Hellman problem CDH is (t, ε)-hard with respect to G if for all
adversaries A running in time at most t, we have

Pr[Z = gxy | par := (p, g,G) $← G(1n);x, y $← Zp, Z ← A(par, gx, gy)] ≤ ε.

2.2 The Factoring Assumption

The factoring-based scheme in [37] is proven based on the CDH assumption in the
group of signed quadratic residues [32], which is tightly implied by the factoring
assumption. We recall necessary background here. It is almost verbatim to the
definitions in Section 4.3 of [37].

For n ∈ N, we denote Pn/2 as the set of n/2 bit primes, and Blumn := {N |
N = (2p + 1)(2q + 1) ∧ (2p + 1), (2q + 1), p, q ∈ Pn/2 ∧ p 6= q}. The factoring
assumption is defined as follows.
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Definition 2 (Factoring Assumption). The factoring problem FAC is (t, ε)
hard for Blumn if for all adversaries A running in time at most t,

Pr
[
N = PQ ∧ P,Q ∈ Pn/2 | N $← Blumn; (P,Q)← A(N)

]
≤ ε. (2)

For an element a ∈ ZN , we define the absolute value

|x| :=
{
x if x ≤ (N − 1)/2
−x otherwise

.

We define the group of signed quadratic residues as QR+
N := {|x| : x ∈ QRN}.

We have that (QR+
N , ◦) is a cyclic group with order |QR+

N | = ϕ(N)/4, where, for
all a, b ∈ QR+

N and x ∈ ZN , group operations are defined as follows:

a◦b := |a ·b mod N |, ax := a ◦ a ◦ ... ◦ a︸ ︷︷ ︸
x times

= |ax mod N |, a−1 := |a−1 mod N |.

Lemma 1 (Lemma 7, [37]). Let N ′ := dN/4e,G := QR+
N , and X $←

ZN ′ , Y
$← Z|G|. Then the statistical distance D(X,Y ) satisfies D(X,Y ) ≤

2(P +Q)
P Q .

2.3 Digital Signature

Definition 3 (Syntax of Digital Signature). A digital signature scheme SIG
is a tuple of algorithms (Setup,Gen,Sign,Ver) where

– The setup algorithm Setup takes as input a security parameter 1n, and outputs
system parameters par.

– The key generation algorithm Gen takes as input the system parameters par,
and returns public and secret keys (pk, sk). We assume that pk defines a
message spaceM and a signature space Σ.

– The signing algorithm Sign takes the secret key sk and a message m ∈M as
inputs, and returns a signature σ ∈ Σ.

– The deterministic verification algorithm Ver takes a public key pk, a message
m and a signature σ as inputs and returns 1 (accept) or 0 (reject).

For correctness, we require that Pr[Ver(pk,m,Sign(sk,m)) = 1] = 1.

Definition 4 (MU-UF-CMA Security). A signature scheme SIG is said to be
(t, ε, `,Qs)-MU-UF-CMA secure (multi-user unforgeable against chosen message
attacks), if for all adversaries A that run in time t and makes at most Qs queries
to the signature oracle in the security game in Figure 1, we have

Pr
[
MU-UF-CMAA ⇒ 1

]
≤ ε.
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Oracle Initialize:
par $← Setup(1n)
For i = 1, . . . , `: (pki, ski) $← Gen(par)
M := ∅; ctr := 0
Return (par, pk1, . . . , pk`)

Oracle Finalize(i∗,m∗, σ∗):
Return ((ctr ≤ Qs) ∧ Ver(pki∗ ,m

∗, σ∗) ∧ (i∗,m∗) 6∈M)

Oracle Sign(i,m):
M ←M ∪ {(i,m)}
ctr := ctr + 1
σ ← Sign(ski,m)
Return σ

Fig. 1. Security game for MU-UF-CMA security with ` users.

3 Construction from the CDH Assumption

Our construction here is based on the CDH-based online/offline signature scheme
in [37]. We apply the key-prefixing technique [12] on it.

Let H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → {0, 1}n be two hash functions. We
recall the signature scheme OFCDH := (Setup,Gen,Sign,Ver) from [37] and define
our key-prefixing variant PF-OFCDH := (Setup,Gen,Signpf ,Verpf) of it in Figure 2.
We highlight the differences with grey. By additionally hashing R1 in H2, we can
prove that the multi-user (MU-UF-CMA) security of our PF-OFCDH can be tightly
implied by the single-user security of OFCDH in the programmable random oracle
model. Interestingly, PF-OFCDH is the same as the original Chevallier-Mames
scheme [19]. Our proof can be seen as a new, tight proof of the scheme in the
multi-user setting, while the original proof is only tight in the single-user setting.

Setup(1n):
par := (p, g,G) $← G(1n)
Return par

Gen(par):
sk := x $← Zp

pk := X = gx

Return (pk, sk)

Sign pf (sk,m):

r $← Zp;R1 := gr

h1 := H1(R1)
RL := hx

1 ∈ G;RR := hr
1

R2 := (RL, RR)
h2 := H2( R1, R2, pk, m)
s := x · h2 + r ∈ Zp

σ := (RL, h2, s)
Return σ

Ver pf (pk,m, σ):

Parse σ := (RL, h2, s)
R1 := gs ·X−h2

h1 := H1(R1)
RR := hs

1 ·R−h2
L

R2 := (RL, RR)
If h2 = H2( R1, R2, pk ,m)
Return 1

Else return 0

Fig. 2. Signature schemes OFCDH and PF-OFCDH. We highlight the difference with grey .
Both schemes execute all the codes, while the codes with grey are only executed in
PF-OFCDH.

We recall the security of OFCDH from [37].

Lemma 2 (Security of OFCDH, Theorem 2 of [37]). If CDH is (t, ε)-hard
w.r.t G, then OFCDH is (t′, ε′, Qs, Q1, Q2)-UF-CMA secure in the programmable
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random oracle model, where

ε′ ≤ ε+ Q2 + 2
2n + (Q1 +Q2)Qs

2n + 1
2n
, t′ ≈ t. (3)

where Qs, Q1 and Q2 are upper bounds on the number of signature and hash
queries to H1 and H2 in the UF-CMA-experiment.

Lemma 3 (UF-CMA of OFCDH → MU-UF-CMA of PF-OFCDH). If OFCDH is
(t, ε,Qs, Q1, Q2)-UF-CMA secure, then PF-OFCDH is (t′, ε′, `, Q′s, Q′1, Q′2)-MU-UF-CMA
secure in the programmable random oracle model, where

ε′ ≤ ε+ Q′2Q
′
s

2n , Q′s = Qs, Q′1 = Q1 − 1, Q′2 = Q2 − 1, and t′ ≈ t. (4)

Here Qs, Q1 and Q2 are upper bounds on the number of signature and hash
queries to H1 and H2 in the UF-CMA-experiment. Similarly, Q′s, Q′1 and Q′2 are
upper bounds on the number of signature and hash queries to H ′1 and H ′2 in the
MU-UF-CMA-experiment.

Combining Lemmata 2 and 3, we get the following theorem.

Theorem 1 (Security of PF-OFCDH). If CDH is (t, ε)-hard with respect to G,
then PF-OFCDH is (t′, ε′, `, Qs, Q1, Q2)-MU-UF-CMA secure in the programmable
random oracle model, where

ε′ ≤ ε+ Q2 + 3
2n + (Q1 +Q2 + 2)Qs

2n + 1
2n

+ Q2Qs

2n , t′ ≈ t. (5)

where Qs, Q1 and Q2 are upper bounds on the number of signature and hash
queries to H1 and H2 in the MU-UF-CMA-experiment.

Thus, we only need to prove Lemma 3.

3.1 Proof of Lemma 3

Let A be an adversary that (t′, ε′, `, Q′s, Q′1, Q′2)-breaks the MU-UF-CMA se-
curity of PF-OFCDH. We prove Lemma 3 by constructing a reduction B that
(t, ε,Qs, Q1, Q2)-breaks the UF-CMA security of OFCDH and provides oracle ac-
cess for A as in Figure 3.

The reduction B gets oracle access to InitializeU,SignU, and FinalizeU and
random oracles Hash1 and Hash2 (for hash function H1 and H2 in OFCDH) from
the UF-CMA security experiment. Moreover, B simulates oracles InitializeMU,
SignMU,FinalizeMU and random oracles Hash′1 and Hash′2 (for hash functions
H1 and H2 in PF-OFCDH) for adversary A.
Analysis. We show that B simulates a distribution statistically close to the
real one for A. It is trivial to see that the output of InitializeMU distributes
the same as the real one, since Xi is uniformly random over G. Random oracles
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Oracle InitializeMU:
(par, X)← InitializeU
For i := 1, . . . , `:
ai

$← Zp

Xi := X · gai

M := ∅; ctr := 0
Return (par, X1, . . . , X`)

Oracle SignMU(i,m):
M ←M ∪ {(i,m)}
ctr := ctr + 1
σ̂ := (R̂L, ĥ2, ŝ)← SignU(Xi,m)
R̂1 := gŝ ·X−ĥ2

ĥ1 ← Hash1(R̂1)
RL := R̂L · ĥai

1 ; R̂R := ĥŝ
1 · R̂−ĥ2

L

R2 := (RL, R̂R)
If H′2[R̂1, R2, Xi,m] = ⊥ then
H′2[R̂1, R2, Xi,m] := ĥ2

Else
Abort

s := ŝ+ aiĥ2
Return σ := (RL, ĥ2, s)

Oracle Hash′1(R):
Return Hash1(R)

Oracle Hash′2(R1, R2, Xj ,m):
If Xj = Xi for some 1 ≤ i ≤ `
Parse R2 := (RL, RR)
h1 ← Hash1(R1)
h2 ← Hash2(R1, (RL/h

ai
1 , RR), Xj ,m)

Else
h2 ← Hash2(R1, R2, Xj ,m)

H′2[R1, R2, Xj ,m] := h2
Return h2

Oracle FinalizeMU(i∗,m∗, σ∗):
If (i∗,m∗) ∈M ∧ ctr > Qs

Abort
Parse σ∗ := (R∗L, h∗2, s∗)
R∗1 := gs∗ ·X−h∗2

i∗

h∗1 ← Hash′1(R∗1)
R̃L := R∗L/h

∗
1

ai∗

s̃ := s∗ − ai∗h
∗
2

σ̃ := (R̃L, h
∗
2, s̃)

Return FinalizeU((Xi∗ ,m
∗), σ̃)

Fig. 3. Security reduction B to break the UF-CMA security of OFCDH, and simulate
oracles for adversary A against the MU-UF-CMA security of PF-OFCDH. H′2 is a list that
keeps track of the inputs and outputs of random oracle Hash′2.

Hash1 and Hash2 are provided by the UF-CMA challenger and thus Hash′1 and
Hash′2 are simulated properly.

Our focus is to show that signatures simulated by SignMU are statistically
close to those outputted by Signpf of PF-OFCDH. Given σ̂ := (R̂L, ĥ2, ŝ) ←
SignU(Xi,m), σ̂ is a valid signature w.r.t. the verification of OFCDH (defined in
Figure 2) and ŝ distributes uniformly at random, namely, the following equation
holds:

ĥ2 = Hash2(R̂2, Xi,m),

where R̂2 = (R̂L, R̂R), R̂R = ĥŝ
1 · R̂

−ĥ2
L , ĥ1 = Hash1(R̂1) and R̂1 = gŝ ·X−ĥ2 .

If SignMU(i,m) does not abort, the signature σ := (RL, ĥ2, s) with s = ŝ+aiĥ2
output by SignMU(i,m) has the right distribution, namely, s is uniformly random
(which is trivial due to the random ŝ) and σ will pass the verification Verpf of
PF-OFCDH: Firstly, Verpf will compute values R1 and R2 := (RL, RR) according
to its definition in Figure 2, and, by our simulation of InitializeMU and SignMU,
the following holds

R1 := gs ·X−ĥ2
i = gŝ+aiĥ2 · (X · gai)−ĥ2 = gŝ ·X−ĥ2 = R̂1

RR := hs
1 ·R

−ĥ2
L = ĥŝ+aiĥ2

1 · (R̂L · ĥai
1 )−ĥ2 = ĥŝ

1 · R̂
−ĥ2
L = R̂R
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where h1 = Hash1(R1) = Hash1(R̂1) = ĥ1. Thus, ĥ2 in σ returned by SignMU(i,
m) will have ĥ2 = Hash′2(R1, R2, Xi,m) and Verpf(Xi,m, σ) = 1.

Moreover, since ŝ is uniform, R̂1 distributes uniformly over G and the prob-
ability that H′2[R̂1, R2, Xi,m] has been defined is at most Q′2/|G|. By applying
the union bound on the number of signing queries, B will abort its simulation
with probability at most QsQ

′
2/|G|.

A Valid Forgery. To see that B produces a valid forgery, we first assume
that the forgery (i∗,m∗, σ∗ = (R∗L, h∗2, s∗)) made by A is a valid forgery in the
MU-UF-CMA-experiment under the public key Xi∗ , meaning that for

R∗1 := gs∗ ·X−h∗2
i∗ , h∗1 := Hash1(R∗1) and R∗R := h∗1

s∗ ·R∗L
−h∗2 ,

we have h∗2 = Hash′2(R∗1, R∗L, R∗R, Xi∗ ,m
∗). In addition, it satisfies the freshness

condition that (i∗,m∗) has not been queried in a previous signature query. For
the signature σ̃ = (R̃L, h

∗
2, s̃), we compute

R̃1 : = gs̃ ·X−h∗2 = gs∗−ai∗h∗2 ·X−h∗2 = gs∗ ·X−h∗2
i∗ = R∗1.

We set h̃1 := Hash1(R̃1) = Hash1(R∗1) = h∗1 and compute

R̃R : = h̃s̃
1 · R̃

−h∗2
L = h̃

s∗−ai∗h∗2
1 ·

(
R∗L/h̃

ai∗
1
)−h∗2 = h̃s∗

1 ·R∗L
−h∗2 = R∗R.

Then, by the simulation of Hash′2(R∗1, R∗2, Xi∗ ,m
∗) and R̃L = R∗L/h

ai∗
1 , we have

that

h∗2 = Hash′2(R∗1, R∗2, Xi∗ ,m
∗) = Hash′2(R∗1, (R∗L, R∗R), Xi∗ ,m

∗)
= Hash2(R∗1, (R∗L/h

ai∗
1 , R∗R), Xi∗ ,m

∗) = Hash2(R̃1, (R̃L, R̃R), Xi∗ ,m
∗) = h̃2

and hence Ver(X, m̃, σ̃) = 1 where m̃ := (Xi∗ ,m
∗). Since σ∗ was a fresh signature

on (i∗,m∗), m̃ has never been queried to the UF-CMA signature oracle, and hence
σ̃ is a fresh signature on the message m̃.

4 Construction from the Factoring Assumption

We can also apply our method to FSFAC in [37] to get tight MU-UF-CMA se-
curity from the FAC assumption. We refer readers to Section 2.2 for necessary
mathematical background of this section.

Let H1 : {0, 1}∗ → QR+
N and H2 : {0, 1}∗ → {0, . . . , 2k− 1} be hash functions,

and let g be a generator of QR+
N . As before, in Figure 4 we have the original

scheme FSFAC and its prefixed variant PF-FSFAC. To give a syntactically correct
definition, we require that Setup outputs a private parameter sp that only inputs
to Gen.

By combining Corollary 1, Lemma 85 and Lemma 1 of [37], we get the
following result.
5 We use the result derived in the reduction, not the statement of the lemma, as they
are not the same.
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Setup(1n):
p, q $← Pn/2 s.t.
P := 2p+ 1 ∈ Pn/2
Q := 2q + 1 ∈ Pn/2
N := PQ
par := (N, g)
sp := (p, q)
Return (par, sp)

Gen(par, sp):
x $← ZN/4;X := gx

sk := (x, p, q)
pk := X
Return (pk, sk)

Sign pf (sk,m):

r $← ZN/4;R1 := gr

h1 := H1(R1, pk ,m) ∈ QR+
N ;

RL := hx
1 ;RR := hr

1
R2 := (RL, RR)
h2 := H2( R1, R2, pk ,m)
s :=
x · h2 + r mod (ϕ(N)/4)

σ := (RL, h2, s)
Return σ

Ver pf (pk,m, σ):

Parse σ := (RL, h2, s)
R1 := gs ◦X−h2

h1 := H1(R1, pk ,m)
RR := hs

1 ◦R−h2
L

R2 := (RL, RR)
If h2 = H2( R1, R2, pk ,m)
Return 1

Else return 0

Fig. 4. Signature schemes FSFAC and PF-FSFAC. We highlight the difference with grey .
Both schemes execute all the codes, while the codes with grey are only executed in
PF-FSFAC.

Lemma 4 (Security of FSFAC). If FAC is (t, ε)-hard for Blumn, then FSFAC is
(t′, ε′, Q1, Q2)-UF-KOA secure in the random oracle model, where

ε′ ≤ ε+ 1
2n/2 + Q2 + 1

2k
, t′ ≈ t.

Lemma 5 (UF-KOA of FSFAC → MU-UF-CMA of PF-FSFAC). If FSFAC is
(t, ε,Q1, Q2)-UF-KOA secure, then PF-FSFAC is (t′, ε′, `, Qs, Q

′
1, Q

′
2)-MU-UF-CMA

secure in the programmable random oracle model, where

ε′ ≤ ε+ 1
2n/2−2 +Qs

(
Q′1
2n + Q′2

2k

)
, Q′1 = Q1−1, Q′2 = Q2−1, and t′ ≈ t. (6)

Here Q1 and Q2 are upper bounds on the number of hash queries to H1 and
H2 in the UF-KOA-experiment. Similarly, Qs, Q

′
1 and Q′2 are upper bounds on

the number of signature and hash queries to H ′1 and H ′2 in the MU-UF-CMA-
experiment.

Combining Lemmata 4 and 5, we get the following theorem.

Theorem 2 (Security of PF-FSFAC). If FAC is (t, ε)-hard for Blumn, then
PF-FSFAC is (t′, ε′, Qs, Q1, Q2)-MU-UF-CMA secure in the programmable random
oracle model, where

ε′ ≤ ε+ 1
2n/2 + Q2 + 2

2k
+ 1

2n/2−2 +Qs

(
Q1

2n + Q2

2k

)
, t′ ≈ t. (7)

As before, we now only need to prove Lemma 5.
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Oracle InitializeMU:
(par, X)← InitializeU
For i := 1, . . . , `
ai

$← ZdN/4e
Xi := X ◦ gai

pki := Xi

M := ∅; ctr := 0
Return (par, pk1, . . . , pk`)

Oracle SignMU(i,m):
M ←M ∪ {(i,m)}
ctr := ctr + 1
ŝ, w, ĥ2

$← ZdN/4e

ĥ1 := gw; R̂1 := gŝ ◦X−ĥ2
i

R̂L := Xw
i ; R̂R := R̂w

1
If H′1[R̂1, Xi,m] =⊥ then
H′1[R̂1, Xi,m] := h1

Else
Abort

R̂2 = (R̂L, R̂R)
If H′2[R̂1, R̂2, Xi,m] =⊥ then
H′2[R̂1, R̂2, Xi,m] := ĥ2

Else
Abort

Return σ := (R̂L, ĥ2, ŝ)

Oracle Hash′1(R,Xj ,m):
If H′1[R,Xj ,m] 6= ⊥
Return H′1[R,Xj ,m]

h1 ← Hash1(R,Xj ,m)
H′1[R,Xj ,m] := h1
Return h1

Oracle Hash′2(R1, R2, Xj ,m):
If H′2[R1, R2, Xj ,m] 6= ⊥
Return H′2[R1, R2, Xj ,m]

If Xj = Xi for some 1 ≤ i ≤ `
Parse R2 := (RL, RR)
h1 ← Hash′1(R1, Xi,m)
h2 ← Hash2(R1, (RL ◦ h−ai

1 , RR), Xi,m)
Else
h2 ← Hash2(R1, R2, Xj ,m)

H′2[R1, R2, Xj ,m] := h2
Return h2

Oracle FinalizeMU(i∗,m∗, σ∗):
If ((i∗,m∗) ∈M ∧ ctr > Qs)
Abort

Parse σ∗ := (R∗L, h∗2, s∗)
R∗1 := gs∗ ◦X−h∗2

i∗

h∗1 ← Hash′1(R∗1, Xi∗ ,m
∗)

R̃L := R∗L ◦ (h∗1)−ai∗

s̃ := s∗ − ai∗h
∗
2

σ̃ := (R̃L, h
∗
2, s̃)

Return FinalizeU((Xi∗ ,m
∗), σ̃)

Fig. 5. Security reduction B to break the UF-KOA security of FSFAC, and simulate
oracles for adversary A against the MU-UF-CMA security of PF-FSFAC. Operations
denoted with ◦ are performed in QR+

N , while other operations are performed over the
integers.

4.1 Proof of Lemma 5

Let A be an adversary that breaks the (t′, ε′, `, Qs, Q
′
1, Q

′
2)-MU-UF-CMA-security

of PF-FSFAC. We construct a reduction B that breaks the (t, ε,Q1, Q2)-UF-KOA-
security of FSFAC as in Figure 5. As before, the reduction B gets oracle access
to InitializeU,FinalizeU and random oracles Hash1 and Hash2 (for hash
function H1 and H2 in FSFAC) from the UF-KOA security experiment. Moreover, B
simulates oracles InitializeMU,SignMU,FinalizeMU and random oracles Hash′1
and Hash′2 (for hash functions H1 and H2 in PF-FSFAC) for adversary A.

Analysis. We again want to show that B simulates a distribution statistically
close to the real one for A. It is trivial to see that the output of InitializeMU has
the same distribution as in the real case, since Xi is uniformly random over QR+

N .
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The random oracles are provided by the UF-KOA challenger and thus Hash′1 and
Hash′2 are properly simulated.

If SignMU does not abort, the signature σ = (R̂L, ĥ2, ŝ) is within statistical
distance 2(P + Q)/PQ ≤ 22−n/2 from a real distribution, and it passes the
verification Verpf of PF-FSFAC. To show this, we use Lemma 1 and a result from
Lemma 8 in [37]. Combined, these show that when simulating a signature like
we do in SignMU, the returned transcript (R̂1, ĥ1, R̂2, ĥ2, ŝ) is within statistical
distance at most 2(P +Q)/PQ from a real distribution. This is so because ŝ has
statistical distance at most 2(P +Q)/PQ from a uniformly random variable over
Z|QR+

N | by Lemma 1, and R̂1, R̂L, R̂R are determined by ŝ, ĥ2 and Xi, since they

are the unique values that satisfy R̂1 = gŝ ◦X−ĥ2
i and R̂R = ĥŝ

1 ◦ R̂
−ĥ2
L .

For the verification, we proceed as we did for PF-OFCDH. The Verpf algorithm
computes R1 and RR as described in Figure 4, and from our simulation of
InitializeMU and SignMU we get

R1 := gŝ ◦X−ĥ2
i = R̂1

RR := hŝ
1 ◦ R̂

−ĥ2
L = gwŝ ◦X−wĥ2

i =
(
gŝ ◦X−ĥ2

i

)w

= R̂w
1 = R̂R,

where we after the programming have h1 := Hash1(R1, Xi,m) = ĥ1 = gw. Thus,
ĥ2 in σ returned by SignMU(i,m) will satisfy

ĥ2 := Hash′2(R1, R̂L, RR, Xi,m),

and therefore Verpf(Xi,m, σ) = 1. In the simulation we randomly choose ŝ $←
ZdN/4e, which means that R1 will be uniformly random over QR+

N , and the
probability that H′1[R̂1, Xi,m] has been defined is at most Q′1/

∣∣QR+
N

∣∣ ≤ Q′1/2n.
A similar argument shows that the probability that H′2[R̂1, R2, Xi,m] has been
defined is at most Q′2/2k. The union bound applied on the number of signing
queries shows that B will abort its simulation with probability at most Qs(Q′1/2n +
Q′2/2k).
A valid forgery. To show that (Xi∗ ,m

∗, σ̃ = (R̃L, h
∗
2, s̃)) is a valid forgery

in the UF-KOA-experiment, we first assume that (i∗,m∗, σ∗ := (R∗L, h∗2, s∗)) is a
valid signature in the MU-UF-CMA-experiment, meaning that for

R∗1 := gs∗ ◦X−h∗2
i∗ , h∗1 := Hash′1(R∗1, Xi∗ ,m

∗) and R∗R := h∗1
s∗ ◦R∗L

−h∗2 ,

we have h∗2 = Hash′2(R∗1, R∗L, R∗R, Xi∗ ,m
∗). It also satisfies the freshness con-

dition that (i∗,m∗) has not been queried in a previous signature query in
the MU-UF-CMA game. This means that if h∗1 = H′1[R∗1, Xi∗ ,m

∗] or h∗2 =
H′2[R∗1, R∗2, Xi∗ ,m

∗] are defined, it was not done by SignMU, and hence the
value was returned by an UF-KOA hash oracle, as required. For the signature
σ̃ = (R̃L, h

∗
2, s̃) generated in FinalizeMU, we compute R̃1 := gs̃ ◦ X−h∗2 =

gs∗−ai∗h∗2 ◦ X−h∗2 = gs∗ ◦ X−h∗2
i∗ = R∗1. We set h̃1 = Hash1(R̃1, Xi∗ ,m

∗) =



Signatures with Tight Multi-User Security from Search Assumptions 17

Hash1(R∗, Xi∗ ,m
∗) = h∗1, and compute

R̃R : = h̃s̃
1 ◦ R̃

−h∗2
L = h̃

s∗−ai∗h∗2
1 ◦

(
R∗L ◦ (h̃1)−ai∗

)−h∗2
= h̃s∗

1 ◦R∗L
−h∗2 = R∗R.

Then, by the simulation of Hash′2(R∗1, R∗2, Xi∗ ,m
∗), we have that

h̃2 := Hash2(R̃1, (R̃L, R̃R), Xi∗ ,m
∗) = Hash′2(R∗1, R∗2, Xi∗ ,m

∗) = h∗2, (8)

and hence Ver(X, m̃, σ̃) = 1 where m̃ := (Xi∗ ,m
∗). The running time is that of

A plus the Qs simulations of SignMU, and we write t′ ≈ t.
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A On the Multi-User Security of DSA

We show why it is difficult to show tight implication from the single-user security
to the multi-user security for DSA. We first recall the scheme. Let p be an L-bit
prime, and q be an N -bit prime such that q | (p− 1). For specifications on L and
N , see the DSA documentation [36]. Let g be a generator of a subgroup of order
q in Z∗p. The Gen,Sign and Ver can then be described as follows.

Gen(par):
sk := x $← Zq

X := gx mod p
pk := X
Return (pk, sk)

Sign(sk,m):
r $← Z∗q
R := (gr mod p) mod q
s :=(

r−1(H(m) + xR)
)

mod q
Return σ := (R, s)

Ver(X,m, σ):
Parse σ := (R, s)
If R = 0 ∨ s = 0
Return 0

w := s−1 mod q
u1 := H(m) · w mod q
u2 := R · w mod q
v :=

(gu1Xu2 mod p) mod q
If v = R
Return 1

Else return 0

Different to the Schnorr signature, given a valid signature σ := (R, s) under
public key X, it is not possible to convert it to a valid signature under public key
X · gai for ai

$← Z∗q = Zq \ {0} using methods in [38,12], since we do not have
the discrete log of R, namely, r ∈ Z∗q .


	 Signatures with Tight Multi-User Security from Search Assumptions  

