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Abstract. We introduce a formalism to deal with the microscopic modeling of vehicular traffic on
a road network. Traffic on each road is uni-directional, and the dynamics of each vehicle is described
by a Follow-the-Leader model. From a mathematical point of view, this amounts to define a system
of ordinary differential equations on an arbitrary network. A general existence and uniqueness result
is provided, while priorities at junctions are shown to hinder the stability of solutions. We investigate
the occurrence of the Braess paradox in a time-dependent setting within this model. The emergence
of Nash equilibria in a non-stationary situation results in the appearance of Braess type paradoxes,
and this is supported by numerical simulations.

Key words. Vehicular traffic, Networks, Follow-the-Leader model, Braess paradox, Nash equi-
libria.

AMS subject classifications. 90B20, 91B74, 91D10.

1. Introduction. The literature on the modeling of vehicular traffic has been
growing very quickly in recent years. A variety of approaches coexists, typically they
can be characterized as either macroscopic or microscopic.

The former ones are usually based on partial differential equations, their proto-
type being the Lighthill–Whitham [27] and Richards [32] model. Deep criticisms [16]
led to the formulation of entirely new continuum models, such as [2], or multiphase
models [4, 8, 13, 20, 29] and models on networks, starting from [21] up to the recent
monograph [18].

Microscopic models also have a long tradition, see [19]. They are usually denoted
as Follow-the-Leader models, the dynamics being governed by the interaction between
a vehicle and the vehicle immediately in front of it. More precisely, we have

ẋα = v

(
`

xα−1 − xα

)
,

where xα < xα−1 denotes the position of two consecutive vehicles, each of length `,
driving with a velocity function v.

Various connections between the two scalings are found in the literature, referring
to limiting procedures yielding the macroscopic models as limit of the microscopic
ones, as in [1, 17, 22, 23], or mixing the two scales [11, 12, 26]. Note however that
most macroscopic models prescribe traffic rules at junctions that also require some
sort of flow maximization, see [18] for more details. In the construction below, no
such maximization is used, and this will make a continuum limit more complicated.
However, the chosen priority rules are sufficient to single out a unique evolution.
Other approaches have been studied in the literature.

Apart from models based on differential equations, many other mathematical
tools are used in the literature to describe traffic on networks and, where possible, to
account for Braess paradox. For instance, a stochastic approach can be found in [3],
an evolutionary variational inequality model is studied in [31], while queue theory is
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applied in [28]. The assessment of the network performance due to selfish routing can
be found in [33]. In contrast to these approaches, here the dynamics is fully described
by ODEs, with simple priority rules at junctions.

Modern vehicular traffic offers a plethora of modeling challenges – complicated
network geometries, roundabouts, traffic lights, traffic obstructions, a combination
of various agents (pedestrians, bicyclists, a wide range of different vehicles), noise,
pollution, etc. We here focus on a general network with only one type of vehicles,
but we provide a consistent and rigorous model for behavior at junctions based on a
Follow-the-Leader model. See also [14, 15] for related work.

As far as we are aware of, the microscopic modeling of traffic on a network has
not been formalized systematically before.

Our approach yields a model that comprises a system of (discontinuous) ordinary
differential equations (ODEs) on a network with a concrete behavior at junctions.
Moreover, the present model comprises the presence of different priorities between
roads. Below, we present a framework where rigorous statements about the micro-
scopic modeling of vehicle dynamics, complying with priority rules, can be formalized,
proved, and numerically computed.

Within this structure, we formalize an ODE-based model and provide an existence
and uniqueness result for the corresponding evolution, see Theorem 2.1. By means of
an example, we show that the usual well-posedness estimates may not hold. Indeed,
and consistently with everyday experience, small changes in the departure time of
a single vehicle may lead to large changes in the arrival time of that vehicle, due
for instance to arriving slightly earlier or later at junctions where priority has to be
yielded, see Remark 2.2.

A main aim for us has been to investigate the ubiquitous Braess paradox in a time-
dependent setting through deterministic differential equations. As far as we know, in
this context, the Braess phenomenon has so far only been analyzed mathematically in
the stationary case. Recall first the simplest example of Braess paradox. We have a
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Fig. 1. Left: network consisting of two routes connecting A to B. The first route consists of
the roads 3 and 6; the second route consists of the roads 2 and 5. Right: network consisting of three
routes connecting A to B. The first route consists of the roads 3 and 6; the second route consists of
the roads 2 and 5. The third route consists of the roads 3, 4, and 5.

network consisting of two routes connecting A to B, where the first route consists of
the roads 3 and 6, while the second route consists of the roads 2 and 5, see Figure 1
(left). Traffic is unidirectional in the direction from A to B. The roads 2 and 6
are equal, with unlimited capacity, and the travel time is 45 minutes independently
of the number of vehicles. The roads 3 and 5 are also equal and the travel time is
N/100, where N is the number of vehicle traveling on the road. We suppose that 4000
vehicles move from A to B. Each driver chooses the fastest route and the resulting
Nash equilibrium amounts to 2000 drivers traveling along each road. Correspondingly,
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we find a travel time of 65 minutes for each driver.
Then, we add a new road, say number 4, as in Figure 1 (right), characterized by a

negligible travel time. Drivers start using the new road choosing the route consisting
of roads 3, 4, and 5, reducing their travel time. However, since the new route [3, 4, 5]
is more convenient than both [3, 6] and [2, 5], more and more drivers choose this new
route. As a result, the travel time increases to 80 minutes for everyone. This is the
paradox: contrary to common sense, adding a new road to a network may make travel
times worse for everyone.

This paradox was introduced by Braess in 1968 [5] with a different example, see
also [30], and it has been observed in real situations. In 1968, for instance, a highway
segment was closed in Stuttgart and traffic improved, see [24]. In 1990, in New York
the 42nd street was closed for one day and, again unexpectedly, traffic improved,
see [25].

This paradox appears in other situations as well, not only modeling vehicular traf-
fic. In crowd dynamics, the well-known phenomenon of reducing the evacuation time
from a closed space by suitably positioning obstacles near exits that direct the crowd
movement (and closing a number of paths) is described through a partial differential
equation model in [9].

Our aim is to capture the Braess paradox in a non-stationary setting in the present
Follow-the-Leader model. For simplicity we study the case of the network depicted
in Figure 1. The present framework allows us to show the dynamic emergence of a
Braess-like situation in a fully non-stationary setting. In contrast to the examples
typically found in the literature [5, 10, 30], in the examples below we start from an
empty network. As vehicles enter it, the measured travel times show the rise of Braess
paradox, as shown by numerical computations.

A key role is here played by our postulating the behavior of drivers as described by
a Nash equilibrium. Indeed, we view drivers as players competing in a non-cooperative
way to reduce their travel times, see also [6, 7, 10]. In particular situations, the
solution of the Follow-the-Leader model at Nash equilibrium leads to the emergence
of non-stationary Braess-like situations as supported numerically.

The next section is devoted to the definition of the microscopic model on a net-
work. Section 3 is devoted to the emergence of Braess paradox, obtained as Nash
equilibrium within the framework of the model here introduced. The last section
collects the analytic proofs.

2. Formal Framework. The standard first-order Follow-the-Leader model is
based on the following Cauchy problem for a system of ordinary differential equations:

(2.1)


ẋ1 = Vmax

ẋα = v
(

`
xα−1−xα

)
α ∈ {2, . . . , n} ,

xα(0) = xoα α ∈ {1, . . . , n} .

Here, n drivers labeled by their positions x1, . . . xn drive at speed v (`/(xα−1 − xα)),
where ` is the length of each vehicle and the speed v satisfies the condition:
(SpeedLaw) v is a Lipschitz continuous function and attains values in [0, Vmax], i.e.,

v ∈W1,∞(R+; [0, Vmax]), and it is a (weakly) decreasing function such that
v(ρ) = 0 for all ρ ≥ 1.

The constant Vmax is an upper bound for the speed of all vehicles. The drivers’ initial
positions are xo0, . . . , x

o
n. It is well-known that the assumption xoα − xoα−1 ≥ ` for

α ∈ {1, . . . , n} ensures that the solutions to (2.1) keep satisfying the same bound, i.e.,
xα(t)− xα−1(t) ≥ ` for all α and for all t ≥ 0, meaning that no collision ever occurs.
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We now introduce a formalism to deal with the extension of (2.1) to a general
network.

Network Structure. The network is a collection of m real intervals: each of
them representing a road. Roads are of three types:
• Entry Roads: they are copies of the (open) half–line ]−∞, 0[;
• Middle Roads: they are bounded intervals of the type [0, Lj [, where Lj > 0 is the

road length;
• Exit Roads: they are copies of the half–line [0,+∞[ .
Entry Roads and Exit Roads have infinite length. We assume throughout that the
vehicle length ` is negligible with respect to the (finite) length of each Middle Road:
`� Lj for all j indexing a Middle Road.

To simplify various expressions, it is convenient to assign Lj = 0 for all j indexing
an Entry Road. It can also be of use to set Lj = +∞ for each Exit Road. This
convention allows us to introduce the following terminology, of use below: for each
Middle Road or Entry Road j, the end of the road is the real interval ]Lj − `, Lj [.
Here, to define the end of the road we use the vehicle length ` but choosing a different
length `′, with `′ > `, is also possible.

Road indices are assigned so that whenever two or more roads enter the same
junction, drivers on roads with lower indices have priority. Throughout, we assume

1

3

2

4

6

5

7

Fig. 2. The network notation in the case of Braess network, see [5]. Note that roads are
numbered so that at each junction, roads coming from the right have the priority.

that junctions either have a single incoming road, or have a single outgoing road. The
case of general junctions with several incoming and outgoing roads can be treated by
the same methods described below, at the cost of a more intricate formalism.

Drivers’ Route Choices. The n drivers are indexed by α, running between 1
and n. Each driver’s route is identified by the sequence of the indices of the roads that
constitute the route. We denote by Rα the route followed by driver α. For instance,
with reference to the Braess network in Figure 2, the route followed by the driver
α = 1 choosing the “lower” route is identified by R1 = [1, 2, 5, 7]. If the driver α = 2
follows the route passing through the road 4, then R2 = [1, 3, 4, 5, 7].

Throughout, rα(t) stands for the index of the road along which the αth driver is
traveling at time t. We also write j′ = Nα(j) meaning that the αth driver at the end
of the jth road enters the j′th road. For instance, with reference to Figure 2, if the
route of the driver α = 1 is R1 = [1, 3, 6, 7], then we have N1(1) = 3, N1(3) = 6, and
N1(6) = 7.

Along each road, we identify the αth driver’s position through the time dependent
variable xα ranging in ]−∞, 0[ along Entry Roads, in [0, Lj [ along Middle Roads and
in [0,+∞[ along Exit Roads.
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A key assumption in the construction below amounts to require that no loop is
possible for any driver:
(NoLoop): No route can contain the same road twice.
Note that the network itself may well contain loops, but condition (NoLoop) requires
that none of them can be part of a route.

Of use below is also the following, quite natural, requirement:
(NoDeadEnd) The last road in each route is an Exit Road.

Drivers’ Speed. We now specify the speed chosen by the αth driver, depending
on the position and on that of the vehicles preceding the driver. We consider several
special cases.

Far from Junctions. At time t the driver is positioned at xα(t) driving along
road j = rα(t). As long as the αth driver is not at the end of the road indexed by
rα(t), i.e., xα(t) < Lrα(t)−`, the speed only depends on the free space ahead, similarly
to what happens in (2.1):
(2.2)

ẋα=


Vrα(t) if

{
α is not at the end of the road;
no one is on the same road in front of α.

vrα(t)

(
`

p−xα

)
if

someone is on the same road in front of α;
p is the position of the nearest vehicle in front of
α on the same road.

=


Vrα(t) if

{
xα(t) < Lrα(t) − `;
{α′ ∈ {1, . . . , n} : rα′(t)=rα(t) and xα′(t)>xα(t)} = ∅.

vrα(t)

(
`

p−xα

)
if

{
{α′ ∈ {1, . . . , n} : rα′(t)=rα(t) and xα′(t)>xα(t)} 6= ∅;
p= min

{
xα′∈[0, Lrα(t)[ : rα′(t)=rα(t) and xα′(t)>xα(t)

}
.

Indeed, the set {α′ ∈ {1, . . . , n} : rα′(t) = rα(t) and xα′(t) > xα(t)} identifies the (in-
dices α′ of) drivers preceding α along the road rα(t) where α is driving at time t. If no
such driver exists, α drives at the maximal speed Vrα(t) possible along the road rα(t).
On the other hand, if {α′ ∈ {1, . . . , n} : rα′(t) = rα(t) and xα′(t) > xα(t)} 6= ∅, then
the speed ẋα(t) of the αth driver is adjusted to the distance between α and the driver
at position p, who is the one immediately in front of α, as usual in a Follow-the-Leader
model.

Note that if rα(t) is an Exit Road, then we understand that the condition xα <
Lrα(t) − ` is true for all xα.

A Fork in the Road. Consider a junction with one road (either an Entry or
a Middle Road) entering it and any number of roads exiting it. At time t driver α
is close to the end of the Entry Road or the Middle Road rα(t), in the sense that
xα(t) ∈ [Lrα(t)− `, Lrα(t)[. Driver α chooses the speed ẋα(t) taking into consideration
only those drivers preceding him/her along the road rα(t) or present in the next road
Nα(rα(t)) he/she is going to take, see Figure 3.
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We then set

ẋα=



Vrα(t) if

α is at the end of the road;
no one is on the same road in front of α;
no one is on the road where α is going.

vrα(t)

(
`

p+Lrα(t)−xα

)
if


α is at the end of the road;
no one is on the same road in front of α;
someone is on the road where α is going;
p is the position of the nearest vehicle in front of
α on the same road.

(2.3)

=



Vrα(t) if

xα(t) > Lrα(t) − `;
{α′∈{1, . . . , n} : rα′(t)=rα(t) and xα′(t)>xα(t)}=∅;
{α′∈{1, . . . , n} : rα′(t)=Nα (rα(t))}=∅.

vrα(t)

(
`

p+Lrα(t)−xα

)
if


xα(t) > Lrα(t) − `;
{α′∈{1, . . . , n} : rα′(t)=rα(t) and xα′(t)>xα(t)}=∅;
{α′∈{1, . . . , n} : rα′(t)=Nα (rα(t))} 6= ∅;
p= min

{
xα′∈[0, LNα(rα(t))] : rα′(t)=Nα (rα(t))

}
.

Indeed, when {α′ ∈ {1, . . . , n} : rα′(t) = Nα (rα(t))} is empty, no one is preceding
the αth driver along his/her route and the αth driver proceeds at full speed. On the
other hand, if {α′ ∈ {1, . . . , n} : rα′(t) = Nα (rα(t))} 6= ∅, then the driver immediately
preceding α is at position p, as defined in (2.3). The resulting speed ẋα(t) of the αth

j = Ni(ri(t))

p

xα(t)

Lrα(t)

j = rα(t)

Lrα(t) − `

Fig. 3. Notation used in (2.3). The αth driver, located at xα(t) is approaching the end of the
rα(t) road, in the sense that xα(t) ∈ [Lrα(t) − `, Lrα(t)], and its predecessor is at p along the road
Nα (rα(t)).

driver is then chosen according to the usual Follow-the-Leader rule, with p+Lrα(t)−
xα(t) being the physical distance measured along the road between the αth driver
and his/her predecessor, see Figure 3.

Roads Merging. Consider now a junction with several roads entering a single
road. We assume that the roads’ indexing respects the roads’ priorities, in the sense
that if the roads j and j′ enter the same junction and j < j′, then the drivers on
the road j have priority over those on road j′. Call J the set of indices of the roads
entering the junction under consideration.

First, we deal with the case of a driver coming from the road that has the priority
over all the other incoming roads. In this case, we have rα(t) = minJ by assumption.
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We then set

ẋα=



Vrα(t) if


α is at the end of the road;
α’s road has the priority;
no one is on the same road in front of α;
no one is on the road where α is going.

vrα(t)

(
`

p+Lrα(t)−xα

)
if



α is at the end of the road;
α’s road has the priority;
no one is on the same road in front of α;
someone is on the road where α is going;
p is the position of the nearest vehicle in front of
α on the same road.

(2.4)

=



Vrα(t) if


xα(t)>Lrα(t) − `;
rα(t)= minJ ;
{α′∈{1, . . . , n} : rα′(t)=rα(t) and xα′(t)>xα(t)}=∅;
{α′∈{1, . . . , n} : rα′(t)=Nα (rα(t))}=∅.

vrα(t)

(
`

p+Lrα(t)−xα

)
if


xα(t)>Lrα(t) − `;
rα(t)= minJ ;
{α′∈{1, . . . , n} : rα′(t)=rα(t) and xα′(t)>xα(t)}=∅;
{α′∈{1, . . . , n} : rα′(t)=Nα (rα(t))} 6=∅;
p = min

{
xα′∈[0, Lrα(t)] : rα′(t)=Nα (rα(t))

}
.

Similarly to the previous case of the fork in the road, i.e., equation (2.3), {α′ ∈
{1, . . . , n} : rα′(t) = Nα (rα(t))} is empty whenever the αth driver has free road ahead.
When {α′ ∈ {1, . . . , n} : rα′(t) = Nα (rα(t))} is nonempty, p as defined in (2.4) is the
position of the first driver in front of α, and p+Lrα(t)−xα(t) is the length of the free
road in front of the driver α, see Figure 4 (right).

Let now the αth driver approach the junction along the road rα(t) which yields
to other roads, so that rα(t) > min J . Assume that at the end of road j entering
the junction (i.e., j ∈ J) there is no one that has the priority over the road rα(t)
(i.e., j < rα(t)), i.e.,

⋃
j∈J : j<rα(t)

{α′ ∈ {1, . . . , n} : rα′(t) = j and xj(t) > Lj − `} =

∅, and there is no one in the road where α is entering (i.e., {α′ ∈ {1, . . . , n} : rα′(t) =
Nα (rα(t))} = ∅). Then, α drives at full speed Vrα(t):

(2.5)

ẋα=Vrα(t) if


α is at the end of the road;
α’s road does not have the priority;
no one is on the same road in front of α;
no one is on the road where α is going;
no one is at the end of roads having priority over α.

=Vrα(t) if



xα(t) > Lrα(t) − `;
rα(t) > min J ;
{α′ ∈ {1, . . . , n} : rα′(t) = rα(t) and xα′(t) > xα(t)} = ∅;
{α′ ∈ {1, . . . , n} : rα′(t) = Nα (rα(t))} = ∅;⋃
j∈J : j<rα(t)

{α′∈{1, . . . , n} : rα′(t)=j and xj(t)>Lj − `}=∅.

As soon as another driver, say α′, is present near to the end of road j′ = rα′(t)
(i.e., xα′(t) ∈ [Lj′ − `, Lj′ ]) entering the junction (i.e., j′ ∈ J) and having priority
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over the rα(t) road (i.e., j′ = rα′(t) < rα(t)), the αth driver has to yield to α′ and
stop, see (2.5) and Figure 4 (left).

r
α′ (t)

rα(t)

Nα (rα(t)) = N′α
(
r′α(t)

)

x′α(t)

xα(t)

Lrα(t) − `

p

Nα(rα(t))

Lrα(t) − `

xα(t)
rα(t)

Fig. 4. Left: notation used in (2.6): the αth driver is near the end of the rα(t) road and gives
way to the α′th driver, since rα′ (t) < rα(t). Right: notation used in (2.7): the αth driver adjusts
his/her speed to the position p of the nearest driver in front of him/her on road Nα (rα(t)).

(2.6)

ẋα=0 if


α is at the end of the road;
α’s road does not have the priority;
no one is on the same road in front of α;
someone is at the end of roads having priority over α.

=0 if


xα(t) > Lrα(t) − `;
rα(t) 6= min J ;
{α′ ∈ {1, . . . , n} : rα′(t) = rα(t) and xα′(t) > xα(t)} = ∅;⋃
j∈J : j<rα(t)

{α′ ∈ {1, . . . , n} : rα′(t) = j and xj(t) > Lj − `} 6= ∅.

Finally, consider the case when no one is present on the road having priority over
the road, indexed by rα(t), where the αth driver is moving (i.e.,

⋃
j∈J : j<rα(t)

{α′ ∈
{1, . . . , n} : rα′(t) = j and xj(t) > Lj − `} = ∅), but other vehicles are present on the
Nα (rα(t)) road where α is heading (i.e., {α′ ∈ {1, . . . , n} : rα′(t) = Nα (rα(t))} 6= ∅),
see Figure 4 (right). Then, the αth driver adapts his/her speed to the vehicle in front
of him/her:
(2.7)

ẋα=vrα(t)

(
`

p+Lrα(t)−xα

)
if



α is at the end of the road;
α’s road does not have the priority;
no one is on the same road in front of α;
no one is at the end of roads having priority over α;
someone is on the road where α is going;
p is the position of the nearest vehicle in front of
α on the same road.

=vrα(t)

(
`

p+Lrα(t)−xα

)
if



xα(t) > Lrα(t) − `;
rα(t) > min J ;
{α′∈{1, . . . , n} : rα′(t)=rα(t) and xα′(t)>xα(t)}=∅;⋃
j∈J

j<rα(t)

{α′ ∈ {1, . . . , n} : rα′(t)=j, xj(t) > Lj − `}=∅;

{α′∈{1, . . . , n} : rα′(t)=Nα (rα(t))} 6=∅;
p = min

{
xα′ ∈ [0, Lrα(t)] : rα′(t) = Nα (rα(t))

}
.
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Existence and Uniqueness of Solutions. Summarizing, the above formu-
las (2.2)–(2.7) define a system of n ordinary differential equations, which we write

(2.8) ẋα = Vα(t, x)

for short. The definitions above ensure that Vα(t, x) ∈ [0, Vmax] for all i = 1, . . . , n,
t ∈ [0, T ] and x ∈ Rn.

We now introduce a condition that states the absence of collisions among drivers.
Recall that at time t driver α is located at xα(t) on road rα(t).
(NoCollision) For all α′, α′′ ∈ {1, . . . , n}, if rα′ = rα′′ , then |xα′ − xα′′ | ≥ `.
Observe that the above condition does not rule out the following situation. Driver
α is located at xα on road j = rα(t) and, say, very near the junction located at the
end of road j, so that xα ∈ ]Lj − `, Lj [. Driver α′ moves along road j′ = rα′(t), also
entering the same junction and has the priority over road j, so that j′ < j. When α′

passes the junction, α is stopped and there may well be a time at which the distance
between α and α′ is smaller than `, but with α and α′ being on different roads, so
that no actual collision takes place.

Theorem 2.1. Consider a network of m interconnected roads containing at least
one Entry Road and one Exit Road. For j = 1, . . . ,m, on road j a speed law vj
satisfying (SpeeedLaw) is given. Assign to n drivers routes R1, . . . ,Rn satisfying
the (NoLoop) and (NoDeadEnd) conditions. Each driver α is assigned an ini-
tial position xoα in the first road of α’s route Rα and these initial positions satisfy
condition (NoCollision).
Then, the system of differential equations (2.8) admits a unique solution on the time
interval [0,+∞[. Moreover, at any positive t, the positions xα(t) of the drivers at
time t along roads rα(t), keep satisfying condition (NoCollision).

Remark 2.2. System (2.8) may not have good stability properties concerning
the dependence of solutions on the initial data, which is consistent with the common
driving experience.

Indeed, consider the case in Figure 5. The Entry Roads 1 and 2 end in the
same junction, where the Exit Road 3 begins. Road 1 yields priority to road 2. For
simplicity, choose the same speed law, say v(ρ) = 1− ρ, along all roads.

Fix a sufficiently small ε > 0. At time t = 0, driver 1 is at xo1 = −` − ε, while
driver 2 is at xo2 = −ε2, see Figure 5 (left). Then, the solution to (2.8) consists in
driver 1 passing through the junction and with driver 2 following. On the other hand,

−`

−`

x1(t)

x2(t)

1

2

3

−`

−`

x1(t)

x2(t)

1

2

3

Fig. 5. These initial data are arbitrarily near but lead to solutions to (2.8) that are uniformly
distant, due to the presence of priority rules.

if driver 1 starts from xo1 = −` + ε with driver 2 always at xo2 = −ε2, see Figure 5
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(right), then driver 2 stops owing priority to driver 1. The two resulting solutions are
uniformly different as ε→ 0.

3. Emergence of Braess Paradox. In this section we show the emergence
of Braess paradox in a non-stationary setting, obtained within the framework of the
system of differential equations (2.8) on the network depicted in Figure 2.

The seven roads are numbered as in Figure 2 and the Middle Roads are assigned
the lengths L2 = L3 = L5 = L6 =

√
2 and L4 = 2. We consider the routes

(3.1) R0 = [1, 3, 6, 7], R1 = [1, 2, 5, 7], and R2 = [1, 3, 4, 5, 7],

using the following priorities:

(3.2)
road 4 has the priority over road 2,
road 5 has the priority over road 6.

This means that the route R2 with the Middle Road 4, has priority over the other
routes. Along road j we use the speed law vj , for j = 1, . . . , 7, where

(3.3)
v1(ρ) = 0.9 (1− ρ), v2(ρ) = 0.6

√
1− ρ, v3(ρ) = (1− ρ)10,

v4(ρ) = 8.0 (1− ρ), v5(ρ) = 1.2 (1− ρ)6, v6(ρ) =
√

1− ρ, v7(ρ) = 1− ρ .

The vehicles’ length is ` = 0.1. We consider n = 180 drivers leaving at time t = 0 from
positions xo1, . . . , x

o
180 evenly spaced in the interval [−36,−0.1]. Through a random

number generator, we randomly assign the route to each driver according to the
proportions ϑ0, ϑ1, ϑ2, ϑk being the percentage of driver following the route Rk. Thus
ϑk ∈ [0, 1] with

∑
k ϑk = 1.

By means of Euler polygonals, with time step h = 0.01, we compute (approxi-
mate) solutions to (2.8). Each integration is repeated 20 times with different route
assignments to the drivers, but assigning the same frequencies ϑ0, ϑ1, and ϑ2. For
each driver α, we compute the travel time as the first time step when α is on road 7.
Then, all travel times are averaged over the drivers following the same route, and the
results are displayed in Table 1.

Assigned Distrib. Effective Distribution Travel Time Mean
ϑ0 ϑ1 ϑ2 Θ0 Θ1 Θ2 T0 T1 T2

∑
iΘiTi

0.00 0.00 1.00 0.0000 0.0000 1.0000 // // 105.4 105.4
0.05 0.05 0.90 0.05222 0.05028 0.8975 105.6 106.7 100.1 100.7
0.06 0.06 0.88 0.05833 0.05861 0.8831 102.7 100.3 99.33 99.58
0.07 0.07 0.86 0.07056 0.07028 0.8592 100.0 101.6 98.21 98.58
0.06 0.04 0.90 0.05917 0.03444 0.9064 101.7 106.4 101.9 102.1
0.04 0.06 0.90 0.04333 0.06167 0.8950 100.0 95.95 99.10 98.95
0.30 0.30 0.40 0.3083 0.2761 0.4156 76.99 77.55 79.84 78.33
0.45 0.45 0.10 0.4467 0.4486 0.1047 63.06 65.45 60.79 63.89
0.47 0.47 0.06 0.4761 0.4633 0.06056 61.93 62.63 60.02 62.14
0.50 0.50 0.00 0.4983 0.5017 0.0000 58.45 60.00 // 59.23

Table 1
Sample results obtained from integrating (2.8). The travel times Tk, for k = 0, 1, 2, are the

averages of the times at which drivers following route k enter road 7. The mean travel time is∑2
k=0 ΘkTk, where Θk is the actual portion of drivers following route k.

Here, the travel time Tk is the average time that drivers following route k need
to reach road 7.
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The bold travel times in Table 1 display situations fully coherent with Braess
paradox and with (ϑ0, ϑ1, ϑ2) = (0, 0, 1) being a Nash equilibrium for the travel
times. Note also that all displayed integrations are consistent with a weak, but still
surprising, form of the Braess paradox, in the sense that the overall mean travel times
with the new road 4 being present are all clearly larger than the mean travel time
without road 4.

Figure 6 displays a sample integration of the model described by (2.8) with speed
laws (3.3), where we can see the effect of the priority of route R2 = [1, 3, 4, 5, 7],
which contain the new road 4, over the other routes. As a consequence, a queue is
formed in road 6.

Fig. 6. Sample integration of the model described by (2.8). Note that the top right road yields
priority to the bottom right one. As a consequence, all during the (short) time interval displayed,
the 5 vehicles in the top right road line up and give priority to the vehicles coming from their right.
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4. Analytic Proofs. The following lemma tackles the basic local existence part
of Theorem 2.1.

Lemma 4.1. With the assumptions and notations of Theorem 2.1, assume that at
time t̄ ≥ 0 the drivers are distributed along the network at positions x̄α(t̄) satisfying
condition (NoCollision). Then, there exists a positive ε and uniquely determined
functions xα : [t̄, t̄ + ε] → R solving (2.8). Moreover, for all t ∈ [t̄, t̄ + ε], condi-
tion (NoCollision) holds.

Proof. The proof is divided in three steps.

1. For all α such that rα(t̄) is an Exit Road, the function xα can be uniquely defined
on [t̄,+∞[ solving a standard Follow-the-Leader ODE system. Note that, by the
standard properties of this model, these xα satisfy the (NoCollision) condition.

2. If Middle Roads and Entry Roads are empty, the proof is finished.
Otherwise, introduce the set of Entry and Middle Roads where there is at least

one driver at time t̄ whose next road is an Exit Road:

J1 = {j : ∃α ∈ {1, . . . , n} with rα(t̄) = j and Nα (rα(t̄)) is an Exit Road} .

Each road j ∈ J1 ends at a junction where an Exit Road begins. Consider one of these
junctions, say C and call j1, . . . , jk the roads in J1 entering C. We may assume that
j1 < j2 < · · · < jk, so that road j1 has the priority. The drivers along road j1 are at
positions xα1

(t̄), xα2
(t̄), · · · , xαν (t̄), with Lj1 > xα1

(t̄) > xα2
(t̄) > · · · > xαν (t̄) ≥ 0.

The trajectory of driver α1 is uniquely determined, since all trajectories along Exit
Roads are known. Therefore, along road j1, the usual Cauchy theorem for ODEs
ensures the existence and uniqueness of a solution to (2.8) at least on the time interval
[t̄, t̄+ε], where ε = (Lj1−xα1

(t̄))/Vmax and, by construction, condition (NoCollision)
holds.

Assume now that all drivers’ trajectories along roads j1, . . . , jh−1 are uniquely
defined on the time interval [t̄, t̄+ ε], for a positive ε. Denote by α1, . . . , αν the driv-
ers on road jh, with Ljh > xα1(t̄) > xα2(t̄) > · · · > xαν (t̄) ≥ 0. The speed of α1

is a unique non-negative L1 function defined at least on the time interval [t̄, t̄ + ε′],
where ε′ = min{ε, (Ljh − xα1

(t̄))/Vmax}, so that the trajectory of α1 solves (2.8) and
is uniquely defined. Iteratively, the same holds first for the trajectories of α2, . . . , αν
and then along all other roads jh+1, . . . , jk, always complying with condition (No-
Collision).

3. By condition (NoLoop), the above procedure can be iterated, covering the whole
network and without considering the same interval twice. Indeed, consider the set of
roads entering Ji:

Ji+1 = {j : ∃α ∈ {1, . . . , n} with rα(t̄) = j and Nα (rα(t̄)) ∈ Ji}

and proceed exactly as in the step 2 above.

Here, a unique solution to (2.8) was constructed on the time interval [t̄, t̄ + ε∗],
complying with condition (NoCollision), where ε∗ is the minimum of a finite quantity
of positive numbers. The proof is completed.

Below, for each driver, we also use the time-dependent coordinate yα(t), which
quantifies the total distance driven by the driver α at time t. For instance, with
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reference to Figure 2, if the driver α = 2 follows the route R2 = [0, 2, 3, 4, 6], starting
from xo2 ∈ ]−∞, 0[ in the Entry Road j = 0 at time 0 and at time t is moving along
road 4, then r2(t) = 4 and y2(t) = |xo2|+ L2 + L3 + x2(t), with x2(t) ∈ [0, L4[.

Given the route Rα = [j0, j1, . . . , jk] (with road lengths Lj0 , Lj1 , . . .,) for driver
α, the initial position xoα and xα(t), the length yα(t) covered by the αth driver is
uniquely determined. Indeed, if at time t the α driver is along road ji∗ = rα(t), we
have

(4.1) yα(t) =


|xoα|+

∑
i<i∗

Lji + xα(t) α starts from an Entry Road,
Li1 − xoα +

∑
i<i∗

Lji + xα(t) α starts from a Middle Road,
xα(t)− xoα α starts from an Exit Road.

The inverse correspondence is straightforward.

Proof of Theorem 2.1. By Lemma 4.1, for given initial data, problem (2.8) admits
a unique solution on the interval [0, ε0], for a positive ε0.

Prolong, in a unique way, the solution to (2.8) on the time interval [ε0, ε0 + ε1]
applying Lemma 4.1.

We claim that a solution to (2.8) can be uniquely constructed on all [0,+∞[.
Indeed, assume (by contradiction) that the above procedure yields a solution xα, for
α ∈ {1, . . . , n} defined on the maximal time interval [0, T [, for a positive T . For all
α ∈ {1, . . . , n}, the corresponding function t 7→ yα(t) is defined on [0, T [ and it is
Lipschitz continuous, hence it is uniformly continuous and can be uniquely extended
by continuity to the time interval [0, T ]. As a consequence, also xα can be uniquely
extended to the whole interval [0, T ]. At time T , we thus apply again Lemma 4.1,
obtaining a solution defined on [0, T + ε∗[, for a positive ε∗. This contradicts the
maximality of the above choice of T . �

5. Conclusions. This paper provides the analytic framework to use microscopic
traffic model on road networks. Traffic at junctions is ruled by fixed priority rules,
so that queues may form and disappear, depending on the overall traffic distribution.
Existence and uniqueness of solutions is proved, while continuous dependence may
fail, which is consistent with everyday experience. Moreover, vehicles may not collide,
once the initial datum assigned is reasonable.

This framework is then used to describe a non-stationary instance of Braess para-
dox. Adding a very fast road to an existing network may increase the travel times.
Here, a game theoretic approach was used, each driver being a player aiming at min-
imizing his/her travel time.

On the basis of the present results, further questions arise and can be tackled. A
very appealing research direction concerns the control of network traffic. For instance,
following [6, 7], can the introduction of a suitable toll avoid the insurgence of Braess
paradox? Once Theorem 2.1 is extended to time dependent priority rules (i.e., traffic
lights), which seems a merely technical issue, is it possible to find optimal timings at
the junctions that minimize travel times?
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