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Abstract: We consider three-flavor chiral perturbation theory (χPT) at zero temperature

and nonzero isospin (µI) and strange (µS) chemical potentials. The effective potential is

calculated to next-to-leading order (NLO) in the π±-condensed phase, the K±-condensed

phase, and the K0/K̄0-condensed phase. It is shown that the transitions from the vacuum

phase to these phases are second order and take place when, |µI | = mπ, |12µI + µS | = mK ,

and | − 1
2µI + µS | = mK , respectively at tree level and remains unchanged at NLO. The

transition between the two condensed phases is first order. The effective potential in the

pion-condensed phase is independent of µS and in the kaon-condensed phases, it only

depends on the combinations ±1
2µI + µS and not separately on µI and µS . We calculate

the pressure, isospin density and the equation of state in the pion-condensed phase and

compare our results with recent (2 + 1)-flavor lattice QCD data. We find that the three-

flavor χPT results are in good agreement with lattice QCD for µI < 200 MeV, however

for larger values χPT produces values for observables that are consistently above lattice

results. For µI > 200 MeV, the two-flavor results are in better agreement with lattice data.

Finally, we consider the observables in the limit of very heavy s-quark, where they reduce

to their two-flavor counterparts with renormalized couplings. The disagreement between

the predictions of two and three flavor χPT can largely be explained by the differences in

the experimental values of the low-energy constants.
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1 Introduction

Quantum chromodynamics (QCD), the theory of the strong force, is challenging to study

due to its non-perturbative nature and the inability to use lattice QCD simulations in

the phenomenologically most interesting regime, namely finite baryon density, due to the

infamous fermion sign problem [1, 2] present in classical Monte Carlo algorithms. As such,

except for asymptotically large baryon chemical potentials, where QCD is expected to be

in a color-flavor-locked phase [3, 4] and can be studied due to asymptotic freedom, most

of the phenomenologically relevant QCD phase diagram must be mapped out by other

methods, e.g. low-energy effective models.
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Recently, there has been renewed interest in a slightly different regime of QCD, one

with a finite isospin chemical potential due to the possibility of a new form of compact

stars known as pion stars, first discussed in ref. [5]. This type of compact object could

form in regions with large densities of neutrinos, which in turn leads to the production

of pions and their subsequent condensation [6]. These pions under weak equilibrium lead

to stable pion stars, which may be electromagnetically neutralized by either electrons or

muons, or both. They are expected to have radii and masses that are substantially larger

than those of neutron stars [7]. Pion stars are also different from neutron stars in the sense

that at T = 0 it is interactions that give rise to an (effective) equation of state, and not

the statistics of its constituents.

QCD at finite isospin chemical potential was first studied by Son and Stephanov using

chiral perturbation theory (χPT) [8–12] in their seminal paper [13]. In refs. [5, 14–19] one

can find various applications of χPT including some partial next-to-leading order results.

Since then finite isospin systems have been studied extensively in other versions of QCD

including two-color and adjoint QCD [20, 21], in the NJL [22–34], in the quark-meson

model [35–38], but also through lattice QCD, where it does not suffer from the fermion

sign problem (except at finite magnetic fields [39, 40] due to the charge asymmetry of

the up and down quarks). The first lattice QCD calculations of finite isospin QCD were

done in refs. [41, 42] and a more recent, thorough analysis in refs. [43–45]. They find as

expected from chiral perturbation theory calculations that at zero temperature there is a

second order phase transition at an isospin chemical potential, |µI | = mπ,1 which remains

largely unaltered at finite temperatures up to approximately 170 MeV beyond which quarks

become deconfined [15]. Similarly, with increasing isospin chemical potentials the quarks

in the pions become more loosely bound and occur in a BCS phase though owing to the

fact that this phase has the same order parameter as the BEC phase, there is no real phase

transition, only a crossover transition, with the size of the pion condensate decreasing

substantially within a narrow isospin window.

There have been a number of studies in recent years comparing (2 + 1) flavor lattice

QCD results with both QCD models and effective theories. Recently, the NJL model

(non-renormalizable) comparisons [33] were made that showed good agreement with the

lattice while the quark-meson model [38] (which is renormalizable) largely agrees with

the lattice. Furthermore, there have been other comparisons of lattice QCD with results

from an effective field theory (and model-independent) description [18], which is valid for

asymptotically large isospin chemical potentials [16], where the pions behave as a free Bose

gas. A recent review can be found in ref. [46].

The focus of this work is to compare the results of three-flavor χPT at finite isospin

density [47] with that of (2 + 1)-flavor lattice QCD of refs. [43–45]. We previously studied

two-flavor χPT at next-to-leading order (NLO) [48] and found that the NLO results are in

better agreement with lattice QCD than the tree-level results though the pressure, isospin

density and energy density were all found to be consistently smaller than lattice QCD

values. This is not entirely unexpected since the lattice QCD observables included the

1The |µI | = 1
2
mπ conventions is also frequently found in the literature. See eq. (2.9).
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effects of the sea strange quarks [49] while two-flavor χPT does not. As such, we extend

our previous work in NLO two-flavor χPT to include the effect of the strange quarks by

using three-flavor χPT at finite isospin chemical potential and find that the observables near

the second phase transition is in good agreement with lattice QCD. As a natural extension

of our finite isospin study, we also construct the NLO, one-loop effective potential to study

the effects of the simultaneous presence of both the isospin and strange quark chemical

potential.2 We find the second-order phase transition in the pion condensed phase remains

at |µI | = mπ even with the inclusion of µS and NLO corrections.3 Similarly, the second

order phase transition in the kaon condensed phases remains at | ± 1
2µI +µS | = mK where

mK is the kaon mass. Furthermore the effective potential even in the presence of µS in

the pion condensed phase only depends on µI and in the kaon condensed phases on the

combination
∣∣±1

2µI + µS
∣∣ but not µI and µS separately.

The paper is organized as follows. In the next section, we discuss the Lagrangian

of three-flavor chiral perturbation theory at finite isospin and strange chemical potentials

at next-to-leading order in the low-energy expansion. In section 3, we review the ground

state of the theory and fluctuations in the different phases. In section 4 the NLO effective

potential in the three different phases of the theory is calculated. In section 5, we derive

the pressure, isospin density, and equation of state in the pion-condensed phase. We also

consider the large-ms limit, where it is shown that the observables in three-flavor χPT

reduce to the two-flavor observables of ref. [48] with renormalized couplings. In section 6, we

discuss the phase diagram in more detail and derive medium-dependent masses at tree level.

We compare our results for the thermodynamic functions with recent lattice simulations.

2 χPT Lagrangian at O(p4)

In this section, we briefly discuss the symmetries of three-flavor QCD as well the chiral

Lagrangian to next-to-leading order in the low-energy expansion and its renormalization.

The three-flavor Lagrangian of QCD is

L = ψ̄
(
i /D −m

)
ψ − 1

4
F aµνF

µνa , (2.1)

where m = diag(mu,md,ms) is the quark mass matrix, /D = γµ∂µ−igλaAaµ is the covariant

derivative, λa are the Gell-Mann matrices, g is the strong coupling, Aaµ is the gauge field,

and F aµν is the field-strength tensor. The global symmetry of massless three-flavor QCD

is SU(3)L × SU(3)R × U(1)B, which is spontaneously broken down to SU(3)V × U(1)B in

the vacuum. For two degenerate light quarks, i.e. in the isospin limit the symmetry is

SU(2)I × U(1)Y × U(1)B, where Y represents hypercharge. If mu 6= md, this symmetry is

reduced to U(1)I3 ×U(1)Y ×U(1)B. If we add a chemical potential for each of the quarks,

the symmetry is U(1)I3 ×U(1)Y ×U(1)B, irrespective of the quark masses.

In the present paper, we consider three-flavor QCD with two degenerate light quarks.

The chiral Lagrangian then describes the octet of pseudo-Goldstone bosons consisting of

2Note that the “strange quark chemical potential” (µs) is different from the “strange chemical potential”

(µS). We define them in eq. (2.10).
3This property is expected to hold to all orders in perturbation theory.
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the three pions (π± and π0), the four kaons (K±, K0 and K̄0), and the eta (η). We begin

with the chiral perturbation theory Lagrangian at O(p2) [9]4

L2 =
f2

4
Tr
[
∇µΣ†∇µΣ

]
+
f2

4
Tr
[
χ†Σ + χΣ†

]
, (2.2)

where f is the bare pion decay constant, χ = 2B0M , and

M = diag(mu,md,ms) (2.3)

is the quark mass matrix, Σ = UΣ0U , where U = exp iλiφi
2f , and Σ = 1 is the vacuum.

Moreover, λi (i = 1, 2, . . . , 8) are the Gell-Mann matrices that satisfy Trλiλj = 2δij and

φi are the fields that parametrize the Goldstone manifold. The covariant derivative at

nonzero quark chemical µq potentials (q = u, d, s) is defined as follows

∇µΣ ≡ ∂µΣ− i [vµ,Σ] , (2.4)

∇µΣ† = ∂µΣ† − i[vµ,Σ†] , (2.5)

where

vµ = δµ0diag(µu, µd, µs) , (2.6)

We can also express vµ in terms of the baryon, isospin and strangeness chemical potentials

µB, µI , and µS as

vµ = δµ0diag

(
1

3
µB +

1

2
µI ,

1

3
µB −

1

2
µI ,

1

3
µB − µS

)
. (2.7)

where

µB =
3

2
(µu + µd) , (2.8)

µI = µu − µd , (2.9)

µS =
1

2
(µu + µd − 2µs) . (2.10)

This yields

v0 =
1

3
(µB − µS)1 +

1

2
µIλ3 +

1√
3
µSλ8 . (2.11)

We note that the µB-dependent term in eq. (2.11) commutes with Σ and Σ† in eqs. (2.4)–

(2.5) and so the baryon chemical potential drops completely out of the chiral Lagrangian.

This reflects the fact that we have only included the mesonic octet, which has zero baryonic

charge. We therefore set µB = 0 in the remainder of the paper.

2.1 Next-to-leading order Lagrangian

In order to perform calculations beyond tree level, we must go to next-to-leading order in

the low-energy expansion and consider the terms that contribute to L at O
(
p4
)
. There are

4One factor of ∇µ counts one power of p and one factor of χ counts two powers of p.
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twelve operators in L4 [10], but only eight of them are relevant for the present calculations.

They are

L4 = L1

(
Tr
[
∇µΣ†∇µΣ

])2
+ L2Tr

[
∇µΣ†∇νΣ

]
Tr
[
∇µΣ†∇νΣ

]
+L3Tr

[
(∇µΣ†∇µΣ)(∇νΣ†∇νΣ)

]
+ L4Tr

[
∇µΣ†∇µΣ

]
Tr
[
χ†Σ + χΣ†

]
+L5Tr

[(
∇µΣ†∇µΣ

)(
χ†Σ + χΣ†

)]
+ L6

(
Tr
[
χ†Σ + χΣ†

])2

+L8Tr
[
χ†Σχ†Σ + χΣ†χΣ†

]
+H2Tr

[
χ†χ

]
. (2.12)

where Li and Hi are unrenormalized couplings. The relations between the bare and renor-

malized couplings Lri (Λ) and Hr
i (Λ) are

Li = Lri (Λ) + Γiλ , (2.13)

Hi = Hr
i (Λ) + ∆iλ , (2.14)

where

λ = − Λ−2ε

2(4π)2

[
1

ε
+ 1

]
. (2.15)

Here Γi and ∆i are constants and Λ is the renormalization scale in the modified minimal

substraction scheme MS. The renormalized couplings satisfy the renormalization group

equations

Λ
d

dΛ
Lri = − Γi

(4π)2
, Λ

d

dΛ
Hr
i = − ∆i

(4π)2
. (2.16)

These are obtained by differentiation of eqs. (2.13)–(2.14) noting that the bare parameters

are independent of the scale Λ. The solutions are

Lri (Λ) = Lri (Λ0)− Γi
2(4π)2

log
Λ2

Λ2
0

, Hr
i (Λ) = Hr

i (Λ0)− ∆i

2(4π)2
log

Λ2

Λ2
0

, (2.17)

where Λ0 is a reference scale. We note that the contact term H2Tr[χ†χ] gives a constant

contribution to the effective potential which is the same in all phases. We keep it, however,

since it is needed to show the scale independence of the final result for the effective potential.

In three-flavor QCD, the constants Γi and ∆i are

Γ1 =
3

32
, Γ2 =

3

16
, Γ3 = 0 , Γ4 =

1

8
, (2.18)

Γ5 =
3

8
, Γ6 =

11

144
, Γ8 =

5

48
, ∆2 =

5

24
. (2.19)

3 Ground state and fluctuations

In this section, we will discuss the phase structure of the theory as a function of the chemical

potentials µI and µS . We will also discuss how to parametrize the fluctuations above the

ground state.

The most general SU(3) matrix for the ground state can be written as

Σα = eiαφ̂iλi , (3.1)
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where α is a rotation angle, φ̂i are variational parameters and a sum over the repeated

index i is implied. In order to ensure the normalization of the ground state, ΣαΣ†α = 1,

the coefficients must satisfy
∑

i φ̂
2
i = 1. However, depending on the chemical potentials,

we expect that the ground state takes a certain form, i.e. that it is rotated in a specific

way. For example, in the case µS = 0, we expect pion condensation for |µI | > mπ [13] and

that the two-flavor results carry over. We therefore briefly review the two-flavor case first.

Here the ground state can be written as [13]

Σα = eiαφ̂iτi = cosα+ iφ̂iτi sinα , (3.2)

where τi are the Pauli matrices and φ̂i are again variational parameters. The static part

of the O(p2) Hamiltonian H2 reads

Hstatic
2 =

f2

4
Tr[v0,Σα][v0,Σ

†
α]− f2

2
B0Tr[MΣα +MΣ†α] , (3.3)

where in the two-flavor case v0 = 1
2τ3µI , cf. eq. (2.11) andM = diag(mu,md) = diag(m,m).

The first term in eq. (3.3) can be written as

Hstatic (a)
2 =

f2

4
Tr[v0,Σα][v0,Σ

†
α] =

f2

8
µ2
ITr[τ3Σατ3Σ†α − 1] . (3.4)

This form suggests that Hstatic (a)
2 favors directions that anticommute with τ3 [13].

Substituting eq. (3.2) into eq. (3.4), this expectation is made explicit, Hstatic (a)
2 =

−1
2f

2µ2
I sin2 α(φ̂2

1 + φ̂2
2). Evaluating the other term in eq. (3.3), we find

Hstatic
2 = −2f2B0m cosα− 1

2
f2µ2

I sin2 α(φ̂2
1 + φ̂2

2) . (3.5)

The first term favors α = 0, i.e. the vacuum state Σ0 = 1, and it is clear that there is

competition between the two terms in eq. (3.5). We notice that the static energy only

depends on φ̂2
1 + φ̂2

2, and it is minimized by setting φ̂3 = 0. Without loss of generality and

for later convenience, we can choose φ̂1 = 1 and φ̂2 = 0. The rotated vacuum eq. (3.2) can

then be written as

Σα = AαΣ0Aα , (3.6)

where

Aα = ei
α
2
τ1 = cos

α

2
+ iτ1 sin

α

2
. (3.7)

Minimizing eq. (3.5) with respect to α, we find two phases, α = 0 for 2B0m < µ2
I and

cosα = 2B0m
µ2
I

for 2B0m > µ2
I . The first phase is the vacuum phase and the second phase

consists of a condensate of charged pions.

In analogy with the two-flavor case, we expect that pion condensation in the three-

flavor case can be captured by writing eq. (3.1) as5

Σπ±
α = AαΣ0Aα , (3.8)

5λ1 plays the role of τ1 and λ2 that of τ2. We are free to choose any linear combination of the two and

we choose λ2.
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where

Aα = ei
α
2
λ2 =

1 + 2 cos α2
3

1 + iλ2 sin
α

2
+

cos α2 − 1
√

3
λ8 . (3.9)

The rotated ground state can also be conveniently written as

Σπ±
α =

 cosα sinα 0

− sinα cosα 0

0 0 1

 , (3.10)

which shows that the rotation does not affect the s-quark. The symmetry breaking pattern

in this case is

U(1)I3 ×U(1)Y ×U(1)B → U(1)Y ×U(1)B . (3.11)

Since U(1)Q 6⊂ U(1)Y × U(1)B, electric charge Q is also broken and the system is both a

superfluid and a superconductor.

We next consider kaon condensation in three-flavor χPT. Depending on the values of µI
and µS , either the charged kaons or neutral kaons condense. If |12µI+µS | = |µu−µs| > mK ,

we expect either K+ or K− to condense depending on the sign. If |− 1
2µI+µS | = |µd−µs| >

mK , we expect K0 or K̄0 to condense depending on the sign. In the case of charged kaon

condensation, λ4 and λ5 replace λ1 and λ2, respectively, and without loss of generality we

can write ΣK±
α = ei

α
2
λ5Σ0e

iα
2
λ5 . The rotated ground state takes the form

ΣK±
α =

1 + 2 cosα

3
1 +

cosα− 1

2
√

3

(√
3λ3 − λ8

)
+ iλ5 sinα

=

 cosα 0 sinα

0 1 0

− sinα 0 cosα

 . (3.12)

The symmetry-breaking pattern is

U(1)I3 ×U(1)Y ×U(1)B → U(1)Y ×U(1)B . (3.13)

Again, since the U(1)Q 6⊂ U(1)Y ×U(1)B, electric charge is spontaneously broken and the

superfluid is also a superconductor.

Finally, in the case of neutral kaon condensation the rotated ground state is Σ
K0/K̄0

α =

ei
α
2
λ7Σ0e

iα
2
λ7 , or

ΣK0/K̄0

α =
1 + 2 cosα

3
1 +

1− cosα

2
√

3

(√
3λ3 + λ8

)
+ iλ7 sinα

=

1 0 0

0 cosα sinα

0 − sinα cosα

 . (3.14)

The symmetry-breaking pattern is now

U(1)I3 ×U(1)Y ×U(1)B → U(1)Q ×U(1)B , (3.15)

implying that the superfluid is not a superconductor.

– 7 –
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While we have considered the possibility of a single species condensing, in principle

it is possible for the ground state to have simultaneous condensation of multiple mesons.

However, explicit calculations in refs. [46, 47] that include the possibility of multiple ro-

tations into multiple condensed phases show that such phases are not the global minima

except on the first order transition line. We discuss the line at the end of this section.

We now return to the evaluation of the static Hamiltonian H2. In the case of pion

condensation, the static Hamiltonian reduces to

H2 = −2f2B0m cosα− f2B0ms −
1

2
f2µ2

I sin2 α . (3.16)

The minimum of the static Hamiltonian is

cosα = 1 , µ2
I < 2B0m (3.17)

cosα =
2B0m

µ2
I

, µ2
I > 2B0m. (3.18)

The ground-state energy in the vacuum and pion-condensed phase is

H2 = −f2B0(2m+ms) , µ2
I < 2B0m, (3.19)

H2 = −(2fB0m)2

µ2
I

− f2B0ms −
1

2
f2µ2

I

(
1− (2B0m)2

µ4
I

)
, µ2

I > 2B0m. (3.20)

In the case of charged kaon condensation, the static Hamiltonian reduces to

H2 = −f2B0m(1 + cosα)− f2B0ms cosα− 1

2
f2

(
1

2
µI + µS

)2

sin2 α . (3.21)

The minimum of the static Hamiltonian is

cosα = 1 ,

(
1

2
µI + µS

)2

< B0(m+ms) (3.22)

cosα =
B0(m+ms)

(1
2µI + µS)2

,

(
1

2
µI + µS

)2

> B0(m+ms) . (3.23)

The ground-state energy in the vacuum and the charged kaon-condensed phase is

H2 = −f2B0(2m+ms) ,

(
1

2
µI + µS

)2

< B0(m+ms) , (3.24)

H2 = −f2B0m−
f2B2

0(m+ms)
2

(1
2µI + µS)2

− 1

2
f2

(
1

2
µI + µS

)2
(

1− B2
0(m+ms)

2

(1
2µI + µS)4

)
,(

1

2
µI + µS

)2

> B0(m+ms) . (3.25)

Finally, we consider the case of condensation of neutral kaons. The results for this phase can

be obtained from the results of the phase of condensed charged kaons by the substitution

µI → −µI since −1
2µI + µS = µd − µs. In order to find the global minimum, we must

compare eqs. (3.20) and (3.25) in the region |µI | > mπ and |12µI+µS | > mK . The boundary

– 8 –
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between the pion-condensed phase and the kaon-condensed phase is then given by equating

these expressions. This yields

−
(
µ2
I −m2

π

)2
2µ2

I

= −
[
m2
K − (1

2µI + µS)2
]2

2(1
2µI + µS)2

, (3.26)

or ∣∣∣∣±1

2
µI + µS

∣∣∣∣ =
µ2
I −m2

π +
√

(µ2
I −m2

π)2 + 4µ2
Im

2
K

2µI
, (3.27)

where we used the tree-level relations m2
π = 2B0m and m2

K = B0(m+ms). We will return

to the phase diagram in the µI–µS plane in section 6.1.

3.1 Parametrizing fluctuations

Since we want to study the thermodynamics of the pion-condensed and kaon-condensed

phases including leading-order quantum corrections, it is natural to expand the chiral

perturbation theory Lagrangian around the relevant ground state. The Goldstone manifold

as a consequence of chiral symmetry breaking is SU(3)L × SU(3)R/SU(3)V . We will focus

on the pion-condensed phase for simplicity. The remarks below also apply to the kaon-

condensed phases. Following refs. [21, 48], we write

Σ = LαΣαR
†
α , (3.28)

with

Lα = AαUA
†
α , (3.29)

Rα = A†αU
†Aα . (3.30)

We emphasize that the fluctuations parameterized by Lα and Rα around the ground state

depend on α since the broken generators (of QCD) need to be rotated appropriately as the

condensed vacuum rotates with the angle α [21]. In the present case, U is an SU(3) matrix

that parameterizes the fluctuations around the vacuum,

U = exp

(
i
φaλa
2f

)
. (3.31)

With the parameterizations stated above, we get

Σ = Aα(UΣ0U)Aα . (3.32)

This parameterization not only produces the correct linear terms that vanish when eval-

uated at the minimum of the static Hamiltonian O(p2), the divergences of the one-loop

vacuum diagrams also cancel using counterterms from the O(p4) Lagrangian. Furthermore,

the parametrization produces a Lagrangian that is canonical in the fluctuations and has

the correct limit when α = 0, whereby

Σ = UΣ0U = U2 = exp

(
i
φaλa
f

)
, (3.33)
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as expected. If one expands the Lagrangian using the parametrization Σ = LΣαR =

UΣαU = UAαΣ0AαU instead of eq. (3.28), the kinetic terms of the Lagrangian are non-

canonical. By a field redefinition that depends on the chemical potentials, these terms can

be made canonical. However, calculating the leading corrections to the tree-level potential,

it can be shown that the ultraviolet divergences can be eliminated by renormalization only

at the minimum of the classical potential.6 Thus one cannot find the minimum of the next-

to-leading order effective potential as a function of α, showing that this parametrization is

erroneous. Let us finally take a look at the rotated generators. To linear order in the φi,

an infinitesimal fluctuation can be written as

Lα =

 cos α2 sin α
2 0

− sin α
2 cos α2 0

0 0 1

[1 + i
φiλi
2f

]cos α2 − sin α
2 0

sin α
2 cos α2 0

0 0 1

 . (3.34)

Using the (anti)commutator relations of the Gell-Mann matrices, eq. (3.34) takes the form

Lα = 1 +
iφ1

2f
(cosαλ1 + sinαλ3) +

iφ2λ2

2f
+
iφ3

2f
(cosαλ3 − sinαλ1)

+
iφ4

2f

(
cos

α

2
λ4 − sin

α

2
λ6

)
+
iφ5

2f

(
cos

α

2
λ5 − sin

α

2
λ7

)
+
iφ6

2f

(
cos

α

2
λ6 + sin

α

2
λ4

)
+
iφ7

2f

(
cos

α

2
λ7 + sin

α

2
λ5

)
+
iφ8λ8

2f
. (3.35)

The linear combinations λ′1 = (cosαλ1 +sinαλ3), λ′2 = λ2, etc can be thought of as rotated

generators, some of them, however, only by half the angle. The rotated generators λ′i satisfy

the same (anti)commutation relations as do λi To all orders in α, we then have

Lα = exp

(
iφiλ

′
i

2f

)
. (3.36)

3.2 Leading-order Lagrangian

Using the parameterization eq. (3.32) discussed above, we can write down the Lagrangian

in terms of the fields φa, which parametrizes the Goldstone manifold. The leading-order

terms in the low-energy expansion are given by L2, which can be expanded as a power

series in the fields

L2 = Llinear
2 + Lstatic

2 + Lquadratic
2 + · · · (3.37)

where the ellipses indicate terms that are cubic or higher order in the fields. We will carry

out the expansion for the normal phase, the pion-condensed phase, and the charged kaon-

condensed phase. Similar results can be obtained for the neutral kaon-condensed phase.

6Renormalization of the effective potential is carried out by renormalizing the low-energy constants in

the NLO static Lagrangian, see section 4.
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3.2.1 Normal phase

In the normal phase, the different terms in eq. (3.37) are

Lstatic
2 = f2B0(2m+ms) , (3.38)

Llinear
2 = 0 , (3.39)

Lquadratic
2 =

1

2
∂µφa∂

µφa − 1

2

(
2B0m− µ2

I

) (
φ2

1 + φ2
2

)
− 1

2
(2B0m)φ2

3

−1

2

[
B0(m+ms)−

(
1

2
µI + µS

)2
] (
φ2

4 + φ2
5 + φ2

6 + φ2
7

)
−B0(m+ 2ms)

3
φ2

8 + µI(φ1∂0φ2 − φ2∂0φ1) +

(
1

2
µI + µS

)
(φ4∂0φ5 − φ5∂0φ4)

+

(
−1

2
µI + µS

)
(φ6∂0φ7 − φ7∂0φ6) . (3.40)

The inverse propagator is block diagonal and can be written as

D−1 =


D−1

12 0 0 0 0

0 P 2 −m2
3 0 0 0

0 0 D−1
45 0 0

0 0 0 D−1
67 0

0 0 0 0 P 2 −m2
8

 , (3.41)

m2
3 = 2B0m, (3.42)

m2
8 =

2B0(m+ 2ms)

3
, (3.43)

where P = (p0, p) is the four-momentum and P 2 = p2
0 − p2. The submatrices are

D−1
12 =

(
P 2 −m2

1 ip0m12

−ip0m12 P
2 −m2

2

)
, D−1

45 =

(
P 2 −m2

4 ip0m45

−ip0m45 P
2 −m2

5

)
, (3.44)

D−1
67 =

(
P 2 −m2

6 ip0m67

−ip0m67 P
2 −m2

7

)
, (3.45)

The masses are

m2
1 = 2B0m− µ2

I , (3.46)

m2
2 = m2

1 , (3.47)

m12 = 2µI , (3.48)

m2
4 = B0(m+ms)−

(
1

2
µI + µS

)2

, (3.49)

m2
5 = m2

4 , (3.50)

m45 = µI + 2µS , (3.51)

m2
6 = m2

4 , (3.52)

m2
7 = m2

4 , (3.53)

m67 = −µI + 2µS . (3.54)
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The dispersion relations for the charges mesons are

Eπ± =
√
p2 + 2B0m± µI =

√
p2 +m2

π,0 ± µI , (3.55)

Eπ0 =
√
p2 + 2B0m =

√
p2 +m2

π,0 , (3.56)

EK± =
√
p2 +B0(m+ms)±

(
1

2
µI + µS

)
=
√
p2 +m2

K,0 ±
(

1

2
µI + µS

)
, (3.57)

EK0 =
√
p2 +B0(m+ms)±

(
−1

2
µI + µS

)
=
√
p2 +m2

K,0 ±
(
−1

2
µI + µS

)
, (3.58)

Eη =

√
p2 +

2

3
B0(m+ 2ms) =

√
p2 +m2

η,0 . (3.59)

The tree-level masses of the pions, kaons, and the η are then given by m2
π,0 = 2B0m,

m2
K,0 = B0(m+ms), and m2

η,0 = 2
3B0(m+ 2ms).

3.2.2 Pion-condensed phase

In the pion-condensed phase, the different terms in eq. (3.37) are

Lstatic
2 = f2B0(2mcosα+ms)+

1

2
f2µ2

I sin2α, (3.60)

Llinear
2 = f(−2B0m+µ2

I cosα)sinαφ2−fµI sinα∂0φ1 , (3.61)

Lquadratic
2 =

1

2
∂µφa∂

µφa−
1

2

(
2B0mcosα−µ2

I cos2α
)
φ2

1

−1

2

(
2B0mcosα−µ2

I cos2α
)
φ2

2−
1

2

(
2B0mcosα+µ2

I sin2α
)
φ2

3

−1

2

[
B0(mcosα+ms)−

1

4
µ2
I cos2α−µIµS cosα−µ2

S

]
(φ2

4 +φ2
5)

−1

2

[
B0(mcosα+ms)−

1

4
µ2
I cos2α+µIµS cosα−µ2

S

]
(φ2

6 +φ2
7)

−B0(mcosα+2ms)

3
φ2

8 +µI cosα(φ1∂0φ2−φ2∂0φ1) (3.62)

+

(
1

2
µI cosα+µS

)
(φ4∂0φ5−φ5∂0φ4)+

(
−1

2
µI cosα+µS

)
(φ6∂0φ7−φ7∂0φ6) .

We get for the inverse propagator:

D−1 =


D−1

12 0 0 0 0

0 p2 −m2
3 0 0 0

0 0 D−1
45 0 0

0 0 0 D−1
67 0

0 0 0 0 P 2 −m2
8

 , (3.63)

m2
3 = 2B0m cosα+ µ2

I sin2 α , (3.64)

m2
8 =

2B0(m cosα+ 2ms)

3
. (3.65)
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The three different 2× 2 matrices are given by

D−1
12 =

(
P 2 −m2

1 ip0m12

−ip0m12 P
2 −m2

2

)
, D−1

45 =

(
P 2 −m2

4 ip0m45

−ip0m45 P
2 −m2

5

)
, (3.66)

D−1
67 =

(
P 2 −m2

6 ip0m67

−ip0m67 P
2 −m2

7

)
, (3.67)

where the masses are

m2
1 = 2B0m cosα− µ2

I cos2 α , (3.68)

m2
2 = 2B0m cosα− µ2

I cos 2α , (3.69)

m12 = 2µI cosα , (3.70)

m2
4 = B0(m cosα+ms)−

µ2
I

4
cos 2α− µIµS cosα− µ2

S , (3.71)

m2
5 = m2

4 , (3.72)

m45 = µI cosα+ 2µS , (3.73)

m2
6 = B0(m cosα+ms)−

µ2
I

4
cos 2α+ µIµS cosα− µ2

S , (3.74)

m2
7 = m2

6 , (3.75)

m67 = −µI cosα+ 2µS . (3.76)

The quasiparticle dispersion relations can be easily found and read

Eπ0 = p2 +m2
3 , (3.77)

E2
π± = p2 +

1

2

(
m2

1 +m2
2 +m2

12

)
± 1

2

√
4p2m2

12 +(m2
1 +m2

2 +m2
12)2−4m2

1m
2
2 , (3.78)

E2
K± = p2 +

1

2

(
m2

4 +m2
5 +m2

45

)
± 1

2

√
4p2m2

45 +(m2
4 +m2

5 +m2
45)2−4m2

4m
2
5 , (3.79)

E2
K0 = p2 +

1

2

(
m2

6 +m2
7 +m2

67

)
± 1

2

√
4p2m2

67 +(m2
6 +m2

7 +m2
67)2−4m2

6m
2
7 , (3.80)

E2
η0 = p2 +m2

8 . (3.81)

3.2.3 Charged kaon-condensed phase

In the kaon-condensed phase, the different terms in eq. (3.37) are

Lstatic
2 = f2B0[m+ (m+ms) cosα] +

1

2
f2

(
1

2
µI + µS

)2

sin2 α (3.82)

Llinear
2 = f

[
−B0(m+ms) +

(
1

2
µI + µS

)2

cosα

]
sinαφ5

−f
(

1

2
µI + µS

)
sinα∂0φ4 (3.83)

Lquadratic
2 =

1

2
∂µφa∂

µφa −
1

2

{
1

2
B0 [3m−ms + (m+ms) cosα]

− 1

16

[
3µI − 2µS + 2

(
1

2
µI + µS

)
cosα

]2

+
1

4

(
1

2
µI + µS

)2

sin2 α

}
(φ2

1 + φ2
2)
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−1

2

{
1

2
B0 [3m−ms + (m+ms) cosα] +

1

4

(
1

2
µI + µS

)2

sin2 α

}
φ2

3

−1

2

{
B0(m+ms) cosα−

(
1

2
µI + µS

)2

cos2 α

}
φ2

4

−1

2

{
B0(m+ms) cosα−

(
1

2
µI + µS

)2

cos 2α

}
φ2

5

−1

2

{
1

2
B0(m+ms)(1 + cosα)− 1

16

[
−3µI + 2µS + 2

(
1

2
µI + µS

)
cosα

]2

+
1

4

(
1

2
µI + µS

)2

sin2 α

}
(φ2

6 + φ2
7)

−1

2

{[
1

6
B0(−m+ 3ms + 5(m+ms) cosα) +

3

4

(
1

2
µI + µS

)2

sin2 α

]}
φ2

8

−

{
1

2
√

3
B0(m+ms)(cosα− 1) +

√
3

4

(
1

2
µI + µS

)2

sin2 α

}
φ3φ8

+
1

4

[
3µI − 2µS + 2

(
1

2
µI + µS

)
cosα

]
(φ1∂0φ2 − φ2∂0φ1)

+

(
1

2
µI + µS

)
cosα(φ4∂0φ5 − φ5∂0φ4)

+
1

4

[
−3µI + 2µS + 2

(
1

2
µI + µS

)
cosα

]
(φ6∂0φ7 − φ7∂0φ6) . (3.84)

The inverse propagator is block diagonal and can be written as

D−1 =


D−1

12 0 0 0

0 D−1
38 0 0

0 0 D−1
45 0

0 0 0 D−1
67

 , (3.85)

where the submatrices are

D−1
12 =

(
P 2 −m2

1 ip0m12

−ip0m12 P
2 −m2

2

)
, D−1

38 =

(
P 2 −m2

3 −m2
38

−m2
38 P 2 −m2

8

)
, (3.86)

D−1
45 =

(
P 2 −m2

4 ip0m45

−ip0m45 P
2 −m2

5

)
, D−1

67 =

(
P 2 −m2

6 ip0m67

−ip0m67 P
2 −m2

7

)
. (3.87)
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The masses are

m2
1 =

{
1

2
B0 [3m−ms + (m+ms) cosα]

− 1

16

[
3µI − 2µS + 2

(
1

2
µI + µS

)
cosα

]2

+
1

4

(
1

2
µI + µS

)2

sin2 α

}
, (3.88)

m2
2 = m2

1 , (3.89)

m12 =
1

2

[
3µI − 2µS + 2

(
1

2
µI + µS

)
cosα

]
, (3.90)

m2
3 =

{
1

2
B0 [3m−ms + (m+ms) cosα] +

1

4

(
1

2
µI + µS

)2

sin2 α

}
, (3.91)

m2
4 =

{
B0(m+ms) cosα−

(
1

2
µI + µS

)2

cos2 α

}
, (3.92)

m2
5 =

{
B0(m+ms) cosα−

(
1

2
µI + µS

)2

cos 2α

}
, (3.93)

m45 = 2

(
1

2
µI + µS

)
cosα , (3.94)

m2
6 =

{
1

2
B0(m+ms)(1 + cosα)− 1

16

[
−3µI + 2µS + 2

(µI
2

+ µS

)
cosα

]2

+
1

4

(
1

2
µI + µS

)2

sin2 α

}
, (3.95)

m2
7 = m2

6 , (3.96)

m67 =
1

2

[
−3µI + 2µS + 2

(
1

2
µI + µS

)
cosα

]
, (3.97)

m2
8 =

[
1

6
B0(−m+ 3ms + 5(m+ms) cosα) +

3

4

(
1

2
µI + µS

)2

sin2 α

]
, (3.98)

m2
38 =

1

2
√

3
B0(m+ms)(cosα− 1) +

√
3

4

(
1

2
µI + µS

)2

sin2 α . (3.99)

The quasiparticle dispersion relations can be easily found and read

E2
π0 = p2 +

1

2
(m2

3 +m2
8) +

1

2

√
(m2

3 −m2
8)2 + 4m4

38 , (3.100)

E2
π± = p2 +

1

2

(
m2

1 +m2
2 +m2

12

)
± 1

2

√
4p2m2

12 + (m2
1 +m2

2 +m2
12)2 − 4m2

1m
2
2 , (3.101)

E2
K± = p2 +

1

2

(
m2

4 +m2
5 +m2

45

)
± 1

2

√
4p2m2

45 + (m2
4 +m2

5 +m2
45)2 − 4m2

4m
2
5 , (3.102)

E2
K0 = p2 +

1

2

(
m2

6 +m2
7 +m2

67

)
± 1

2

√
4p2m2

67 + (m2
6 +m2

7 +m2
67)2 − 4m2

6m
2
7 , (3.103)

E2
η0 = p2 +

1

2
(m2

3 +m2
8)− 1

2

√
(m2

3 −m2
8)2 + 4m4

38 . (3.104)

The linear terms in the condensed phases are given by eqs. (3.61) and (3.83). By differenti-

ation with respect to α, it is straightforward to see that the terms vanish at the extremum
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of the corresponding static Lagrangian. To show this at NLO, requires the calculation of

the one-loop diagram that contribute to the one-point function, see ref. [48] for details.

4 Next-to-leading order effective potential

In this section, we calculate the NLO effective potential in the three different phases we

consider. At O(p2), the contribution to the effective potential in each phase is given by

evaluating −Lstatic
2 using Σπ±

α , ΣK±
α , or Σ

K0/K̄0

α . At O(p4), there are two contributions

to the effective potential. The first is the Gaussian fluctuation about the ground state,

i.e. the standard one-loop contribution. The second is given by evaluating −Lstatic
4 , again

using Σπ±
α , ΣK±

α , or Σ
K0/K̄0

α . The one-loop contribution is ultraviolet divergent and needs

regularization. We regularize the ultraviolet divergences using dimensional regularization

in d = 3 − 2ε dimensions. The divergences are cancelled by renormalizing the coupling

constants that multiply the operators in L4. The sum of the three contributions is the

complete effective potential to O(p4) in χPT.

After going to Euclidean space, the one-loop contribution to the effective potential of

a free massive boson is given by

V1 =
1

2

∫
P

log
[
P 2 +m2

]
=

1

2

∫
dp0

2π

∫
p

log
[
p2

0 + p2 +m2
]
, (4.1)

where m is the mass and the second integral is defined in d = 3− 2ε as dimensions

∫
p

=

(
eγEΛ2

4π

)ε ∫
ddp

(2π)d
, (4.2)

and where Λ is the renormalization scale associated with the modified minimal subtraction

scheme (MS). Integrating over P0, one finds

V1 =
1

2

∫
p

√
p2 +m2 = − m4

4(4π)2

(
Λ2

m2

)ε [
1

ε
+

3

2
+O(ε)

]
. (4.3)

4.1 Normal phase

The leading-order contribution to the effective potential is minus the static Lagrangian

given in eq. (3.38)

V0 = −f2B0(2m+ms) . (4.4)

The one-loop contribution to the effective potential is

V1 =
1

2

∫
p

[
Eπ+ + Eπ− + Eπ0 + EK+ + EK− + EK0 + EK̄0 + Eη0

]
, (4.5)
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where the particle energies are given by eqs. (3.55)–(3.59). Using eq. (4.3), we can write

eq. (4.5) as

V1 = − 3

4(4π)2

[
1

ε
+

3

2
+ log

(
Λ2

m2
π,0

)]
[2B0m]2

− 1

(4π)2

[
1

ε
+

3

2
+ log

(
Λ2

m2
K,0

)]
[B0(m+ms)]

2

− 1

4(4π)2

[
1

ε
+

3

2
+ log

(
Λ2

m2
η,0

)][
2B0(m+ 2ms)

3

]2

. (4.6)

The O(p4) contribution from minus the static Lagrangian Lstatic
4 is given by

V static
1 = −16L6B

2
0(2m+ms)

2 − 8L8B
2
0(2m2 +m2

s)− 4H2B
2
0(2m2 +m2

s) (4.7)

After renormalization, the effective potential is

Veff = −f2B0(2m+ms)− 16Lr6B
2
0(2m+ms)

2 − 8Lr8B
2
0(2m2 +m2

s)− 4Hr
2B

2
0(2m2 +m2

s)

−

[
1

(4π)2

(
37

18
+ 3 log

Λ2

m2
π,0

+ log
Λ2

m2
K,0

+
1

9
log

Λ2

m2
η,0

)]
B2

0m
2

−

[
1

(4π)2

(
11

9
+ 2 log

Λ2

m2
K,0

+
4

9
log

Λ2

m2
η,0

)]
B2

0mms

−

[
1

(4π)2

(
13

18
+ log

Λ2

m2
K,0

+
4

9
log

Λ2

m2
η,0

)]
B2

0m
2
s . (4.8)

Using the renormalization group equations (2.17) for the couplings, we find that the effec-

tive potential is independent of the renormalization scale Λ. We note that the renormalized

effective potential of eq. (4.8) is independent of the chemical potentials µI and µS . This

independence is a result that we expect will generalize at next-to-next-to-leading order

(NNLO) and higher orders. This is due to a general argument, namely the Silver Blaze

property, that shows the isospin independence of the eigenvalues of the Dirac operator at

finite isospin density (in the normal phase) [55] and consequently the isospin independence

of the partition function and resulting thermodynamic quantities. While the original proof

in ref. [55] did not include the strange chemical potential, we expect that it generalizes to

systems with both isospin and strange chemical potentials.

4.2 Pion-condensed phase

The tree-level contribution to the effective potential is minus the static Lagrangian given

in eq. (3.60)

V0 = −f2B0(2m cosα+ms)−
1

2
f2µ2

I sin2 α . (4.9)

The one-loop effective potential is

V1 =
1

2

∫
p

[
Eπ+ + Eπ− + Eπ0 + EK+ + EK− + EK0 + EK̄0 + Eη0

]
. (4.10)
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where the energies are given by eqs. (3.77)–(3.81). The integrals of Eπ0 and Eη0 can

be calculated analytically in dimensional regularization using eq. (4.3). The remaining

contributions require a little more work. Let us consider the contribution from the charged

pions. In order to eliminate the divergences, their dispersion relations are expanded in

powers of 1/p as

Eπ+ +Eπ− = 2p+
2(m2

1 +m2
2) +m2

12

4p
− 8(m4

1 +m4
2) + 4(m2

1 +m2
2)m2

12 +m4
12

64p3
+ . . . (4.11)

To this order, the large-p behavior in eq. (4.11) is the same as the sum E1 + E2, where

E1 =
√
p2 +m2

1 + 1
4m

2
12 and E2 =

√
p2 +m2

2 + 1
4m

2
12. For later convenience we introduce

the masses m̃2
1 = m2

1+ 1
4m

2
12 = 2B0m cosα, m̃2

2 = m2
2+ 1

4m
2
12 = 2B0m cosα+µ2

I sin2 α = m2
3,

The integral over Eπ+ +Eπ− −E1−E2 is convergent in the ultraviolet and the subtraction

integrals of E1 and E2 can be done analytically in dimensional regularization. We can then

write

V1,π+ + V1,π− = V div
1,π+ + V div

1,π− + V fin
1,π+ + V fin

1,π− (4.12)

where

V div
1,π+ + V div

1,π− =
1

2

∫
p

[E1 + E2] , (4.13)

V fin
1,π+ + V fin

1,π− =
1

2

∫
p

[Eπ+ + Eπ− − E1 − E2] . (4.14)

The contributions from the kaons can be calculated analytically as follows. Consider first

the contribution from the charged kaon which is given by

V1,K+ + V1,K− =
1

2

∫
P

log
[
(P 2 +m2

4)(P 2 +m2
5) + p2

0m
2
45

]
, (4.15)

which can be rewritten as

V1,K+ + V1,K− =
1

2

∫
P

log

{[
P 2 +

1

2
(m2

4 +m2
5)

]2

+ p2
0m

2
45 −

1

4
(m2

4 −m2
5)2

}
. (4.16)

Since m4 = m5, the last term vanishes and the integrand can be factorized as

V1,K+ + V1,K− =
1

2

∫
P

log

[(
p0 +

im45

2

)2

+ p2 +m2
4 +

1

4
m2

45

]

×

[(
p0 −

im45

2

)2

+ p2 +m2
4 +

1

4
m2

45

]
. (4.17)

Shifting integration variables in the two terms, p0 → p0 ∓ im45
2 , the integral simplifies to

V1,K+ + V1,K− =

∫
P

log

[
P 2 +m2

4 +
1

4
m2

45

]
. (4.18)
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The contribution from the neutral kaons is obtained simply by replacing m4 by m6 and m45

by m67. Since m̃2
2 = m2

3 and by defining m̃2
4 = m2

4 + 1
4m

2
45 = m2

6 + 1
4m

2
67 = B0(m cosα +

ms) + 1
4µ

2
I sin2 α, we can write the divergent part of the one-loop contribution as

V div
1 = − 1

4(4π)2

[
1

ε
+

3

2
+ log

(
Λ2

m̃2
1

)]
[2B0m cosα]2

− 1

2(4π)2

[
1

ε
+

3

2
+ log

(
Λ2

m2
3

)] [
2B0m cosα+ µ2

I sin2 α
]2

− 1

(4π)2

[
1

ε
+

3

2
+ log

(
Λ2

m̃2
4

)][
B0(m cosα+ms) +

1

4
µ2
I sin2 α

]2

− 1

4(4π)2

[
1

ε
+

3

2
+ log

(
Λ2

m2
8

)][
2B0(m cosα+ 2ms)

3

]2

, (4.19)

The static part of the Lagrangian L4 as a function of α is

V static
1 = −(4L1 + 4L2 + 2L3)µ4

I sin4 α− 8L4B0(2m cosα+ms)µ
2
I sin2 α

−8L5B0mµ
2
I cosα sin2 α− 16L6B

2
0(2m cosα+ms)

2

−8L8B
2
0(2m2 cos 2α+m2

s)− 4H2B
2
0(2m2 +m2

s) . (4.20)

The renormalized one-loop effective potential Veff = V0 + V1 + V static
1 is given by the sum

of eqs. (4.9), (4.19), and (4.20) then reads

Veff = −f2B0(2m cosα+ms)−
1

2
f2µ2

I sin2 α− (4Lr1 + 4Lr2 + 2Lr3)µ4
I sin4 α

−8Lr4B0(2m cosα+ms)µ
2
I sin2 α− 8Lr5B0mµ

2
I cosα sin2 α

−16Lr6B
2
0(2m cosα+ms)

2 − 8Lr8B
2
0(2m2 cos 2α+m2

s)− 4Hr
2B

2
0(2m2 +m2

s)

− 1

4(4π)2

[
1

2
+ log

(
Λ2

m̃2
1

)]
[2B0m cosα]2

− 1

2(4π)2

[
1

2
+ log

(
Λ2

m2
3

)] [
2B0m cosα+ µ2

I sin2 α
]2

− 1

(4π)2

[
1

2
+ log

(
Λ2

m̃2
4

)][
B0(m cosα+ms) +

1

4
µ2
I sin2 α

]2

− 1

4(4π)2

[
1

2
+ log

(
Λ2

m2
8

)][
2B0(m cosα+ 2ms)

3

]2

+ V fin
1,π+ + V fin

1,π− . (4.21)

Again, it can be verified that the NLO effective potential is independent of the scale Λ. it

is also explicitly independent of the strangeness chemical potential µS .

4.3 Charged kaon-condensed phase

The tree-level contribution to the effective potential is

V0 = −f2B0 [m+ (m+ms) cosα)]− 1

2
f2

(
1

2
µI + µS

)2

sin2 α . (4.22)
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The one-loop effective potential is

V1 =
1

2

∫
p

[
Eπ+ + Eπ− + Eπ0 + EK+ + EK− + EK0 + EK̄0 + Eη0

]
. (4.23)

The contributions from π±, K±, K0 and K̄0 can be treated as in the previous section and it

is only the terms V1,K± that require a subtraction term. The relevant masses are defined as

m̃2
1 = m2

1 +
1

4
m2

12 =
1

2
B0[3m−ms + (m+ms) cosα] +

1

4

(
1

2
µI + µS

)2

sin2 α , (4.24)

m̃2
4 = m2

4 +
1

4
m2

45 = B0(m+ms) cosα , (4.25)

m̃2
5 = m2

5 +
1

4
m2

45 = B0(m+ms) cosα+

(
1

2
µI + µS

)2

sin2 α , (4.26)

m̃2
6 = m2

6 +
1

4
m2

67 =
1

2
B0(m+ms)(1 + cosα) +

1

4

(
1

2
µI + µS

)2

sin2 α . (4.27)

The contribution from the mixed π0 and η0 is given by

V1,π0 + V1,η0 =
1

2

∫
P

log
[
(P 2 +m2

3)(P 2 +m2
8)−m4

38

]
=

1

2

∫
P

log
[
P 2 + m̃2

3] + log[P 2 + m̃2
8

]
, (4.28)

where the new masses are defined as

m̃2
3,8 =

1

2

[
m2

3 +m2
8 ±

√
(m2

3 −m2
8)2 + 4m4

38

]
. (4.29)

This yields

V1 = − 1

2(4π)2

[
1

ε
+

3

2
+log

(
Λ2

m̃2
1

)]{
1

2
B0[(3m−ms+(m+ms)cosα]

+
1

4

(
1

2
µI +µS

)2

sin2α

}2

− 1

4(4π)2

[
1

ε
+

3

2
+log

(
Λ2

m̃2
4

)][
B2

0(m+ms)
2 cos2α

]
− 1

4(4π)2

[
1

ε
+

3

2
+log

(
Λ2

m̃2
5

)][
B0(m+ms)cosα+

(
1

2
µI +µS

)2

sin2α

]2

− 1

2(4π)2

[
1

ε
+

3

2
+log

(
Λ2

m̃2
6

)][
1

2
B0(m+ms)(1+cosα)+

1

4

(
1

2
µI +µS

)2

sin2α

]2

− 1

4(4π)2

[
1

ε
+

3

2
+log

(
Λ2

m̃2
3

)]
m̃4

3−
1

4(4π)2

[
1

ε
+

3

2
+log

(
Λ2

m̃2
8

)]
m̃4

8 . (4.30)
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The static part of the Lagrangian L4 as a function of α is

V static
1 = −(4L1 + 4L2 + 2L3)

(
1

2
µI + µS

)4

sin4 α

−8L4B0[m+ (m+ms) cosα]

(
1

2
µI + µS

)2

sin2 α

−4L5B0(m+ms)

(
1

2
µI + µS

)2

cosα sin2 α− 16L6B
2
0 [m+ (m+ms) cosα]2

−4L8B
2
0(3m2 − 2mms +m2

s + (m+ms)
2 cos 2α)− 4H2B

2
0(2m2 +m2

s) . (4.31)

After renormalization, the effective potential is

Veff = −f2B0 [m+ (m+ms) cosα)]− 1

2
f2

(
1

2
µI + µS

)2

sin2 α

−(4Lr1 + 4Lr2 + 2Lr3)

(
1

2
µI + µS

)4

sin4 α

−8Lr4B0[m+ (m+ms) cosα]

(
1

2
µI + µS

)2

sin2 α

−4Lr5B0(m+ms)

(
1

2
µI + µS

)2

cosα sin2 α− 16Lr6B0[m+ (m+ms) cosα]2

−4Lr8B
2
0(3m2 − 2mms +m2

s + (m+ms)
2 cos 2α)− 4Hr

2B
2
0(2m2 +m2

s)

− 1

2(4π)2

[
1

2
+ log

(
Λ2

m̃2
1

)]{
1

2
B0[(3m−ms + (m+ms) cosα]

+
1

4

(
1

2
µI + µS

)2

sin2 α

}2

− 1

4(4π)2

[
1

2
+ log

(
Λ2

m̃2
4

)] [
B2

0(m+ms)
2 cos2 α

]
− 1

4(4π)2

[
1

2
+ log

(
Λ2

m̃2
5

)][
B0(m+ms) cosα+

(
1

2
µI + µS

)2

sin2 α

]2

(4.32)

− 1

2(4π)2

[
1

2
+ log

(
Λ2

m̃2
6

)][
1

2
B0(m+ms)(1 + cosα) +

1

4

(
1

2
µI + µS

)2

sin2 α

]2

− 1

4(4π)2

[
1

2
+ log

(
Λ2

m̃2
3

)]
m̃4

3 −
1

4(4π)2

[
1

2
+ log

(
Λ2

m̃2
8

)]
m̃4

8 + V fin
1,K+ + V fin

1,K− ,

where the subtraction terms and energies are defined by

V fin
1,K+ + V fin

1,K− =
1

2

∫
p

[EK+ + EK− − E4 − E5] , (4.33)

E4,5 =
√
p2 + m̃2

4,5 , (4.34)

with m̃4,5 given by eqs. (4.25)–(4.26).

The effective potential depends only on the combination 1
2µI + µS as is evident by

inspection. Using the expressions for the running couplings, eq. (2.17), the scale dependence

in the final results for the effective potential, eqs. (4.8), (4.21), and (4.32) cancels.
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5 Thermodynamic functions

In this section, we derive the thermodynamic functions from the effective potential. We

will focus on the pion-condensed phase since we are interested in comparing our results

with lattice simulations.

5.1 Pion-condensed phase

The pressure P is given by −Veff . In the pion-condensed phase, we get from eq. (4.21)

P = f2B0(2mcosα+ms)+
1

2
f2µ2

I sin2α

+

[
4Lr1 +4Lr2 +2Lr3 +

1

16(4π)2

(
9

2
+8log

Λ2

m2
3

+log
Λ2

m̃2
4

)]
µ4
I sin4α

+

[
8Lr4 +

1

2(4π)2

(
1

2
+log

Λ2

m̃2
4

)]
B0(2mcosα+ms)µ

2
I sin2α

+

[
8Lr5 +

1

2(4π)2

(
3

2
+4log

Λ2

m2
3

− log
Λ2

m̃2
4

)]
B0mµ

2
I cosαsin2α

+

[
16Lr6 +8Lr8 +4Hr

2 +
1

(4π)2

(
13

18
+log

Λ2

m̃2
4

+
4

9
log

Λ2

m2
8

)]
B2

0m
2
s

+

[
64Lr6 +

1

(4π)2

(
11

9
+2log

Λ2

m̃2
4

+
4

9
log

Λ2

m2
8

)]
B2

0mms cosα

+

[
64Lr6 +16Lr8 +8Hr

2 +
1

(4π)2

(
37

18
+log

Λ2

m̃2
1

+

+2log
Λ2

m2
3

+log
Λ2

m̃2
4

+
1

9
log

Λ2

m2
8

)]
B2

0m
2 cos2α− [16Lr8−8Hr

2 ]B2
0m

2 sin2α

−V fin
1,π+−V fin

1,π− , (5.1)

The isospin density is given by

nI = −∂Veff

∂µI

= f2µI sin2 α+

[
16Lr1 + 16Lr2 + 8Lr3 +

1

4(4π)2

(
8 log

Λ2

m2
3

+ log
Λ2

m̃2
4

)]
µ3
I sin4 α

+

[
16Lr4 +

1

(4π)2
log

Λ2

m̃2
4

]
B0(2m cosα+ms)µI sin2 α (5.2)

+

[
16Lr5 +

1

(4π)2

(
4 log

Λ2

m2
3

− log
Λ2

m̃2
4

)]
B0mµI cosα sin2 α−

∂V fin
1,π+

∂µI
−
∂V fin

1,π−

∂µI
.

The energy density is given by

ε = −P + µini . (5.3)

where ni = −∂Veff
∂µi

is the charge density associated with the chemical potential µi. In the

pion-condensed phase it takes the following form

ε = −P + µInI . (5.4)
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since the effective potential is independent of µS = 0 in this phase. Using eqs. (4.21)

and (5.2), we find the following energy density

ε = −f2B0(2mcosα+ms)+
1

2
f2µI sin2α (5.5)

+

[
12Lr1 +12Lr2 +6Lr3 +

1

(4π)2

(
− 9

32
+

3

2
log

Λ2

m2
3

+
3

16
log

Λ2

m̃2
4

)]
µ4
I sin4α

+

[
8Lr4 +

1

2(4π)2

(
−1

2
+log

Λ2

m̃2
4

)]
B0(2mcosα+ms)µ

2
I sin2α

+

[
8Lr5 +

1

2(4π)2

(
−3

2
+4log

Λ2

m2
3

− log
Λ2

m̃2
4

)]
B0mµ

2
I cosαsin2α

−
[
16Lr6 +8Lr8 +4Hr

2 +
1

(4π)2

(
13

18
+log

Λ2

m̃2
4

+
4

9
log

Λ2

m2
8

)]
B2

0m
2
s

−
[
64Lr6 +

1

(4π)2

(
11

9
+2log

Λ2

m̃2
4

+
4

9
log

Λ2

m2
8

)]
B2

0mms cosα

−
[
64Lr6 +16Lr8 +8Hr

2 +
1

(4π)2

(
37

18
+log

Λ2

m̃2
1

+2log
Λ2

m2
3

+log
Λ2

m̃2
4

+
1

9
log

Λ2

m2
8

)]
×B2

0m
2 cos2α+[16Lr8−8Hr

2 ]B2
0m

2 sin2α+V fin
1,π+ +V fin

1,π−−µI
∂V fin

1,π+

∂µI
−µI

∂V fin
1,π−

∂µI
,

5.2 Large-ms limit

We are interested in the large-ms limit of our three-flavor results for thermodynamic quan-

tities. In this limit, general effective field theory arguments tell us that the mesonic degrees

of freedom containing the s-quark decouple. Thus one should recover the two-flavor results

of ref. [48] with modified couplings. The modified couplings then contain the loop effects

from integrating out kaons and the eta.

The one-loop expressions for the pion-decay constant and the light-quark condensate

in the vacuum are given by [10]

f2
π = f2

[
1 +

(
8Lr4 + 8Lr5 +

2

(4π)2
log

Λ2

m2
π,0

)
m2
π,0

f2

+

(
16Lr4 +

1

(4π)2
log

Λ2

m2
K,0

)
m2
K,0

f2

]
(5.6)

〈ψ̄ψ〉 = −f2B0

[
1 +

(
16Lr6 + 4Lr8 + 4Hr

2 +
3

2(4π)2
log

Λ2

m2
π,0

)
m2
π,0

f2

+

(
32Lr6 +

1

(4π)2
log

Λ2

m2
K,0

)
m2
K,0

f2
+

m2
η,0

6(4π)2f2
log

Λ2

m2
η,0

]
. (5.7)
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The loop corrections involve pions, kaons, and etas. Integrating out the s-quark corresponds

to setting m = 0 or ignoring the pionic loop corrections. This yields

f̃2 = f2

[
1 +

(
16Lr4 +

1

(4π)2
log

Λ2

m̃2
K,0

)
m̃2
K,0

f2

]
, (5.8)

〈ψ̄ψ〉 = −f2B0

[
1 +

(
32Lr6 +

1

(4π)2
log

Λ2

m̃2
K,0

)
m̃2
K,0

f2
+

m̃2
η,0

6(4π)2f2
log

Λ2

m̃2
η,0

]
, (5.9)

where the masses are m̃2
K,0 = B0ms and m̃2

η,0 = 4B0ms
3 . Defining B̃0 via 〈ψ̄ψ〉 = −f̃2B̃0

yields

B̃0 = B0

[
1− (16Lr4 − 32Lr6)

m̃2
K,0

f2
+

m̃2
η,0

6(4π)2f2
log

Λ2

m̃2
η,0

]
. (5.10)

Using the renormalization group equations for Lr4 and Lr6, one verifies that eqs. (5.8)

and (5.10) are independent of the scale Λ. Moreover, in ref. [10], the authors derived the

relations among the renormalized couplings in two - and three-flavor χPT. The relevant

relations are

lr1 = 4Lr1 + 2Lr3 +
1

48(4π)2

[
log

Λ2

m̃2
K,0

− 1

]
, (5.11)

lr2 = 4Lr2 +
1

24

1

(4π)2

[
log

Λ2

m̃2
K,0

− 1

]
, (5.12)

lr3 = −8Lr4 − 4Lr5 + 16Lr6 + 8Lr8 +
1

36(4π)2

[
log

Λ2

m̃2
η,0

− 1

]
(5.13)

lr4 = 8Lr4 + 4Lr5 +
1

4(4π)2

[
log

Λ2

m̃2
K,0

− 1

]
, (5.14)

hr1 = 8Lr4 + 4Lr5 − 4Lr8 + 2Hr
2 +

1

4(4π)2

[
log

Λ2

m̃2
K,0

− 1

]
. (5.15)

The relations between the renormalized couplings lri , h
r
i and the low-energy constants l̄i, h̄i

in two-flavor χPT are

lri (Λ) =
γi

2(4π)2

[
l̄i + log

2B0m

Λ2

]
, hri (Λ) =

δi
2(4π)2

[
h̄i + log

2B0m

Λ2

]
, (5.16)

where γ1 = 1
3 , γ2 = 2

3 , γ3 = −1
2 , γ4 = 2, and δ1 = 2 [9]. Using the renormalization group

equations for renormalized couplings, one finds that the Λ-dependence are the same on the

left - and right-hand sides of eqs. (5.11)–(5.15).

The low-energy limit of eqs. (5.1), (5.2), and (5.5) are then obtained as follows. We

expand them in powers of 1/ms, express the result using eqs. (5.8), and (5.10)–(5.16). The
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pressure is

P = 2f̃2B̃0m cosα+
1

2
f̃2µ2

I sin2 α− 4

(4π)2

[
−h̄1 + l̄4

]
B2

0m
2

+
1

(4π)2

[
3

2
− l̄3 + 4l̄4 + log

(
2B0m

m̃2
1

)
+ 2 log

2B0m

m2
3

]
B2

0m
2 cos2 α

+
1

(4π)2

[
1

2
+ l̄4 + log

2B0m

m2
3

]
2B0mµ

2
I cosα sin2 α

+
1

2(4π)2

[
1

2
+

1

3
l̄1 +

2

3
l̄2 + log

2B0m

m2
3

]
µ4
I sin4 α− V fin

1,π+ − V fin
1,π− , (5.17)

the isospin density is

nI = f̃2µI sin2 α+
2

(4π)2

[
l̄4 + log

2B0m

m2
3

]
2B0mµI cosα sin2 α

+
2

(4π)2

[
1

3
l̄1 +

2

3
l̄2 + log

2B0m

m2
3

]
µ3
I sin4 α−

∂V fin
1,π+

∂µI
−
∂V fin

1,π−

∂µI
, (5.18)

and the energy density is

ε = −2f̃2B̃0m cosα+
1

2
f̃2µ2

I sin2 α+
4

(4π)2

[
−h̄1 + l̄4

]
B2

0m
2

− 1

(4π)2

[
3

2
− l̄3 + 4l̄4 + log

(
2B0m

m̃2
1

)
+ 2 log

(
2B0m

m2
3

)]
B2

0m
2 cos2 α

− 1

(4π)2

[
1

2
− l̄4 − log

2B0m

m2
3

]
2B0mµ

2
I cosα sin2 α

− 1

2(4π)2

[
1

2
− l̄1 − 2l̄2 − 3 log

2B0m

m2
3

]
µ4
I sin4 α+ V fin

1,π+ + V fin
1,π−

−µI
∂V fin

1,π+

∂µI
− µI

∂V fin
1,π−

∂µI
. (5.19)

Up to different notation (2B0m→ m2), the results for P , nI , and ε are of the same form as

the two-flavor results derived in [48] with renormalized parameters B̃0 and f̃ . (In two-flavor

χPT m is the tree level pion mass [48].)

6 Results and discussion

In this section, we study the (tree-level) quasiparticle masses, isospin density, pressure and

the equation of state. In order to evaluate these quantities, we need the numerical values

of the low-energy constants (Li) as well as the meson masses and decay constants. The

low-energy constants have been determined experimentally, with the following values and

uncertainties at the scale µ = mρ, where Λ2 = 4πe−γEµ2 [59], where mρ is the mass of the
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ρ meson,

Lr1 = (1.0± 0.1)× 10−3 , Lr2 = (1.6± 0.2)× 10−3 , (6.1)

Lr3 = (−3.8± 0.3)× 10−3 , Lr4 = (0.0± 0.3)× 10−3 , (6.2)

Lr5 = (1.2± 0.1)× 10−3 Lr6 = (0.0± 0.4)× 10−3 , (6.3)

Lr7 = (−0.4± 0.2)× 10−3 Lr8 = (0.5± 0.2)× 10−3 . (6.4)

Since we are mainly interested in comparing our results to the predictions of the lattice

simulations in refs. [43], we will use their values for the pion and kaon masses as well as

the pion and kaon decay constants. With uncertainties, they are given by [58]

mπ = 131± 3MeV , mK = 481± 10MeV , (6.5)

fπ =
128± 3√

2
MeV , fK =

150± 3√
2

MeV . (6.6)

These uncertainties (in the masses and decay constants) arise due to lattice discretization

errors and consequently differ slightly from their experimental values. Since we have three

parameters in the Lagrangian, B0m, B0ms, and f , we need to pick three observables from

the set above, and we choose mπ, mK , and fπ.

The relevant meson masses and the pion decay constants at one-loop are given by

eqs. (A.1), (A.2), and (A.3) in terms of the parameters B0m, B0ms and f at next-to-

leading order. Using the lattice values given above, we can solve for B0m, B0ms, and f .

This yields

f cen = 75.16 MeV , f low = 79.88 MeV , fhigh = 70.44 MeV , (6.7)

mlow
π,tree = 148.45 MeV , mcen

π,tree = 131.28 MeV , mhigh
π,tree = 115.93 MeV , (6.8)

mcen
K,tree = 520.65 MeV , mlow

K,tree = 617.35 MeV , mhigh
K,tree = 437.84 MeV , (6.9)

where the subscripts indicate that the values correspond to the central, minimum, and

maximum values of the low-energy constants. Using the one-loop χPT expression for the

fK , eq. (A.4), we find fK = 113.9 MeV for the central values, which is off by approximately

7% compared to the lattice value of fK = 150√
2

= 106.1 MeV. The uncertainties in the LECs,

Lri , the pion mass, mπ, the pion decay constant, fπ, and the kaon mass, mK , lead to uncer-

tainties in B0m, B0ms and f . These uncertainties are dominated by the uncertainties in the

LECs with the uncertainty in the lattice parameters contributing the least. Additionally,

it turns out that the lowest values of LECs calculated after including the LEC uncertainty

leads to unphysical values of the η mass. As such we were forced to choose the lowest

values of the LECs using 0.46 times the uncertainties leading to the results in eq. (6.7).

The thermodynamic quantities are functions of the effective potential evaluated at its

minimum as a function of α for given values of the isospin and strange chemical potentials.

Hence, we must solve the equation
∂Veff

∂α
= 0 . (6.10)
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Figure 1. αgs as a function of µI/mπ at LO (red), at NLO with two flavors (blue), NLO with three

flavors (green), and NLO with two flavors and three-flavor LECs (brown). See main text for details.

In figure 1, we show the solution to eq. (6.10) as function of the isospin chemical potential

µI and µS = 0. The red curve is the tree-level result, while the blue curve is the one-

loop result in two-flavor χPT, the green curve is the one-loop result in three-flavor χPT

and the brown curve is the one-loop result in two-flavor χPT using three-flavor LECs. In

section 6.3, we use αgs to calculate the pressure, isospin density and the equation of state.

6.1 Phase diagram

We find that αgs becomes non-zero when |µI | > mπ. In order to show that the transition

from the vacuum phase to the Bose-condensed phases occurs at a critical chemical potential

equal to the physical pion mass, we expand the effective potential in a power series in α

around α = 0 up to order α4 to obtain an effective Landau-Ginzburg energy functional [53],

V LG
eff = a0 + a2α

2 + a4α
4 +O(α6) . (6.11)

As pointed out before, in the charged pion-condensed phase, Veff and therefore the coeffi-

cients are independent of µS . Similarly, in the charged kaon-condensed phase, they only

depend on the combination 1
2µI+µS , and in the neutral kaon-condensed phase, only on the

combination −1
2µI + µS , Using the expressions for the pion mass mπ (A.1) and the pion-

decay constant fπ, (A.3), it can be shown that in the pion-condensed phase (see ref. [48]

for details)

a2(µI) =
1

2
f2
π

[
m2
π − µ2

I

]
. (6.12)

The critical isospin chemical potential µcI is defined by the vanishing of a2(µI), and

eq. (6.12) shows that |µcI | = mπ. Moreover, using the techniques in ref. [53] it can be shown

that a4(µcI) > 0, implying that the transition from the vacuum phase to a pion-condensed

phase is second order located at µcI = ±mπ.7 Similarly, in the charged kaon-condensed

phase, we find

a2 (µI/2 + µS) =
1

2
f2
K

[
m2
K −

(
1

2
µI + µS

)2
]
, (6.13)

7If a4(µcI) < 0, the transition is first order.
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where mK is the physical kaon mass, whose one-loop expression is given by eq. (A.2). The

critical chemical potential is again given by the vanishing of a2, i.e. |12µI + µS | = mK The

coefficient of the order α4 term can be shown to be positive when evaluated at 1
2µI +µS =

mK . This shows there is a second-order transition to a kaon-condensed phase at 1
2µI+µS =

±mK . For the transition to a neutral kaon-condensed phase, we have −1
2µI + µS = ±mK .

While the transitions from the vacuum to either a pion-condensed phase or a kaon-

condensed phase are second order, the transition between the two Bose-condensed phases

is first order. At leading, this is straightforward to see. For example the pion and kaon

condensates are given by

〈π+〉 = 2f2B0 sinα = 2f2B0

√
1− m4

π

µ4
I

, µI > mπ (6.14)

〈K+〉 = 2f2B0 sinα = 2f2B0

√
1−

m4
K

(1
2µI + µS)4

,
1

2
µI + µS > mK . (6.15)

For any µI > mπ and 1
2µI + µS > mK , these condensates jump discontinuously to zero as

we cross the phase line. The transition line itself is given by the equality of the pressures

in the two phases. While it is possible to find this line analytically at tree level as shown

in eq. (3.27), in order to find the line at NLO, we need to compare the pressure in the

pion and kaon condensed phases, which can only be done numerically. We have performed

this calculation for the central values from eqs. (6.4) and (6.6). In figure 2 we show the

phase diagram in the µI–µS plane with the first order transition line increasing to higher

strange chemical potential for all values of the isospin chemical potential greater than the

pion mass. The vacuum phase is in the region bounded by the straight lines µI = ±mπ,

µS = ±(1
2µI +mK), and µS = ±(−1

2µI +mK). The corners from where the first-order lines

emerge are located at (µI , µS) = (±131,±415.5) MeV. The solid lines represent second-

order transitions while the dashed line indicates the tree level first-order transition and the

green dot dashed line indicates the NLO first-order transition. In the vacuum phase, the

thermodynamic functions are independent of the isospin and strange chemical potentials.

This is an example of the so-called Silver Blaze property [55].

6.2 Medium-dependent masses

In this subsection, we will briefly discuss the medium-dependent masses. We restrict our-

selves to a leading-order calculation, i.e. we consider the tree-level dispersion relations

evaluated at p2 = 0. In the pion-condensed phase, they are given by eqs. (3.77)–(3.81).

In the kaon-condensed phase, they are given by eqs. (3.100)–(3.104). In the left panel

of figure 3, we show the medium-dependent masses as a function of the isospin chemical

potential µI for fixed strange chemical potential µS = 200 MeV. For µI = 0, we are in the

normal phase, the pion masses take on their vacuum values, while the kaons are degenerate

in pairs. The mass of π+ decreases as we increase µI and vanishes when µI = mπ and

enter the pion-condensed phase. At µI = mπ, the masses vary continuously reflecting the

second-order nature of the transition. We also note that the mass of η0 is independent of

µI . which follows directly from eq. (3.81). Finally, for asymptotically large values of µI ,
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Figure 2. Phase diagram in the µI–µS plane at T = 0. Solid lines represent second-order transitions

while the red dashed lines are the tree level first-order transitions and the green dot-dashed lines

are the NLO first-order transitions. The normal phase has vanishing meson condensates and the

meson condensate that becomes non-zero is indicated in each region.

the kaons and pions are pairwise degenerate. In the right panel of figure 3, we show the

medium-dependent masses as a function of isospin chemical potential µI for fixed strange

chemical potential µS = 460 MeV. At µI = 0, we are in the vacuum phase. The kaons

are again degenerate in pairs, the pions are also degenerate taking on their vacuum values.

We enter the kaon-condensed phase at µI = 42 MeV, which is a second-order transition.

In this phase, K+ is the Goldstone mode associated with the spontaneous breakdown of

the U(1)-symmetry. As we increase the isospin chemical potential past approximately

µI = 268 MeV, we enter the pion-condensed phase. In this phase, π+ is the Goldstone

mode associated with the spontanous breakdown of the U(1)I3-symmetry. This first-order

nature of the transition can be seen by the jumps in the quasiparticle masses.

Finally, we also note that in the charged pion and kaon condensed phases the mass

eigenstates do not coincide with the charge eigenstates [56]. It is easy to see using the form

of the inverse propagators in eqs. (3.62) and (3.84) that in the condensed phases the mass

eigenstates can be found using momentum-dependent rotations of the mass eigenstates.

However, the pion and kaon charge eigenstates are the standard ones

π± =
φ1 ∓ iφ2√

2
, K± =

φ4 ∓ iφ5√
2

. (6.16)

They can be deduced using the canonical form of the quadratic, kinetic terms in eqs. (3.61)

and (3.83) in the unbroken phase with α = 0, which possesses a global U(1) symmetry.

When gauged (using electromagnetic fields), the Lagrangian possesses a local U(1) (gauge)

symmetry, which is broken by the pion condensed phase.
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Figure 3. Medium-dependent masses as a function of µI for µS = 200 MeV (left panel) and

µS = 460 MeV (right panel). See main text for details.

6.3 Pressure, isospin density, and equation of state

In this subsection, we discuss the pressure, the isospin density and the equation of state in

the pion-condensed phase and compare our results to the (2 + 1)-flavor lattice QCD results

of refs. [43–45]. We begin with figure 4, where we plot the pressure (divided by m4
π) as a

function of µI/mπ. The pressure has been normalized to be zero in the normal vacuum,

which also has a zero isospin density. As pions condense beginning at the critical isospin

chemical potential, µcI = mπ, the pressure increases with increasing chemical potential and

continues to increase monotonically, a feature that is consistent with results from lattice

QCD. The pressure from two-flavor χPT is smaller than that from lattice QCD even when

the uncertainties within the LECs, the pion mass and pion decay constant are taken into

account. The range of pressures due to the uncertainties calculated within two-flavor χPT

is represented by the blue band. We find that the uncertainty in the pion mass and the

pion decay constant (as opposed to the uncertainty in the LECs) dominates the uncertainty

in the pressure. On the other hand, the pressure from three-flavor χPT (shown in green),

which includes the contribution from strange quarks unlike two-flavor χPT, overestimates

the pressure. In figure 4, we use a dark green band to show the uncertainty in the pressure

due to the uncertainties in the pion mass and the pion decay constant, and we use a light

green band to represents the uncertainty in the pressure due to the LECs, the pion mass and

the pion decay constant. The result shows that unlike in two-flavor χPT, the uncertainty

in the pressure is dominated by the uncertainty in the LECs.

It is clear from figure 4 that the difference in pressure calculated in two-flavor χPT

versus that calculated in three-flavor χPT is quite significant. The tree level pressure in

two and three-flavor χPT is identical. Therefore, the difference arises through the NLO

contribution to the pressure in two-flavor and three-flavor χPT. Since the NLO contribution

is suppressed by a power of 1/(4πfπ)2, the difference in the two-flavor and three-flavor

pressure seems unusually large. In order to explain the difference we have mapped three-

flavor χPT by expanding the effective potential in the limit of large strange quark masses

in subsection 5.2. After identifying the appropriate two-flavor LECs in terms of three-

flavor LECs — see eqs. (5.11)–(5.15) — we find the appropriate two-flavor LECs that are
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Figure 4. Normalized Pressure (P/m4
π) as a function of µI/mπ at LO (red), at NLO with two

flavors (blue), NLO with three flavors (green), and NLO with two flavors and three-flavor LECs

(brown). See main text for details.

consistent with the values of three-flavor LECs. They are

l̄1(Nf = 3) = 14.5, l̄2(Nf = 3) = 6.5, l̄3(Nf = 3) = 4.1, l̄4(Nf = 3) = 4.2 , (6.17)

with l̄i being defined in eq. (5.16). In order to contrast the above values with the two-flavor

LECs, we state the LECs below where

l̄1(Nf = 2) = −0.4, l̄2(Nf = 2) = 4.3, l̄3(Nf = 2) = 2.9, l̄4(Nf = 2) = 4.4 . (6.18)

We note that while l̄4 looks quite similar in the two cases, l̄2 and l̄3 are somewhat different

with the difference in l̄1 being the most significant (they have opposite signs). We calculated

the pressure in two-flavor χPT using the LECs found to be consistent with three-flavor χPT

— we show this result in figure 4 in brown (dashed). The result shows that even the two-

flavor χPT overestimates the pressure compared to that from 2+1 flavor lattice QCD. This

analysis shows that the overestimation of the pressure is due to the values of the LECs

of three-flavor χPT, which also have large uncertainties compared to two-flavor LECs. As

a secondary observation, we note that as the strange quark mass becomes lighter, the

pressure increases in χPT, particularly for larger isospin chemical potential.

In figure 5, we plot the isospin density (divided by m3
π) as a function of the normalized

chemical potential, µI/mπ. The isospin density is zero in the vacuum phase and monoton-

ically increases in the pion-condensed phase. The rate of increase decreases as the isospin

chemical potential increases. The isospin density from three-flavor χPT is consistent with

that of lattice QCD in the normal vacuum and near the critical isospin chemical potential

up to approximately µI = 1.4mπ. For larger isospin chemical potentials, three-flavor χPT

consistently overestimates the isospin density. This is unlike the result in two-flavor χPT

which is in extremely good agreement with lattice QCD. The two-flavor χPT result using

three-flavor LECs is plotted in brown and shows that the three-flavor χPT result is largely

explained by the discrepancy in the values of the LECs in two-flavor and three-flavor χPT.
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Figure 5. Normalized isospin density (nI/m
3
π) as a function of µI/mπ at LO (red), at NLO with

two flavors (blue), NLO with three flavors (green), and NLO with two flavors and three-flavor LECs

(brown). See main text for details.
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Figure 6. Normalized energy density (ε/µ4
I) as a function of the normalized pressure (P/m4

π)

at NLO with two flavors (blue), NLO with three flavors (green), and NLO with two flavors and

three-flavor LECs (brown). See main text for details.

Finally, in figure 6 we plot the equation of state: the energy density divided by m4
π is

plotted against the pressure divided by m4
π. Three-flavor χPT consistently overestimates

the energy density for all pressures though up to P/m4
π ' 0.10, the discrepancy is small.

Two-flavor χPT, on the other hand, underestimates the energy density up to P/m4
π ≈ 0.2

but is largely consistent for values above it. Using three-flavor LECs, we can show that

most of the discrepancy between two-flavor and three-flavor χPT is due to the discrepancy

between the two sets of LECs, a theme common to all observables we have calculated in

this work. The two-flavor results using three-flavor LEC is shown using brown dashed

lines. The result is consistent with three-flavor χPT for P/m4
π ' 0.2 while above it the

two-flavor χPT result gives larger values of energy density. It is also worth noting that for a

given value of pressure the energy density decreases with decreasing strange quark masses.
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A Meson masses and decay constants

In order to show the second-order nature of the phase transition from the vacuum to a

Bose-condensed phase at µcI = mπ, and ±1
2µ

c
I + µcS = mK where mπ and mK are the

physical meson masses in the vacuum, we need to express them in terms of the parameters

B0m, B0ms, and f of the chiral Lagrangian. The pion and kaon masses are [10]

m2
π = m2

π,0

[
1−

(
8Lr4 + 8Lr5 − 16Lr6 − 16Lr8+

1

2(4π)2
log

Λ2

m2
π,0

)
m2
π,0

f2

−(Lr4 − 2Lr6)
16m2

K,0

f2
+

m2
η,0

6(4π)2f2
log

Λ2

m2
η,0

]
, (A.1)

m2
K = m2

K,0

[
1− (Lr4 − 2Lr6)

8m2
π,0

f2
− (2Lr4 + Lr5 − 4Lr6 − 2Lr8)

8m2
K,0

f2

−
m2
η,0

3(4π)2f2
log

Λ2

m2
η,0

]
. (A.2)

The pion and kaon decay constants, fπ and fK respectively, are [10]

f2
π = f2

[
1 +

(
8Lr4 + 8Lr5 +

2

(4π)2
log

Λ2

m2
π,0

)
m2
π,0

f2

+

(
16Lr4 +

1

(4π)2
log

Λ2

m2
K,0

)
m2
K,0

f2

]
(A.3)

f2
K = f2

[
1 +

(
12Lr4 +

3

4(4π)2
log

Λ2

m2
π,0

)
m2
π,0

f2
+

(
8Lr5 +

3

2(4π)2
log

Λ2

m2
K,0

)
m2
K,0

f2

+

(
12Lr4 +

3

4(4π)2
log

Λ2

m2
η,0

)
m2
η,0

f2

]
. (A.4)

Using the expressions for the renormalization group equations, eq. (2.16), it is straightfor-

ward to see that the Λ-dependence of the coupling cancels against the chiral logarithms in

expressions for the masses and decay constants.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 33 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
6
(
2
0
2
0
)
1
7
0

References

[1] K. Fukushima and T. Hatsuda, The phase diagram of dense QCD, Rept. Prog. Phys. 74

(2011) 014001 [arXiv:1005.4814] [INSPIRE].

[2] S. Hands, I. Montvay, S. Morrison, M. Oevers, L. Scorzato and J.-I. Skullerud, Numerical

study of dense adjoint matter in two color QCD, Eur. Phys. J. C 17 (2000) 285

[hep-lat/0006018] [INSPIRE].

[3] K. Rajagopal and F. Wilczek, The condensed matter physics of QCD, in At the frontier of

particle physics, volume 3, World Scientific, Singapore (2001), pg. 2061.

[4] M.G. Alford, A. Schmitt, K. Rajagopal and T. Schäfer, Color superconductivity in dense
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