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We consider the thermodynamics of three-flavor QCD in the pion-condensed phase at nonzero isospin 
chemical potential (μI ) and vanishing temperature using chiral perturbation theory in the isospin limit. 
The transition from the vacuum phase to a superfluid phase with a Bose-Einstein condensate of charged 
pions is shown to be second order and takes place at μI = mπ . We calculate the pressure, isospin density, 
and energy density to next-to-leading order in the low-energy expansion. Our results are compared 
with recent high-precision lattice simulations as well as previously obtained results in two-flavor chiral 
perturbation theory. The agreement between the lattice results and the predictions from three-flavor 
chiral perturbation theory is very good for μI < 200 MeV. For larger values of μI , the agreement between 
lattice data and the two-flavor predictions is surprisingly good and better than with the three-flavor 
predictions. Finally, in the limit ms � mu = md , we show that the three-flavor observables reduce to the 
two-flavor observables with renormalized parameters. The disagreement between the results for two-
flavor and three-flavor χPT can largely be explained by the differences in the measured low-energy 
constants.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

QCD in extreme conditions, i.e. high temperature and density 
has received a lot of attention in the past decades due to its rel-
evance to the early universe, heavy-ion collisions, and compact 
stars [1–3]. For example, QCD at finite baryon density (μB ) is of 
significant interest since the equation of state (EoS) is used as 
input for calculating the macroscopic properties of neutron stars. 
However, lattice QCD cannot be applied to QCD at nonzero baryon 
density due to the sign problem: integrating out the fermions in 
the path integral for the partition function gives rise to a func-
tional determinant that can be considered part of the probability 
measure. At μB �= 0, this determinant is complex and standard 
Monte Carlo techniques cannot be applied. A way to circumvent 
this problem, for high temperatures and small chemical poten-
tials, is by Taylor expanding the thermodynamic quantities about 
zero μB [4]. For small T and large μB , this is obviously hope-
less. Due to asymptotic freedom, we expect to be able to use 
weak-coupling techniques at very high densities [5,6]. In the weak-
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coupling expansion the series is now known to order α2
s for mas-

sive quarks [7] and α3
s log2 αs for massless quarks [8]. For lower 

densities, where weak-coupling techniques do not apply, we have 
to use low-energy models of QCD, see Ref. [9] for a recent review.

There are variants of QCD that do not suffer from the sign 
problem. These include two-color QCD [10], three-color QCD with 
fermions in the adjoint representation [11], zero density QCD in 
an external magnetic field [12], and three-color QCD at finite 
isospin [13–17]. The absence of the sign problem implies that one 
can simulate these systems on the lattice and compare the results 
with low-energy models and theories. In the case of QCD at finite 
isospin chemical potential, one finds at T = 0, a transition from 
the vacuum to a pion-condensed phase at a critical isospin chem-
ical potential μc

I = mπ . The mechanism of pion condensation and 
the transition to a pion superfluid phase out of the vacuum is sim-
ply that it is energetically favorable to form such a condensate for 
μI ≥ μc

I . Moreover, with increasing isospin chemical potential, it is 
expected that there is a crossover to a BCS phase. Since the order 
parameter in the BCS phase has the same quantum numbers as a 
charged pion condensate, this is not a true phase transition, but 
associated with the formation of a Fermi surface and subsequent 
condensation of Cooper pairs. A very recent review on meson con-
densation can be found in Ref. [18].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2020.135352
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2020.135352&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:andersen@tf.phys.ntnu.no
https://doi.org/10.1016/j.physletb.2020.135352
http://creativecommons.org/licenses/by/4.0/


2 P. Adhikari, J.O. Andersen / Physics Letters B 804 (2020) 135352
Chiral perturbation theory (χPT) is a low-energy effective the-
ory of QCD based only on its global symmetries and the degrees 
of freedom, and the predictions of χPT are, therefore, model inde-
pendent [19–22]. It has been remarkably successful in describing 
the phenomenology of the pseudo-Goldstone bosons that result 
from the spontaneous breakdown of chiral symmetry in the QCD 
vacuum. χPT at finite isospin was first considered by Son and 
Stephanov in their seminal paper two decades ago [23], in which 
all the leading order results were derived.

In this letter, we calculate the effective potential in chiral per-
turbation theory at next-to-leading (NLO) order in the low-energy 
expansion for three flavors at finite isospin chemical potential. 
While the phase diagram as functions of isospin and strange 
chemical potentials (μS ) has been mapped out and leading or-
der (LO) thermodynamic functions have been known for two 
decades [23,24], the leading quantum corrections at finite μI are 
presented here for the first time, however, see Ref. [25] for some 
partial NLO results in two-color QCD and Refs. [26–32] for vari-
ous aspects of χPT for three-color QCD including some NLO ef-
fects. Finite isospin systems have also been studied in the context 
of low-energy effective models including the non-renormalizable 
Nambu-Jona-Lasinio model [33–47], and the renormalizable quark-
meson model [48–51].

We derive the pressure, isospin density, and equation of state, 
and compare these quantities with recent lattice results as well 
earlier results from two-flavor χPT [52]. In the large-ms limit, 
the three-flavor result is matched onto the two-flavor result of 
Ref. [52] with renormalized parameters. The disagreement between 
the two-flavor and three-flavor results are discussed and shown 
to be related to the differences in the experimental values of the 
low-energy constants. Results on the thermodynamics of the kaon-
condensed phases at finite μS and μI as well as calculational 
details can be found in an accompanying long paper [53].

2. Chiral perturbation theory

As mentioned above, χPT is an effective low-energy theory of 
QCD based solely on its global symmetries and low-energy de-
grees of freedom. In massless three-flavor QCD, the symmetry is 
SU (3)L × SU (3)R × U (1)B , which in the vacuum is broken down 
to SU (3)V × U (1)B . For two degenerate light quarks, the symme-
try is SU (2)I ×U (1)Y ×U (1)B . If we add a quark chemical potential 
for each flavor, the symmetry is U (1)I3 × U (1)Y × U (1)B . In three-
flavor QCD, we keep the octet of mesons, which implies that chiral 
perturbation theory is not valid for arbitrarily large chemical po-
tential. Considering the hadron spectrum, one naively expects that 
the expansion is valid for |μu | = |μd| < 300 MeV [24]. χPT has 
a well defined power counting scheme, where each derivative as 
well as each factor of a quark mass counts as one power of mo-
mentum p. At leading order in momentum, O(p2), there are only 
two terms in the chiral Lagrangian

L2 = f 2

4
Tr

[
∇μ�†∇μ�

]
+ f 2

4
Tr

[
χ †� + χ�†

]
, (1)

where f is the bare pion decay constant, χ = 2B0M ,

M = diag(mu,md,ms) (2)

is the quark mass matrix and � = U�0U , where U = exp iλiφi
2 f

and �0 = 1 is the vacuum. Here λi are the Gell-mann matri-
ces that satisfy Trλiλ j = 2δi j and φi are the fields parametrizing 
the Goldstone manifold (i = 1, 2..., 8). In the remainder we work 
in the isospin limit, m = mu = md . The covariant derivative and 
its Hermitian conjugate at nonzero quark chemical potentials, μq

(q = u, d, s), are defined as follows
∇μ� ≡ ∂μ� − i[vμ,�] , (3)

∇μ�† = ∂μ�† − i[vμ,�†] , (4)

with

vμ = δμ0 diag(μu,μd,μs)

= δμ0 diag

(
1

3
μB + 1

2
μI ,

1

3
μB − 1

2
μI ,

1

3
μB − μS

)
, (5)

where μB = 3
2 (μu + μd), μI = μu − μd , and μS = 1

2 (μu + μd −
2μs). It turns out that the Lagrangian is independent of μB which 
reflects the fact that all degrees of freedom, namely the me-
son octet, have zero baryon number. Since we are focusing on 
pion condensation and want to compare with lattice data, we set 
μS = 0 such that v0 = 1

2 μIλ3. By expanding the Lagrangian (1) to 
second order in the fields, we obtain the terms needed for our NLO 
calculation.1

Based on the two-flavor case [23], the ground state in the pion-
condensed phase is parametrized as [53]

�α = eiα(φ̂1λ1+φ̂2λ2) = cosα + i(φ̂1λ1 + φ̂2λ2) sinα , (6)

where α is a rotation angle and φ̂2
1 + φ̂2

2 = 1 to ensure that the 
ground state is normalized, �†

α�α = 1. From Eq. (1), we find the 
static Hamiltonian

Hstatic
2 = f 2

4
Tr[v0,�α][v0,�

†
α]

− f 2

2
B0Tr[M�α + M�

†
α] , (7)

where the first term can be written as 1
4 f 2Tr[v0, �α][v0, �

†
α] =

1
8 f 2μ2

I Tr[λ3�αλ3�
†
α − λ2

3]. There is a competition between the 
two terms in Eq. (7): The first term favors �α in the λ1 and λ2

directions, while �α in the second terms prefers the normal vac-
uum, 1 [23]. It turns out the that the former only depends on 
φ̂2

1 + φ̂2
2 and so we choose φ̂2 = 1 without loss of generality. The 

matrix λ2 generates the rotations and the rotated vacuum is given 
by �α = Aα�0 Aα where Aα = ei α

2 λ2 , and �0 = 1. The rotated vac-
uum can then be written in the form

�α = 1 + 2 cosα

3
+ iλ2 sinα + cosα − 1√

3
λ8

=
⎛
⎝ cosα sinα 0

− sinα cosα 0
0 0 1

⎞
⎠ . (8)

Here the rotation in the subspace of the u and the d-quark is evi-
dent and at tree level, we have 〈ψ̄ψ〉2 + 〈π+〉2 = 〈ψ̄ψ〉2

vac, i.e. the 
quark condensate is rotated into a pion condensate.

The fluctuations around the condensed or rotated vacuum must 
also be parametrized and this requires some care [54]. Naively, one 
would write the field as � = U�αU , where U = exp iλiφi

2 f . How-
ever, this parametrization is incorrect since it can be shown that 
one cannot renormalize the effective potential at next-to-leading 
order using the standard renormalization of the low-energy cou-
plings appearing in the NLO Lagrangian. One way of understanding 
the failure of this parametrization is to realize that the generators 
of the fluctuations about the ground state must also be rotated 
since the vacuum itself has been rotated. The field must therefore 
be written as

1 A covariant derivative and a mass term both count as order p in the low-energy 
expansion.
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� = Lα�α R†
α , (9)

where Lα = AαU A†
α and Rα = A†

αU † Aα . This parametrization re-
duces to the standard parametrization for α = 0 and has none of 
the flaws of the naive parametrization.

The tree-level effective potential V 0 = Hstatic
2 = −Lstatic is now 

evaluated to be

V 0 = − f 2 B0(2m cosα + ms) − 1

2
f 2μ2

I sin2 α . (10)

At next-to-leading order in the low-energy expansion, there are 
twelve operators. Not all of them are relevant for the present cal-
culations, in fact only eight contribute to the effective potential. 
They are

L4 = L1

(
Tr

[
∇μ�†∇μ�

])2

+L2Tr
[
∇μ�†∇ν�

]
Tr

[
∇μ�†∇ν�

]
+L3Tr

[
(∇μ�†∇μ�)(∇ν�†∇ν�)

]
+L4Tr

[
∇μ�†∇μ�

]
Tr

[
χ †� + χ�†

]
+L5Tr

[
(∇μ�†∇μ�)

(
χ †� + �†χ

)]
+L6

[
Tr

(
χ †� + χ�†

)]2

+L8Tr
[
χ †�χ †� + χ�†χ�†

]
+H2Tr[χ †χ ] . (11)

In writing the NLO Lagrangian above, we have ignored the Wess-
Zumino-Witten terms since they do not contribute to the quan-
tities in the present paper. The last term in Eq. (11) is a contact 
term, which is needed to renormalize the vacuum energy and 
to show the scale independence of the final result for the effec-
tive potential in each phase. The contribution from the terms in 
Eq. (11) to Hstatic

4 = −Lstatic
4 = V static

1 is

V static
1 = −(4L1 + 4L2 + 2L3)μ

4
I sin4 α

−8L4 B0(2m cosα + ms)μ
2
I sin2 α

−8L5 B0mμ2
I cosα sin2 α

−16L6 B2
0(2m cosα + ms)

2

−8L8 B2
0(2m2 cos 2α + m2

s )

−4H2 B2
0(2m2 + m2

s ) . (12)

In a next-to-leading order calculation, we need to renormalize the 
couplings Li and Hi to eliminate the ultraviolet divergences that 
arise from the functional determinants. The relations between the 
bare and renormalized couplings are

Li = Lr
i (�) − iλ , (13)

Hi = Hr
i (�) − �iλ , (14)

with λ = �−2ε

2(4π)2

[ 1
ε + 1

]
. Here i and �i are constants [21]

1 = 3

32
, 2 = 3

16
, 3 = 0 , 4 = 1

8
, (15)

5 = 3

8
, 6 = 11

144
, 8 = 5

48
, �2 = 5

24
, (16)

and � is the renormalization scale associated with the modi-
fied minimal substraction scheme MS. Taking the derivative of 
Eqs. (13)–(14) and using the fact that the bare couplings are scale 
independent, one finds the renormalization group equations for 
the renormalized couplings,

�
dLr

i (�)

d�
= − i

(4π)2
, (17)

�
dHr

i (�)

d�
= − �i

(4π)2
. (18)

The contact term H2Tr[χ †χ ] makes a constant contribution to the 
effective potential which is independent of the chemical potential 
and therefore the same in both phases. We keep it, however, in 
the final expression for the NLO effective potential since Hr

2(�)

is running. It is needed to show the scale independence of V eff. 
The renormalized NLO effective potential V eff = V 0 + V 1 + V static

1
is given by

V eff = − f 2 B0(2m cosα + ms) − 1

2
f 2μ2

I sin2 α

−
[

4Lr
1 + 4Lr

2 + 2Lr
3

+ 1

16(4π)2

(
9

2
+ 8 log

�2

m2
3

+ log
�2

m̃2
4

)]
μ4

I sin4 α

−
[

8Lr
4 + 1

2(4π)2

(
1

2
+ log

�2

m̃2
4

)]

×B0(2m cosα + ms)μ
2
I sin2 α

−
[

8Lr
5 + 1

2(4π)2

(
3

2
+ 4 log

�2

m2
3

− log
�2

m̃2
4

)]

×B0mμ2
I cosα sin2 α + B2

0m2 sin2 α
[
16Lr

8 − 8Hr
2

]
−

[
16Lr

6 + 8Lr
8 + 4Hr

2 + 1

(4π)2

(
13

18
+ log

�2

m̃2
4

+4

9
log

�2

m2
8

)]
B2

0m2
s

−
[

64Lr
6 + 1

(4π)2

(
11

9
+ 2 log

�2

m̃2
4

+ 4

9
log

�2

m2
8

)]

×B2
0mms cosα

−
[

64Lr
6 + 16Lr

8 + 8Hr
2 + 1

(4π)2

(
37

18
+ log

�2

m̃2
1

+

+2 log
�2

m2
3

+ log
�2

m̃2
4

+ 1

9
log

�2

m2
8

)]
B2

0m2 cos2 α

+V fin
1,π+ + V fin

1,π− , (19)

where Lr
i (�) are the renormalized coupling constants and the 

masses are

m̃2
1 = 2B0m cosα , (20)

m2
3 = 2B0m cosα + μ2

I sin2 α , (21)

m̃2
4 = B0(m cosα + ms) + 1

4
μ2

I sin2 α , (22)

m2
8 = 2B0(m cosα + 2ms)

. (23)

3
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Finally, V fin
1,π± are finite subtraction terms which depend on B0

and m but are independent of ms . For details, see Ref. [53]. The 
couplings are running in such a way that their �-dependence can-
cel against the explicit �-dependence of the chiral logarithms in 
Eq. (19), implying that � dV eff

d�
= 0, cf. Eqs. (17)–(18). In order to ob-

tain Eq. (19), we must isolate the ultraviolet divergences from the 
functional determinants. This is done by adding and subtracting a 
divergent term that we calculate analytically in dimensional regu-
larization. The subtracted term is then combined with the original 
one-loop expression for the effective potential giving finite terms 
V fin

1,π± that can be easily computed numerically. The divergences 
are finally removed by renormalization of the Li s according to 
Eqs. (13)–(14). The details of the subtraction and renormalization 
procedure can be found in Ref. [53] and the NLO effective potential 
in the two-flavor case can be found in Ref. [52].

Thermodynamic quantities can be calculated from the effective 
potential Eq. (19), for example the pressure P = −V eff, the isospin 
density nI = − ∂V eff

∂μI
, and the energy density ε = −P + nIμI . All 

these quantities are evaluated at the value of α that minimizes 
the effective potential, i.e. satisfies ∂V eff

∂α = 0.
For sufficiently large values of ms , we expect using effective-

field theory arguments, that all degrees of freedom that contain an 
s-quark freeze and decouple. Thus we expect that the kaons and 
eta decouple from the low-energy dynamics involving the pions. 
Formally, this is the limit B0m � B0ms � (4π fπ )2. The system is 
then described in terms of two-flavor chiral perturbation theory 
where the effects of the s-quark shows up in the renormaliza-
tion of the coupling constants li of the form log �2

m̃2
K ,0

and log �2

m̃2
η,0

, 

where the masses are m̃2
K ,0, = B0ms and m̃2

η,0 = 4B0ms
3 . Expanding 

the effective potential Eq. (19) in inverse powers of ms , we obtain

V eff = −2 f̃ 2 B̃0m cosα − f 2 B0ms − 1

2
f̃ 2μ2

I sin2 α

−
[

4lr3 + 4lr4 + 1

(4π)2

(
3

2
+ log

�2

m̃2
1

+2 log
�2

m2
3

)]
B2

0m2 cos2 α

−
[

lr4 + 1

(4π)2

(
1

2
+ log

�2

m2
3

)]

×2B0mμ2
I cosα sin2 α

−
[

lr1 + lr2 + 1

2(4π)2

(
1

2
+ log

�2

m2
3

)]
μ4

I sin4 α

+4(−hr
1 + lr4)B2

0m2 − [
16Lr

6 + 8Lr
8 + 4Hr

2

+ 1

(4π)2

(
13

18
+ log

�2

m̃2
K ,0

+4

9
log

�2

m̃2
η,0

)]
B2

0m2
s + V fin

1,π+ + V fin
1,π− , (24)

where we have defined the combinations of the renormalized cou-
plings lri and hr

1 as well as renormalized f̃ and B̃0 as

lr1 + lr2 = 4Lr
1 + 4Lr

2 + 2Lr
3

+ 1

16(4π)2

[
log

�2

m̃2
− 1

]
, (25)
K ,0
lr3 + lr4 = 16Lr
6 + 8Lr

8 + 1

4(4π)2

[
log

�2

m̃2
K ,0

− 1

]

+ 1

36(4π)2

[
log

�2

m̃2
η,0

− 1

]
, (26)

lr4 = 8Lr
4 + 4Lr

5 + 1

4(4π)2

[
log

�2

m̃2
K ,0

− 1

]
,

−hr
1 + lr4 = 4Lr

8 − 2Hr
2 , (27)

f̃ 2 = f 2
[

1 + B0ms

f 2

(
16Lr

4

+ 1

(4π)2
log

�2

m̃2
K ,0

)]
, (28)

B̃0 = B0

[
1 − B0ms

f 2

(
16Lr

4 − 32Lr
6−

2

9(4π)2
log

�2

m̃2
η,0

)]
. (29)

Several comments are in order: The terms in Eq. (24) that are pro-
portional to powers of ms are independent of α and μI . They can 
be interpreted as a constant renormalized contribution to the vac-
uum energy from the s-quark and can be omitted. The constant 
term proportional to B2

0m2 can be omitted for similar reasons. The 
relations between the renormalized couplings lri , h

r
i and the low-

energy constants l̄i, ̄hi in two-flavor χPT are

lri (�) = γi

2(4π)2

[
l̄i + log

2B0m

�2

]
, (30)

hr
i (�) = δi

2(4π)2

[
h̄i + log

2B0m

�2

]
, (31)

where γ1 = 1
3 , γ2 = 2

3 , γ3 = − 1
2 , γ4 = 2, and δ1 = 2 [20]. The 

renormalization group equations are then � dlri (�)

d�
= − γi

(4π)2 . Given 
the renormalization group equations for lri , hr

i , Lr
i , Hr

i , one veri-
fies that the �-dependence of the left - and right-hand side in 
Eqs. (25)–(27) is identical. Moreover, the parameters f̃ and B̃0 are 
independent of the scale. Eqs. (25)–(29) are in agreement with the 
original calculations of Ref. [21], where relations among the renor-
malized couplings in two - and three-flavor χPT were derived. This 
agreement is a nontrivial check of our calculations. Inserting these 
relations using (31) into Eq. (24), we finally obtain

V eff = −2 f̃ 2 B̃0m cosα − 1

2
f̃ 2μ2

I sin2 α

− 1

(4π)2

[
3

2
− l̄3 + 4l̄4 + log

(
2B0m

m̃2
1

)

+2 log

(
2B0m

m2
3

)]
B2

0m2 cos2 α

− 1

(4π)2

[
1

2
+ l̄4 + log

(
2B0m

m2
3

)]

×2B0mμ2
I cosα sin2 α

− 1

2(4π)2

[
1

2
+ 1

3
l̄1 + 2

3
l̄2 + log

(
2B0m

m2
3

)]

×μ4
I sin4 α + V fin + + V fin − . (32)
1,π 1,π
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In the limit B0ms � (4π fπ )2, B0 in the NLO terms can be iden-
tified with B̃0 using Eq. (29) and the result reduces to that of 
two-flavor χPT in Ref. [52].

3. Results and discussion

The expressions for the effective potential, isospin density, pres-
sure, and energy density are all expressed in terms of the isospin 
chemical potential, the parameters B0m, B0ms , and f of the chi-
ral Lagrangian as well as the renormalized couplings Lr

i . In order 
to make predictions, we need to determine the parameters of the 
chiral Lagrangian using the physical meson masses and the de-
cay constants. In χPT, one can calculate the pole masses of the 
mesons and the decay constants ( fπ , f K ) systematically in the 
low-energy expansion. At one loop, the results are expressed in 
terms of B0m, B0ms , f , and Lr

i .2 These equations can be solved 
to find the parameters of the chiral Lagrangian and thereby nu-
merically evaluate the effective potential. The tree-level values of 
mπ,0 and mK ,0 can be expressed in terms of B0m and B0ms as 
m2

π,0 = 2B0m and m2
K ,0 = B0(m + ms). Since we want to compare 

our predictions with the results of the lattice simulations, we use 
their values for the meson masses and decay constants [55],

mπ = 131 ± 3 MeV , mK = 481 ± 10 MeV , (33)

fπ = 128 ± 3√
2

MeV , f K = 150 ± 3√
2

MeV. (34)

The low-energy constants have been determined experimentally, 
with the following values and uncertainties at the scale μ = mρ , 
where mρ is the mass of the ρ meson and �2 = 4πe−γE μ2 [56]

Lr
1 = (1.0 ± 0.1) × 10−3 Lr

2 = (1.6 ± 0.2) × 10−3 (35)

Lr
3 = (−3.8 ± 0.3) × 10−3 Lr

4 = (0.0 ± 0.3) × 10−3 (36)

Lr
5 = (1.2 ± 0.1) × 10−3 Lr

6 = (0.0 ± 0.4) × 10−3 (37)

Lr
8 = (0.5 ± 0.2) × 10−3 . (38)

Since we need to determine three parameters in the effective po-
tential, we must choose three of the four physical quantities from 
Eqs. (33)–(34). For the results that we present below, we use mπ , 
mK , and fπ . Using the one-loop χPT expression for f K , we obtain 
f K = 113.9 MeV for the central value, which is off by approxi-
mately 7% compared to the lattice value of f K = 150√

2
= 106.1 MeV. 

The uncertainties in Lr
i , mπ , mK , and fπ translate into uncertain-

ties in the parameters B0m, B0ms , and f . It turns out that the 
uncertainties in these parameters in the three-flavor case are com-
pletely dominated by the uncertainties in the LECs. In the two-
flavor case, they are dominated by the uncertainties in the pion 
mass and the pion decay constant. Furthermore, for the lowest val-
ues of LECs obtained using the largest uncertainties in Eq. (38), 
the η mass becomes imaginary and therefore unphysical. Conse-
quently, we are forced to restrict the smallest value of the LECs 
used to ones obtained using 46% of the total uncertainty. We there-
fore simplify the analysis and add the uncertainties. This yields

mcen
π,0 = 131.28 MeV mcen

K ,0 = 520.65 MeV (39)

mlow
π,0 = 148.45 MeV mlow

K ,0 = 617.35 MeV (40)

mhigh
π,0 = 115.93 MeV mhigh

K ,0 = 437.84 MeV (41)

f cen = 75.16 MeV (42)

2 All the relevant relationships between bare and physical quantities (masses and 
decay constants) are stated in Ref. [21].
Fig. 1. αgs as a function of μI/mπ at LO (red), at NLO with two flavors (blue), NLO 
with three flavors (green), and NLO with two flavors and three-flavor LECs (brown). 
See main text for details.

f low = 79.88 MeV (43)

f high = 70.44 MeV . (44)

Given that the effective potential derived in three-flavor χPT of 
Eq. (19) reduces to the result in two-flavor χPT, in the limit of 
light up and down quarks, it is worthwhile comparing the pre-
dictions from two-flavor χPT from Ref. [52] using the N f = 2 LECs 
from the literature and those obtained by using Eqs. (25)–(27). The 
N f = 2 LECs have the following values3 [56]

l̄1(N f = 2) = −0.4 l̄2(N f = 2) = 4.3 (45)

l̄3(N f = 2) = 2.9 l̄4(N f = 2) = 4.4 . (46)

The three-flavor LECs Lr
i are the running couplings evaluated at the 

scale mρ and we use their renormalization group equations to run 
them to the scale mπ,0, where the two-flavor LECs (l̄i ), defined in 
Eq. (31), are evaluated according to Eqs. (25)–(27). We then get the 
following central values

l̄1(N f = 3) = 14.5 l̄2(N f = 3) = 6.5 (47)

l̄3(N f = 3) = 4.1 l̄4(N f = 3) = 4.2 . (48)

The disagreement is most significant in l̄1, which in the two-flavor 
versus the three-flavor case, have signs that are opposite. The dif-
ferences in the other LECs are less significant but still non-trivial 
except for l̄4. In order to evaluate the effect of these discrepan-
cies on physical observables in the pion-condensed phase, we have 
generated the isospin density, pressure, and the equation of state 
using the two-flavor LEC values generated using three-flavor LECs, 
which we discuss at the end of this section.

The equation ∂V eff
∂α = 0 has two types of solutions. For μI < mπ , 

the solution is α = 0, where it is straightforward to show that the 
effective potential and therefore the thermodynamic functions are 
independent of μI . We refer to this phase as the vacuum phase, 
which exhibits the Silver Blaze property [57], namely that the ther-
modynamic functions are independent of μI up to a critical value 
μc

I = mπ . For μI > mπ , we have a nonzero condensate of π+ , 
which breaks the U (1)I3 symmetry of the chiral Lagrangian, and 
a nonzero value for α. In Fig. 1, we show the solution αgs to the 

3 We note that it is standard practice to quote the LECs in two-flavor χPT using 
l̄i defined through Eq. (31). On the other hand, for three-flavor χPT, quoting Lr

i at 
the scale μ equal to the ρ mass (mρ ) is standard.
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Fig. 2. Normalized isospin density as a function of μI /mπ at LO (red), at NLO with 
two flavors (blue), NLO with three flavors (green), and NLO with two flavors and 
three-flavor LECs (brown). See main text for details.

equation ∂V eff
∂α = 0 as a function of μI

mπ
at LO.4 For asymptotically 

large values of the isospin chemical, αgs approaches π
2 .

We next expand the effective potential around α = 0 to obtain a 
Ginzburg-Landau energy functional that can be used to determine 
the order of the phase transition. This expansion is valid close to 
the phase transition where α � 1. To fourth-order, we obtain [53]

V LG
eff = a0(μI ) + a2(μI )α

2 + a4(μI )α
4 . (49)

The vanishing of a2 defines the critical chemical potential μc
I . Since 

a2 = f 2
π (μ2

I −m2
π ), we have μc

I = mπ . The onset of Bose condensa-
tion at μc

I = mπ is an exact result. Moreover, since the coefficient 
a4(μ

c
I ) > 0, the transition to a pion-condensed phase is of sec-

ond order, with mean field critical exponents. These results are in 
agreement with lattice simulations [15–17] as well as model cal-
culations [51].

In Fig. 2, we show the isospin nI divided by m3
π as a function 

of μI/mπ . The red solid line is the LO result. Note that the LO 
result is the same in the two and three-flavor cases for all ther-
modynamic quantities. We have used the central values for the 
low-energy constants l̄i in the two-flavor case to obtain the blue 
dashed line as explained in Ref. [52]. The blue band is obtained by 
including their uncertainties. The light green band is the result of 
the three-flavor calculation with the minimum, central, and max-
imum values of the parameters discussed above, while the dark 
green band is from using the central values of Lr

i with uncertain-
ties coming from the lattice parameters only.

The data points shown in Fig. 2 are from the lattice calculations 
of Refs. [15–17]. The two-flavor band is very small compared to 
the three-flavor band reflecting the large uncertainty in the three-
flavor Lr

i s. The central line in the three-flavor case is in very good 
agreement with lattice data up to approximately μI ∼ 200 MeV. 
After this, the curve overshoots and for larger values the two-flavor 
central curve is in much better agreement with lattice data.

In Fig. 3, we show the pressure P divided by m4
π as a function 

of μI/mπ . Note that we have subtracted the pressure in the vac-
uum phase which is given by evaluating the negative of Eq. (19)
for α = 0. The red line is the LO result. The blue dashed line is 
again the result from two-flavor χPT using the central values of l̄i , 
while the band is obtained by including their uncertainties. Sim-
ilarly, the dashed-dotted line corresponds to the central values of 
the Lr

i s in the three-flavor case, while the light green band is ob-
tained by including their uncertainties. Finally, by including only 
the uncertainties from the lattice parameters we obtain the much 
narrower dark green band. Here, the LO and the two-flavor results 

4 At LO, the two and three-flavor results for α coincide.
Fig. 3. Pressure normalized by m4
π as a function of μI /mπ at LO (red), at NLO with 

two flavors (blue), NLO with three flavors (green), and NLO with two flavors and 
three-flavor LECs (brown). See main text for details.

Fig. 4. Energy density as a function of pressure, both normalized by m4
π , at LO (red), 

at NLO with two flavors (blue), NLO with three flavors (green), and NLO with two 
flavors and three-flavor LECs (brown). See main text for details.

very close in the entire range and systematically slightly below the 
lattice data. The three-flavor curve is in very good agreement with 
the results of the Monte Carlo simulations up to μI = 200 MeV, 
after which it overestimates the pressure.

In Fig. 4, we show the energy density ε divided by m4
π as a 

function of pressure P divided by m4
π . For all values of P

m4
π

three-

flavor χPT overestimates the energy density compared to lattice 
data though for values of P

m4
π

up to approximately 0.10, the dis-

crepancy is quite small. On the other hand, two-flavor χPT under-
estimates the energy density as a function of pressure for values 
of P

m4
π

up to 0.20. For values larger than approximately 0.20, two-

flavor χPT agrees very well with lattice results.
Given the results shown in Figs. 2, 3 and 4 above, in partic-

ular the large differences between the results in two-flavor and 
three-flavor χPT and the results in lattice QCD compared to three-
flavor χPT, it is important to explain this significant discrepancy. 
The naive expectation is that the loop effects from the strange 
quarks in three-flavor χPT are small since the effect is sub-leading 
in the chiral expansion. Furthermore, their effects should be sup-
pressed since the strange quark mass is considerably larger than 
the masses of the up and down quarks. While this picture is cor-
rect, it ignores the significant differences between the low energy 
constants of two-flavor χPT and the ones that are extracted from 
three-flavor χPT after integrating out the effect of the strange 
quarks. We list the values in Eqs. (45) and (47) noting significant 
discrepancies between the two sets. In each of the figures (2, 3 and 
4), we incorporate an additional result in two-flavor χPT using 
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three-flavor LECs shown using brown and dashed lines. We note 
that even two-flavor χPT using three-flavor LECs overestimates the 
isospin density, pressure and the energy density compared to lat-
tice QCD results. For isospin chemical potential near the second 
order phase transition up to approximately μI

mπ
∼ 1.3, the differ-

ences in the LECs fully explains the discrepancy. For larger values 
of isospin chemical potential, the role of strange quark loops be-
comes more significant – our results suggests that they have a 
negative effect on the pressure and isospin density compared to 
the effects of the up and down quarks.
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