
lable at ScienceDirect

Forensic Science International: Digital Investigation 33 (2020) 301008
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2020 USA d Proceedings of the Twentieth Annual DFRWS USA
An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

Martin Karresand a, b, *, Geir Olav Dyrkolbotn a, c, Stefan Axelsson d

a Norwegian University of Science and Technology (NTNU), Norway
b Swedish Defence Research Agency (FOI), Sweden
c Norwegian Defence Cyber Academy (NDCA), Norway
d Halmstad University, Sweden
a r t i c l e i n f o

Article history:

Keywords:
Digital forensics
File carving
Cluster allocation pattern
Allocation algorithm
NTFS
* Corresponding author. Norwegian University
(NTNU), Norway.

E-mail address: martin.karresand@ntnu.no (M. Ka

https://doi.org/10.1016/j.fsidi.2020.301008
2666-2817/© 2020 The Author(s). Published by Elsev
creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

The amount of data to be handled in digital forensic investigations is continuously increasing, while the
tools and processes used are not developed accordingly. This especially affects the digital forensic sub-
field of file carving. The use of the structuring of stored data induced by the allocation algorithm to
increase the efficiency of the forensic process has been independently suggested by Casey and us.
Building on that idea we have set up an experiment to study the allocation algorithm of NTFS and its
behavior over time from different points of view. This includes if the allocation algorithm behaves the
same regardless of Windows version or size of the hard drive, its adherence to the best fit allocation
strategy and the distribution of the allocation activity over the available (logical) storage space. Our
results show that space is not a factor, but there are differences in the allocation behavior between
Windows 7 and Windows 10. The results also show that the allocation strategy favors filling in holes in
the already written area instead of claiming the unused space at the end of a partition and that the area
with the highest allocation activity is slowly progressing from approximately 10 GiB into a partition
towards the end as the disk is filling up.
© 2020 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. All rights reserved. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The amount of data to be handled during digital forensic case
work is rapidly increasing and is a major challenge to the digital
forensic community (Quick and Choo, 2014b). The problem has
been of concern to the digital forensic field for many years
(Gladyshev and James, 2017; European Police Office (Europol),
2016; Quick and Choo, 2014a; Breitinger et al., 2013; Roussev,
2012), but the problem has not yet been solved.

Casey (2018) and also Karresand et al. (2019a, b, c) have inde-
pendently suggested to use the inherent structures in the stored
data to improve the digital forensic process. The principle builds on
taking advantage of the pattern introduced by the allocation algo-
rithm and in that way improve for example the efficiency when
rebuilding files, extracting temporal information (time stamps)
from raw data and direct searches to the areas most likely to
contain important (user related) data.

The principle is especially valid for the digital forensic sub-field
of Science and Technology

rresand).

ier Ltd on behalf of DFRWS. All rig
of file carving, which is used in digital forensic investigations when
there is no file system available in the investigated media. The file
carving process is based on using only the properties of the stored
data itself (Poisel and Tjoa, 2013; Pal and Memon, 2009). File
carving is highly valuable to the digital forensic investigator, but
computationally intensive to perform, hencemuch effort is put into
mitigating the increasing amounts of data by different means. In a
survey by Quick and Choo (2014b) the following concepts to
decrease the amount of work needed to be done are listed; data
mining, data reduction and subsets, triage, intelligence analysis and
digital intelligence, distributed and parallel processing, visualiza-
tion, digital forensics as a service (DFaaS) and different artificial
intelligence techniques.

The foundation of digital forensics is to use the inherent struc-
tures of data, but the idea to use the inherent structures introduced
by the storage process in stored data is rather new and not yet fully
investigated. Therefore the actual behavior of the allocation algo-
rithm has to be found for any relevant file system. The behavior of
file systems from the open source field can be found by studying
their code base, but for closed source operating systems (OSs) the
behavior is best found by empirical studies of the allocation
behavior in experiments and the real world. The currently most
hts reserved. This is an open access article under the CC BY-NC-ND license (http://

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:martin.karresand@ntnu.no
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2020.301008&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2020.301008
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2020.301008

1 The maximum size of an internal $Data attribute varies depending on the size
of other attributes stored in the MFT record. Most sources give a maximum internal
$Data attribute size of 600e700 bytes. Microsoft reports a 900 byte limit (Microsoft,
2018).

M. Karresand et al. / Forensic Science International: Digital Investigation 33 (2020) 301008S2
popular OS is Windows, which has almost 86% of the market share
(Net Applications.com, 2019). Windows uses New Technology File
System (NTFS) as the default file system and we have therefore
chosen to study the allocation behavior of NTFS in recent versions
of Windows.

The aim of the project is to gain knowledge on the allocation
behavior of NTFS in different modern versions of Windows (ver-
sions 7 to 10) and especially if and how the behavior changes over
time. This includes the adherence to the best fit Carrier (2005)
allocation strategy and if the allocation activity is evenly spread
over the (logical) addresses of the storage area. We will also test
whether the allocation algorithm of Windows and NTFS is version
and/or size dependent.

To be able to answer the research questions we have executed
an experiment where we used a weighted random distribution to
write, expand, shrink and delete files in four different versions of
Microsoft Windows (7, 8, 8.1 and 10). To be able to find similarities
and differences between the Windows versions we ran eight in-
stances of the same virtual machine for each Windows version.
Four of the machines for each Windows version used the same file
operation pattern, also referred to as the standard pattern, and the
other four machines ran unique patterns. The virtual machines
used 64 GiB disk, but we also set up three extra virtual machines
with 256 GiB disks to detect any differences in allocation behavior
due to larger disk sizes. These virtual machines used a modified
version of the standard pattern, where each file operation was
increased by a factor of 4.6 to compensate for the larger disk size.
Every operation was followed by the extraction of the current
cluster allocation status taken from the $Bitmap file in the Master
File Table (MFT). The allocation status was then used to find the
difference in cluster allocation between each operation. The
experiment was set to run 10,000 iterations in each virtual
machine.

The rest of this paper is organized as follows: The remaining
parts of Section Introduction presents related work and our con-
tributions. In Section Experiment we describe the experimental
platform and how the experiment was implemented. Section Re-
sults presents the result of the study. In Section Discussion we
discuss the effects and implications of our result to the research
field of digital forensics and especially file carving. Section
Conclusion and future work concludes the work and presents ideas
of future work to be done.

Background

Silberschatz et al. (2012) describes the theory of file system
construction. A file system keeps track of data stored on secondary
storage and is organized in different ways. However, all imple-
mentations share some common properties; the addressing of the
physical storage is abstracted by the file system into logical ad-
dresses and the position of the stored data is determined by an
allocation algorithm.

Most modern file systems use an index allocation strategy to
keep track of the data on disk. The index allocation strategy sepa-
rates the metadata and the file data and hence the index itself does
not suffer from external fragmentation (free holes being to small to
be filled with new data), but the data part can if heavily used give
rise to fragmented files, requiring regular defragmentation of the
file system. There is also a risk of disk space being wasted when
using index allocation, especially for small files requiring a full in-
dex meta data block to hold just a few index posts.

There are also a number of algorithms used for handling the free
space in the data part that is to be populated by new files. The best
fit algorithm is meant to reduce the risk of file data fragmentation
by always utilizing the free space best fitting the file to be written.
The idea is to reduce the free space remaining in a block of free
clusters due to large differences in what is needed and what is
available. However, this strategy requires all the free spaces avail-
able to be compared at each file operation before the best fit can be
chosen.

NTFS (Microsoft Windows) is using a index allocation strategy
(Microsoft, 2018; Hughes, 2009), the index is called the MFT
(Microsoft, 2018) and the individual posts are called MFT records.
The problem of space being wasted when using index allocation is
solved by storing the data of smaller files (up to approximately
700 B1) in the MFT records themselves. To allocate space for file
data NTFS uses a best fit allocation strategy (Carrier, 2005).

When formatting an NTFS partition 12.5% of the space is
reserved for the MFT as default (Microsoft, 2018). The MFT records
are 1 KiB in size and usually the size of the smallest allocatable unit
(called cluster) in NTFS is 4 KiB. The allocation status of every
cluster in the file system is stored in the $Bitmap file, which is re-
cord number 6 in the MFT. Each bit in the $Bitmap file represents
one cluster in ascending Logical Block Addressing (LBA) order. If a
cluster is allocated the corresponding bit in the $Bitmap file is set to
1, hence 0 represents a free cluster.

A file can either be written as a stream or as one large block at
once Karresand et al. (2019a). In the first case the OS does not know
the final size of the file and therefore cannot optimize the allocation
accordingly. This often leads to file fragmentation, but the behavior
is partly mitigated by the internal buffering of the OS. Writing a file
in one piece gives the OS information on its size and it can therefore
optimize the storage by using its standard allocation algorithm.
This behavior is probably more commonwhen dealing with smaller
files that easily can be held in Random Access Memory (RAM), than
for large files. The specific write behavior is software dependent
andmight incorporate temporary writing of files to protect the data
in case of a power loss or hardware failure.
Related work

Since the research area is new there is not much related work to
be found. We have therefore also included work from the file
carving area containing some material related to the allocation
algorithm of file systems, as well as work related to the placement
of data on disk.

We have presented the novel idea of creating a map of the
probability of finding user data at different LBA positions of hard
disk partitions in three earlier articles (Karresand et al., 2019a, b, c).
In the first article (Karresand et al., 2019c) we tried to find any static
areas of NTFS partitions. We defined static areas as areas containing
the same data at the same logical position in different partitions.
During that work we also found that the $MFT started exactly 3 GiB
into the NTFS formatted partitions of the over 30 unrelated real
world hard drives we looked at. The hard drives had different sizes
and contained different versions of Windows (Karresand et al.,
2019c). We also used the $Bitmap file to study which part of an
NTFS partition had the highest allocation activity (Karresand et al.,
2019b). The highest activity was found approximately 10 GiB into a
partition. The activity then slowly decreased towards the end of the
partition, which was expected. In the third article (Karresand et al.,
2019a) we presented new information on the detailed behavior of
the allocation algorithm in Windows using NTFS in different file
writing situations (writing a file like one block or writing it as a

M. Karresand et al. / Forensic Science International: Digital Investigation 33 (2020) 301008 S3
stream of data). The results showed that the size of the allocated
blocks (i.e. file fragments) decreased during block writing and
increased during stream writing. The study was however based on
a low number of writing operations, Windows versions and parti-
tion sizes. We will therefore validate our results in a larger
experiment.

Casey (2018) introduces a new digital forensic research field
called digital stratigraphy that draws inspiration from archaeology,
which share many common features with (digital) forensics. The
idea is to look upon file system activities as layers (strata) that are
structured. This structure can be used to complement, improve and
expand the information currently retrieved from hard drives and
disk images. In the article Casey (2018) shows how the next fit
allocation strategy used in File Allocation Table (FAT32) file system
(for example FAT16 and FAT32 in Windows) clearly indicates the
order of storage of file data. He also touches upon the best fit
allocation algorithm used in NTFS and how it behaves, but the bulk
of the NTFS part is focused on specific behavior regarding valid data
length (VDL) slack that is currently not properly covered by avail-
able digital forensic tools. He also covers the effect file tunneling
has on the reliability of file system meta data.

Key (2012) has developed an EnScript module to the EnCase
software which creates a map of the recoverable sectors of a file
found in a file system. It can handle situations where other tools do
not work, for example partially damaged files. It is very processor
intensive and therefore can only createmaps of a few files at a time.
Key does not mention to what extent any knowledge on the allo-
cation pattern of the OS and file system is used in the article.

Gladyshev and James (2017) have studied the problem of file
carving from a decision-theoretic point of view. They suggest a
model where storage media is sampled with a frequency based on
different properties of the hard disk and the file type that is to be
found. In some specific situations their carving model outperform
standard linear carving algorithms, but their solution was not
generally applicable at the time of writing. Gladyshev and James
(2017) mention using the distribution of data on disk, but do not
explain if they take advantage of any structures introduced by the
allocation algorithm.

In two articles by van Baar et al. (2014) and van Beek et al. (2015)
outlining the DFaaS system Hansken (van Beek et al., 2015) and its
predecessor Xiraf (van Baar et al., 2014) the concept of non-linear
extraction of data from images is discussed. Both van Baar and
van Beek suggest that the MFT records of an NTFS partition are
extracted first. The MFT records are then used to find other inter-
esting areas of the file system. Van Baar and van Beek also suggest
that the analysis process is used to influence the imaging process by
having specified parts being prioritized. As we understand they do
not base the priority on the allocation pattern of the analyzed
system, but on file name and other higher level meta data found in
the MFT records.

Jones et al. (2016) have created a framework to enable studies of
(deleted) file persistence in storage media. They use differential
forensic analysis to compare snapshots of file systems in use and
follow the decay of deleted files over time. This work connects to
our experiments, because free areas are meant to be reused by the
file system, but depending on the size of the free area the best fit
allocation algorithmmight not be able to use it for a certain amount
of time. The concept of data persistence is of interest to us because
the persistence at different areas of storage media indicates that
these positions are not reused. This information might correlate
with the allocation pattern and its development over time, which is
what we are studying.

\def\rm{\tf="Times New Roman (TrueType)"}\def\it{\tf="Times
New Roman Italic (TrueType)"}\def\bf{\tf="Times New Roman Bold
(TrueType)"}\def\bi{\tf="Times New Roman Bold Italic (TrueType)"}
Fairbanks and Garfinkel (2012) present 12 factors affecting data
persistence in storage media. Fairbanks (2015, 2012) also has
described the low-level functions of fourth extended filesystem
(ext4) and their effect on digital forensics. Although the articles do
not describe the inner workings of NTFS the principle is still of
interest to us, especially in future extensions of our experiment.

Our main contribution to the digital forensic research field is the
result showing that there are differences in the allocation behavior
of Windows 10 and older versions of Windows and that the best fit
allocation strategy is not fully used. The maximum and median
fragment sizes of Windows 7 show interesting linear properties,
which are not found inWindows 10. There are also areas within the
file system that are rarely used, forming bands of low allocation
activity through the file systems. We also show how the allocation
of new data is concentrated to an area close to (just before) the
middle of a partition, but also how that area is slowly moving to-
wards the middle of the partition, regardless of the size of the
partition. The result can be used to determine the sequential order
of files, estimate the proper size of file fragments to be carved and
where in the create and erase cycle a file system is through the
leeward effect found in all Windows versions. The results can also
be used to improve the efficiency of the file carving process by
helping the digital forensic investigator to prioritize where to start
searching for user related data.

Experiment

The experiment was based on iteratively creating, deleting,
expanding and shrinking files in unused NTFS formatted partitions
in 32 virtual machines running Windows versions 7, 8, 8.1 and 10.
The aimwas to empirically study how the cluster allocation pattern
develops over time and how the allocation frequency varied at
different LBA positions. Each file operation iteration contained the
following elements:

1. Boot the virtual machine.
2. Based on a precomputed list either create, delete, expand or

shrink a file within the virtual machine's NTFS file system.
3. Shut down the machine.
4. Extract the $Bitmap file from the virtual hard disk (using dd

from the host)

Since each file operation iteration required the virtual machine
to be rebooted a full iteration took several minutes to complete.
There were also extra time slots inserted at critical moments to
compensate for any variations in execution time during an
iteration.

We allowed the experiment to run for 16 days before shutting it
down due to time constraints. Most, but not all, of the virtual ma-
chines then had completed 10,000 iterations. All virtual machines
were run in parallel in a computer cluster to save time, if we had
had to run them one-by-one the experiment would have taken up
to 35 * 16 ¼ 560 days to execute, excluding setup time.

The foundation of the experiment was built on having four
virtual machines installed with one Windows version each using
standard parameters. Then a Python 2.7 execution environment
was installed together with the file operation scripts. An auto-
started.bat script was placed in the virtual machine to check
when the boot sequence was finished. The script was small enough
to fit into an MFT record and hence did not require any new cluster
allocation outside the MFT. The path setting was modified and the
security level of Windows was lowered to allow logging in without
a password. The goal was to keep the NTFS file system as pristine as
possible to allow us to study the allocation algorithm from the start
of the life of the file system. There were however a number of

M. Karresand et al. / Forensic Science International: Digital Investigation 33 (2020) 301008S4
system processes that also modified the file system in each itera-
tion, which were beyond our control.

We let 16 virtual machines (four machines for each version of
Windows, half of the total amount of machines) use exactly the
same file operation pattern (the standard pattern) to test if there
was any deterministic behavior connected to the allocation (if any
similarities of the allocation patterns could be found). Hypotheti-
cally it should be, since the virtual machines within each Windows
version were exact copies of each other.

To be able to see any deterministic allocation behavior we used
scp when distributing the virtual machines to the computer cluster
nodes. We did not use the VirtualBox clone function because it
make small changes to the virtual machine's settings, which in turn
might affect the OS and hence trigger an unintended write opera-
tion. Using scp to copy the virtual machines guaranteed them to be
identical, which was verified using Secure Hash Algorithm 1 (SHA-
1) hash summing. However, we did not have full control of the
cluster allocation and deallocation during an iteration of the
experiment because of internal OS processes, thus we still had
uncontrolled variables affecting the outcome of the standard
pattern sub experiment.

Due to instability in the VBoxManage interface and unforeseen
popup windows appearing in the virtual machines several of them
had to be restarted during the course of the experiment. This might
have affected the result of the experiment, but since we used at
least four virtual machines for each combination of Windows
version and partition size in the experiment the effects of the un-
planned reboots were diminished.

The experiment was run on eleven nodes in a large computer
cluster. The cluster is managed by Swedish Defence Research
Agency (FOI) and we therefore were not allowed to make any
changes to the cluster nodes’ OS or configuration, which forced us
to use alternative tools to extract the data. This did however not
affect the experimental results.

Each cluster node ran four virtual machines, one for each
version of Windows in our test (see Table 1). The $Bitmap file from
the MFT of NTFS was used to check which clusters were affected by
each file operation. To enable us to extract the $Bitmap file after
each operation the virtual machines were configured to use fixed
size disks, which can be directly handled by common Linux tools.
We limited the size of the fixed virtual disks to 64 GiB to be able to
use four virtual machines in each node and still have space for the
$Bitmap file copies. Each copy was 2 MiB large and there would be
40,000 $Bitmap copies (over 78 GiB) in each cluster node when the
experiment was finished. If we had used larger virtual disks we
would have had to decrease the number of virtual machines, which
in turn would have affected the reliability of the results. The hard
drive size of 64 GiB was therefore found to be a reasonable trade-off
between reliability and a realistic hard drive size.

The virtual machines used four internal Python scripts for the
experiment, one for each type of file operation. The scripts and the
resulting $Bitmap files were placed in a external folder shared with
the host, one for each machine, to isolate the machines from each
other. This also meant that we avoided cluttering the virtual disk
with data and therefore minimized the risk of unspecified behavior
Table 1
The four versions of Windows used in our experiment.

Name Version

Windows 7 Professional SP 1 7601
Windows 8 Enterprise 9200
Windows 8.1 Enterprise 9600
Windows 10 Enterprise 1703
due to several machines accessing the same file at the same time.
The file operations were executed as the local user of the virtual
machines to simulate the activity of a real user.

The execution of the experiment was controlled by a Python
script on the host node. The script selected one of four actions;
create, delete, increase and decrease based on a configuration file
containing a precomputed weighted random selection. The selec-
tion was biased towards file creation and extension, where 1

4 of the

operations were set to create, 9
40 to erase, 11

40 to increase and 1
4 to

decrease. The process was set to create files until the disk was 30%
full and then switch back to either erase- or create-onlymode if the
usage of the disk reached above 95% or below 5%. The communi-
cation between the host script and the virtual machine scripts was
done using the VBoxManage interface.

The experiment emulated a file sharing or multimedia
consuming user that alternated his or her file operations between
small and large files. The size of the small files varied between 4 KiB
and 4 MiB and the size of the large files between 1 MiB and 1 GiB.
The size of the large files might not seem very large, but since the
virtual disks were only 64 GiB in size a 1 GiB file corresponds to a 32
GiB file on a 2 TiB disk.

All write operations were streamwriting operations, i. e. the OS
of the virtual machine did not know the size of the file to be written
in advance, which was meant to represent for example a file being
downloaded from the internet. However, streamwriting operations
might give a more fragmented allocation result than block writing
operations (Karresand et al., 2019a).

The script responsible for managing the write operations in the
virtual machines on a host node checked if the currently active
virtual machine was started before it sent the file operation com-
mand. There was also a check of the completion of a file operation,
as well as a check of the exit status of the virtual machine when it
was being shut down. The exit status of each file operationwas also
checked and if it indicated an error the transaction counter was
decremented and the same operation was retried. Every trans-
action was logged in a file indicating the sequence number, the
action performed, the name of the affected file and its current size.

The three Python scripts that executed write operations on the
virtual machines were set to write the iteration sequence number
and a individual sequence number into every 512 byte sector of the
file to bewritten. This enabled us to see the rawwrite pattern in the
virtual disk file if ever needed. The iteration sequence number was
also given as file name to further increase the traceability. The
create and decrease file scripts both wrote new files (using the wb
flag in the Python open command). The increase script appended
new data at the end to an existing file, using the ab flag. Therefore
increased files could contain multiple number sequences.

To avoid unnecessarily burdening the virtual machines the four
file operation scripts run by the virtual machines were kept as
simple as possible and most of the control functions (for example
the status check of the virtual machine and file operation) were
executed by the main script on the host node. The randomization of
the file operations was done beforehand and held in a configuration
file used to control the script on the host. In that way the same file
operations could be executed on several machines in parallel. This
also avoided the problem of having to individually seed several
random functions, now the seeding was centralized.

Since we were not allowed to install any software on the host
nodes in the computer cluster we chose to use the dd tool to extract
the $Bitmap file in each iteration. That required us to know the
exact location of the $Bitmap file in advance, which we solved by
using fixed size virtual disks. The size and location of the $Bitmap
file would not change since the size of the disk was static. A better
solution might be to use the icat tool from the Sleuth Kit by Carrier

Fig. 2. The mean allocation position of the Windows 7, 8.1 and 10 having 256 GiB hard
drives. We have also included a plot of the file system utilization (multiplied by 4 to fit
the larger disk size) to enable comparison with the corresponding 64 GiB hard drives.
Please observe that the maximum allocatable position in a 256 GiB partition is
approximately 67,000,000 clusters and that the scale of the Y-axis therefore differs
from the corresponding plots of the 64 GiB partitions.

M. Karresand et al. / Forensic Science International: Digital Investigation 33 (2020) 301008 S5
(2014). That will be fixed in the next version of our experimental
platform.

When the experiment was finished we extracted the LBA posi-
tion of the affected clusters in each file operation from the $Bitmap
copies. The extraction process gave us information on all clusters
that had been allocated or freed during each file operation. Since
we could not control the behavior of the OS any allocation changes
induced by the OS were also included.

To test if there were any differences in allocation behavior
connected to the size of the hard drive we extended the experiment
with three virtual machines having 256 GiB hard drives. The ma-
chines were installed with Windows 7, 8.1 and 10 in the same way
as the 64 GiB machines. The standard pattern was used to enable
comparison to the 64 GiB machines using the same pattern. Due to
the 256 GiB machines being started later than the 64 GiB machines
the Windows 10 machine only executed 8331 iterations before
being stopped.We therefore have limited the result to the first 8331
iterations in all machines.

Result

To increase the readability of the paper we have chosen to only
show graphs for Windows 7 and 10. The differences between the
graphs for Windows 7, 8 and 8.1 are often small and we therefore
let Windows 7 represent all three Windows versions below Win-
dows 10. We can of course use data from all three versions in the
same graph, but that will decrease the visibility of the specific
features we want to show, because the data are not equal, only
similar.

Please observe that the figures are showing the statistical
properties of the allocation patterns, not the actual allocations for
each file operation. Showing the actual allocations would require us
to plot up to hundreds of thousands of data points for each file
operation, which obviously is not feasible in this publication
format. We also use different scales (log and linear) on the Y-axis of
the plots to increase the visibility. The maximum allocatable posi-
tion of a 64 GiB partition is almost 17,000,000 clusters and
approximately 67,000,000 clusters for 256 GiB partitions. Since
some of the figures use different units the maximum value of their
Y-axes might differ.

In many graphs there seems to be a disturbance visible as an
area of low activity centered around file operation 5350. This effect
comes from the rapid decrease in file system utilization that can be
Fig. 1. The mean allocation position for all included Windows versions in 64 GiB hard
drives using the standard file operation pattern. We have also included a plot of the file
system utilization, which corresponds to the black line at the top of the graph. The file
system utilization plot is raised by 2,526,780 clusters to increase the visibility.
seen in for example Figs. 1 and 2, where the thick black curve at the
top of each graph shows the degree of utilization. Please observe
that the utilization curve has been moved upwards with approxi-
mately 2,500,000 clusters to increase visibility.

As can be seen in Fig. 1 the mean position of the newly allocated
clusters for each file operation in the 64 GiB virtual main partitions
correlates with the amount of allocated clusters in the file system, i.
e. the degree of utilization of the file system. The mean allocation
position patterns are similar for all four Windows versions, but not
equal. Each partition in the experiment adds a few unique outliers
to the graph. The file system utilization plot, derived from the
standard pattern file operations configuration file, added on top of
the mean position graph has been raised by 2,526,780 clusters
(approximately 9.6 GiB) to increase its visibility. The value repre-
sents the difference between the maximum value of the standard
pattern file operations configuration file and the maximum allo-
cated cluster position of one of theWindows 7 machines using that
file.

The correlation between themean position and the utilization of
the file system shown in Fig. 1 also appear in the main partition of
the 256 GiB virtual disks, regardless of the installed OS. This is
shown in Fig. 2. The included plot of the file system utilization is
multiplied with 4 to compensate for the larger hard disk size and
also to increase the visibility. As can be seen the bulk of the mean
allocation positions in the 256 GiB disks, as well as the highest
mean allocation values, correlate well with the mean allocation
positions in the 64 GiB disks.

The maximum allocation position is an indication of how the OS
utilizes the free area at the end of the file system. This is shown in
Fig. 3. As can be seen the highest allocated position for each file
operation also increases as the number of operations increases. The
increase is divided into steps, which are correlated to increases in
the utilization of the file system. There are however no corre-
sponding rapid decreases in the maximum positions when the
utilization decreases. Instead the current level is only slowly
decreasing until the utilization gets a new maximum value. In the
plots the effect looks like the formation of clouds on the leeward of
a mountain range. Although the effect is strictly visual and has
nothing to do with how physical clouds are formed, we will be
referring to the effect as the ‘‘leeward effect’’ in the rest of the
article.

Fig. 3. The maximum allocation position for Windows 7 in 64 GiB hard drives using
the standard file operation pattern. We have added the file system utilization curve
(the black line at the top) to the graph to increase the visibility of the leeward effect of
the allocations.

Fig. 5. The median allocation position for Windows 7 in 64 GiB hard drives using the
standard file operation pattern. Please observe the horizontal sparse part in the mid-
dle, which is missing in Windows 10.

M. Karresand et al. / Forensic Science International: Digital Investigation 33 (2020) 301008S6
In Fig. 4 the maximum allocation position for Windows 10 is
shown. The leeward effect is less distinct here, instead the
maximum allocation positions remain at the same level until the
next increase in the file system utilization, making the plot look
more like heavy fog than leeward clouds. The larger amount of
allocations at high cluster addresses is also manifested by the lower
amount of allocations at positions below the file system utilization
curve.

The median allocation position graph of Windows 10 lacks a
feature that the graph of the older Windows versions show (see
Fig. 5). Windows 7, 8 and 8.1 all have an approximately 100,000
clusters wide unused area in themiddle of their partitions centered
around cluster 8,600,000 for Windows 7 and 8,400,000 for Win-
dows 8 and 8.1. The area is more or less visible for all three Win-
dows versions, but in Windows 7 it is visible from the start of the
file operations (see Figs. 3 and 5) from a significant lower bound of
the unused area, which is not the case for Windows 8 and 8.1.

The graph (see Fig. 6) of the statistical mode, here defined as the
middle position of the largest consecutive group of clusters allo-
cated in a file operation, ofWindows 7 also shows an unused area in
the middle of the partition, which can also be seen in Fig. 5. The
Fig. 4. The maximum allocation position for Windows 10 in 64 GiB hard drives using
the standard file operation pattern. We have added the file system utilization curve
(the black line at the top) to the graph to increase the visibility of the leeward effect of
the allocations.
allocated positions in the mode graph are however almost evenly
distributed in the allocated area and also showa sharp border to the
sparsely allocated area between cluster position 125,000 and
2,550,000. This border is less sharp in Fig. 5, but that might be an
effect of the median being a calculated value in difference to the
mode being a factual value. Hence the mode value is closer to the
actual behavior of the file allocation algorithm. As for the median
allocation position graph in Fig. 5 the unused area in the middle of
the Windows 8.1 partitions start to vanish around file operation
9000 and is not present in Windows 10.

The Windows 10 mode graph in Fig. 7 is similar, but not equal,
to the Windows 7 graph in Fig. 6. Both graphs show data from the
virtual machines using the standard file operation pattern. The
unused area close to the middle of the partition is lacking in
Fig. 7 and there is more allocation activity at the first part of the
partition. The Windows 10 graph also shows how the highest
allocated positions are reused after their initial allocation to a
higher degree than in Windows 7 (see Fig. 6). This is manifested
by the higher amount of leeward effect in Fig. 7 (the peaks are
not as visible in the Windows 10 plot as in the Windows 7 plot).
Since the figures show the statistical mode of the allocation for a
file operation each data point corresponds to the middle of the
Fig. 6. The mode allocation position for Windows 7 in 64 GiB hard drives using the
standard file operation pattern. Please observe the thin horizontal sparse area in the
middle of the plot, the same sparse area can be seen in Fig. 5.

Fig. 7. The mode allocation position for Windows 10 in 64 GiB hard drives using the
standard file operation pattern.

Fig. 9. The standard deviation of the allocation position for Windows 10. The four 64
GiB partitions from the experiment using the standard file operation pattern are
included. Since the standard deviation is measured in clusters, not cluster number
(position), the Y-axis does not show the full size of a 64 GiB partition.

M. Karresand et al. / Forensic Science International: Digital Investigation 33 (2020) 301008 S7
largest consecutively allocated area of that file operation, thus
they show real allocations.

The sparsely allocated area below cluster 2,550,000 (see Fig. 6)
has a denser allocation pattern for Windows 8 and 8.1, than for
Windows 7. The order of usage from sparse to dense for that area
is Windows 7, 10, 8 and 8.1. The size of the sparse area is the same
in the 256 GiB hard disks, hence it does not represent the 12.5% of
the volume size set aside for the MFT. However, all areas contain
the MFT, which starts exactly 3 GiB into the main partition in all
hard disks, regardless of size and version of Windows (Karresand
et al., 2019c). When checking the allocation of every 50,000 cluster
in the sparse area we found that almost all of the files are OS
related files and no more than 5% of the files are created by the
scripts.

The standard deviation value of the allocated positions after
each file operation is high, between 2,000,000 and 3,000,000
clusters, and is rapidly increasing at the beginning (up to approx-
imately 500 file operations), where it levels out. This can be seen in
Fig. 8. The rapid increase at the beginning of the graph is due to the
large contiguous area of free space when the disk is newly
formatted (when the best fitting area available for allocation is
Fig. 8. The standard deviation of the allocation position for Windows 7. The four 64
GiB partitions from the experiment using the standard file operation pattern are
included. Since the standard deviation is measured in clusters, not cluster number
(position), the Y-axis does not show the full size of a 64 GiB partition.
much larger than the required space). Please observe that standard
deviation is measured in clusters, not cluster number (position) and
therefore the Y-axes of the standard deviation graphs do not show
the full size of a 64 GiB partition.

Worth noticing is that the Windows 10 standard deviation,
which can be seen in Fig. 9, is more dense and less varied than for
Windows 7. On the other hand it does not level out to the same
degree as for Windows 7. Neither the standard deviation graph in
Fig. 8 nor the graph in Fig. 9 change much if we include allocation
data from all file operation patterns.

We also collected statistics on the file fragments (groups of
allocated clusters) during the experiment. Three metrics are worth
noticing; the number of fragments, as well as the maximum and
median size of the fragments. Please observe the log scale of the Y-
axis in the file fragment graphs (Figs. 10e15).

The number of fragments is an indicator of the allocation algo-
rithm's priority regarding filling holes versus keeping file data
contiguous. Fig. 10 shows that in Windows 7 most of the file op-
erations (using the standard file operation pattern) generate
approximately 20 fragments. As can be seen the number of
Fig. 10. The number of fragments allocated in each file operation for Windows 7 in 64
GiB hard drives using the standard file operation pattern. Please observe the log scale
of the graph.

Fig. 11. The number of fragments allocated in each file operation for Windows 10 in 64
GiB hard drives using the standard file operation pattern. Please observe the log scale
of the graph and the truncated maximum value of the Y-axis, which hides an outlier of
2043 fragments at file operation 5765.

Fig. 12. The median size of the allocated fragments for Windows 7 in 64 GiB hard
drives. There is a linearly increasing trend from 0 to approximately 2000 clusters and
also a number of horizontal lines at exponentially increasing distances. Please observe
the log scale of the graph.

Fig. 13. The median size of the allocated fragments for Windows 10 in 64 GiB hard
drives. There are clearly visible lines at approximately 100, 250, 500, 750 and 1000
clusters. Please observe the log scale of the graph.

Fig. 14. The size of the largest sequence of allocation positions (file fragments) for
Windows 7 in 64 GiB hard drives. Please observe the log scale of the Y-axis.

Fig. 15. The size of the largest sequence of allocation positions (file fragments) for
Windows 10 in 64 GiB hard drives. Please observe the log scale of the Y-axis.

M. Karresand et al. / Forensic Science International: Digital Investigation 33 (2020) 301008S8
fragments never reaches above 500 for Windows 7. The number of
fragments also slowly increases over time, but with a solid foun-
dation around 20 fragments per file operation.

The number of fragments per file operation for Windows 10, as
shown in Fig. 11, is approximately three times larger than for
Windows 7, giving a general size of 60 fragments per file operation.
However, all but one file operation give well below 500 fragments,
with an outlier of 2043 fragments at file operation 5765. As in
Fig. 10 the trend is a slow increase of the number of fragments as
the number of file operations increases.

The median size of the fragments for Windows 7 using the
standard file operation pattern is shown in Fig. 12. Large fragment
size values indicate that the allocation algorithm tries to keep the
fragmentation down and as can be seen there are a number of
median fragment sizes above 7000 clusters in the Windows 7 vir-
tual hard drives. As can also be seen the median fragment size has a
line that increases linearly from 0 to approximately 2000 clusters
(the logarithmic scale transforms the line to a curve). There are
sharp horizontal lines at approximately the same distances in the
graph, which means that due to the logarithmic scale of the Y-axis
they are placed at exponentially increasing distances. There is much

M. Karresand et al. / Forensic Science International: Digital Investigation 33 (2020) 301008 S9
activity in a band centered around fragments of 64 clusters. The
amount of very large median fragment sizes slowly increases to-
wards the end of the graph.

The graph showing themedian fragment size forWindows 10 in
Fig. 13 lacks the linearly increasing trend found in Fig. 12. However
the horizontal lines in the Windows 7 graph are present in Win-
dows 10 too, although starting at a lower level. The standard
fragment size in Windows 10 is 16 clusters according to our results.
Windows 10 has smaller median fragment sizes thanWindows 7 in
general, but still has the same slowly increasing amount of large
median fragment sizes as Windows 7.

Fig. 14 shows how the size of the largest file fragment for each
file operation is decreasing as the number of file operations is
increasing. There is also a large amount of fragments of approxi-
mately 500 clusters created at the beginning of the experiment.
After approximately 1500 file operations the size of the biggest
fragments level out at approximately 20,000 contiguous clusters
and the band at 500 cluster is thinner. There is also a significant
amount of outliers, many of them as large as 200,000 clusters, a few
times even higher. The data in Fig.14 includes both the standard file
operation pattern and unique patterns, still there is a clearly visible
linearly increasing trend (remember the log scale of the Y-axis)
starting at fragments of approximately 500 clusters and reaching to
2000 clusters at the end. The same line can be seen in Fig.12. Finally
there is a thin horizontal line of fragments of approximately 1500
clusters in size, which gets weaker at approximately 7000 file op-
erations, when the linearly increasing trend reaches it.

The graph showing the largest fragment for each file operation
in Windows 10 (see Fig. 15) lacks the linearly increasing trend
(please do not forget the log scale) found in Windows 7. Instead
there is a band of maximum fragment sizes centered around 1500
clusters. Apart from that the graph shows the same decreasing
maximum fragment sizes at the beginning and the same leveling
out at approximately 20,000 clusters large fragments as for Win-
dows 7 (see Fig. 14).

As mentioned in the beginning of Section Result we omitted
showing graphs of the results for Windows 8 and 8.1 for readability
reasons. Most of the these results were close to the Windows 7
results, but with a few exceptions. Most notably the fragment sta-
tistics of Windows 8 and 8.1 were closer to theWindows 10 results,
than the Windows 7. However, the differences were small in all
cases.

Discussion

The $Bitmap files extracted during the experiment contain not
only traces of the file operations executed by our scripts, but also
any operations executed by the OS during each iteration. Especially
the start and stop phases of an iteration will induce changes to the
MFT and its records. Since we only want to see where (which LBAs)
the OS allocates clusters when writing data the deallocation oper-
ations are irrelevant. We therefore have filtered out operations
where allocated clusters have been freed. The remaining data will
include clusters allocated by the system too, but that is a minor
problem because the system activities often affects already allo-
cated clusters (appending information to existing log files for
example). An MFT record is 1 KiB in size and the smallest allocat-
able unit in a 64 GiB NTFS partition is 4 KiB, hence every fourth file
creation will possibly give rise to a new cluster being allocated in
theMFT (not until the preallocatedMFT space is used up). When for
example log and system files grow and require a new cluster to be
allocated the cluster position will most probably be allocated to the
same areas as ordinary user files. The inclusion of system file op-
erations will therefore have a low impact on the statistical metrics
used.
The main conclusion to draw from the result is that the alloca-
tion behavior differs inWindows 10 compared to the older versions
ofWindows, an important fact to remember during digital forensics
case work involving, for example, suspicion of manipulation of file
system time stamps. Another important conclusion to draw is that
the allocation activity is highest in the lower middle cluster posi-
tions and only slowly moving towards the end of the partition as
the file system ages. Hence any file carving searches for user data
should preferably start there and not at the beginning of a hard
drive.

We can also conclude that similar file operations executed in
differently sized hard drives still generate similar, but not equal,
results (compare Figs. 1 and 2). The similarity might actually be
even higher in reality, because the instability of the experimental
platform caused unique system states for the individual virtual
machines, causing system files to be written at different occasions
in each machine. Those activities therefore might have allocated
free areas that were allocated to files written by the scripts in other
machines.

The file system utilization plots included in Figs. 1e3 have been
raised by 2,526,780 clusters. That corresponds to the area in the file
systemwhere the OS files are written during installation. The same
area is clearly visible in Fig. 6 showing the statistical mode of the
allocation pattern. We found that Windows 7 and 10 are less likely
to allocate files in that area than Windows 8 and 8.1 and that the
sparse area has the same size regardless of size of the hard drive. Of
course the size of the area will differ depending on the size of the
installed OS, but the required size of a Windows installation is the
same for at least Windows 7 to 10 (Microsoft, 2017a, b, c).

Since we do not differentiate between allocations originating
from the file operation scripts and system file allocations we cannot
be sure what type of file has been allocated to the sparse area
containing the OS files (we can only see what is currently allocated
there). Furthermore the statistical metrics only show parts of the
reality, hence the allocation activity in the sparse area might be
high, but only for small files. Nevertheless the results show that the
allocation activity differs between areas in the partitions and be-
tween the versions of Windows included in the experiment, which
is important to know in for example file carving investigations.

We have not yet found any theoretically or scientifically sound
explanation of the unused area found in themiddle of theWindows
7 partitions (see the median and mode graphs in Figs. 5 and 6).
There are no system files allocated there in the virtual machines
from the experiment, neither the $MFTMirr file as suggested by
Carrier (2005), nor the pagefile.sys as suggested by colleagues. This
is also true for the six unrelated home and office computers
running different versions of Windows (from 7 and up) we checked
to see if the hypothesis holds for real world computers. Hence the
system file hypothesis is falsified.

When checking the unused area in themiddle of theWindows 7
partitions the area is allocated to files written during the experi-
ment, although we can only see file system information for the last
few hundred file operations due to (possibly) earlier deletions. The
files found in the unused area have all been written after file
operation 8,331, which is the upper bound used for the graphs due
to a few virtual machines having to be stopped prematurely. When
checking the data for the virtual machines that executed all 10,000
file operations the unused area is present for all operations for
Windows 7, but for Windows 8.1 it is vanishing in the last 1000 file
operations. The $Bitmap files of theWindows 8 virtual machines all
got out of sync for different reasons during the last 1000 operations
and hence we did not get any reliable data from them after file
operation 9000. The most probable reason is a breakdown of the
VBoxManage service, which caused the script to download the
$Bitmap file at the wrong occasion. The Windows 8 machines had

M. Karresand et al. / Forensic Science International: Digital Investigation 33 (2020) 301008S10
become slower and slower over time and finally the restart timeout
of 10 min was exceeded. The failure had a severe impact on the
results after file operation 9000. However, up to file operation 9000
the results are reliable and the unused area is clearly visible when
we plot the Windows 8 data. We can also conclude that the area is
not present in Windows 10, thus Microsoft seems to have updated
the allocation algorithm in Windows 10.

The unused area in the middle of the partitions might also be an
artifact of the experimental setup. Since we tried to keep the virtual
machines identical an error during the installation of the OS might
have had a large impact on the results for the machines using the
standard pattern. However, the fact that half of the included virtual
machines ran unique sequences of file operations and still retained
the same unused area contradicts the installation error hypothesis.

The mode allocation position graphs (Figs. 6 and 7) for both
Windows 7 and 10 aremore or less evenly distributed over the used
area of the storage media. This might simply be an effect of the
random deletion of files during the experiment. However, if it is not
the effect is that the areawhere there might be interesting material
in a partition is increasing as the file system is utilized, hence an old
hard disk requires a larger area to be searched. This is however
contradicted by the slowly increasing mean and median allocation
position seen in Figs. 1 and 5.

The phenomenon of the maximum allocation position,
described as the leeward effect on clouds of a mountain range, is
interesting. There is a clear difference between Windows 7 and 10,
where the latter is biased towards continuing using any high allo-
cation addresses reached. This means that Windows 10 is using the
storage area more evenly than Windows 7. All virtual machines
used the default settings in the storage section of VirtualBox, which
therefore emulated a mechanical hard disk. Hence all virtual ma-
chines should behave the same based on the hardware setup.
Consequently there is a difference in the behavior of the allocation
algorithms between Windows 7 and Windows 10, which needs to
be studied further.

The decrease of the maximum file fragment size as the file
system grows, which can be seen in Fig. 14 is natural, since when
the free areas fill up and files are deleted the groups of contiguous
free cluster areas will be smaller. The spikes in the graph at higher
file operation numbers originate from the still unused areas at the
end of the partition. If we had been able to run the experiment for
an even longer period the maximum fragment size would probably
have decreased even more.

The large standard deviation of the allocated positions for each
file operation clearly indicates significant file fragmentation and
consequently the allocation algorithm's focus on filling holes in
the already used area of a partition before allocating files to the
yet unused part at the end of a partition. We do not know the
exact reason for this behavior, but we think it might be introduced
by the fact that all file write operations use stream writing. When
the OS does not know the size of the file in advance the strategy is
to assume it is small and hence use it to fill in any holes in the
already used area of a partition. If the file then turns out to be
larger, the size of the allocated areas will automatically grow,
since all small holes are occupied. On the other hand, if there is a
large free area available, it is better to use that first to at least
postpone file fragmentation to a situation when the partition is
more heavily used. Hence the chosen strategy depends on the
focus of the allocation algorithm; filling in holes or avoiding file
fragmentation.

The best fit allocation strategy that NTFS uses is meant to
decrease the amount of file fragmentation by optimizing the used
area with regard to lost space at the ends of the free area that is
being allocated. The behavior we can see from the result is how-
ever not fully adhering to that strategy, but that might be
questioned from a philosophical point of view. If the focus lies on
minimizing the lost (remaining) free area after each allocation the
behavior of not using the free space at the end of the partition first
and then start using the free areas left from file deletions can be
understood. Fitting an allocation into an hole left by a file deletion
actually leaves less remaining space around the allocated area,
than if the large unused area at the end of the partition was used.
If we take the large number of file fragments created by that
strategy into consideration this type of behavior becomes less
understandable, especially since the OSs saw the disks as me-
chanical hard drives, which are negatively affected by
fragmentation.
Conclusion and future work

We can conclude that there actually are differences in the allo-
cation behavior of different Windows version using NTFS, that the
size of the storagemedia is not affecting the allocation behavior and
that the behavior changes over time as the file system grows.
Likewise the adherence to the best fit allocation strategy can be
questioned. The allocation activity is not evenly spread over the
storage area, instead it is concentrated to the already used areas. A
strictly best fit allocation strategy would not fragment files if there
where free space available to fit the file in one block. All Windows
versions used in the experiment differentiate between mechanical
hard drives and solid-state drives (SSDs), but since all virtual drives
were set to emulate mechanical hard drives such differentiation
cannot be the reason behind the behavior.

The results from the experiment are directly applicable to the
digital forensic case work by showing that it is more probable to
find older data closer to the beginning of the partition and newer
data closer to the end of the used area. In the same way we have
shown that the priority of the allocation algorithm is to get rid of
holes left by file deletions, not to use the whole disk to decrease the
risk of file fragmentation. The knowledge gained from the experi-
ment is especially important in file carving where the goal is to
reconnect fragments of files into the original files again. By
decreasing the area to be search for file fragments the process will
be more efficient and hence faster.

The results can also be used to improve the creation of time lines
(work as another source of time stamp information) by the fact that
the size of file fragments decreases as the file system grows. A file
having large (and few) fragments has a higher probability of being
older than a file with many small fragments, although the effect is
small.

As future work we will stabilize the experimental platform and
expand the scope of the experiment to also include other file
systems, hard drive sizes and OSs, as well as both stream writing
and block writing file operations. We will also isolate our file
operations from the OS related operations and use tools from the
Sleuth Kit to increase the resolution and reliability of the results.
Together these improvements will enable us to determine if it is
possible to use the allocation pattern as a means to improve the
reliability of time stamps and possibly even work as a sequential
time stamp, showing the writing order of files. The results will
also be used to find out more about the standard fragment size,
number of fragments, their probable placement on disk (logical
position) etcetera, which will be of great help in file carving sit-
uations. The information on differences between stream and block
writing operations can also be used to improve file carving pro-
cesses by giving a first indication of the type of file of a fragment
and also when finding the correct ordering of the found
fragments.

M. Karresand et al. / Forensic Science International: Digital Investigation 33 (2020) 301008 S11
Acknowledgements

The research leading to these results has received funding from
the Research Council of Norway programme IKTPLUSS, under the
R&D project Ars Forensica grant agreement 248094/O70.Wewould
also like to thank the Swedish Defence Research Agency (FOI) for
their support by letting us use their Cyber Range And Training
Environment (CRATE) computer cluster.

References

van Baar, R., van Beek, H., van Eijk, E., 2014. Digital forensics as a service: a game
changer. Digit. Invest. 11, S54eS62. https://doi.org/10.1016/j.diin.2014.03.007.
proceedings of the First Annual DFRWS Europe.

van Beek, H., van Eijk, E., van Baar, R., Ugen, M., Bodde, J., Siemelink, A., 2015. Digital
forensics as a service: game on. Digit. Invest. 15, 20e38. https://doi.org/10.1016/
j.diin.2015.07.004. special Issue: Big Data and Intelligent Data Analysis.

Breitinger, F., Stivaktakis, G., Baier, H., 2013. Frash: a framework to test algorithms of
similarity hashing. Digit. Invest. 10, S50eS58. https://doi.org/10.1016/
j.diin.2013.06.006 (the Proceedings of the Thirteenth Annual DFRWS
Conference).

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley Professional.
Carrier, B., 2014. Tsk tool overview. http://wiki.sleuthkit.org/index.php?title¼TSK_

Tool_Overview.
Casey, E., 2018. Digital stratigraphy: contextual analysis of file system traces in

forensic science. J. Forensic Sci. 63, 1383e1391. https://doi.org/10.1111/1556-
4029.13722. https://onlinelibrary.wiley.com/doi/abs/10.1111/1556-4029.13722.

European Police Office (Europol), 2016. Internet Organised Crime Threat Assess-
ment (IOCTA) 2016. Technical Report. European Cybercrime Centre (EC3).

Fairbanks, K., 2012. An analysis of ext4 for digital forensics. Digit. Invest. 9,
S118eS130. https://doi.org/10.1016/j.diin.2012.05.010 (the Proceedings of the
Twelfth Annual DFRWS Conference).

Fairbanks, K., 2015. A technique for measuring data persistence using the ext4 file
system journal. In: 2015 IEEE 39th Annual Computer Software and Applications
Conference, pp. 18e23. https://doi.org/10.1109/COMPSAC.2015.164.

Fairbanks, K., Garfinkel, S., 2012. Column: factors affecting data decay. J. Digit.
Forensic Secur. Law 7 (2).

Gladyshev, P., James, J., 2017. Decision-theoretic file carving. Digit. Invest. 22, 46e61.
https://doi.org/10.1016/j.diin.2017.08.001.

Hughes, J., 2009. The four stages of ntfs file growth. https://blogs.technet.microsoft.
com/askcore/2009/10/16/the-four-stages-of-ntfs-file-growth/ accessed 24-10-
2018.
Jones, J., Khan, T., Laskey, K., Nelson, A., Laamanen, M., White, D., 2016. Inferring

previously uninstalled applications from residual partial artifacts. In: Annual
ADFSL Conference on Digital Forensics, Security and Law, pp. 113e130.

Karresand, M., Axelsson, S., Dyrkolbotn, G., 2019a. Disk cluster allocation behavior
in windows and ntfs. Mobile Network. Appl. https://doi.org/10.1007/s11036-
019-01441-1.

Karresand, M., Axelsson, S., Dyrkolbotn, G., 2019b. Using ntfs cluster allocation
behavior to find the location of user data. Digit. Invest. 29, S51eS60. https://
doi.org/10.1016/j.diin.2019.04.018.

Karresand, M., Warnqvist, Å., Lindahl, D., Axelsson, S., Dyrkolbotn, G., 2019c.
Creating a Map of User Data in NTFS to Improve File Carving. Springer Inter-
national Publishing, Cham, pp. 133e158 (chapter 8).

Key, S., 2012. File Block Hash Map Analysis. https://www.guidancesoftware.com/
app/File-Block-Hash-Map-Analysis. Accessed 28-04-2018.

Microsoft, 2017a. System requirements. https://support.microsoft.com/en-gb/help/
12660/windows-8-system-requirements accessed 30-04-2018.

Microsoft, 2017b. Windows 10 system requirements. https://support.microsoft.
com/en-us/help/4028142/windows-windows-10-system-requirements
accessed 30-04-2018.

Microsoft, 2017c. Windows 7 system requirements. https://support.microsoft.com/
en-us/help/10737/windows-7-system-requirements accessed 30-04-2018.

Microsoft, 2018. How ntfs works. https://technet.microsoft.com/pt-pt/library/
cc781134(v¼ws.10).aspx accessed 30-09-2018.

Net Applicationscom, 2019. Desktop operating system market share. https://www.
netmarketshare.com/operating-system-market-share.aspx?
qprid¼10&qpcustomd¼0.

Pal, A., Memon, N., 2009. The evolution of file carving. IEEE Signal Process. Mag. 26,
59e71. https://doi.org/10.1109/MSP.2008.931081.

Poisel, R., Tjoa, S., 2013. A comprehensive literature review of file carving. In: 2013
International Conference on Availability. Reliability and Security, pp. 475e484.
https://doi.org/10.1109/ARES.2013.62.

Quick, D., Choo, K., 2014a. Data reduction and data mining framework for digital
forensic evidence: storage, intelligence, review and archive. Trends Issues Crime
Crim. Justice 1e11.

Quick, D., Choo, K.K.R., 2014b. Impacts of increasing volume of digital forensic data:
a survey and future research challenges. Digit. Invest. 11, 273e294. https://
doi.org/10.1016/j.diin.2014.09.002.

Roussev, V., 2012. Managing terabyte-scale investigations with similarity digests.
In: Peterson, G., Shenoi, S. (Eds.), Advances in Digital Forensics VIII: 8th IFIP WG
11.9 International Conference on Digital Forensics, Pretoria, South Africa,
January 3-5, 2012, Revised Selected Papers. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 19e34.

Silberschatz, A., Galvin, P., Gagne, G., 2012. Operating System Concepts, 9 ed. Wiley.

https://doi.org/10.1016/j.diin.2014.03.007. proceedings of the First Annual DFRWS Europe
https://doi.org/10.1016/j.diin.2014.03.007. proceedings of the First Annual DFRWS Europe
https://doi.org/10.1016/j.diin.2015.07.004. special Issue: Big Data and Intelligent Data Analysis
https://doi.org/10.1016/j.diin.2015.07.004. special Issue: Big Data and Intelligent Data Analysis
https://doi.org/10.1016/j.diin.2013.06.006
https://doi.org/10.1016/j.diin.2013.06.006
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref4
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
https://doi.org/10.1111/1556-4029.13722
https://doi.org/10.1111/1556-4029.13722
https://onlinelibrary.wiley.com/doi/abs/10.1111/1556-4029.13722
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref7
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref7
https://doi.org/10.1016/j.diin.2012.05.010
https://doi.org/10.1109/COMPSAC.2015.164
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref10
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref10
https://doi.org/10.1016/j.diin.2017.08.001
https://blogs.technet.microsoft.com/askcore/2009/10/16/the-four-stages-of-ntfs-file-growth/
https://blogs.technet.microsoft.com/askcore/2009/10/16/the-four-stages-of-ntfs-file-growth/
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref13
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref13
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref13
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref13
https://doi.org/10.1007/s11036-019-01441-1
https://doi.org/10.1007/s11036-019-01441-1
https://doi.org/10.1016/j.diin.2019.04.018
https://doi.org/10.1016/j.diin.2019.04.018
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref16
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref16
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref16
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref16
https://www.guidancesoftware.com/app/File-Block-Hash-Map-Analysis
https://www.guidancesoftware.com/app/File-Block-Hash-Map-Analysis
https://support.microsoft.com/en-gb/help/12660/windows-8-system-requirements
https://support.microsoft.com/en-gb/help/12660/windows-8-system-requirements
https://support.microsoft.com/en-us/help/4028142/windows-windows-10-system-requirements
https://support.microsoft.com/en-us/help/4028142/windows-windows-10-system-requirements
https://support.microsoft.com/en-us/help/10737/windows-7-system-requirements
https://support.microsoft.com/en-us/help/10737/windows-7-system-requirements
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0
https://doi.org/10.1109/MSP.2008.931081
https://doi.org/10.1109/ARES.2013.62
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref25
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref25
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref25
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref25
https://doi.org/10.1016/j.diin.2014.09.002
https://doi.org/10.1016/j.diin.2014.09.002
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref27
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref27
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref27
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref27
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref27
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref27
http://refhub.elsevier.com/S2666-2817(20)30257-2/sref28

	An Empirical Study of the NTFS Cluster Allocation Behavior Over Time
	Introduction
	Background
	Related work
	Experiment
	Result
	Discussion
	Conclusion and future work
	Acknowledgements
	References

