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ABSTRACT
The Internet of Things (IoT) explores new perspectives and possible improvements in risk
assessment practices and shows potential to measure long-term and real-time occupational
exposure. This may be of value when monitoring gases with short-term maximum levels and
for time-weighted average (TWA) concentrations used in standard measuring practices. A func-
tional embedded system was designed using low-cost carbon monoxide (CO) electrochemical
sensors and long-range-wide-area-network radio communication technology (LoRaWAN) was
used to enable internet connectivity. This system was utilized to monitor gas levels continu-
ously in the working atmosphere of an incineration plant over a 2-month period.
The results show that stable and long-term continuous data transfer was enabled by
LoRaWAN, which proved useful for detecting rapid changes in gas levels. However, it was
observed that raw data from the low-cost sensors did not meet the NIOSH accuracy criteria
of 625% of the estimated true concentration based on field data from a co-located gas
detector that met the NIOSH accuracy criteria. The new IoT technologies and CO sensor net-
works shows potential for remote monitoring of exposure in order to: (1) detect rapid
changes in CO and other possible hazardous airborne gases; and (2) show the dynamic
range of real-time data that may be hazardous for workers in the sampled areas. While the
IoT low-cost sensors appear to be useful as a sentinel for monitoring hazardous atmos-
pheres containing CO, the more useful finding may be showing real-time changes and the
dynamic range of exposures, thus shedding light on the transient and toxic nature of air-
borne hazards. More importantly, the low-cost CO sensors are not a clear substitute for the
more costly real-time gas detectors that perform within the NIOSH accuracy criteria.
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Introduction

In recent years, an increasing interest in new communi-
cation technologies and the Internet of Things (IoT)
has arisen. Sensor networks are used to collect real-time
information from physical and chemical environments,
and previous studies have described the use of sensors
for measuring low concentrations of outdoor pollu-
tants, especially in research on sustainable and smart
cities (Castell et al. 2013; Esmaeilian et al. 2018). A vast
number of commercially available low-cost gas sensors,
radio communication technologies, power-efficient
electronics, open source software, and hardware are all
enablers of the IoT. Therefore, it is reasonable to

assume that the IoT may be increasingly popular when
investigating working environment exposures.

For example, solid waste incineration plants may
benefit from IoT sensors. These plants are designed to
produce electricity and heat, particularly for urban muni-
cipal areas, which has been practiced in Europe for deca-
des. Whereas hazardous, recyclable materials such as
plastics, glass, heavy metals, and other non-burnable
materials are removed before burning, the flue gas clean-
ing process prevents the release of toxic pollutants from
escaping to the outdoor environment. However, in this
type of industrial workplace, workers may be exposed to
combustion gases during maintenance or inspections
near the incinerator. In addition, leakage caused by
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general wear and tear of machinery and poor ventilation
measures may lead to increased concentrations of gas
pollutants in the occupational environment. Exposure sit-
uations may be difficult to assess every hour of the day,
unless continuously measured.

Standardized digital gas sensor instruments undergo
periodic calibration and validation by the manufacturer
to produce reliable data. However, these instruments
are costly, typically ranging from $500–4,000, and may
not be wireless or suitable for continuous gas level
monitoring over extended periods of time due to their
power-consuming electronics utilizing rechargeable bat-
teries that typically last 8–12hr before needing to be
recharged. In contrast, commercially available factory
calibrated low-cost sensors in conjunction with a func-
tional IoT platform may cost approximately $100.

This study utilized electrochemical sensors for CO,
which is a toxic, odorless, and colorless gas produced dur-
ing insufficient burning of organic materials. The negative
health effects of CO are well known and include heart and
pulmonary diseases, neurotoxic effects, tissue inflamma-
tion, headaches, and nausea (Grandjean and Landrigan
2006; Ayer et al. 2016; Veronesi et al. 2017). In Norway, the
8-hr time-weighted average (TWA) permissible exposure
limit (PEL) in the working environment is 20ppm CO,
and the 15-min short-term exposure limit (STEL) is
100ppm (Norwegian Working Environment Act 2018).
However, in the U.S., the National Institute for
Occupational Safety and Health (NIOSH 2012) recom-
mends a 35-ppm STEL for a 10-hr TWA during a 40-hr
workweek and a ceiling level of 200ppm. The
Occupational Safety and Health Administration enforces
an 8-hr TWA PEL of 50ppm. To our knowledge, occupa-
tional CO exposure levels in solid waste incineration plants
have been minimally studied, although waste management
work has been studied in association with adverse health
effects (Poulsen et al. 1995; Mâıtre et al. 2003; Giusti 2009).

Areas inside an incineration plant that present a
risk of CO leakage include those close to the slag
transporter belts where toxic dust, ash, sludge, and
slag are transported to a stock container for hazardous
waste; near the recycling fan and flue gas cleaning
process; and close to unsealed enclosures or inspection
hatches near the incinerator, which may be opened
during daily operations or inspections.

Incineration plants in general are massive, complex
concrete, and steel structures that are built in order to
provide appropriate fire security throughout the build-
ing; however, this may cause difficulties in radio com-
munication signaling. Therefore, the communication
technology performance is of vital importance for the
stable transfer of data during measurement.

Therefore, the primary goal of this study was to
design and build a complete and functional CO-IoT
platform for measuring CO and observing the raw
data transfer stability over the internet for a period of
approximately 2 months. In addition, the effectiveness
of the CO-IoT sensors in showing long-term changes
in CO concentrations that could potentially be haz-
ardous to workers inside the incineration plant
was studied.

Methods

Designing and building the CO sensor modules

The long-range-wide-area-network (LoRaWAN)
protocol (LoRa Alliance Inc. 2017) enables long-range
data communication and facilitates low power con-
sumption of electronics in a more efficient manner
than higher bandwidth radio technologies, such as
Wi-Fi, Bluetooth, or cellular. The module was
designed around EE-02 (Exploratory Engineering,
Telenor Digital AS, Trondheim, Norway), which hosts
an nRF52 microcontroller (Nordic Semiconductor AS,
Trondheim, Norway) and an SX1276 low-power radio
transceiver (Semtech Corporation, Camarillo, CA,
USA). The latter enabled LoRa connectivity with firm-
ware running on the nRF52. The EE-02 component
significantly reduced the overall design time and inte-
gration complexity with a low-cost commercially
available CO sensor (SPEC Sensors, LLC, Newark,
CA, USA). Two standard industrial D-cell batteries
powered the CO sensor module, and to achieve the
necessary battery life, the average current consump-
tion of the module had to be less than 2mA. While
SPEC sensors utilized to support electronics require a
3.3 V power supply, the EE-02 can operate at voltages
in the 1.8–5.5 V range and can be run directly from
batteries. In sleep mode, the nRF52 power consump-
tion (with RAM retention) was 1.5 l A, and the cur-
rent consumption of the LoRa transceivers in sleep
mode was less than 1 l A. This typically increased
during the transmission cycle (depending on transmit
power) to 60–80mA for 1–2 sec. The gas sensors con-
sumed approximately 2mA in sleep mode, which was
approximately three orders of magnitude more than
the rest of the electronics in sleep mode, and in the
active sensing mode, this increased to 5–6mA. The
minimum acceptable voltage for the digital CO gas
sensor module was 2.6V; consequently, a voltage
regulator was added between the battery and the rest
of the sensor electronics. Due to its low quiescent cur-
rent, a TPS63030 buck/boost regulator was chosen for
this task, which provided a stable 3.3 V from a
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minimum input of 1.8 V. Configured in a power-sav-
ing mode, the regulator’s quiescent current was a neg-
ligible 29 l A. Battery voltage monitoring was
performed via a 10 MOhm voltage divider connected
to the analog-to-digital converter input on the nRF52
microcontroller. Firmware, implemented in the
Apache myNewt real-time OS, enabled battery moni-
toring, sensor communication, and data transmission
over LoRaWAN. To increase battery life, sample data
was recorded every sixth minute, encoded in a data
frame and transmitted as LoRA packets using the
SX1276. For the module enclosures, we used off the
shelf hard plastic encapsulation boxes and designed
3D printable brackets for mounting electronics and
batteries. A HEPA filter was utilized as a particulate
barrier between the outside and inside of the CO gas
diffusion enclosure. Figure 1 shows the module com-
ponents with a printed circuit board hosting a CO
sensor and electronics inside a standard electron-
ics enclosure.

Designing the IoT platform

The RAK831 Raspberry Pi shield was utilized as the
LoRa gateway and a packet forwarder running on the
Raspberry Pi listened for LoRa packets in the Norwegian
Industrial, Scientific, and Medical frequency band
(868MHz). Packets were forwarded via the user data-
gram protocol to a backend system. The web or applica-
tion front ends can then receive data via the
Representational State Transfer (REST) application pro-
gram interface (API), Message Queuing Telemetry
Transport (MQTT), or web sockets allowing real-time
communication between clients and the backend system.

Figure 2 shows how the gateway is connected to
the facility internet router and functions as a bridge
between the LoRa radio network and the internet. The
server decrypts, validates, and stores the received data
from known LoRa networks in a local database. Data
can be forwarded to another application running on a
remote server via MQTT or accessed by clients via the
REST API or web sockets.

Figure 1. Components inside a CO-IoT module. Components of a CO-IoT module with a printed circuit board hosting CO sensor,
LoRa transceiver and electronics. 3D printed brackets were used as structural components inside a standard electronics enclosure.
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Software and presentation of raw data

The Congress backend system (Exploratory
Engineering, Telenor Digital AS) provided rudimen-
tary default visualizations. Data could also be exported
via a REST API for further processing and any inter-
net-connected client is able to request data via web
sockets or the Congress REST API. The same server
also provides device management functionality, such
as provisioning devices with unique identifiers and
encryption keys. The data was presented as raw sensor
responses without any form of smoothing algorithm
applied. Before deployment in the industrial environ-
ment, the sensors were stabilized in clean indoor air
for a period of at least 24 hr to determine a
zero baseline.

Single sample sensor tests and chamber tests

In a clean laboratory environment, tests were per-
formed using a standardized, validated gas-logging
instrument (x-am 5600 with Dr€agerSensor XXS CO,
Dr€ager Safety AG & Co. KGaA, Germany) co-located
with SPEC sensors. For a single sample test, the sen-
sors were exposed to 100 ppm CO calibration gas
(Calgaz Ltd., Staffordshire, UK) for approximately
5min. In addition, the sensors were tested in a cham-
ber using 206 2 ppm CO calibration gas (Calgaz Ltd.,
Staffordshire, UK). A 2 dm3 chamber was saturated
with CO at a flow rate of 0.5 L/min, followed by pas-
sive exhaustion of the chamber through a venting
hose. Data was recorded every minute for more than
9 hr, and calculations of mean and standard deviations
were made for three parallel experiments. The NIOSH
accuracy criterion (% mean errors between measure-
ments) was tested.

Deployment of CO-IoT modules in the
incineration plant

Three separate CO-IoT modules were deployed at
three different sampling locations: CO-IoT 1 (close to
the incinerator), CO-IoT 2 (close to the recycle fan),
and CO-IoT 3 (close to the slag transporter belt) at
the same time. Later, a Dr€ager x-am 5600 instrument
and all three modules were placed close to the slag
transporter belt for 11 hr to test the NIOSH accur-
acy criterion.

Statistics

Mean and standard deviations for CO readings were
calculated for the modules placed separately and also
when they were co-located with the Dr€ager instru-
ment. Furthermore, statistical analyses were conducted
on the measured values above or equal to 2 ppm
(resolution for the Dr€ager sensor) calculating the
mean error percentage from the discrepancy between
the measurements made by each of the CO-IoT mod-
ules and the Dr€ager instrument, and the 95% confi-
dence interval was calculated using the bias-corrected
and accelerated bootstrap method. This method is
used to correct for bias and skewness in the distribu-
tion of bootstrap estimates when data is not normally
distributed (Efron 1987). The coefficient of determin-
ation (R2) was also calculated.

Results

IoT platform performance

Sampling was taken by the firmware every sixth
minute, which was necessary to maximize battery life.
Receiving and forwarding data through the LoRa

Figure 2. High-level data flow diagram. IoT CO sensor application architecture overview. The battery-driven IoT sensors sample the
CO concentration at regular intervals and transmits this data over LoRa using the LoRaWAN protocol.
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gateway to the backend system and internet continued
throughout the measuring period.

Single sample sensor test and chamber tests

The SPEC sensor internal accuracy is 15%, as stated
by the manufacturer (SPEC sensors LLC 2017), while
the Dr€agerSensor XXS CO accuracy is 2% (Dr€ager
2018). Exposure of the sensors to 100 ppm CO pro-
duced SPEC sensor measurements from 104–117 ppm
with an average of 112 ppm during a sample period of
approximately 5min. The Dr€agerSensor XXS CO sen-
sor data stabilized at 98 ppm after approximately
20 sec (data not shown). Results from the chamber
test showed accurate responses within the NIOSH
accuracy criteria when exposed to CO up to 20 ppm
6 2 ppm for more than 9 hr.

CO-IoT module performance

Daily variations and rapid signal responses over a
period of approximately 2 months could be observed
when the modules were deployed at three different
locations. The responses could be linked to normal
process activities in the incineration plant; however,
these activities were not recorded or identified in
detail. In addition, response magnitudes were different
between the locations within the same timeframe. As
presented in Table 1 and from the raw data curves
(Figure 3), it appears that CO levels close to the incin-
erator and close to the slag transporter belt were gen-
erally higher compared to the levels close to the
recycle fan; however, without utilizing smoothing
algorithms, the raw data curves were difficult to read
due to the signaling noise.

Accuracy of data according to NIOSH
accuracy criteria

Figure 4 shows a general increasing tendency of CO
concentrations over a measurement period of approxi-
mately 11 hr when the three CO-IoT modules were
co-located with a Dr€ager instrument close to the slag
transporter belt. As shown in Table 2, the average

concentration of CO during the day, when measured
by the Dr€ager instrument, was lower than the average
concentrations measured by the CO-IoT modules.
Table 3 shows that the mean error percentage between
measurements from the CO-IoT modules and the
Dr€ager instrument was high, and none of the data
from the CO-IoT modules were within the NIOSH
accuracy criterion of 625%. However, the R2 showed
that any Dr€ager instrument measurement variations
could explain 69–70% of the measurement variations
made by each of the CO-IoT modules. When sensors
were exposed to 206 2 ppm CO calibration gas in a
chamber test that lasted more than nine hr (Figure 5),
the accuracy was considerable higher and within the
mean error of 625% of an estimated true value meas-
ured by the Dr€ager instrument.

Discussion

In a controlled laboratory environment when sensors
were exposed to 20 or 100 ppm CO calibration gas,
the SPEC sensor responded fairly accurately.
However, when deployed in the incineration plant,
the measurements were inaccurate when compared to
those from a Dr€ager instrument, as shown in Figure
4. It is conjectured that a mixed gas environment may
have affected the SPEC sensors to a greater degree
than the Dr€ager sensor when placed close to the slag
transporter belts where toxic slag and ash are trans-
ported on open conveyors to a hazardous waste con-
tainer. We suggest that some of these hazardous
agents may have become airborne and interfered with
the low-cost sensors. Sensors might not have
adequately maintained accuracy due to the elevated
interfering gas levels, in addition to CO emissions
close to the slag transporter belt. In electrochemical
sensor cells, a chemical reaction (oxidizing or reduc-
ing) occurs between gases and an exposed electrode.
It is expected that some degree of cross sensitivity to
interfering gases occur, even if a sensor is marketed as
selective for a specific gas. Cross sensitivity can result
in either a positive or a negative delta to the electronic
response and may occur in a mixed gas environment.
Given the harsh environment of the incinerator plant
testing facility, it may be possible that the sensors
responded to pollutive gases that were not listed by
the manufacturer. Other studies have suggested that
the presence of undefined cross sensitivity gases not
stated by the manufacturers may have an effect on the
performance of some commercially available low-cost
sensors (Castell et al. 2017). The SPEC sensors, how-
ever, were not specifically investigated.

Table 1. Mean, standard deviation (SD), and minimum and
maximum values from the CO measurements made by the
CO-IoT modules when deployed in the incineration plant for
more than 50 days, as showed in Figure 3(a–c).
IoT module Mean (ppm) Minimum (ppm) Maximum (ppm) SD

CO 1 34.6 �2.3 132.7 15.7
CO 2 5.5 �0.9 108.8 15.2
CO 3 42.3 �9.9 127.2 20.4
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The Dr€ager sensor specification lists fewer cross-
sensitive gases than the specifications for SPEC sen-
sors, and there are differences in the measuring range
(0–2,000 vs. 0–1,000 ppm, respectively), accuracy (2
vs. 15%, respectively), and resolution (2 vs. 0.1 ppm,
respectively). A lower resolution (2 ppm for the
Dr€ager sensor) could prevent minor influences on the
measured values and keep the electronic signal stable,
thereby avoiding signaling noise and fluctuations at
low concentrations. Moreover, manufacturers typically
guarantee a certain sensor precision within set tem-
perature, pressure, and humidity ranges. The SPEC
sensors were factory calibrated at 25 ± 3 �C and
40–60% relative humidity at sea level atmospheric

pressure. Recalibrating the sensors at a typical usage
temperature and humidity might improve the sensor
precision; however, there were no temperature or
humidity extremes in the testing facility where the
sensors were deployed. For some electrochemical sen-
sors, sudden changes in environmental factors may
cause spikes in the responses (Alphasense Ltd 2013).
We cannot rule out that this may also be true for the
SPEC sensors, even if they are marketed as “virtually
insensitive to long-term operation at relative humidity
extremes.” Field calibration of sensors, when used in
complex chemical environments, may be of import-
ance in the future and machine-learning technologies
may be useful tools in order to improve sensor

Figure 3 (a–c). Raw data from the field measurements. Raw data measurements of CO when CO-IoT modules were depolyed close to
the incinerator (a), close to the recycling fan (b), or close to a slag transporter belt (c) for more than 50 days without loss of measuring
data throughout the period. Day to day variations and rapid signal responses could be seen at the three different locations.
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performance. Although the performance of sensors in
any given application or device is not guaranteed
(SPEC Sensors LLC 2017), end-user calibration of sen-
sors when deployed in an occupational environment
may be a useful starting point.

Limitations

With respect to the CO sensor module configuration, the
enclosure design may have affected the gas diffusion flow
rate. Implementation of an internal fan could have pro-
vided a consistent gas flow across the sensor surface. In
addition, the HEPA filters are not sufficient in order to
filtering unknown gases; therefore, other filters need to be
investigated. Furthermore, the instruments were deployed
for a relatively short period while they were co-located,
and considering the rapid CO level fluctuations, the com-
parison time to a standardized instrument may have been
insufficient to assess sensor performance in the different
environmental conditions. No filter algorithms were
implemented to compensate for signal spikes or noise
(e.g., as an exponential moving average filter); therefore,
data were presented as raw sensor outputs as would be
the default method. However, other studies have shown
that raw measurements may be unsuitable and that cor-
rections for cofactors using a test dataset may improve
accuracy (Isiugo et al. 2018). Moreover, the notion that
the guidelines or standards concerning accuracy testing
and calibration of field-deployed low-cost sensors should
be improved is supported (Spinelle et al. 2013, 2017).

Conclusions

In this study, functional IoT modules were built and
low-cost CO sensors were used to detect variable gas

Figure 4. Field measurements when SPEC sensors were co-located with the Dr€ager instrument. Measured CO concentrations made
by the CO-IoT modules when co-located with a Dr€ager instrument over a period of approximately 11 hr and close to a transporter
belt for toxic slag. Discrepancy between measurements were seen along with increasing CO levels suggesting a skewing of IoT
sensor responses caused by interfering agents in the vicinity.

Table 2. Mean, standard deviation (SD), and minimum and
maximum values from the CO measurements made by the
CO-IoT modules and Dr€ager instrument when co-located close
by the slag transporter belt for approximately 11 hr, as
showed in Figure 4.
Sensor Mean (ppm) Minimum (ppm) Maximum (ppm) SD

CO Dr€ager 8 0 22 6.8
CO-IoT 1 27.2 0 70.3 21.8
CO-IoT 2 22.3 �0.5 56.4 18.3
CO-IoT 3 27.6 �2.4 75.9 24.8

Table 3. Accuracy and correlation between data points
(n¼ 72) when CO-IoT 1, 2, and 3 were co-located with a
Dr€ager x-am 5600 instrument close to the slag transporter
belt. Mean errors (%) between the measurements made by
the CO modules vs. Dr€ager instrument showed that there
were no compliance with the NIOSH criterion for accuracy
(95% CI estimated mean error of 625%), while the R2 (coeffi-
cient of determination) indicated 69–70% relative co-varia-
tions between the measurements.
Comparison n Mean error R2 95% CI

CO-1 vs. Dr€ager 72 215% 0.69 184–249%
CO-2 vs. Dr€ager 72 156% 0.70 129–184%
CO-3 vs. Dr€ager 72 210% 0.70 176–247%
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levels when deployed in an incineration plant. It can
be concluded that continuous real-time monitoring
over an extended period may be useful to detect
short-term and rapid changes of potentially hazardous
levels of CO in the working environment. However,
in order to evaluate the occupational exposure to CO,
the sensor accuracy and resistance toward interfering
gases must be further investigated.

Recommendations

Field-testing and accuracy tests of low-cost sensors
should be performed when implemented in low-cost
IoT platforms for the purpose of monitoring the occu-
pational exposure.
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