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Abstract: Cold atmospheric plasma (CAP) is a novel non-thermal technology with potential
applications in inactivating microorganisms in food products. However, its impact on food quality
is not yet fully understood. The aim of this research is to study the impact of in-package plasma
technology on the stability of cholesterol and total lipid in four different types of meat (beef, pork,
lamb and chicken breast). Additionally, any changes in the primary or secondary lipid oxidation,
which is undesirable from a health perspective, is investigated. CAP was not found to have any
impact on the cholesterol or lipid content. However, higher peroxide and thiobarbituric acid reactive
substances (TBARS) values were found for the treated samples, indicating that plasma can induce the
acceleration of primary and secondary lipid oxidation. Finally, color was not affected by the treatment
supporting the suitability of the technology for meat products.
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1. Introduction

Globally, meat consumption continues to increase. According to the latest report from the
Food and Agriculture Organization [1], the production of meat has increased by 1.7% from 2017 to
2018, reaching a value of 335 million tons (36.9% poultry, 36.6% pig, 21.9% bovine and 4.6% ovine).
Cholesterol is present in all these meat products and plays an important role as a structural component
of the phospholipid bilayer of the plasma membrane of eukaryotic cells. Cholesterol is fitted into
membrane bilayers with its long axis, preventing the crystallization of fatty acyl chains and thereby
modifying the activity of membrane-bound enzymes [2]. It also has vital functions in the metabolism
and function of body tissue [3]. Cholesterol is an essential precursor for the synthesis of vitamin D,
bile, bile acids salts, steroids and hormones [4]. For instance, vitamin D3 is a derivative of cholesterol
and is formed in the skin from 7-dehydrocholesterol. Moreover, deficiencies in cholesterol during
embryogenesis and organogenesis can cause severe abnormalities in the fetus [5].

In contrast, high concentrations of cholesterol in cells can be cytotoxic and pro-inflammatory [3].
Furthermore, high levels in cholesterol can lead to the development of diseases through atherogenesis,
the agglomeration of low-density lipoprotein (LDP) cholesterol on the arterial wall, creating plaques
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which can obstruct blood flow leading to cardiovascular diseases [6]. In addition, a disturbance on the
cholesterol metabolism can also cause numerous chronic diseases including cancer, as well as disorders
of metabolic and neurological tissues [6]. However, some authors suggest that only oxidized cholesterol
can contribute to the pathophysiology of human diseases such as carcinogenic, cytotoxic, mutagenic,
atherogenic and neurodegenerative diseases [2]. The formation of cholesterol oxidation products in
food are initiated by free radicals, which can be generated by auto-oxidation, photo-oxidation and
thermo-oxidation [5], leading to a chain reaction mechanism [7].

Cholesterol (5α-cholesten-3β-ol) is a lipid which belongs to the family of sterols (Figure 1). It is
characterized by its reactive behavior, especially on C7, C20 and C25, leading to the formation of
oxysterols which have similar structures but with the addition of other functional groups such as
hydroxyl, hydroperoxide, ketone and epoxide [8,9]. The most common oxidation products from C7 are
7-α-hydroxycholesterol, 7-ketocholesterol and 7-β-hydroxycholesterol, while 20-hydroxycholesterol
and 25-hydroxicholesterol are formed when the oxidation occurs on C20 and C25, respectively [8].
These compounds belong to the group of oxysterols, a class of compounds reported to be involved in
several neurodegenerative diseases including Huntington’s, Parkinson’s and Alzheimer’s disease [10].
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Cold atmospheric plasma (CAP) is a novel technology with several uses in various industries. A 
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and negative ions, ozone as well as carbon and nitrogen oxides, which vary according to the gas 
applied [11]. Recently, the technology has been proposed as a decontamination step for the 
preservation and safety assurance of foods [12–14]. Wang et al. [15] described a dielectric barrier 
discharge operating at 80 kV for 180 s which was applied to chicken breasts packaged in food trays 
in both atmospheric air and modified atmosphere gas (65% O2, 30% CO2 and 5% N2). While no 
significant reduction of microbial populations was found for samples packaged using atmospheric 
air, they reported that the treatment was effective for chicken packaged under modified atmosphere, 
suggesting that CAP treatment could increase shelf-life from 7 days to at least 14 days. Furthermore, 
Yong et al. [12] treated beef jerky at 15 kV for 2.5, 5, and 10 min using a dielectric barrier discharge 
system which resulted in a reduction of Listeria monocytogenes, Escherichia coli, Salmonella typhimurium 
and Aspergillus flavus for all treatment times. Significant reductions of Listeria monocytogenes and 
Escherichia coli were also found for pork loin treated by a dielectric barrier discharge (DBD) plasma 
operating at 3 kV with a 30 kHz bipolar square wave for treatment times of 5 and 10 min [13]. 

However, it is shown that these radical species present in the plasma may modify food 
components, leading to their oxidation [14]. Lipid oxidation has long been considered a radical chain 
reaction triggered by hydrogen abstractions with hydrogen peroxides being considered the first 
stable products. However, following their decomposition, hydrogen peroxides may generate 
secondary lipid oxidation products [16]. When investigating lipid oxidation, simultaneous pathways 
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Cold atmospheric plasma (CAP) is a novel technology with several uses in various industries.
A plasma atmosphere is made up of different free radical molecules, electrons, UV-photons, positive
and negative ions, ozone as well as carbon and nitrogen oxides, which vary according to the gas
applied [11]. Recently, the technology has been proposed as a decontamination step for the preservation
and safety assurance of foods [12–14]. Wang et al. [15] described a dielectric barrier discharge operating
at 80 kV for 180 s which was applied to chicken breasts packaged in food trays in both atmospheric
air and modified atmosphere gas (65% O2, 30% CO2 and 5% N2). While no significant reduction of
microbial populations was found for samples packaged using atmospheric air, they reported that
the treatment was effective for chicken packaged under modified atmosphere, suggesting that CAP
treatment could increase shelf-life from 7 days to at least 14 days. Furthermore, Yong et al. [12] treated
beef jerky at 15 kV for 2.5, 5, and 10 min using a dielectric barrier discharge system which resulted in a
reduction of Listeria monocytogenes, Escherichia coli, Salmonella typhimurium and Aspergillus flavus for all
treatment times. Significant reductions of Listeria monocytogenes and Escherichia coli were also found
for pork loin treated by a dielectric barrier discharge (DBD) plasma operating at 3 kV with a 30 kHz
bipolar square wave for treatment times of 5 and 10 min [13].

However, it is shown that these radical species present in the plasma may modify food components,
leading to their oxidation [14]. Lipid oxidation has long been considered a radical chain reaction
triggered by hydrogen abstractions with hydrogen peroxides being considered the first stable products.
However, following their decomposition, hydrogen peroxides may generate secondary lipid oxidation
products [16]. When investigating lipid oxidation, simultaneous pathways for generation of secondary
lipid oxidation products should be considered; various reactions of addition, rearrangement or
dismutation of lipid peroxyl radicals (LOO) can lead to further formation of dimers, epoxides,
aldehydes or ketones in parallel to hydroperoxides. Therefore, to fully assess lipid oxidation along
with the determination of lipid peroxides, it is important to analyze a complex mix of secondary lipid
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oxidation products [16,17]. The thiobarbituric acid reactive substances (TBARS) assay is a commonly
used method to assess secondary lipid oxidation by measuring the content of a secondary degradation
product, namely malonaldehyde. While heated in an acidic medium, malonaldehyde reacts with
thiobarbituric acid (TBA) to form a pink Schiff base adduct with an absorption maximum in the region
of 532–535 nm [18]. However, the TBARS method also determines a complex mixture of various
other secondary oxidation products including alkanals, alkenals, alkadienals and others which react
with TBA. Nevertheless, it is widely used as an indicator of lipid oxidation, particularly in meat
products [16].

Using TBARS to detect lipid oxidation, it has been reported that cold atmospheric plasma can
accelerate the production of peroxides, as well as lipid and protein oxidation in pork during storage [19].
A flexible thin-layer dielectric barrier discharge plasma also oxidized lipids in beef jerky [12], as well
as pork butt and beef loin [20]. In another study, it was reported that TBARS values were significantly
higher in dry-cured beef, “bresaola” after plasma treatment [14]. Furthermore, Kim et al. [21] also
found an increase in lipid oxidation products in bacon after cold atmospheric plasma treatment by
deploying the TBARS assay. Finally, CAP not only had an impact on the quality of meat products;
it also accelerated the oxidation of proteins in mackerel fillets [22].

There is a need for more research on the effects of plasma on meat chemistry before adoption of
this technology by the industry. It is important to evaluate how plasma may affect all the components
present in the matrix, and to determine if CAP could increase the shelf-life of the products without
affecting their quality or safety or exposing the consumers to any health risk.

Hence, the objective of this study was to investigate if CAP could cause any undesirable effects
on lipids such as the oxidation or degradation of cholesterol leading to the formation of oxidized
compounds. To investigate the effects, we first applied CAP directly to a cholesterol standard.
The results were then compared to the effects observed for four different meat minces, namely beef,
lamb, pork and chicken, where the complexity of the matrix may display protective properties.
In addition, total lipid oxidation as well as possibly changes in color of the meats were investigated
following CAP treatment.

2. Materials and Methods

2.1. Chemicals and Reagents

Cholesterol standard (purity 98%), the internal standard 5α-cholestan-3β-ol (purity 98%), pyridine,
bis(trimethylsilyl) trifluoroacetamide (BSTFA) with 1% of trimethylchlorosilane (TMCS) and potassium
hydroxide were purchased from Sigma-Aldrich (Arklow, Co., Wicklow, Ireland). Chloroform was
purchased from Sigma-Aldrich (Oslo, Norway). Methanol, hexane and dichloromethane were
purchased from Fisher Scientific (Dublin, Ireland). Ultra-pure water (18.2 MΩ cm−1) was generated
in-house using a Millipore water purification system (Millipore, Cork, Ireland). All chemicals were
GC grade.

2.2. Cholesterol Standard Preparation

A 1 mg/mL solution of cholesterol standard in methanol was prepared. An aliquot of 200 µL of
this solution was dispensed into a glass petri dish (2.5 cm radius × 1.5 cm height), and the solvent was
let to evaporate. Then, the petri dish was sealed using Parafilm.

2.3. Cholesterol Standard Plasma Treatment

A petri dish containing cholesterol standard as previously described was treated using an
in-house dielectric barrier discharge atmospheric plasma system, which was described previously [23].
The atmosphere used to fill the petri dish in all our experiments was standard laboratory air. This petri
dish was placed between two circular aluminum electrodes (outer diameter = 158 mm) separated by
two polypropylene (PP) dielectric layers (2 mm thickness) as per Figure 2. The distance between the
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dielectric layers was the height of the petri dish (1.5 cm). Two different voltages, 60 kV and 80 kV RMS
(root mean square) were applied for two different durations, 5 and 10 min, in triplicate; these conditions
were previously shown to control microbial growth in mackerel [24]. After the treatment, control (n = 3)
and treated samples (n = 3) were kept at 4 ◦C for 24 h to ensure the induced plasma components
can interact with the cholesterol as suggested by Ziuzina et al. [25]. Following this storage, 200 µL
of the internal standard (5α-cholestan-3β-ol; 50 mg/mL in dichloromethane) was added to the petri
dish and left to stand until full evaporation of the dichloromethane. Once the dichloromethane was
evaporated, the residues of both, the cholesterol and internal, standards were reconstituted in 10 mL of
dichloromethane and kept at −80 ◦C until the day of analysis.
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2.4. Meat Sample Preparation

Fresh meat minces from four different species (beef, lamb, pork and chicken breast) were purchased
at a local butcher in Dublin in November 2018. Neither the type of muscle used to produce the mince,
nor the origin of the meat were identified at this stage. Using a spoon, a homogenous portion of 100 g of
each was added to a black amorphous polyethylene terephthalate (APET/PE) tray (195 × 155 × 30 mm),
sealed under atmospheric air conditions using a low oxygen permeable barrier polyvinyl-chloride film
(3 cm3/m2/24 h at Standard Temperature and Pressure (STP); Versatile Packaging, Silverstream, Co.
Monaghan, Ireland), and packaged individually (Ilpra Foodpack VG 400 Packaging Machine, Mortara,
Italy) to mirror common commercial practice. Samples of each meat were divided in four different
batches: control and treated with 24 h of storage post-treatment as well as control and treated with
7 days of storage post-treatment. All conditions were prepared in triplicate.

2.5. Meat Sample Plasma Treatment

The same dielectric barrier discharge system as described in Section 2.3 was used for this study.
The samples were treated with an in-package mode, where the plasma was induced inside the gas
contained inside the sealed package. Each packed sample was placed between the two electrodes
separated by 3 cm, i.e., the height of the tray. Ten minutes of treatment was performed at a discharge
voltage of 80 kV RMS; these settings have previously been shown to control microbial growth in
mackerel [24]. Similar to the cholesterol standard study, once the CAP treatment was finished both
the control and plasma samples were kept at 4 ◦C for either 24 h or 7 days. Following this storage,
i.e., either 24 h or 7 days, all samples were individually vacuum-packed and stored at −80 ◦C until the
day of the analysis. All conditions were prepared in triplicate.

2.6. Cholesterol Analysis

2.6.1. Cholesterol Extraction

Cholesterol was quantified according to [26]. This method has previously been fully validated
for the determination of cholesterol in turkey meat products. Briefly, approximately 0.5 g of chilled
meat mince sample, 200 µL of internal standard (5α-cholestan-3β-ol, concentration: 50 mg/mL) and
30 mL of 4 M KOH in methanol were mixed and homogenized using an Ultraturrax homogenizer
(Labortechnik, Staufen, Germany) at 13,500 rpm for 30 s in a 50 mL tube. Saponification was carried
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out by placing the sample into a water bath at 60 ◦C for one hour. After cooling down, a liquid-liquid
extraction was performed by adding 5 mL of Milli Q water and 5 mL of heptane; phase separation
was achieved by centrifuging the sample at 4000 rpm (2500× g) for 10 min. The organic phase was
transferred to another tube and the extraction was repeated twice more by adding 5 mL of heptane
each time. All organic layers were combined and dried using a sample concentrator and reconstituted
into 10 mL of dichloromethane. Derivatization of cholesterol was performed by mixing 0.5 mL of this
extract, 200 µL of BSTFA-TMCS, 100 µL of pyridine and leaving them in a water bath for 15 min at
70 ◦C. After cooling down, the solution was diluted to 10 mL with dichloromethane and an aliquot
was transfer to the vial to be injected into the gas chromatography system.

2.6.2. Gas Chromatography-Flame Ionization Detector Analysis

Separation was carried out using a Clarus 580 Gas Chromatograph (Perkin Elmer, Waltham, MA,
USA) fitted with a flame ionization detector (GC-FID) set at 260 ◦C according to [26]. These authors
previously showed the method to have a limit of quantitation of 0.1 µg/mL (equivalent to 0.4 mg
cholesterol per g meat); a limit of detection was not reported. The separation and quantification of
cholesterol was carried out employing a ZB-5 capillary column (Phenomenex, Torrance, CA, USA)
with a film thickness of 0.25 µm and a length of 30 m × 0.25 mm. The injection volume was 0.5 µL
and the inlet temperature was set to 200 ◦C. Hydrogen was flushed at a constant flow of 2.0 mL/min,
and the split ratio was set at 5:1. The oven temperature started at 180 ◦C with an initial temperature
ramp of 8.0 ◦C/min to 260 ◦C followed be a second temperature ramp of 2 ◦C/min to 280 ◦C which was
held for 10 min.

The content of cholesterol was calculated using following equation (Equation (1)) according to
Grasso et al. [26].

Content (mg/g) = ×
Weight ISTD

Weight Sample
×

IS Purity
RRF

× 20 (1)

where, IS Purity is the purity of the internal standard as given on the certificate of analysis, RRF is the
relative response factor for cholesterol (namely 1.001), and 20 is the dilution factor.

2.7. Lipid Content

The total lipid content was determined using the Bligh & Dyer (B & D) method which applies
a mixture of chloroform, methanol and Milli Q water for the extraction of lipids from the muscle
tissue [27]. The extraction was performed in duplicate. Briefly, experimental meat samples were
minced with a kitchen blender (Bosch MSM87140, Frankfurt, Germany) and 10 g of the obtained
mince was transferred into centrifuge tubes. The centrifuge tubes were kept on ice during the whole
procedure. Then, distilled water (10 mL), chloroform (20 mL) and cold methanol (40 mL) were added
to each tube. The mixture was homogenized using an Ultraturrax (IKA T18, Staufen, Germany) for
2 min at 9000 rpm. Additional amount of chloroform (20 mL) and distilled water (20 mL) was added
separately, and the mixture was homogenized again using the Ultraturrax for 30 s after each addition.
After the homogenization, the tubes were centrifuged (Hettich Universal 16A Centrifuge, Berlin,
Germany) for 10 min at 11,800 rpm. An aliquot of the chloroform phase (2 mL) was collected from the
bottom of each of the tubes and transferred into a pre-weighed Kimax glass tube (10 mL). The Kimax
glass tube with chloroform phase was placed in an evaporation unit and kept at 60 ◦C with N2-stream
for 1 h. After the evaporation, the tubes were corked, cooled down to room temperature and weighed
again. The results are expressed as total lipid (average ± standard deviation) in percentage of wet
weight meat sample [27].

The remaining chloroform phase in the centrifuge tubes was collected and transferred to plastic
tubes resistant to chloroform, flushed with N2-gas and stored at −80 ◦C prior to analysis of peroxide
values (PV) and TBARS.
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2.8. Peroxide Value

PV was determined by using the iodometric titration method described by [28]. The end point of
titration was assessed potentiometrically with an automatic titrator (TitroLine 7800, Xylem Analytics,
Mainz, Germany) fitted with a platinum electrode (Pt 62). In line with the AOCS method, the analysis
was performed in duplicate and the results were expressed in meq active oxygen/kg lipids as an
average ± SD.

2.9. TBARS

The TBARS assay assesses secondary lipid oxidation products through a reaction between
malondialdehyde and thiobarbituric acid (TBA). It is a good indicator of the general oxidative status in
fish products because TBA reacts with a wide range of aldehydes and oxidized molecules derived from
lipids and proteins. In complex food matrices such as meat and fish, lipid oxidation may take place via
complex pathways due to co-oxidation reactions between lipid radicals, secondary oxidation products,
pro-oxidants such as transition metals, blood or myoglobin, as well as other system components
such as proteins [17]. Co-oxidation reactions result in the oxidation of other food molecules such as
proteins with involvement of lipid oxidation intermediates and products [16,18]. Therefore, it is very
important to apply a method such as the TBARS assay that can assess the general status of secondary
lipid oxidation.

For this study, secondary lipid oxidation was investigated using TBARS determined in the
chloroform phase according to the method of Ke and Woyewoda [29]. 1,1,3,3-tetraethoxypropane
(T 9889) was used as a standard. The analysis was performed in triplicate and the results were expressed
as average ± standard deviation in µMol TBARS/g lipid.

2.10. Color

Color characteristics of plasma-treated and untreated meat samples were measured instrumentally
using a Minolta Chroma meter CR-400 (Konica-Minolta, Osaka, Japan). For this, meat samples with a
thickness of 1 cm were prepared. Before starting the analysis, the instrument was calibrated with a
standard white plate. The data was recorded in color coordinates of L* (lightness, black = 0, white = 100),
a* (redness > 0, greenness < 0), and b* (yellowness > 0, blueness < 0) according to the Commission
Internationale de l’Éclairage (CIE) Lab scale [30]. Three measurements were performed on each of the
meat samples, and the average with standard deviation was determined.

2.11. Statistical Analysis

Analysis of variance (ANOVA) of dependent variables was carried out using Minitab 17.1.0
(Minitab Inc, State College, PA, USA). Statistics were calculated using a general lineal model (GLM)
considering the entire variable as fixed factors. When differences were observed (p < 0.05), a Tukey’s
multiple comparison was calculated to study the effect of the plasma treatment on the cholesterol.
Experiments were performed in triplicate and analyses were carried out in triplicate.

3. Results and Discussion

3.1. Cholesterol Content

Cholesterol is an important food nutrient due to its role in the biosynthesis of vitamin D, bile acids
and steroid hormones such as gonadal (testosterone, estrogens, progesterone) and adrenal (aldosterone,
cortisol) [31]. Moreover, it is an important constituent of the cell membrane. For this reason, it is
important to study if a novel non-thermal technology such as CAP could have any impact on this
micronutrient despite previous research showing that CAP may not be able to significantly penetrate
solids [14].
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3.1.1. Cholesterol Standard

Cholesterol standard was exposed to CAP at two voltages (60 and 80 kV) for two different
durations, namely 5 or 10 min. Overall, results show that CAP has a significant effect (p < 0.05) on the
cholesterol content of the treated standard with CAP treatment significantly reducing the amount of
cholesterol recovered from the petri-dishes. As seen in Figure 3, the cholesterol content decreased by
around 35% for all the different treatments, suggesting that this could be because plasma can lead to
oxidation and/or degradation of cholesterol. As was mentioned previously, oxidation of cholesterol
can be initiated by free radical species, consequently, many of the different radical species which
are presented in the plasma bulk could cause this reaction to happen [32]. However, there were no
significant differences between the different treatments, i.e., oxidation and/or degradation was not
dependent on voltage or duration of treatment.
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Although the effect of cold plasma on isolated nutrients has already been reported, to the best
of our knowledge, this is the first time that the effect of CAP on cholesterol is reported. However, as
the present study used GC-FID for the quantification of cholesterol, it was not possible to identify the
breakdown products produced by the plasma. Further research using e.g., a GC coupled to a (tandem)
mass spectrometer may give further insight into the processes involved and may help in identifying
which carbons in the cholesterol molecule are more prone to oxidation/degradation than others.

Previously, several food protein powders (gelatin, hemoglobin and lung protein extract) were treated
at 80 kV (RMS) for 15 min using a dielectric barrier discharge plasma system [33]. Authors observed
that the direct treatment of cold plasma on these three protein powders affected their native structure,
leading to a significant change in their functional, rheological and gelling properties. Similar results
were observed by Ji et al. [34] after treating peanut isolated protein with a different dielectric barrier
discharge at 35 kV for 1, 2, 3 or 4 min.

3.1.2. Cholesterol in Meat Products

Since the impact of CAP on fatty acids has been described previously (e.g., [22,24]), cholesterol was
chosen as a model to investigate possible oxidation caused by CAP for the present study.

CAP did not have a significant impact on the cholesterol content in any of the four different
meat mince samples (p > 0.05) as can be seen in Figure 4. This may be because plasma only affects
the surface of the meat and hence cannot penetrate into the meat product [14]. On the other hand,
the complexity of the matrix and components inside the food could protect the cholesterol from the
potential impact of cold plasma. For instance, other lipids present in the meat such as triglycerides
in general and polyunsaturated fatty acids more specifically, could be more susceptible to oxidation
and/or reaction with the plasma thus protecting cholesterol from interaction with the radical species
resulting in cholesterol oxidation and/or degradation. In addition, the presence of naturally occurring
antioxidants such as carnosine, anserine, carnitine or taurine, in meat could not only prevent the
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formation of undesirable oxidation products in general [21] but more specifically the oxidation of
cholesterol. Moreover, there are also some antioxidant enzymes (superoxide dismutase, catalase and
glutathione peroxidase), vitamins with antioxidant properties (ascorbic acid and α-tocopherol) and
minerals like zinc or selenium [35] which could give extra protection against the potential impact of
the reactive species present in the plasma atmosphere. Nevertheless, given that the samples were
minced, offering a large exposure area, were exposed to extended treatment times and retained in
an atmosphere containing induced plasma species for up to 7 days due to the use of the in-package
technology, the data indicated no observable effects on the cholesterol contents of the tested meats.
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3.2. Lipid Content and Oxidation

3.2.1. Lipid Content

Total lipid content in meat samples varied from 1.7 ± 0.7% for chicken (white meat) to 30.6 ± 1.9%
for lamb (red meat; Figure 5). However, no significant variation in the total lipid content was
found between plasma-treated and untreated samples during the storage period for any of the
meats investigated.
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3.2.2. Peroxide Value

As the official method used [28] has a detection limit of 0.05 mL lipid per 12 mL chloroform
(equivalent to a lipid content of about 5–6%), it was not possible to measure peroxide value in chicken
samples due to their very low lipid content (<2% w/w). However, novel methods such as the one
recently published by [36] may give further information on peroxide values of low-lipid samples.

The rest of the samples with higher lipid content in the tissue, i.e., those with more than 5% lipid
content, showed increased peroxide values in all plasma-treated samples compared to non-treated
(control) samples (Figure 6). At the same time, only plasma-treated pork and beef samples exceeded
the limit for PV established by the CODEX STAN (10 meq O2/kg lipid [37]) on day 7 of chilled storage
(Figure 5).
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Plasma-treatment could result in the accumulation of reactive species accelerating lipid
oxidation [38]. This suggestion is supported by the study of Albertos et al. [24] who previously
used a non-thermal plasma (NTP) system to treat fresh mackerel fillets. They observed a similar trend
for PV results after the treatment of mackerel samples with NTP. The treatment resulted in an over
5-fold increase in peroxide values compared to control samples, with both exposure time and voltage
affecting the rate of oxidation [24]. Furthermore, our observations are in line with those made by
Yong et al. [12] who reported a significant increase in the PV of beef jerky following flexible thin-layer
plasma treatment for 10 min. However, this group only found a significant increase after 10 min of
treatment while beef jerky treated for 2.5 or 5 min was not significantly different from the control.

3.2.3. Thiobarbituric Acid Reactive Substances (TBARS)

Lipid oxidation leads to the formation of a very wide range of different oxidation products,
making the determination of lipid oxidation challenging. The determination of TBARS is one of the oldest
and the most commonly used methods for assessing secondary lipid oxidation status by measuring
one of the end product of polyunsaturated fatty acid (PUFA) peroxidation—malondialdehyde [39–45],
but it will also determine other aldehydes [43].

Except for beef samples after 7 days of storage and all the chicken samples, plasma-treated meat
samples were characterized with significantly higher TBARS-values compared to the untreated ones
(Figure 7). This effect can be explained by the radical-initiating mechanism of plasma treatment as
mentioned previously [24]. However, the highest TBARS-values were surprisingly found in chicken
samples which contained the lowest lipid content. This may possibly be explained by the typically
higher content of PUFAs in chicken as compared to beef or pork (e.g., [46,47]). However, research has
also shown that PUFAs vary depending on diet [48]. As the samples for the present study were
purchased at a commercial butcher, no information on dietary history or muscle used to produce the
mince could be obtained. This information, along with the determination of the fatty acid profile of the
samples used in the present study may have assisted in explaining the differences in TBARS found for
the different meats.
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While the length of this study was chosen to represent shelf-life in a retail setting,
experimental duration has recently been extended by several authors in order to investigate long-term
impact of plasma treatment on the food matrix. For instance, studies on pork [19] and chicken [49]
investigated the impact of plasma for 12 and 21 days, respectively. While [19] reported a significant
increase in lipid oxidation on days 4, 8 and 12 for plasma-treated samples as compared to day 0 as
well as the control samples, no such observations were made in chicken, even after 21 days of cold
storage [49].

Nevertheless, our findings are in contrast to the findings reported by Jayasena et al. [20] who
reported a significant increase of TBARS values in beef loin following treatment with flexible thin-layer
dielectric barrier discharge plasma for 10 min. Furthermore, these authors only report a significant
increase after 10 min treatment while samples treated for 2.5 or 5 min were not significantly different
from the control. In addition, the same authors also reported TBARS for pork butt treated for the same
durations as the beef loin (i.e., 2.5, 5 and 10 min). However, unlike the beef loin, pork butt samples
did not display significant increases in TBARS when compared to the control. In another study [50],
ham was packed in three different gas mixtures, namely 20% O2, 40% N2 and 40% CO2 (treatment 1),
50% CO2 and 50% N2 (treatment 2) or 100% CO2 (treatment 3) and treated at 30 kV for either 5 or
10 min using a dielectric barrier discharge (DBD) plasma system. The authors reported that TBARS
values were significantly higher for the treated samples compared with the control. A dielectric barrier
discharge system was also used to treat chicken breast at 100 kV for 1, 3, and 5 min durations [51].
TBARS for treated samples were significantly higher than for untreated ones. More studies should be
performed in this direction to investigate these opposing findings reported thus far.

3.3. Color

No significant difference between control and plasma-treated meat samples (for each category of
meat) was observed, suggesting that plasma treatment did not have notable effects on the color of the
meat tissue. These findings are in line with those reported by Jayasena et al. [20] for beef and pork.
This group also reported no significant changes in L* values of beef loin and pork butt while also no
significant changes were observed for b* for pork butt. In contrast, however, the same group reported
significantly lower a* values for plasma-treated beef loin and pork butt along with significantly higher
b* values for beef loin. Finally, Yong et al. [12] reported significantly lower L* values for plasma-treated
beef jerky treated for 10 min when compared to the control sample while reporting significantly higher
b* values. These authors did not find any significant effect on a* values caused by plasma treatment,
in line with the observations made in this study.

4. Conclusions

Our results show that the induced reactive species can degrade cholesterol in its pure form.
However, the cholesterol content in meat samples was not affected by the treatment, suggesting that
the matrix effect plays an important role in protecting this food micronutrient from degradation.
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In addition, higher peroxide values and TBARS were found for the treated samples as compared to the
control samples, indicating that plasma can induce the acceleration of primary and secondary lipid
oxidation without affecting absolute lipid content. Finally, color was not affected by the treatment,
supporting the suitability of the technology for meat products.

However, further research is required on the impact of this technology on the quality of food
products prior to its approval and adoption by regulators and industry, respectively. There is a need
to understand the chemical reactions associated with plasma species to avoid quality deterioration.
This is particularly true when trying to understand the impact of CAP on lipid fractions and as such,
future research should focus on investigating several lipid fractions in parallel such as cholesterol as
well as fatty acids to get a clearer understanding of the order in which lipid fractions get oxidized.
As our research shows, plasma studies need to be performed on real food products and not only
model solutions in order to determine which operational conditions suit the vast array of potential
food products that could be treated. Optimization of plasma control parameters, in particular the
inducer gas employed, need to be investigated in depth to identify the conditions which can provide
the required product safety and yet retain key quality attributes.
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