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A B S T R A C T

This thesis presents a study of superconducting phases in different
effectively two-dimensional (2D) systems with spin-orbit coupling,
with particular emphasis on systems consisting topological insulators
(TIs) in proximity to superconductors (S) and magnetic insulators.
The research has led to five papers.

The first paper examines the possible superconducting phases in
a 2D repulsive Hubbard model with Zeeman splitting and Rashba
spin-orbit coupling, showing that the Kohn-Luttinger mechanism is
responsible for the effective attractive pairing. The spin-orbit cou-
pling, however, indirectly affects the symmetry of the order parame-
ter, leading to a chiral p± ip or p state depending on the orientation
of the Zeeman field.

Two papers consider the proximity effect between a superconduc-
tor and topological insulator, and the interplay with exchange fields.
When a spin valve is placed on top of a TI Josephson junction, we
find that vortices can be induced on the surface of the TI depending
on the spin valve configuration. We also study the possibility of
a strong inverse proximity effect — a significant reduction in the
superconducting gap — in an S-TI bilayer, finding that this is un-
likely for a conventional s-wave superconductor, but might occur in
unconventional superconductors with low Fermi energies.

The final two papers examine superconductivity mediated by
magnons on the surface of a TI coupled to a magnetic insulator.
When neglecting the frequency dependence of the magnons we find
that, depending on the coupling between the magnons, both BCS type
and Amperean p-wave pairing is possible. Including the magnon
frequency dependence, we also find the possibility of odd-frequency
s-wave Amperean pairing.
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C O N V E N T I O N S

We use the de Gennes convention of e = −|e| being the charge of the
electron [6, p. 436]. Unless otherwise stated, we have set the reduced
Planck constant and Boltzmann constant to unity,  h = 1, kB = 1.

Unit vectors in the three Cartesian coordinate directions are written
as x̂, ŷ and ẑ.

The spatial and imaginary time Fourier transform is

f(τ, r) =
1

βV

∑
k,ωn

eik·r−iωnτf(ωn, k),

f(ωn, k) =
∫
dr

∫β
0

dτ e−ik·r+iωnτf(τ, r),

where V is the volume of the system, and β = (kBT)
−1 with temper-

ature T .
For 2D wave-vectors we will often use the notation k = (kx,ky) =

|k|(cosφk, sinφk). 3-vector notation is also frequently used, such as
k = (ωn, k) and q = (Ωn, q), where ωn = (2N+ 1)π/β and Ωn =

2Nπ/β with N ∈ Z are fermionic and bosonic Matsubara frequencies
respectively. We also use the Pauli vector notation σ = (σx,σy,σz),
with Pauli matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
.

In equations with matrix structure, the N×N identity matrix 1̂N is
seldom explicitly written, meaning that e.g. iωn + k ·σ should be
interpreted as iωn1̂2 + k ·σ.
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1
I N T R O D U C T I O N

Condensed matter physics is a relatively new field of study [7], but
is currently one of the largest research fields in physics, and includes
a wide range of topics. In this field systems of a large number of
particles are studied using quantum mechanics, statistical mechanics
and electromagnetic theory, which leads to entirely new phenomena
not possible to envision from studying only a few particles [8]. The
field of condensed matter physics and its predecessor, solid state
physics, has also taken a great part in many of the technological
developments of the last decades which we now benefit from in our
daily lives: The development of the transistor has lead to computer
processors becoming smaller and faster, and the discovery of the giant
magnetoresistance effect [9, 10] lead to compact hard disk drives
[11]. Moreover, the discovery of superconductivity and subsequent
development of superconducting magnets has applications in medical
imaging [12].

Some of the technological advances of the last century are due
to discoveries that can be considered serendipitous, and exemplify
the fact that it can often be difficult to predict the outcome of re-
search. Perhaps it is thus best to strike a balance between research
directly focused on solving the various problems at hand, and strictly
curiosity-driven fundamental research of which the outcome is more
uncertain. There is at least little doubt that there are many big prob-
lems yet to be solved, such as the ever greater need for more powerful
and energy efficient computers.

1



2 introduction

Research toward these goals currently go along many lines, for
instance in utilizing the electron spin instead of the charge as an
information carrier using magnetic materials — spintronics instead
of electronics [13, 14], and combining this with superconductors —
superconducting spintronics [15–17]. Progress is also being done
in making quantum computers, where the possibility of quantum
superpositions of the classical bit states 0 and 1 can allow for much
faster computing for certain types of problems [18].

The topic of this thesis lies in this landscape, though the focus
on technological applications has taken a back seat. The aim has
been to study different superconducting states and mechanisms for
superconductivity in effectively two-dimensional systems, such as at
the interface between two materials, with the main emphasis being
on superconductivity on the surface of topological insulators (TIs).

The following chapters give an introduction to the main topics of
the thesis and the results of the enclosed papers. Chapter 2 gives an
introduction to the topic of superconductivity, outlining the early
history of the field while introducing the main theoretical framework
used in the thesis. Chapter 3 discusses the Kohn-Luttinger mech-
anism for superconductivity in various systems, before turning to
the specific system discussed in Paper [1]. We subsequently give
an introduction to topological insulators (Chapter 4), the class of
materials on which we have focused the most. In the following two
chapters we discuss superconductivity on the surface of a TI due
to proximity coupling to a superconductor (Chapter 5, Papers [2,
3]), and due to interactions with magnons in a magnetic insulator
(Chapter 6, Papers [4, 5]). Chapter 7 gives a brief outlook on possible
future work.

In the grand scheme of furthering our knowledge and technolog-
ical advancement, this thesis represents my tiny, but hopefully not
entirely insignificant, contribution.



2
S U P E R C O N D U C T I V I T Y

The overarching topic of this thesis is superconductivity, which will
be introduced and discussed in some detail in this chapter. We start
with a brief historical account of the discovery of superconductors,
and their defining properties. We then go into some detail of one
of the early phenomenological theories of superconductivity — the
Ginzburg-Landau (GL) theory. This leads us into a discussion of the
celebrated microscopic Bardeen-Cooper-Scrieffer (BCS) theory of su-
perconductivity, where we will also introduce the general theoretical
framework used throughout most of the thesis. After a brief account
of unconventional superconductivity, we will finally address changes
to the superconducting state due to the reduced dimensionality in
the effective 2D systems discussed in the thesis.

2.1 early history and defining properties

In 1911
1 Kamerlingh Onnes [20] discovered something remarkable

when cooling mercury using liquid helium: Below a certain tem-
perature the DC resistance suddenly dropped to zero. The material
had become superconducting. Two decades later, another feature of
the superconducting state was discovered, namely the expulsion of
magnetic fields from the interior of superconductors upon cooling

1Only a very brief historical account of the main early developments of supercon-
ductivity is given here and the following sections. For a more thorough overview
see e.g. the books by Tinkham [6], and Fossheim and Sudbø [19].

3



4 superconductivity

down the material — the Meissner effect [21]. These two properties,
perfect conductivity (σ = ∞) and perfect diamagnetism (magnetic
susceptibility χ = −1) below a critical temperature Tc and critical
field Hc, established that a superconductor is a new thermodynamic
state defined by the thermodynamic variables temperature T and
applied field H [6, 19].

It was later discovered that there are in fact two types of super-
conductors: In type I superconductors the transition from the super-
conducting state with total expulsion of magnetic field (the Meissner
phase) to the normal state occurs abruptly at the critical field H = Hc.
In type II superconductors, however, there is no sudden change from
the Meissner phase to the normal phase when increasing the field
strength. Instead there is an intermediate mixed state where some
magnetic flux penetrates the superconductor, occurring for H above
the first critical field Hc1. The amount of flux increases with increas-
ing H, reaching full penetration and thus the normal state at the
second critical field Hc2 [19]. The phase diagrams of type I and II
superconductors, and the magnetic field response is illustrated in
Fig. 2.1.

2.2 the ginzburg-landau theory

On the theoretical side, the first phenomenological theory of super-
conductivity was proposed by London and London [22] in 1935,
describing the main electromagnetic phenomena of superconductiv-
ity [6]. Two decades later Ginzburg and Landau [23] incorporated
the London theory into a new theory based on Landau’s theory for
phase transitions.

The GL theory is based on a free energy expansion in terms of a
complex order parameter ψ [6, 19, 24],

F = FN + a(T)|ψ|2 +
b

2
|ψ|4 +

1

2m∗
|(−i h∇− e∗A)ψ|2 +

1

2µ0
B2,

(2.1)
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Figure 2.1: (top) Sketch of T −H phase diagram for type I (left) and type
II (right) superconductors, showing the transitions between the
normal phase, and superconducting (S) mixed and Meissner
phases. H0c, H0c1 and H0c2 denote the critical fields at zero tem-
perature. (bottom) Sketch of response to an applied magnetic
field for the normal phase, mixed phase, and Meissner phase
(left to right). Based on figures in Ref. [19].

where Fn is the free energy in the normal phase, A is the vector
potential, B = ∇ × A is the magnetic induction, and m∗ and e∗
is an effective mass and charge. a = a1(T − Tc)/Tc and b > 0 are
phenomenological coefficients. The free energy is relevant for the
superconducting electrons, with number density ns assumed propor-
tional to |ψ|2 [6, 19].

We now minimize the free energy with respect to variations in ψ
and ψ∗ using the Euler-Lagrange equations

∂F

∂ψ(∗) −∇ ∂F

∂(∇ψ(∗))
= 0, (2.2)
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0 1
0
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|ψ
|

ψN
ψS
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0
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N

Figure 2.2: (left) Sketch of the solutions ψN and ψS, and the corresponding
free energy (right) as a function of temperature.

resulting in the first GL equation

a(T)ψ+ b|ψ|2ψ+
1

2m∗
(−i h∇− e∗A)2ψ = 0. (2.3)

The second GL equation is obtained by varying A, resulting in

e∗
2m∗

[ψ∗(−i h∇− e∗A)ψ+ c. c.] =
1

µ0
[∇(∇ · A) −∇2A] = J,

(2.4)

where c.c. denotes the complex conjugate. Here we have identified J
as the supercurrent density by using Maxwell’s equation ∇×B = µ0J
[6, 19].

Assuming no fields and a homogeneous system, the first GL equa-
tion has solutions

ψN = 0, and |ψS| =

√
−
a1
b

T − Tc
Tc

, (2.5)

where the latter is valid only for T < Tc, see Fig. 2.2. Inserting these
solutions into the free energy Eq. (2.1), we see from Fig. 2.2 that above
Tc we only have the trivial solution ψN, corresponding to the normal
state. Below Tc however, ψS minimizes the free energy compared to
the normal state free energy, and we thus have superconductivity,
where the density of superconducting electrons ns increases with
decreasing temperature.

The solution Eq. (2.5) only specifies the magnitude of ψ = |ψ|eiϕ,
not the phase. There are therefore infinitely many degenerate solu-
tions corresponding to different values of ϕ, of which the system
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spontaneously “chooses” one global value when the temperature
drops below Tc. When including spatial variations of ψ, this freedom
in choosing ϕ ensures that the free energy is gauge invariant, which
is necessary for physical observables such as the supercurrent to be
gauge invariant, see Eq. (2.4) [19]. The magnetic induction B is invari-
ant under the local transformation A → A ′ = A −∇θ, where θ(r) is
a real function. For the free energy to be invariant we must simulta-
neously transform the phase according to ϕ→ ϕ ′ = ϕ− e∗θ/ h.2

flux quantization From the gauge transformation of the su-
perconducting wavefunction ψ one can already deduce one of the
remarkable facts about superconductors, namely that the flux Φ
through a normal region embedded in a superconductor, such as
a vortex in the mixed superconducting phase described above, is
quantized in terms of a flux quantum Φ0. In order for the order
parameter to be single-valued at any point, a line integral in a closed
circle has to satisfy∮

dl ·∇ϕ = 2πN, (2.6)

where N ∈ Z. This must hold also for a gauge transformed phase
ϕ ′. Using the gauge freedom to choose A ′ = 0 in a superconducting
region with B = 0, we get A = ∇θ. Integrating around a closed loop
enclosing a normal region with B 6= 0, we therefore get∮

dl ·∇ϕ ′ =
∮
dl ·∇ϕ−

e∗
 h

∮
dl · A = 2πN. (2.7)

2It is often stated that the superconducting state spontaneously breaks the U(1)
gauge symmetry of the system. It is important to point out that a local gauge
symmetry cannot be spontaneously broken [25]. The local gauge U(1) symmetry in
this case is not a physical symmetry (such as e.g. the O(3) symmetry of an isotropic
ferromagnet), but rather a redundancy in our mathematical description [26, 27].
The system does however break the global U(1) phase rotation symmetry [26],
meaning superconductors can have different phases, as is evident in e.g. Josephson
junctions.
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Using Stokes’ theorem, this results in∫
A

dS · B = Φ =
2π h

e∗
N ≡ Φ0N, (2.8)

where we have defined the flux quantum Φ0 = 2π h/|e∗|.

perfect conductivity Using the London approximation of |ψ|
constant in space [19], the second GL equation simplifies to

J = −
e2∗ |ψ|

2

m∗

[
A −

 h

e∗
∇ϕ

]
. (2.9)

We see that the vector potential A in a static magnetic field, as well as
phase gradients, lead to supercurrents [19]. Moreover, taking the time-
derivative of the above equation, assuming ∇ϕ = 0, we get E ∼ ∂tJ.
This implies perfect conductivity since an electric field accelerates
a supercurrent, instead of just maintaining it [6], and a stationary
current is possible even when E = 0 [22].

meissner effect Rewriting Eq. (2.9) in terms of the field Ã =

A −  h∇ϕ/e∗, we get

∇× B = µ0J = −
µ0e

2
∗

m∗
|ψ|2Ã. (2.10)

Taking the curl of this equation results in

B =
m∗

µ0e2∗ |ψ|2
∇2B, (2.11)

where we have used ∇× (∇× B) = −∇2B since ∇ · B = 0 [28]. This
means that a uniform non-zero magnetic field is not possible inside
a superconductor. In one dimension, assuming a constant field Bex

outside the superconductor (x < 0), we get the following solution
inside the superconductor (x > 0) [19, 27],

B(x) = Bexe
− x
λL , (2.12)
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where we have defined the London penetration depth

λL =

√
m∗

µ0e2∗ |ψ|2
. (2.13)

Hence, in the superconducting phase an external field is screened
from the interior of the superconductor by supercurrents on the
surface of the superconductor, with penetration depth λL [6, 12, 19].
For decreasing temperatures the density of superconducting electrons
increases, leading to a more efficient screening of the magnetic field.
In reality the effective penetration depth λ can deviate significantly
from λL [6, 19] due to non-local effects [6, 19, 29].

type i and ii superconductors In addition to the above
phenomena, which was also described by the London theory,3 the GL
equations also allowed for the study of superconductors in strong
fields, and with variations in ψ [6]. In the latter case, assuming zero
field and variation in only one dimension, the first GL equation
Eq. (2.3) gives [24]

a(T)ψ+ b|ψ|2ψ−
 h2

2m∗
∂2xψ = 0. (2.14)

Defining ψ̃ = ψ/ψS, we can rewrite the above as

−ψ̃+ |ψ̃|2ψ̃− ξ(T)2∂2xψ̃ = 0, (2.15)

where we have defined the GL coherence length [6, 19, 24]

ξ(T) =
 h√

|2m∗a(T)|
, (2.16)

as the characteristic length scale over which ψ varies.
We thus have two length scales associated with the superconductor:

the penetration depth λ and the correlation length ξ, see Fig. 2.3.

3For both the Meissner effect and perfect conductivity paragraphs, we essentially
use some form of the London equations derived from the GL equations.
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0

1

|ψ
|/
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|
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B
/
B

c

∼λ

Figure 2.3: Variation of ψ and magnetic field B at the interface between
superconducting and normal regions, illustrating the length
scales λ and ξ. Based on similar figures in Refs. [6, 19, 24].

Since both diverge approximately as (T − Tc)
−1/2 as T → Tc, the

dimensionless quantity

κ =
λ

ξ
, (2.17)

the Ginzburg-Landau parameter, is approximately constant close to
Tc [6]. Abrikosov [30, 31] showed that the size of κ determines if
a superconductor is of type I or II. A simplified argument goes as
follows [6, 19, 24]: At the interface between a normal and a super-
conducting region with an applied field Hc parallel to the surface,
there is a decrease in the free energy compared to the bulk normal
state associated with the screening of the magnetic field over a length
scale λ. However, there is also an increase in energy compared to the
bulk superconducting state due to the lost condensation energy over
a length scale ξ, see Fig. 2.3. The surface energy — the change in
free energy due to the interface — is therefore approximately propor-
tional to the difference between these length scales, ∆Fsurf ∼ (ξ−λ) [6,
19, 24]. Hence, if κ < 14 the surface energy is positive and the system
tries to minimize the interface area. This is a type I superconductor.
On the other hand, κ > 1 results in a negative surface energy, and
the system tries to maximize the interface area. However, as we have
seen above, the minimum flux allowed is the flux quantum Φ0. Type
II superconductors therefore have quantized flux lines of flux Φ0 in
the mixed phase [19, 24].

4The exact separation point between type I and II superconductors is κ = 1/
√
2. [6,

19, 24, 31]
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2.3 superconductivity from attractive pairing

When the GL theory was proposed in 1950, though it correctly
described the key features of superconductors, it was purely phe-
nomenological, and not derived from a microscopic theory. There
were several hints to what ingredients such a theory should con-
tain. For instance experiments had shown that there was an energy
gap 2∆ ∼ kBTc separating the ground state and lowest excited state
[6]. Moreover, when measuring the critical temperature for differ-
ent isotopes the transition temperature was found to increase with
decreasing nuclear mass [32, 33], indicating that the microscopic
mechanism was related to interactions between the electrons and the
lattice vibrations — the phonons — of the material [34].

Finally, in 1957 Bardeen, Cooper and Scrieffer [35] published their
theory of superconductivity, describing how effective interactions
between electrons due to phonons lead to the formation of bound
pairs of electrons — Cooper pairs [36]. Their theory predicted an
energy gap of 2∆ = 3.5kBTc at zero temperature, in good agreement
with experiments [6, 35]. Later, Gor’kov [37, 38] showed that the GL
theory could be derived from the microscopic BCS theory for tem-
peratures close to the critical temperature, with the GL wavefunction
ψ being proportional to the gap parameter ∆ [6, 24].

Before discussing the BCS theory in more detail, we will take a
detour to introduce a more general formulation of a superconduct-
ing theory [39] where we do not consider any particular pairing
mechanism. This theory will then be specialized to the BCS theory
with phonon-mediated attraction, and later applied to the other var-
ious cases studied in the thesis. Our starting point is the quantum
partition function5

Z =

∫
Dψ†Dψ e−S[ψ

†,ψ] (2.18)

5For an introduction to the path integral formalism see e.g. Altland and Simons
[40], Lancaster and Blundell [41] or Negele and Orland [42], or Appendix A for a
short summary.
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where we have defined the action

S = S0 + Sint =
1

βV

∑
k

∑
σ,σ ′

(−iωnδσσ ′ + hk,σσ ′)ψ†
k,σψk,σ ′

+
1

2(βV)3

∑
k,k ′,q

∑
σ1,σ2,
σ3,σ4

Vσ1σ2σ3σ4kk ′ (q)

×ψ†
k+q,σ1

ψ
†
−k+q,σ2

ψ−k ′+q,σ3ψk ′+q,σ4 . (2.19)

Here ψk,σ denotes Grassmann fields for the electrons [40] with 4-
momentum k = (ωn, k), where ωn = (2n + 1)π/β, n ∈ Z is a
Fermionic Matsubara frequency, β = 1/kBT , and k is the wavevector.
σ denotes the (pseudo-)spin state of the field. hk,σσ ′ is the single
particle Hamiltonian, and Vσ1σ2σ3σ4kk ′ (q) is a two-particle interaction
potential depending on 4-momenta k and k ′, spin states σi, and
the 4-momentum q = (Ωn, q) which defines the center-of-mass
momentum 2q. Here, Ωn = 2πn/β is a bosonic Matsubara frequency.

2.3.1 Hubbard-Stratonovich transformation

The above action is difficult to handle in its current form because of
the 4-field interaction. One method of handling this is by introducing
a new bosonic field through a Hubbard-Stratonovich (HS) decoupling
[40]. For notational simplicity we will write the interaction as

1

2(βV)3

∑
α1,α2,
α3,α4

Vα1α2α3α4ψ
†
α1
ψ†
α2
ψα3ψα4 , (2.20)

where αi = (ki,σi), meaning that we have now implicitly added
δ(k1 + k2 − k3 − k4) to the potential to ensure that frequency and
momentum is conserved. In principle αi can be any set of quantum
numbers, and the result of the HS transformation is therefore quite



2.3 superconductivity from attractive pairing 13

general. The starting point of the HS transformation is the identity
[40, 42]

1 =

∫
Dϕ†Dϕ exp

{
βV

∑
α,α ′
β,β ′

ϕ
†
αα ′V

−1
αα ′ββ ′ϕββ ′

}
, (2.21)

where V−1
α1α2α3α4

denotes the matrix elements of the inverse of V ,
and ϕαα ′ are bosonic fields. Writing the interaction as [39, 40]

Vα1α2α3α4 = 〈α1α2| V̂ |α3α4〉 , (2.22a)

V−1
α1α2α3α4

= 〈α1α2| V̂−1 |α3α4〉 , (2.22b)

we find∑
ββ ′

V−1
α1α2ββ ′Vβ ′βα3α4 =

∑
ββ ′

〈α1α2| V̂−1
∣∣ββ ′〉 〈β ′β

∣∣ V̂ |α3α4〉

= δα1α4δα2α3 − δα1α3δα2α4 , (2.23)

where we have used the completeness relation
∑
β |β〉 〈β| = 1 [24, 40,

43] and V̂−1V̂ = 1. The two delta-function terms reflect the fact that
the interaction Vα1α2α3α4 is odd under interchange of α1 and α2, or
α3 and α4 due to the anticommutation of the fermionic fields ψ. The
consequences of this will be discussed more below.

We next rescale the bosonic fields,

ϕ
†
αα ′ → ϕ

†
αα ′ +

1

2(βV)2

∑
γγ ′

ψ†
γψ

†
γ ′Vγγ ′α ′α, (2.24a)

ϕββ ′ → ϕββ ′ +
1

2(βV)2

∑
γγ ′

Vβ ′βγγ ′ψγψγ ′ , (2.24b)

which when inserted into Eq. (2.21) results in the relation [42]

e
− 1

2(βV)3

∑
α1α2α3α4

Vα1α2α3α4ψ
†
α1
ψ

†
α2
ψα3ψα4

=

∫
Dϕ†Dϕ eβV

∑
αα ′ββ ′ ϕ†

αα ′V
−1
αα ′ββ ′ϕββ ′

× e− 1
βV

∑
αβ[ϕ

†
αβψαψβ+ψ

†
αψ

†
βϕαβ]. (2.25)
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Hence, we are able to exchange the interaction with four fermionic
fields at the cost of introducing bosonic fields. These fields describe
the Cooper pairs. Applying this to the theory in Eq. (2.19), we get
the partition function

Z =

∫
Dϕ†Dϕ e−Sϕ,0[ϕ

†,ϕ]

∫
Dψ†Dψ e−S0[ψ

†,ψ]−SHS[ψ
†,ψ,ϕ†,ϕ],

(2.26)

with S0 defined in Eq. (2.19), and

Sϕ,0 = −βV
∑
k,k ′,
q

∑
σ1,σ2,
σ3,σ4

ϕ†
q,σ1σ2(k)[V

−1]σ1σ2σ3σ4kk ′ (q)ϕq,σ3σ4(k
′),

(2.27)

SHS =
1

βV

∑
q,k

∑
σσ ′

[
ϕ

†
q,σσ ′(k)ψ−k+q,σψk+q,σ ′

+ψ†
k+q,σψ

†
−k+q,σ ′ϕq,σσ ′(k)

]
. (2.28)

2.3.2 Symmetries of the Cooper pair field

Since the fields ψ anticommute, the bosonic fields ϕ have to satisfy
certain symmetry properties. From action SHS we get∑

k

∑
σσ ′

[
ϕ

†
q,σσ ′(k)ψ−k+q,σψk+q,σ ′ + h.c.

]

=
∑
k

∑
σσ ′

[
−ϕ†

q,σ ′σ(−k)ψ−k+q,σψk+q,σ ′ + h.c.
]
, (2.29)

where h.c. denotes the Hermitian conjugate. Here we have anticom-
muted the fermionic fields, used the sum to let k→ −k, and renamed
the spin indexes σ↔ σ ′. Hence, we must have

ϕ
†
q,σσ ′(k) = −ϕ†

q,σ ′σ(−k), (2.30)

and the same for the field ϕq,σσ ′(k). The three operations made
when going from the left to the right-hand side in the above equa-
tion is essentially a (pseudo-)spin permutation (S), a relative spatial
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Table 2.1: The allowed symmetries of ϕq,σσ ′(k) under the operations S, P
and T leading to an overall negative sign under the combined
operation SPT, where +(−)1 means that the bosonic field is even
(odd) under the operation.

S P T SPT

−1 +1 +1 −1

+1 −1 +1 −1

+1 +1 −1 −1

−1 −1 −1 −1

coordinate permutation (P), leading to k → −k, and a relative time
coordinate permutation (T), iωn → −iωn [44–49]. Since the com-
bined operation of these three permutations leads to a negative sign,
we get the condition [44]

SPT = −1 (2.31)

for the bosonic fields ϕ and ϕ†. The different allowed combinations
of symmetries under the three operations are summarized in Table 2.1
[44, 50].

2.3.3 The mean field gap equations

We next rewrite the fermionic terms S0 and SHS in a form which al-
lows us to integrate out the fermionic fields. Before doing so, however,
we will make a couple of assumptions. First, we assume only two
(pseudo-)spin states labeled σ =↑, ↓. Moreover, we restrict the analy-
sis to Cooper pairs with one common center-of-mass momentum Q,
and zero center-of-mass frequency, writing

ϕφ,σσ ′(k) =
1

2
δΩn,0δq,Q∆Q,σσ ′(k). (2.32)

Since the center-of-mass momentum Q can be finite, this includes the
possibility of Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) [51, 52] states.
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We now define the Nambu spinor

ΨQ(k) =
(
ψk,↑ ψk,↓ ψ

†
−k+2Q,↑ ψ

†
−k+2Q,↓

)T
, (2.33)

and the matrices6

∆Q(k) =

(
∆Q,↑↑(k) ∆Q,↑↓(k)

∆Q,↓↑(k) ∆Q,↓↓(k)

)
, (2.34a)

∆̄Q(k) =

(
∆
†
Q,↑↑(k) ∆

†
Q,↑↓(k)

∆
†
Q,↓↑(k) ∆

†
Q,↓↓(k)

)
, (2.34b)

where Q = (0, Q). This allows us to write the action Sψ = S0 + SHS

as

Sψ = −
1

2βV

∑
k

Ψ
†
Q(k+Q)G−1

Q (k)ΨQ(k+Q), (2.35)

where we have defined the inverse Green’s function

G−1
Q (k) =

(
G−1
0 (k+Q) −∆Q(k)

−∆̄Q(k) −[G−1
0 (−k+Q)]T

)
, (2.36)

and the inverse non-interacting single-particle Green’s function

G−1
0 (k) =

(
iωn − hk,↑↑ −hk,↑↓

−hk,↓↑ iωn − hk,↓↓

)
. (2.37)

Integrating out the fermionic fields, we get the effective action for
the Cooper pair fields [53, 54]

Sϕ = Sϕ,0 −
1

2
Tr ln(−G−1

Q ), (2.38)

where Tr denotes a trace over all degrees of freedom, including the
matrix trace tr. The self-consistency equation — the gap equation —

6We use the notation ∆̄Q(k) instead of ∆†
Q(k), since [∆Q(k)]† 6= ∆̄Q(k).
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for the bosonic fields ∆Q,σσ ′ is found by doing a stationary phase
approximation, i.e. by requiring [40]

∂Sϕ

∂∆Q,σσ ′(p)
= 0, (2.39)

resulting in∑
k

∑
σ1,σ2

∆
†
Q,σ1σ2

(k)[V−1]σ1,σ2,σ,σ ′
k,p (Q)

= −
2

βV
tr
[
GQ(p)

∂G−1
Q (p)

∂∆Q,σσ ′(p)

]
, (2.40)

where GQ(p) is the inverse of G−1
Q (p). Multiplying both sides with

Vσ
′σσ3σ4

pp ′ and summing over p, σ and σ ′, we get

∆
†
Q,σ4σ3

(p ′) = −
1

βV

∑
p,

σ1,σ2

Vσ1σ2σ3σ4pp ′ tr
[
GQ(p)

∂G−1
Q (p)

∂∆Q,σ2σ1(p)

]
,

(2.41a)

where we have used ∆
†
Q,σ3σ4

(−p) = −∆†
Q,σ4σ3

(p), see Eq. (2.30).

Using instead the requirement δSϕ/δ∆
†
Q,σσ ′ = 0, we get

∆Q,σ2σ1(p
′) = −

1

βV

∑
p,

σ3,σ4

Vσ1σ2σ3σ4p ′p tr
[
GQ(p)

∂G−1
Q (p)

∂∆
†
Q,σ4σ3

(p)

]
.

(2.41b)

These are the self-consistency equations, or gap equations. If solutions
exist this indicates that the Cooper pair wavefunction is finite, and the
system is superconducting below the critical temperature. We now
apply this theoretical framework to the theory of phonon-mediated
superconductivity.
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Figure 2.4: (left) An electron moving through a lattice of ions, causing an
increase in positive charge density in its wake. Since the ions
are much heavier than the electrons, there can be a significant
distortion in the lattice quite some time after the electron has
passed through. Hence, at a later time, another electron can be
attracted to the area with increased charge density (right). The
effect is strongest for electrons moving in opposite directions.
Drawn based on similar figures in Refs. [19, 55].

2.4 phonon-mediated superconductivity

In the BCS theory a phonon-mediated effective electron-electron
interaction is responsible for overcoming the repulsive Coulomb
interaction, and causing the superconducting instability [6, 19, 35].
The physical picture is of an electron attracting the ion cores, thus
causing the ion cores to form an area with higher positive charge
density. At a later time, another electron is attracted to this area
of increased charge density [6], see Fig. 2.4 for an illustration. In
reality the interaction is a complicated function of wavenumber and
frequency, but one often uses a simplified effective theory [6, 19, 24,
31, 40, 43]

S =
1

βV

∑
k,σ

(−iωn + εk − µ)ψ†
k,σψk,σ

+
1

2(βV)3

∑
k,k ′,q

∑
σ,σ ′

Veff
kk ′(q)ψ†

k+q,σψ
†
k ′−q,σ ′ψk ′,σ ′ψk,σ,

(2.42)
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q, ω

(a)

k + q, σk, σ

k ′, σ ′ k ′ − q, σ ′

ω

Veff(ω)

−g

−ωD ωD

(b)

Figure 2.5: (a) Illustration of phonon-mediated electron-electron coupling:
Electrons with momentum and spin k,σ and k ′σ ′ respectively
interact via a phonon transferring momentum q and energy ω,
resulting in two electrons with momentum and spin k + q,σ
and k ′ − q,σ. (b) The effective potential is approximated by a
constant −V for energy transfers |ω| < ωD.

where εk = k2/2m, where m is the electron mass, and µ is the
chemical potential. The interaction term is illustrated by the Feynman
diagram in Fig. 2.5a), with a potential assumed to take the form [6]

Veff
kk ′(q) =

−g for |ω| < ωD with ω = ξk, ξk+q, ξk ′ , ξk ′−q,

0 otherwise,
(2.43)

see Fig. 2.5b). Here ξk = εk − µ, and ωD is the Debye cut-off fre-
quency, which is assumed to be much smaller than the Fermi energy
εF of the system. Hence, all the interacting electrons should have
energies close to εF, which is easiest to ensure if k ′ = −k with k
close to the Fermi surface, since then k ′ −q and k+q both lie on the
Fermi surface with an appropriate choice of q [19]. Moreover, it is
expected that choosing opposite spins σ ′ = −σ will lead to a stronger
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interaction since this allows for a smaller separation between the
electrons [6, 19]. Hence, we arrive at the simplified interaction term

Sint = −
g

(βV)3

′∑
k,k ′

ψ
†
k↑ψ

†
−k↓ψ−k ′↓ψk ′↑, (2.44)

where the primed sum indicates that we keep only momenta such
that |ξk|, |ξk ′ | < ωD is satisfied.

Comparing the action in Eqs. (2.42) and (2.44) to the general theory
in Eq. (2.19), we see that the matrices in Eqs. (2.34) and (2.37) simplify
to

∆(k) =

(
0 ∆↑↓(k)

∆↓↑(k) 0

)
, (2.45a)

∆̄(k) =

(
0 ∆

†
↑↓(k)

∆
†
↓↑(k) 0

)
, (2.45b)

G−1
0 (k) =

(
iωn + µ− εk 0

0 iωn + µ− εk

)
, (2.45c)

where we drop the subscript Q since Q = 0. Inserting this into the
full inverse Green’s function Eq. (2.36) and calculating the inverse
we get

G(k) = −




iωn+ξk
ω2n+E

2
k,↑↓

0 0
∆↑↓(k)
ω2n+E

2
k,↑↓

0 iωn+ξk
ω2n+E

2
k,↓↑

∆↓↑(k)
ω2n+E

2
k,↓↑

0

0
∆

†
↑↓(k)

ω2n+E
2
k,↓↑

iωn−ξk
ω2n+E

2
k,↓↑

0

∆
†
↓↑(k)

ω2n+E
2
k,↑↓

0 0 iωn−ξk
ω2n+E

2
k,↑↓




, (2.46)

where we have defined

Ek,↑↓ =
√
ξ2k +∆↑↓(k)∆

†
↓↑(k), (2.47a)

Ek,↓↑ =
√
ξ2k +∆↓↑(k)∆

†
↑↓(k), (2.47b)
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and used εk = ε−k. We also have δG−1(k)
δ∆↑↓(k)

= −E14 and δG−1(k)
δ∆↓↑(k)

=

−E23, where Eij is a 4× 4 matrix with value 1 at index (i, j) and zero
otherwise. Hence, from Eq. (2.41a) we get the two gap equations

∆
†
↑↓(k

′) =
g

2βV

′∑
k

[
∆
†
↓↑(k)

(iωn)2 − E2k,↓↑
−

∆
†
↑↓(k)

(iωn)2 − E2k,↑↓

]
,

(2.48a)

∆
†
↓↑(k

′) =
g

2βV

′∑
k

[
∆
†
↑↓(k)

(iωn)2 − E2k,↑↓
−

∆
†
↓↑(k)

(iωn)2 − E2k,↓↑

]
.

(2.48b)

From the above equations we notice two important features. First,
there is no explicit dependence on ω ′

n on the right-hand side, which
means it is natural to assume that ∆†

σσ ′(k) → ∆
†
σσ ′(k), making it even

in frequency (T = +1). Moreover, from the two equations we also
find that ∆†

↑↓(k) = −∆†
↓↑(k), i.e. we have spin singlets (S = −1). From

the symmetry rule in Eq. (2.31) we therefore must have P = +1, i.e.
an even parity state ∆σσ̄(k) = ∆σσ̄(−k), which is consistent with the
above equations. In fact, the right-hand side of the above equations
do not depend on k ′ either, making ∆†

σσ̄(k) constant in k, meaning
we have an s-wave solution. Using Eq. (2.41b) we get similar results
for ∆σσ ′(k).

2.4.1 Solving the gap equation

We now simplify the notation by writing ∆↑↓(k) = ∆ and ∆†
↓↑(k) =

∆†, leading to Ek,↑↓ = Ek,↓↑ → Ek =
√
ξ2k + |∆|2.7 This leads to the

simplified gap equation

∆ = −
g

βV

∑
ωn

′∑
k

∆

(iωn)2 − E2k
. (2.49)

7This choice ensures real quasiparticle energies Ek.



22 superconductivity

We perform the fermionic Matsubara sum using the trick [40, p. 171]

1

β

∑
ωn

h(iωn) =
∑
i

Resh(z)nF(z)
∣∣
z=zi

, (2.50)

where zi are the singularities of h(z), and nF(ε) = (eβε + 1)−1 is
the Fermi-Dirac distribution function. In the present case we have
singularities at ±Ek, leading to

1 = −
g

V

′∑
k

[
nF(Ek)

2Ek
−
nF(−Ek)

2Ek

]
=
g

V

′∑
k

1

2Ek
tanh

βEk

2
,

(2.51)

where we have canceled the common constant ∆ from both sides of
the gap equation, and the gap now enters only in Ek. Since Ek > 0,
the sum is always positive, and it is therefore necessary to have g > 0
in order for the gap equation to have a solution in this case.

We solve the gap equation analytically in two limiting cases: at zero
temperature, and at the critical temperature. At zero temperature
tanhβEk/2 = 1. Changing from a k summation to an energy integral
using the definition of the normal state density of states [40],

D(ξ) =
1

V

∑
k

δ(ξk − ξ), (2.52)

we get

1 ≈ gD(0)

ωD∫
0

dξ
1√

ξ2 + |∆|2
≈ gD(0) ln

2ωD
|∆|

, (2.53)

where we have used the assumption ωD � µ to let D(ξ) → D(0), the
normal density of states at the Fermi level, and assumed |∆| � ωD.
Defining the dimensionless coupling constant λ = gD(0), we find the
zero temperature gap

∆0 = 2ωDe
− 1
λ . (2.54)
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This solution is valid in the weak coupling limit, λ� 1. As was the
case for the GL solution found in Section 2.2, the gap equation only
determines the magnitude of ∆, not the phase.

At temperatures just below the critical temperature, T = T−c , the
gap is equal to zero. Hence, we get

1 = λ

ωD∫
0

dξ
1

ξ
tanh

βξ

2

= λ


ln ξ tanh

βξ

2

∣∣∣∣
ωD

0

−

ωD∫
0

dξ
β

2

ln ξ
cosh2 βξ2


 , (2.55)

where we have performed a partial integration [19]. Assuming that
kBTc ∼ ∆0 � ωD, the first term equals lnωD, and in the latter we
can let ωD → ∞, resulting in8

1 = λ

[
lnωD + ln

4eγ

π
− ln

2

β

]
= λ ln

2eγβωD
π

, (2.56)

where γ ≈ 0.5772 is the Euler-Mascheroni constant [19, 24]. Rewriting
this in terms of Tc we get

kBTc =
2eγωD
π

e−
1
λ ≈ 1.13ωDe−

1
λ . (2.57)

Combining the results for ∆0 and Tc we find the ratio

2∆0
kBTc

=
2π

eγ
≈ 3.52. (2.58)

This universal ratio was found to be in good agreement with the
superconductors known at the time the BCS theory was published
[6, 35]. Solving Eq. (2.51) numerically, we find the temperature de-
pendence of the gap ∆ as shown in Fig. 2.6a).

8We here use the formula [24, p. 581]∫∞
0
dx

ln x
cosh2 x

= − ln
4eγ

π
.
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Figure 2.6: (a) Numerical results for the gap ∆ as a function of temperature,
normalized to the analytical values ∆0 and Tc. (b) Plot of quasi-
particle dispersion ±Ek as a function of kx with ky = 0, where
the line color indicates whether the quasiparticle is particle-like
(p) or hole-like (h). The normal state dispersion ξk is also shown
for comparison. (c) Plot of the normalized superconducting
quasiparticle density of states ds(E).

2.4.2 Quasiparticles

So far ∆ has frequently been called the “gap”. To see the reason for
this nomenclature, we take a brief look at the quasiparticles of the
system. The eigenvalues of the Green’s function matrix are [iω±
Ek]

−1, and hence the quasiparticles of the system have eigenenergies
±Ek, shown in Fig. 2.6b). Calculating the superconducting density
of states using DS(E)dE = D(ξ)dξ [6] while assuming E lies close to
the Fermi energy, we find

dS(E) ≡
DS(E)

D(0)
=


|E|√
E2−|∆|2

for |E| > |∆|,

0 for E < |∆|,
(2.59)

shown in Fig. 2.6c). From both the eigenenergies and the density
of states, it is clear that a finite ∆ leads to a gap 2∆ between the
quasiparticle bands. The quasiparticles are a mix of electrons and
holes, as indicated in Fig. 2.6b), with the electron and hole weights
given by the residues of the diagonal entries of the Green’s function
matrix Eq. (2.46).



2.5 unconventional superconductivity 25

In essence, the BCS theory tells us that due to a phonon-mediated
electron-electron interaction, electrons form bound pairs, thus de-
creasing the system’s energy. These pairs are described by a macro-
scopic wavefunction with a common phase, leading to a superfluid
flow of electrons. Breaking up a pair into separate quasiparticles re-
quires a finite energy ∆ due to the gap in the quasiparticle dispersion,
resulting in the superconducting state surviving up to temperatures
comparable with the energy gap.

2.5 unconventional superconductivity

The results of the BCS theory agreed well with experiments for the su-
perconductors known at the time it was published, earning Bardeen,
Cooper and Schrieffer the 1972 Nobel Prize in Physics. Common
for these superconductors was the fact that the Fermi energy was
much larger than the energy set by the critical temperature, kBTc, or
equivalently Tc � TF, the Fermi temperature. For instance the critical
temperature for Niobium (Nb) is 9.5K [56], while the Fermi tempera-
ture is 6× 104 K [57]. However, in the late 1970s, superconductivity
was discovered in heavy-fermion materials [58, 59], where the critical
temperature, though low compared to superconductors known at the
time, is closer to the Fermi temperature. Later, in 1986 the high-Tc
cuprates [60] were discovered, with rapid developments leading to
materials with critical temperatures exceeding 100K [6], far exceed-
ing those of the conventional superconductors. These findings could
not all be explained using the phonon-mediated interaction of the
original BCS theory, hence leading to a theoretical search for other
microscopic mechanisms which could explain the classes of super-
conductors known as unconventional superconductors [59]. More
than three decades after the discovery of the high-Tc cuprates, the
exact microscopic origin of the superconductivity and the otherwise
complex phase diagram is still under debate. Since the main focus
of this thesis is not the unconventional superconductors specifically,
it will not be discussed in further detail. However, there will be
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some similarities with spin fluctuation-based theories for cuprate
superconductors (e.g. Refs. [61–63]) and the magnon-mediated super-
conductivity discussed in Chapter 6. Moreover, one unconventional
mechanism, the Kohn-Luttinger mechanism [64], will be discussed
in the next chapter.

2.6 superconductivity in two dimensions

As the title of this thesis indicates, the focus will be on supercon-
ducting states in systems which are effectively 2D, i.e. the motion of
the electrons is restricted in the third dimension. However, from the
outset this seems to pose a problem: The Mermin-Wagner theorem
states that a continuous symmetry cannot be spontaneously broken
at a finite temperature in a system with short-range interactions in
one or two dimensions [19, 40, 41, 65, 66]. Recall that the supercon-
ducting state breaks the continuous global phase rotation symmetry,
and should therefore be subject to the Merwin-Wagner theorem in
2D systems. Two questions arise: Is any type of order possible in two
dimensions, and when, if at all, are the effectively 2D systems to be
treated as two-dimensional, thus being subject to the Mermin-Wagner
theorem?

First of all, Berezinskii [67, 68], and Kosterlitz and Thouless [69, 70]
(BKT) showed that a new type of order is possible in two-dimensional
systems, so-called topological order, in contrast to long-range order.
As an example of such order, consider the XY model, namely a 2D
system of spins constrained to lie in the plane, where the direction
of a spin at lattice site i can be parametrized by the angle θi. If
the coupling between the spins is ferromagnetic, any difference
between the angle of two neighboring lattice sites, |θi − θj| > 0, leads
to an increase in energy. At zero temperature the energy E of a
single vortex (see Fig. 2.7) diverges logarithmically with the system
size N, and is thus unstable [40, 41, 66] and cannot be excited by
thermal fluctuations [71]. However, the entropy S due to the possible
locations of one vortex is also a logarithmic function of N, and at
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Vortex Antivortex Vortex pair

Figure 2.7: Orientation of spins in the vicinity of a vortex, antivortex, and
vortex-antivortex pair (left to right). In the latter case the spins
can be continuously deformed to a uniform state away from the
vortex pair. Based on similar figures in Refs. [19, 41].

some temperature TBTK the free energy F = E− TS will be minimized
by the entropy term rather than the energy term, leading to the
formation of free vortices.

The energy associated with a vortex-antivortex pair, however, de-
pends logarithmically on the vortex separation [6, 71], and is therefore
finite. This difference from a single vortex can be understood from
the fact that the spins can be continuously rotated to form a uniform
state some distance away from the vortex pair, see Fig. 2.7. Since
the energy associated with a bound vortex pair is much smaller
compared to that of a single vortex, vortex-antivortex pairs can be
thermally excited even at low temperatures. TBKT marks the topo-
logical phase transition between a low temperature phase with only
bound vortex-antivortex pairs, with quasi-long range order [66], and
a high temperature phase where the pairs unbind into free vortices
[6, 41].

To answer the question whether the results sketched above have
any consequences for thin superconductors, we have to consider
the differences between vortices in the XY model described above
and vortices in a superconductor: While the spins in the XY model
always have the same length, the magnetic field and current density
around a vortex in a superconductor decays over a length scale
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λ, the penetration depth. For superconducting vortices the energy
associated with a vortex-antivortex pair therefore decays differently
as a function of separation r depending on if r� λ or r� λ [6]. In
thin superconductors of thickness d the characteristic length scale
is the effective 2D screening length λ⊥ = λ2/d [72], and the vortex
pair energy goes as ln r for r � λ⊥ and r−1 for r � λ⊥ [70, 72, 73],
being attractive in the first regime but repulsive in the second. This
lead Kosterlitz and Thouless [70] to argue that a BKT type transition
could not occur in superconductors.

However, Beasley, Mooij and Orlando [74] later pointed out that
since the effective 2D screening length increases with decreasing
thickness, λ⊥ can be made large enough to justify using the separa-
tion energy ∼ ln r more or less over the entire material, just as in the
XY model above. They therefore argued that thin superconductors
could also undergo a BKT type transition, relating the BKT transition
temperature to the BCS mean field critical temperature in terms of
the sheet resistance R,

TBKT

TBCS
≈
(
1+ 0.173

R

Rc

)−1

for R� Rc, (2.60)

where Rc =  h/e2 ≈ 4108Ω/� [74]. Hence, TBKT decreases compared
to TBCS for increasing sheet resistance [75]. For superconductors
with thickness such that the lateral dimension is comparable to the
effective 2D screening length, we therefore have a superconducting
phase with bound vortex-antivortex pairs for temperatures below
TBKT. For TBKT < T < TBSC vortex pairs are broken up, leading to
a finite resistance due to the lack of phase coherence across the
superconductor. As the temperature, and thus the number of vortices
is increased, the resistance increases until the normal state with zero
superconducting gap is reached at TBCS [76].

From this discussion it clear that superconductivity can arise even
in effectively 2D systems, and using mean field theory to calculate
the critical temperature will give an indication of whether a super-
conducting state exists. Depending on the effective thickness of the
system, there might also exist a lower temperature corresponding to
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the BKT transition. In the work contained in this thesis, however, we
have not considered the BKT transition temperature, but rather only
used mean field theory to calculate either the critical temperature
or the zero temperature gap. Assuming that the above analysis is
justified also for superconductivity in topological insulators, TBKT

should not be very much reduced compared to TBCS as long as the
TI is thick enough for the charge transport to be dominated by the
surface states [77, 78].





3
K O H N - L U T T I N G E R S U P E R C O N D U C T I V I T Y

In 1965 Kohn and Luttinger [64] proposed a new mechanism for
Cooper pairing. They showed that weak repulsive interactions could
lead to an effective attractive interaction. All that is needed is that
one momentum channel is attractive [79, 80]. Physically this can
arise when an interaction is screened by the Fermi sea, leading to
long-range oscillations [81], such as Friedel oscillations in the case of
the screened Coulomb interaction [64, 79]. We will begin this chapter
with an example illustrating how such a situation can arise, and then
build on this example to reach the system studied in Paper [1].

3.1 superconductivity from weak on-site interaction

We start from a simple model of an electron gas with a δ-function
electron-electron coupling with strength U,1

H = H0 +Hint

=
1

V

∑
kσ

(εk − µ)c†kσckσ +
U

V3

∑
k1,k2,k3

c
†
k1↑c

†
k2↓ck3↓ck4↑, (3.1)

where k4 = k1 + k2 − k3 in order to conserve momentum. In the
previous chapter, we saw that this can lead to superconductivity

1Because of the way we have defined the Fourier transform, the anticommuta-
tion relations for the operators are {ckσ, c†k′σ′ } = Vδk,k′δσσ′ and {ckσ, ck′σ′ } =

{c
†
kσ, c†k′σ′ } = 0.

31
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when U < 0. However, we will now assume that U is positive,
meaning that the interaction is repulsive.

Assuming that the interaction energy is small compared to the
Fermi energy allows us to treat the interaction term perturbatively
using a Schrieffer-Wolff transformation [82–84]. We define a trans-
formed Hamiltonian

H ′ ≡ e−SHeS

= H0 +Hint + [H0 +Hint,S] +
1

2
[[H0 +Hint,S] ,S] + . . . ,

(3.2)

where S is anti-unitary and [A,B] denotes the commutator. By choos-
ing S such that [H0,S] = −Hint, we obtain a low-energy effective
Hamiltonian for the system. One choice of S which has the wanted
properties is [1, 85]

S =
U

V3

∑
k1,k2,k3

c
†
k1↑c

†
k2↓ck3↓ck4↑

εk4 + εk3 − εk2 − εk1
, (3.3)

which can be verified using the commutator relation
[
c
†
kσ, ckσ ′ , c†k1↑c

†
k2↓ck3↓ck4↑

]

= V
[
δk ′k1δσ ′↑c

†
kσc

†
k2↓ + δk ′k2δσ ′↓c

†
k1↑c

†
kσ

]
ck3↓ck4↑

− Vc†k1↑c
†
k2↓
[
δkk3δσ↓ck ′σ ′ck4↑ + δkk4δσ↑ck3↓ck ′σ ′

]
. (3.4)

With this choice of S we get to O(U2),

H ′ = H0 +
1

2
[Hint,S] ≡ H0 +H ′

int. (3.5)
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Figure 3.1: (a) Diagram for interaction term Hint. (b) Diagram of second
order effective interaction between spin up electrons mediated
by spin down electrons. Based on similar figures in Refs. [85,
86].

To calculate H ′
int we use the identity [AB,C] = A [B,C] + [A,C]B

and the relation in Eq. (3.4), resulting in

H ′
int =

U2

2V5

∑
k1,k2,k3

∑
p1,p2,p3

1

εp4 + εp3 − εp2 − εp1

{
− c†k1↑c

†
p1↑ck4↑cp4↑

[
δk3p2c

†
k2↓cp3↓ − δk2p3c

†
p2↓ck3↓

]

− c†p2↓c
†
k2↓cp3↓ck3↓

[
δk4p1c

†
k1↑cp4↑ − δk1p4c

†
p1↑ck4↑

]

+ Vδk3p2δk4p1c
†
k1↑c

†
k2↓cp3↓cp4↑

− Vδk1p4δp3k2c
†
p1↑c

†
p2↓ck3↓ck4↑

}
. (3.6)

Hence, there are two different classes of terms: six-operator terms
such as c†↑c

†
↑c↑c↑c

†
↓c↓, see Fig. 3.1, and four-operator terms c†↑c

†
↓c↓c↑.

In the first class of terms we use the approximation c
†
kσck ′σ →

Vδkk ′nF(εk −µ), where nF(ε) is the Fermi-Dirac distribution function.
Since the Fermi surface is circular, we also assume that the center-
of-mass momentum is zero as in the regular BCS case discussed in
the previous chapter. Combining these assumptions results in the
effective interaction Hamiltonian
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H ′
int =

U2

2V4

∑
k,k ′,p

{
∑
σ

nF(εk ′−k+p − µ) −nF(εp − µ)

εk ′ + εk ′−k+p − εp − εk
c
†
kσc

†
−kσc−k ′σck ′σ

+
1

2

[
1

εk ′ − εp
−

1

εk − εp

]
c
†
k↑c

†
−k↓c−k ′↓ck ′↑

}
. (3.7)

Since only particles close to the Fermi energy are free to interact
at low temperatures, we can use the approximation εk ≈ εk ′ . This
means that the second term in the above equation can be neglected,
leaving us with

H ′
int =

U2

2V3

∑
k,k ′

∑
σ

χ(k ′ − k)c†kσc
†
−kσc−k ′σck ′σ, (3.8)

where we have defined the particle-hole susceptibility [79, 85, 86]

χ(q) =
1

V

∑
p

nF(εp+q − µ) −nF(εp − µ)

εp+q − εp
. (3.9)

In a rotationally invariant three-dimensional (3D) system we have
[79]

χ(q) ≈ −
mkF

2π2

[
1−

1

2

(
|q|
2kF

)2
+ . . .

]
, (3.10)

where kF =
√
2mµ for a quadratic dispersion εk = k2/2m. Here only

the two lowest order momentum channels, the s-wave and p-wave
channels have been kept. Inserted into the expression for H ′

int the
terms even in k ′ and k ′ sum to zero, consistent with a spin-triplet
interaction, resulting in

H ′
int = −

U2

2V3
m

8π2kF

∑
k,k ′

∑
σ

k ′ · k c†kσc
†
−kσc−k ′σck ′σ (3.11)
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Using the result in Eq. (2.41) from the preceding chapter for a gen-
eral interaction matrix, and performing the Matsubara summation,
we get the gap equation

∆σσ(k ′) =
U2m

8π2kFV

∑
k

k · k ′ ∆σσ(k)
2Eσ(k)

tanh
βEσ(k)
2

, (3.12)

where Eσ(k) =
√
(εk − µ)2 + |∆σσ(k)|2. Assuming p-wave solutions

of the form ∆σσ(k) = ∆σσ cos θk [79], where θk is the angle of k
relative to the z axis, and that the main contribution to the sum
comes from momenta close to the Fermi surface, we get the following
self-consistency equation for Tc:

1 =
g

V

∑
k

cos2 θk

2ξk
tanh

βξk

2
, (3.13)

where we have defined g = U2mkF/8π
2, the effective coupling

strength. Compared to the BCS gap equation (2.51) the only dif-
ferences are that the sum has not been constrained to a finite cut-off,
and that there is an extra factor of cos2 θk which leads to a factor
2/3 when performing the angular integral. Hence, a finite Tc solu-
tion exists, below which the system becomes a p-wave spin triplet
superconductor, with equal spin (↑↑ and ↓↓) Cooper pairs.

When considering a 2D rotationally invariant system, the suscepti-
bility becomes [79, 85–87]

χ(q) = −
m

2π

[
1−

Re
√

q2 − (2kF)2

|q|

]
. (3.14)

For q = k ′ − k with |k ′| = |k| = kF, we always have |q| 6 2kF,
which means that the susceptibility is a constant. Since a momentum-
dependent interaction is necessary when considering spin-triplet
pairing with no frequency dependence (see Table 2.1), there exists
no superconducting state at O(U2) [79, 88]. However, going to third
order in a perturbation expansion one again finds a p-wave super-
conducting instability at T = 0 [87].
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Figure 3.2: (a) Plot of spin energy bands εkσ − µ as a function of kx with
ky = 0, and (b) the Fermi surfaces determined by εkσ − µ = 0.
We see that the Fermi momentum kFσ increases (decreases) for
σ =↑ (↓) compared to the Fermi momentum kF at zero field.

3.2 spin-polarized systems

One way of getting superconductivity to second order in a perturba-
tion expansion in two dimensions is to spin-polarize the system [86,
88]. Adding a Zeeman coupling to an exchange field h results in the
additional term

HB = −
1

V

∑
k

∑
σ,σ ′

h ·σσσ ′c
†
kσckσ ′ . (3.15)

This term leads to a splitting of the bands, as seen from the eigenen-
ergies

εkσ = εk − σh, (3.16)

where h is aligned along the spin-up direction, and σ = +(−)1 for
spin-up (spin-down) electrons, see Fig. 3.2. Due to the spin splitting
of the bands, the Fermi momentum is also different for the two bands,
kFσ =

√
2m(µ+ σh) for a quadratic dispersion.

The effective interaction now has a spin-dependence,

H ′
int =

U2

2V3

∑
k,k ′

χσ̄(k ′ − k)c†kσc
†
−kσc−k ′σck ′σ, (3.17)
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where σ̄ =↓ (↑) for σ =↑ (↓), and the susceptibility depends on the
spin index [85, 86],

χσ(q) = −
m

2π

[
1−

Re
√

q2 − (2kFσ)2

|q|

]
. (3.18)

Since kF↑ > kF↓, k ′ − k can exceed 2kF↓ for pairing on the spin-
up majority band, and the susceptibility thus has a momentum
dependence. Therefore, we expect that we can have pairing on the
spin-up majority band, but not on the spin-down minority band, as
long as 0 < kF↓ < kF↑ [86].

3.3 rashba spin-orbit coupling

When an electron is moving with momentum p in an electric field
E, we know from the relativistic formulation of electrodynamics
that this translates to a magnetic field B ∼ p × E = −p ×∇φ in
the electron’s rest frame, where φ is the electric potential [28, 89].
Inserted into the Zeeman term Eq. (3.15), this leads to a spin-orbit
coupling (SOC) term

HSOC ∼ ∇φ · [p ×σ], (3.19)

that is, the energy of a particle becomes dependent on the relative
direction of the spin and momentum. This can also be shown from
the non-relativistic limit of the Dirac equation [90]. Due to internal
crystal fields, e.g. semiconductors have spin-orbit interactions which
increase with the atomic number [91, 92], as will be relevant in the
discussion of topological insulators in the next chapter.

In systems with broken structural inversion symmetry the spin of
the particles is coupled to the momentum through a Rashba spin-
orbit coupling term [89, 93]

HR =
αR

V

∑
k

∑
σσ ′

[k ×σσσ ′ ]zc
†
kσckσ ′ , (3.20)
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Figure 3.3: (a) Plot of helicity energy bands εkα−µ as a function of kx with
ky = 0, and (b) the Fermi surface determined by εkα − µ = 0.
Similar to the case of Zeeman split bands, we see that the Fermi
momentum kFα increases (decreases) for α = − (+) compared
to the Fermi momentum kF for zero SOC strength αR.

where αR is the strength of the coupling, and we have assumed that
the inversion symmetry is broken in the z direction. This situation
can arise e.g. at the interface between two materials or when an
electric field is present in the z direction.

Since Rashba SOC is expected to occur in many effectively 2D
systems, we examine if the change in band structure due to the
Rashba SOC itself is enough to lead to a superconducting instability
from weakly repulsive spin-space interactions. In the next section,
we will introduce spin-orbit coupling in a spin-polarized system.

With the inclusion of spin-orbit coupling (SOC), the eigenenergies
of the non-interacting system become

εk± = εk − µ±αR|k|, (3.21)

where the Hamiltonian is diagonalized by the operators

ak+ =
[
ieiφkck↑ + ck↓

]
/
√
2, (3.22a)

ak− = −
[
ck↑ + ie

−iφkck↓
]
/
√
2. (3.22b)

where ± denotes the helicity index. The eigenenergies and Fermi

surfaces, kF± =
√
2mµ+α2Rm

2 ∓αRm, are illustrated in Fig. 3.3.
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Figure 3.4: The figures illustrate the classes of interaction terms occurring
when transforming the interaction term in Eq. (3.1) to the helicity
basis: (a) Intraband, (b) interband, (c) pair-hopping, and (d)
mixed interaction terms. The incoming momenta are −k ′ and
k ′ (dashed lines) and outgoing momenta k and −k (solid lines).

Transforming the interaction term in Eq. (3.1) we generate 16

different interaction terms, which come in four categories: Intraband
terms c†αc

†
αcαcα, interband terms c†αc

†
ᾱcᾱcα, pair hopping terms

c
†
αc

†
αcᾱcᾱ, and mixed terms such as c†αc

†
αcαcᾱ, where α = ± and

ᾱ = ∓. The different terms are illustrated in Fig. 3.4. In order for an
electron to contribute significantly to the dynamics of the system,
its energy has to lie within a few kBT from the Fermi energy [56].
Assuming that the spin splitting is significantly larger than kBT ,
the interband and mixed processes will only conserve momentum
for very specific choices of incoming and outgoing momenta. For
the intraband and pair-hopping processes, however, we can simply
choose incoming momenta −k ′ and k ′, and outgoing momenta k and
−k close to the Fermi level, thus ensuring momentum conservation.
Hence, the phase space of the interband and mixed processes is much
smaller compared to the intraband and pair-hopping processes, and
the former processes will be suppressed compared to the latter.
Keeping only the dominant terms, we get

HR
int =

U

4V3

∑
k,k ′

∑
α,β

αβe−iαφk+iβφk ′a
†
kαa

†
−kαa−k ′βak ′β, (3.23)

where α,β take the values ±1.
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Using the above simplified interaction term and the result Eq. (2.41)
from the preceding chapter, we get the two coupled gap equations

∆++(k ′) = −
Ue−iφk ′

4V

∑
k

[
∆++(k)eiφk

E+(k)
tanh

βE+(k)
2

−
∆−−(k)e−iφk

E−(k)
tanh

βE−(k)
2

]
, (3.24a)

∆−−(k ′) = −
Ueiφk ′

4V

∑
k

[
∆−−(k)e−iφk

E−(k)
tanh

βE−(k)
2

−
∆++(k)eiφk

E+(k)
tanh

βE+(k)
2

]
, (3.24b)

where E± =
√
(εk± − µ)2 + |∆±±(k)|2. From the above gap equation

it is clear that we can write ∆++(k) = ∆++e
−iφk , and ∆−−(k) =

∆−−e
iφk . We also see that for U > 0 the intraband interaction is

repulsive, while the coupling between different ∆++ and ∆−− is
attractive. Switching to energy integrals with cut-off ωc in the above
equations and using a quadratic dispersion, we get for T = T−c

[1+K+]∆++ = K−∆−−, (3.25a)

[1+K−]∆−− = K−∆++, (3.25b)

with

K± =
Um

4π


1∓ αRm√

α2Rm
2 + 2mµ


 ln

2eγωc

πkBT
, (3.26)

where we have assumed kBT � ωc, see the discussion leading to
Eq. (2.56). Combining the two above equations, we get the require-
ment 1+K+ +K− = 0, resulting in the critical temperature

kBTc = 1.13ωce
2π
Um . (3.27)

Hence, we have no solutions when U > 0, since the expression for the
critical temperature violates the assumption kBTc � ωc used in the
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calculations. For negative U, however, we would have a chiral p-wave
superconducting state on both bands, with momentum dependence
kx ± iky, where the helical nature of the Cooper pairs is caused by
the SOC.

It is possible to construct an effective low-energy theory with at-
tractive interactions also in this case, showing that superconductivity
can arise on the majority band [94, 95]. We will however not pur-
sue this further, but instead reintroduce the spin-polarization due
to an exchange field, and examine the changes to the momentum
dependence of the induced superconducting gap.

3.4 spin-splitting and rashba soc

We thus study a 2D system with weak repulsive interactions, Zeeman
splitting and Rashba spin-orbit coupling. This situation is relevant
e.g. for the interface between LaAlO3 and SrTiO3, at which one can
have a 2D superconducting state, a magnetic state, and a combination
of the two [96–103]. SOC is also present in such systems due to the
broken inversion symmetry, the strength of which can be tuned by
an applied electric field or gate voltage [104, 105].

The effects of Zeeman splitting and spin-orbit coupling on super-
conductivity in two-dimensional systems has been studied in various
cases before [79, 86, 94, 95, 106–109], but we here specialize to the case
where the SOC is weak compared to the exchange energy, αR/h� 1.
This was studied in the case of a quadratic dispersion and a general
direction of the magnetic field in Ref. [85], showing that the introduc-
tion of the SOC leads to a superconducting gap on the majority band
with momentum dependence cos δ cosφk + i sinφk, where δ is the
inclination angle of the magnetic field, see Fig. 3.5. However, the crit-
ical temperature did not depend on the SOC strength, and the main
effect of the SOC was thus to change the momentum dependence of
the gap.

In Paper [1] we performed an analysis similar to that in Ref. [85]
using the Hubbard model (see e.g. Refs. [40] and [110]) instead of a
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Figure 3.5: Sketch of the geometry considered: A 2D lattice lies in the xy
plane, the inversion symmetry is broken along the z direction
leading to a Rashba spin-orbit coupling term, and the exchange
field h can be oriented in any direction, determined by the
angles δ and θ. Based on similar figure in Ref. [85].

model with quadratic dispersion. The total model is H = Ht +HB +

HR +Hint = H0 +Hint, where

Ht =
1

V

∑
k,σ

(εk − µ)c†kσckσ, (3.28)

is the tight-binding model describing hopping between neighboring
lattice sites. Here εk = −2t(coskx + cosky), where t is the nearest
neighbor hopping parameter. The Rashba term for a square lattice is

HR =
αR

V

∑
k

∑
σσ ′

(σyσσ ′ sinkx − σxσσ ′ sinky)c
†
kσckσ ′ , (3.29)

while the remaining terms are unchanged. The magnetic field vector
h is parametrized using h = h(cos θ sin δ, sin θ sin δ, cos δ), see the
sketch of the system geometry shown in Fig. 3.5.

Diagonalizing the non-interacting Hamiltonian H0, we find the
two bands

εkλ = εk − ζλ
[
h2 − 2hαR(sinkx sin θ− sinky cos θ) sin δ

+α2R(sin2 kx + sin2 ky)
] 1
2 , (3.30)

where the band index λ = 1, 2, and ζ1(2) = +(−)1. When the mag-
netic field has an in-plane component (δ 6= 0), the Fermi surfaces of
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Figure 3.6: Plot of the Fermi surfaces of ελ for (a) δ = θ = 0, and (b) δ =
π/2, θ = π/4. The parameter values used are h = t, αR = 0.2t
and µ = −1.5t.

the two bands are no longer symmetric about k = 0, as illustrated in
Fig. 3.6. The energy eigenstates are no longer spin states, but a mix
between spin-up and spin-down electrons depending on the angle
of the exchange field. We follow Ref. [85] and treat the SOC as a
perturbation compared to the exchange field, αR � h, which means
that the bands are spin-bands only to lowest order in αR/h.

Transforming the interaction term Hint to the eigenbasis generates
the same types of terms discussed in the previous section, see Fig. 3.4.
However, since we now treat the SOC perturbatively, they are not
all of the same order in αR/h. The interband terms are of O(1),
the mixed terms are of O(αR/h) and higher, and the intraband and
pair-hopping terms of O(α2R/h

2).
Performing a Schrieffer-Wolff transformation to get rid of the inter-

band terms naturally generates higher-order term in the interaction
strength U. However, assuming that U/t� αR/h, we keep only the
terms to O(U2/t2) and O(Uα2R/th

2). Specializing to zero center-of-
mass momentum, we get the effective interaction Hamiltonian

H ′
int =

1

2V3

∑
k,k ′

∑
λµ

V
λµ
kk ′a

†
kλa

†
−kλa−k ′µakµ, (3.31)
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where we have defined

V
λµ
kk ′ = U

2δµλχλ̄(k
′ − k) +

Uα2R
2h2

Γλ(k)Γ†µ(k
′), (3.32)

and

Γλ(k) = ζλ
[

sinkx cos θ+ sinky sin θ

+ iζλ(sinkx sin θ− sinky cos θ) cos δ
]
. (3.33)

Comparing the above interaction Hamiltonian with Eq. (3.17), we see
that the first term in Vλµkk ′ is the Kohn-Luttinger term. The second
term is similar to that in Eq. (3.23), and is due to the Rashba spin-orbit
coupling. The former term only has an intraband coupling, while
the latter also has pair-hopping terms. Superconductivity due to the
latter term should therefore lead to superconductivity on both bands
simultaneously.

The susceptibility χλ(q) in the Kohn-Luttinger term is as defined
in Eq. (3.9), with εk → εkλ. In the continuum limit the suscepti-
bility, given by the expression in Eq. (3.18), is independent of the
chemical potential. However, when using a lattice model such as
the tight-binding model, the shape of the Fermi surface depends on
the chemical potential, see Fig. 3.7(a). We therefore also expect the
susceptibility to depend on how many electrons are present in the
system. Calculating the susceptibility numerically, and expanding it
in terms of square lattice harmonics we find that for certain filling
fractions it is enough to consider two terms in the expansion,

χλ(k − k ′) = χ1λ
[
gx+iy(k)gx−iy(k ′) + gx−iy(k)gx+iy(k ′)

]

+ χ2λ
[
gx(k)gx(k ′) + gy(k)gy(k ′)

]
, (3.34)

where we have defined the orthonormal functions

2πgx±iy(k) = sinkx ± i sinky, (3.35a)

2πgx(k) = 2 sinkx cosky, (3.35b)

2πgy(k) = 2 coskx sinky. (3.35c)
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Figure 3.7: (a) Plot of the Fermi surfaces of the tight-binding dispersion
for µ/t evenly spaced from −3 to 3. (b) Plot of the expansion
coefficients χiλ in Eq. (3.34) as a function of filling fraction n
for field strength h = 0.2t at zero temperature. Keeping only
the first two terms in the expansion is sufficient in the white re-
gions, while the gray regions indicate that other terms contribute
significantly to the susceptibility.

The expansion in terms of only the two terms in Eq. (3.34) is valid in
the white areas of Fig. 3.7(b), which shows a plot of the coefficients
of the two terms included in the expansion as a function of filling
fraction n. Here n = 0 corresponds to an empty system, while n = 1

is a full system with two electrons per lattice site.
Calculating the gap equation from the interaction Eq. (3.31), we

arrive at

∆µ(k ′) = −
1

2V

∑
k,λ

V
µλ
k ′k∆λ(k)
Eλ(k)

tanh
βEλ(k)
2

. (3.36)

By examining the momentum channels in Vλµkk ′ , we find that we can
also expand the gap function in terms of square lattice harmonics

∆λ(k) = ∆
x+iy
λ gx+iy(k) +∆

x−iy
λ gx−iy(k)

+∆xλgx(k) +∆
y
λgy(k), (3.37)
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for filling fractions where the expansion in Eq. (3.34) is valid. Close
to the critical temperature, the gap equation can therefore be written
as

~∆ = M(Tc)~∆, (3.38)

where ~∆ = (∆x+iy1 ∆
x−iy
1 . . . ∆

y
2 )
T , and M(T) is the matrix

coupling the different gap coefficients at temperature T . In order for a
nontrivial solution to exist, there must exist a temperature T at which
M(T) has eigenvalue 1, corresponding to det[M(Tc) − 1] = 0. This
determines the critical temperature. The eigenvectors of M(Tc) with
eigenvalue 1 gives information about the relative strength between
the gap coefficients ∆iλ, and thus the dominant momentum channels
of the gap.

Solving gap equation numerically for two filling fractions n = 0.1
and n = 0.45, we find that the λ = 1 band is superconducting in the
gx±iy channels in the first case, while in the latter case the λ = 2

band is superconducting in the gx and gy channels, see Fig. 3.8.
Hence, it is possible to change which band is superconducting by
changing the filling fraction of the system.

Changing the orientation of the magnetic field changes the mo-
mentum dependence of the superconducting gap, as can be seen in
Fig. 3.8. For a pure out-of-plane field we have ∆λ(k) ∼ kx + ζλiky
in the limit of small |k|, while a pure in-plane field in the x direc-
tion gives ∆λ(k) ∼ ky. This, together with the fact that only one
band becomes superconducting at Tc indicates that only the Kohn-
Luttinger term is responsible for the attractive pairing, since the
Rashba-term would lead to superconductivity on both bands simul-
taneously with chirality opposite of what was found here. In fact,
since the intraband part of the Rashba term is repulsive, the resulting
momentum dependence of the gap is such that the effects of the
Rashba-term is minimized, thus leading to Tc being independent of
αR. The main effect of the Rashba spin-orbit coupling is therefore
the introduction of a chiral p-wave order parameter, compared to
the regular p-wave gap for zero SOC. Moreover, though we did not
include the shift in the dispersion in the analysis to leading order,
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bottom) of the coefficients ∆iλ as a function of δ at the critical
temperature for filling fractions n = 0.1 (left) and n = 0.45
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the Cooper pairs have a finite center-of-mass momentum whenever
the exchange field has an in-plane component [85], resulting in a
Fulde-Ferrel-Larkin-Ovchinnikov [51, 52] state.





4
T O P O L O G I C A L I N S U L AT O R S

This chapter serves as an introduction to the topic of topological
insulators (TIs), relevant for the discussion of Papers [2–5]. We begin
with a brief historical overview of the different Hall effects, leading
up to the quantum spin Hall effect (QSHE) and topological insulators.
Next we focus on one particular model for topological insulators,
and use this model to introduce some of the features of TIs, before
focusing on the TI surface states and their response to a magnetic
field.

4.1 the hall effects

The Hall effect was discovered by Edwin Hall [111] in 1879: When
running a current through a gold leaf placed in a perpendicular
magnetic field, he found that there was an induced voltage difference
transverse to the current direction. This can be explained from the
expression for the Lorentz force on a charge q [28, 56]

F = q(E + v × B), (4.1)

where E is the electric field, B is the magnetic field, and v is the
velocity of the charged particle. Assuming a magnetic field in the
z direction, and a current in the x direction, the trajectory of the
electrons will initially be deflected in the negative y direction, see
Fig. 4.1 for an illustration. However, in time, a negative (positive)
charge density will accumulate at the lower (upper) edge, giving rise
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Figure 4.1: Illustration of the Hall effect with electrons as charge carriers.
(top) When the current is turned on, the electrons are deflected
toward the lower edge due to the perpendicular magnetic field.
This leads to an induced electric field between the upper and
lower edges which eventually cancels the Lorentz force due to
the magnetic field (bottom). Based on similar figures in Ref. [56].

to an electric field eventually exactly counteracting the force from the
magnetic field when Ey = vxBz. Thus, there is a voltage difference
VH between the upper and lower edges, where the sign of the Hall
voltage is indicative of the sign of the charge carriers.

In analogy to the Hall effect, a spin Hall effect (SHE) was later
theoretically predicted. In this case spin-dependent impurity scat-
tering [112–114] or intrinsic spin-orbit coupling [115, 116] leads to
a spin current transverse to an applied electric field [117, 118], and
thus serves as a mechanism of converting a charge current to a spin
current [89]. In the steady state we therefore have a spin imbalance
instead of a charge imbalance.

In 1980 von Klitzing, Dorda and Pepper [119] reported measure-
ments of the Hall voltage of a 2D electron gas (2DEG) in a semicon-
ductor with a strong magnetic field at low temperature. They found
that when varying the applied magnetic field, the Hall resistance
did not increase linearly with the magnetic field, but had plateaus
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Figure 4.2: (left) Illustration of the QHE, where the electrons close to the
edges cannot have complete cyclotron orbits, but instead hop
along the edge, leading to metallic surface states. (right) Illustra-
tion of the QSHE, where particles with opposite spin move in
opposite directions. The figures are based on similar figures in
Refs. [122–125].

at quantized values h/e2ν [41, 56, 119, 120], where h is Planck’s
constant, e is the electron charge, and ν is an integer. This effect has
been dubbed the quantum Hall effect (QHE). The results were inde-
pendent of the device geometry or material imperfections, stemming
from the fact that the Hall conductance was related to a topological
invariant of the system [120, 121].

One of the intriguing features of the QHE is the presence of metal-
lic edge states, often explained in terms of broken cyclotron orbits
for electrons near the edge [122, 123], see Fig. 4.2a). In 2005 Kane
and Mele [126] predicted a quantum version of the spin Hall ef-
fect in graphene, the quantum spin Hall effect (QSHE) [127].1 They
predicted that the presence of spin-orbit coupling could lead to a
state which was insulating in the bulk, but with gapless edge states
where the momentum and spin directions are locked, see Fig. 4.2b).
The states were invariant under time-reversal symmetry T, and the
system is classified by a nonzero topological invariant Z2 [130], as
opposed to regular insulators which have Z2 = 0. Bernevig, Hughes
and Zhang [131] later predicted that the QSHE could be observed in

1What follows is by no means a comprehensive account of history of the quantum
spin hall effect and topological insulators. For more details see e.g. Refs. [122–125,
128, 129].
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mercury telluride-cadmium telluride (HgTe-CdTe) quantum wells,
which due to its heavy elements has strong spin-orbit coupling [122].
This was experimentally confirmed shortly after by König et al. [132].

Several groups also proposed a three-dimensional version of the
quantum spin hall insulator, or topological insulator [133–137], later
discovered in e.g. Bi1−xSbx [138], Bi2Se3 [139], Bi2Te3 [140] and
strained HgTe [141]. In order to introduce some general features
of topological insulators we in the next section study the model
proposed by Zhang et al. [137] for the three-dimensional topological
insulators Bi2Se3, Bi2Te3 and Sb2Te3.

4.2 model for topological insulators

For the three-dimensional topological insulators Bi2Se3, Bi2Te3 and
Sb2Te3 the states lying closest to the Fermi level are the pz orbital
states of both spins, with positive and negative parity states com-
ing from different kinds of atoms, e.g. Bi and Se respectively in
Bi2Se3 [137]. Including only these states in an effective, low-energy
model satisfying time-reversal symmetry, three-fold rotation symme-
try along the z axis, and inversion symmetry, the model has the form
[137],

H = C+Dzk
2
z +D‖k

2
‖ +




M(k) Azkz 0 A‖k−
Azkz −M(k) A‖k− 0

0 A‖k+ M(k) −Azkz

A‖k+ 0 −Azkz −M(k)




,

(4.2)

where k2‖ = k2x+k
2
y, k± = kx± iky, and M(k) =M−Bzk

2
z−B‖k2‖ . A

4× 4 identity matrix is implied in the first terms. The coefficients Ai,
Bi, C, Di, and M are fitting parameters determined by comparison
to ab initio calculations [137]. The parameter M effectively tunes
the strength of the spin-orbit coupling in the system. Numerically
calculating the eigenvalues of this model using periodic boundary
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Figure 4.3: Plot of the bulk bands of the model in Eq. (4.2) for ky= 0 as a
function of kx, where each line corresponds to a different value
of kz. The coefficient M is negative (positive) in the left (right)
column, while the off-diagonal couplings Ai are zero (finite) in
the upper (lower) plots. The red dashed lines show the edges of
bulk band gap.

conditions in the kx − kz plane, using parameter values given in
Ref. [137], results in the energy bands shown in Fig. 4.3. The figure
shows that changing the sign ofM from negative to positive leads to a
band inversion when Ai = 0 [Fig. 4.3b)], and the band hybridization
when Ai is finite leads to an energy gap [Fig. 4.3d)].

Though there is a difference between the bulk bands in Fig. 4.3c)
and d) for M < 0 and M > 0, the important difference between
the two cases only becomes apparent when including an interface.
Calculating the eigenvalues assuming a finite length Lz in the z
direction leads to energy bands similar to Fig. 4.3c) for negative M.
For positive M, however, Fig. 4.4a) shows the presence of energy
states inside the bulk band gap. For small |k| the in-gap energy states
resemble the Dirac dispersion [142] for massless electrons, with a
Dirac point where the lines cross. Calculating the eigenvectors of
these in-gap states with ky = 0 reveals that there are two degenerate
states located at either side of the material, at z = 0 and Lz, as seen
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Figure 4.4: (a) Energy bands of the model in Eq. (4.2) for ky = 0 as a
function of kx assuming a finite size in the z direction. There are
now states inside the bulk band gap (yellow lines). Plots of the
probability densities as functions of position for the indicated
energy values show that the in-gap energy states are localized
at either side of the material (b), which is not the case for the
states outside the bulk band gap (c). The lines in panel (b) are
shifted vertically to increase visibility.

by the probability density as a function of z in Fig. 4.4b). The same
is not the case for states above or below the band gap, as seen in
Fig. 4.4c). Hence, the metallic in-gap energy states are surface states,
quite different from the insulator states in the bulk bands.

The results are similar if instead of having vacuum at z = 0 and
z = Lz, the sign of M changes abruptly at Lz/2 while keeping |M|

fixed, as shown in Fig. 4.5. The surface states, now located at Lz/2
and Lz, are no longer degenerate due to the difference in interfaces.
In both cases surface states occur where there is a change in the
bulk description of the system, suggesting a connection between the
existence of surface states and the bulk properties of the system.

It turns out the occurrence of edge or surface states can be pre-
dicted based on the bulk properties of a system, which can be cat-
egorized using different topological invariants. The bulk-boundary
correspondence states that the number of surface states is related
to the change in topological invariants [123, 129, 143–145], i.e. to
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Figure 4.5: (a) Energy bands of the model in Eq. (4.2) for ky = 0 as a
function of kx assuming a finite size in the z direction, and a
sign change of M at z = Lz/2, see right axis in (b). The band
structure now is a combination of the topologically trivial and
nontrivial bands, with states in the middle of the bulk band gap.
(b) The surface states are now located close to Lz/2, where M
changes sign, and at Lz, the interface to vacuum.

changes in the bulk of the system. In the case of topological insu-
lators the topological invariants are Z2 invariants [130, 133, 134,
146, 147], which are finite for TIs and zero for trivial materials and
vacuum. Therefore, we have surface states at both the interface to
vacuum and to topologically trivial materials, materials with M < 0

in the above model, see Fig. 4.5.

4.3 surface states

We now turn our attention to the effective theory for the surface
states, and study the properties of the surface states in more detail.
When the chemical is inside the bulk band gap it is natural to assume
that mainly the surface states contribute to the dynamics of the TI.
Moreover, since surface states reside at the interface between TIs and
other non-topological materials, we assume that these states are most
relevant when coupling TIs to other materials, thus using only the
effective surface state theories to model TIs in Papers [2–5].
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In the limit |k| → 0 the surface states are well described by the
Hamiltonian [137, 148]

Hsurf =
∑

k

Ψ†(k)[ hvF(σxky − σykx) − µ]Ψ(k), (4.3)

where Ψ(k) = (ψ↑(k) ψ↓(k))T , with ψ↑(↓) denoting a spin up (down)
electron, and we identify  hvF = A‖. µ is the chemical potential
determining the location of the Dirac point. Note that k = (kx,ky) =
|k|(cosφk, sinφk), i.e. it contains only the 2D wavevectors on the
surface of the TI.

The eigenenergies and eigenstates are found by solving the eigen-
value problem Hv = εv, resulting in the bands

ε± = ± hvF|k|− µ, (4.4)

and eigenvectors

v+ =
1√
2

(
ie−iφk

1

)
, (4.5a)

v− =
1√
2

(
−1

−ieiφk

)
. (4.5b)

Calculating the spin expectation values 〈Sσ〉i = v†iSσvi, we get

〈Sx〉± = ±
 h

2
sinφk, 〈Sy〉± = ∓

 h

2
cosφk, 〈Sz〉± = 0, (4.6)

From this we notice a few interesting features. First of all, the spin
expectation value depends on the momentum. This is due to the
special time-reversal symmetric form of the Hamiltonian Eq. (4.3),
which leads to spin-momentum locked states, with the spin pointing
normal to the momentum direction. Moreover, the spin directions
are opposite for the upper (+) and lower (-) bands. This is illustrated
in Fig. 4.6.

Due to the spin-momentum locking, the surface states are robust
against backscattering from non-magnetic impurities [124, 129, 143].
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Figure 4.6: Plot of energy bands ε+(−) in blue (red), with arrows indicating
the spin structure as a function of k, shown also in the kx − ky
plane to the right. The spin structure is independent of the
magnitude of k.

This can be explained by considering that a surface fermion can be
reflected by an impurity by taking either a clockwise or counterclock-
wise path around the impurity. The two paths lead to spin rotations
of π or −π, and thus an overall 2π rotation of the spin. Hence, there
is a sign difference between the two paths, and they destructively
interfere [124].

The model

Hsurf =
∑

k

Ψ†(k)[ hvFσ · k − µ]Ψ(k) (4.7)

is also used for the TI surface states [123, 149]. This model has the
same eigenenergies as the model in Eq. (4.3), but the spins of the
surface states are rotated counterclockwise by π/2 to point along
(opposite) k for the +(−) band. We will use both models, Eqs. (4.3)
and (4.7), to model TI surface states later in the thesis.



58 topological insulators

4.4 breaking the time-reversal symmetry

The degenerate states at k and −k with opposite spin in one band
(see Fig. 4.6) are Kramers pairs [41], as required by the time-reversal
symmetry [150]. However, for k = 0, each band contains only one
state, and the Kramers pair is made up by the k = 0 state from both
the + and − band. Hence, the band crossing at the Dirac point is
ensured by the time-reversal symmetry of the system [124].

Introducing a perturbation to the system that breaks time-reversal
symmetry, such as a magnetic field, may therefore lift the degeneracy
of the k = 0 states, removing the Dirac point [129, 146, 151]. This be-
comes relevant for instance when placing a TI in proximity to a ferro-
or ferrimagnet [149, 152–155], or when introducing ferromagnetically
ordered magnetic dopants in the TI [156–167]. If the magnetic field
has a component perpendicular to the interface, this induces a gap
in the surface state dispersion, dubbed the mass gap [149] in analogy
to the electron mass in the Dirac equation [142]. The surface states
can nevertheless remain intact.

When adding a coupling to a magnetic field, the model for the
surface states is changed to

Hsurf =
∑

k

Ψ†(k)[vFkyσx − vFkxσy − m ·σ− µ]Ψ(k), (4.8)

where m = (mx,my,mz) is a magnetic field pointing in a general
direction, with all coupling constants included in the strength |m| =

m. Calculating the surface state bands, we now get

ε± = ±
√
(vFkx +my)2 + (vFky −mx)2 +m2z − µ. (4.9)

Hence, we see that while the in-plane components of m only shift
the dispersion such that it is no longer symmetric around k = 0, the
out-of-plane component creates a gap in the dispersion of 2|mz|, as
illustrated in Fig. 4.7a).
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Figure 4.7: (a) Plot of energy bands ε± in Eq. (4.9) for m in the z and y
directions. (b) Plot of energy bands ε+(−) in blue (red) with
m = mẑ, where the breaking of the time-reversal symmetry has
lead to a gap of 2m. The projections to the x− y plane and and
y− z planes show energy contour lines and the spin-projections
at these energies. Notice that 〈Sz〉± are finite in this case, but
decrease for increasing |k|.

For notational simplicity, we define vFK = (vFk +my, vFk −mx),
and calculate the eigenvectors and spin expectation values, resulting
in

v+ =
1√
nK


 vFKy + ivFKx

mz +
√
v2F |K|2 +m2z


 , (4.10a)

v− =
1√
nK


−mz −

√
v2F |K|2 +m2z

vFKy − ivFKx


 , (4.10b)
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where nK = v2F |K|2 +
(
mz +

√
v2F |K|2 +m2z

)2
, and

〈Sx〉± = ±
 h

2

vFKy√
v2FK2 +m2z

, (4.11a)

〈Sy〉± = ∓
 h

2

vFKx√
v2FK2 +m2z

, (4.11b)

〈Sz〉± = ∓
 h

2

m2z +mz

√
v2FK2

v2FK2 +m2z +mz
√
v2FK2 +m2z

. (4.11c)

For finite mz we now have finite 〈Sz〉±, which decreases as |K| in-
creases. The spin structure is illustrated in Fig. 4.7b) for the case of
m = mẑ, showing the momentum-dependence of the spin expecta-
tion values.

The influence of magnetic fields on the TI surface states is relevant
for the discussion of both the proximity effect between a supercon-
ductor and TI in the next chapter, and magnon-induced supercon-
ductivity in Chapter 6.



5
T O P O L O G I C A L S U P E R C O N D U C T I N G P R O X I M I T Y
E F F E C T

When a non-superconducting material (M) is placed in proximity
to a superconductor (S), Cooper pairs can diffuse into the non-
superconducting material, leading to superconducting correlations.
This is called the proximity effect [6, 15, 16, 168–171]. This in turn
also weakens the superconductivity close to the S-M interface, an
effect called the inverse proximity effect. The nature of the proximity
effect varies greatly depending on the material M. For instance, for a
normal metal in the ballistic limit the superconducting correlations
decay over a length scale ξN, as sketched in Fig. 5.1. However, for
a conventional spin-singlet superconductor in contact with a ferro-
magnet the pair-breaking effects lead to a much shorter oscillatory
decay. One important example of the proximity effect in action is the
Josephson effect [172], the presence of a supercurrent at zero voltage
and finite phase difference between two superconductors separated
by a thin insulator. Such Josephson junctions can be combined to
create superconducting quantum interference devices (SQUIDs) used
to measure magnetic fields with high precision [19].

The surface states of a topological insulator differ from normal
metal electrons in many respects: The dispersion is linear, with the
spin being locked to the momentum direction, meaning that any
proximity-induced superconducting pairing between TI surface states
may result in Cooper pairs with symmetries different from those in
the superconductor. Moreover, while coupling normal metal electrons

61
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S N

|∆|

Figure 5.1: Cooper pairs leak from a superconductor into the adjacent
normal metal (N), leading to a finite Cooper pair wavefunction
a finite distance into the N, and a suppressed wavefunction in
the S close to the interface. Based on similar figures in Refs. [15,
16, 173].

to an exchange field leads to pair-breaking effects due to the spin-
splitting of the bands, we saw in the previous chapter that exchange
fields do not spin-split the surface state bands, but rather open a gap
or shift the bands in k-space. Hence, one might expect the response
of proximity-induced superconductivity to an exchange field to differ
between the TI and normal metal. In this chapter we will give a brief
introduction to the topological superconducting proximity effect
— the proximity effect between a superconductor and topological
insulator, and present the main results from Papers [2, 3].

5.1 proximity effect on the topological insulator sur-
face

The proximity effect on the surface of a topological insulator was first
studied by Fu and Kane [174]. They assumed that s-wave Cooper
pairs tunnel into the surface states, resulting in the effective action

S =
1

βV

∑
k

{
Ψ
†
k[−iωn + vFk ·σ− µTI]Ψk

+∆ψ†
k↑ψ

†
−k↓ +∆

†ψ−k↓ψk↑
}

(5.1)
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for the TI surface states, where Ψk = [ψk↑ ψk↓]T . Switching to the
diagonal basis of the non-interacting system, we find that the pairing
terms are transformed to

∆ψ
†
k↑ψ

†
−k↓ = −

∆

2
[eiφkψ

†
k,+ψ

†
−k,+ + e−iφkψ

†
k,−ψ

†
−k,−], (5.2)

where ± denote the + and − helicity states. Assuming that the
chemical potential is tuned far away from the superconducting gap,
µTI � ∆ > 0, we get an effective theory of a spinless px + ipy
superconductor [174]

S+ =
1

βV

∑
k

{
ψ

†
k,+[−iωn + vF|k|− µTI]ψk,+

−
∆eiφk

2
ψ

†
k,+ψ

†
−k,+ + h. c

}
. (5.3)

This result garnered much attention because of earlier predictions
that Majorana zero modes could occur at the cores of vortices in
such superconductors [175–177], with potential application to fault-
tolerant quantum computation [178] based on non-Abelian statistics
[179–182], leading to much experimental [183–195] and theoretical
[196–206] work on such systems.

Irrespective of the presence of Majorana fermions, superconduc-
tivity on the surface of TIs is in itself interesting, differing from
the superconducting states in both conventional and cuprate super-
conductors. A more detailed handling of the coupling between the
TI and superconductor showed that the induced superconducting
correlations in the TI are a mix of s-wave spin singlet and p-wave
spin singlet correlations [197, 200, 203, 205]. Moreover, due to the
similarities between the kinetic term of the TI surface states and the
Zeeman coupling, the effects an exchange field on the superconduct-
ing state differs from regular superconductors, as we will see in the
next section.
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5.2 vortex spin valve

Adding a coupling to an electric potential, gauge field A, and an
in-plane exchange field m in the action Eq. (5.1), we get the action

S =

β∫
0

dτ

∫
dr

{
Ψ†[∂τ − vF(i∇+ eA) ·σ− m ·σ− µTI + ieφ

]
Ψ

−∆ψ†
↑ψ

†
↓ −∆

†ψ↓ψ↑
}

, (5.4)

where we have switched to an imaginary time, and coordinate basis.
From the above we see that the gauge and exchange fields enter the
action in the same way. This equation is gauge invariant under the
local transformation

ψσ → ψσe
−iθ, (5.5a)

eA → eA −∇θ, (5.5b)

eφ→ eφ+ ∂τθ, (5.5c)

∆→ ∆e−2iθ. (5.5d)

The requirement that ∆ must be single-valued when integrating
around a contour enclosing a region with a magnetic field, leads to
flux quantization with flux quantum Φ0 = π h/|e|, see the discussion
in Section 2.2. In analogy to the above transformations, we can also
define another transformation

ψσ → ψσe
−iM/vF , (5.6a)

∆→ ∆e−2iM/vF , (5.6b)

where we have defined a time-independent function M such that
∇M = m. This allows us to remove the m term in the action at the
cost of an additional phase factor for the electron and Cooper pair
fields. In a Josephson junction of length L along the x direction this
leads to a cumulative phase ϕ0 = 2mxL/vF when integrating over the
length of the junction. The current-phase relation is therefore shifted,
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Figure 5.2: (left) Sketch of the system considered in Paper [2]: A spin valve
placed on top of a TI Josephson junction. In the anti-parallel
configuration the in-plane exchange field can induce vortices in
the TI (right). No vortices a present in the parallel configuration.

I ∼ sin(ϕ−ϕ0) [196, 199], meaning that one can have Josephson
junctions with tunable phases ϕ0 other than 0 and π in the ground
state.

Integrating around a contour C and requiring that the gap must be
single-valued, we get the requirement

2

vF

∮
C

dl ·∇M =
2

vF

∮
C

dl · m =
2

vF

∫
A

dS ·∇× m = 2πN. (5.7)

Defining an effective flux Φm ≡
∫
A dS ·∇× m, we see that this flux

is quantized in terms of the new flux quantum Φm0 = πvF. Therefore,
it should be possible to induce vortices by an in-plane exchange
field. This was examined in Paper [2] using the quasiclassical Usadel
equation [207] for topological insulators in proximity to supercon-
ductors [208–210], showing that a spin valve structure on top of a TI
Josephson junction can be used to control the presence of vortices,
see Fig. 5.2.

5.3 inverse proximity effect

The aforementioned effect depends on the fact that superconductivity
is present in the system, and it is thus crucial that the inverse prox-
imity effect is weak enough that the superconducting correlations
survive when coupling to a TI. This problem was first addressed
in Refs. [200, 202] and [201] for the case of 2D and 3D topological
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Figure 5.3: Plots of the symmetry functions v(k) in Eq. (5.9) for the s-wave
and d-wave cases.

insulators respectively,1 showing that the superconducting correla-
tions decayed compared to the bulk value close to the S-TI interface,
but still remained finite. In Paper [3] we investigated if there exist
situations where the inverse proximity effect is strong, resulting in a
large decrease in the superconducting gap, by studying a model of an
effectively 2D s-wave or d-wave superconductor coupled to the sur-
face states of a TI. The bulk states were not considered, though these
can also become superconducting [192, 211], meaning the chemical
potential should be located inside the bulk gap of the TI. The model
consists of three terms, S = SS + STI + St, where the superconducting
part reads

SS =
1

βV

∑
k,σ

[−iωn + εk − µ]c†kσckσ

−
∑
k,k ′

Vkk ′

(βV)3
c
†
k↑c

†
−k↓c−k ′↓ck ′↑, (5.8)

where the interaction written in separable form [19]

Vk,k ′ = gv(k)v(k ′) (5.9)

with v(k) determining the symmetry of the interaction. For s-wave
v(k) = 1, while for dx2−y2-wave v(k) =

√
2 cos 2φk, as illustrated in

Fig. 5.3. The coupling strength g is finite only for −ω− < εk − µ <

1Unfortunately, I was not aware of these works when working on and writing
Paper [3], and therefore failed to mention that such self-consistent calculations had
already been performed.
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ω+, where ω± is an upper (lower) cut-off frequency. For the TI
surface state theory STI we use Eq. (5.1) with |∆| = 0. The TI surface
states are coupled to electrons in the superconductor by the hopping
term [204, 212–214]

St = −
1

βV

∑
k,σ

t[c†kσψkσ +ψ
†
kσckσ]. (5.10)

Integrating out the TI fermions leads to an SOC term in the ef-
fective S action [213], which for an s-wave superconductor is ex-
pected to result in p-wave correlations, see e.g. Ref. [106]. Performing
a Hubbard-Stratonovich decoupling, and calculating the Green’s
function in the superconductor, this is exactly what we find. The
anomalous Green’s function has the form

F(k) =
∆(k)

ω2n + E2k

[
1+ t2Fs(k) + t

2Ft(k)k ·σ
]
iσy, (5.11)

where Ek =
√
(εk − µ)2 + |∆(k)|2, indicating that the proximity to

the TI has induced spin triplet p-wave (f-wave) correlations in the
s-wave (d-wave) superconductor [200, 201]. The form of F(k) is very
similar to that found on the TI side of an S-TI bilayer in Ref. [203].
The anomalous Green’s function does not contain odd-frequency
correlations. However, adding an in-plane exchange field does re-
sult in odd-frequency correlations, in agreement with the results in
Ref. [203]. Proximity-induced odd-frequency pairing was recently
observed in the bulk of a TI with a magnetic field applied parallel to
the interface [211].

Due to the induced spin-orbit coupling, the spin basis is no longer
the eigenbasis of the S. In the normal state (T > Tc) we have the
bands

ε
γ
λ(k) =

1

2

[
εk − µ+ λvF|k|− µTI

+ γ
√
(εk − µ− λvF|k|+ µTI)2 + 4t2

]
, (5.12)
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Figure 5.4: Plots of the bands εγλ(k) in Eq. (5.12) for different µTI with
parameter values relevant for (a) s-wave and (b) d-wave super-
conductors, with line widths proportional to the spectral weights
in Eq. (5.13). The dotted lines in the inset in (a) show the cut-off
momenta corresponding to the cut-off frequencies ω±.

with quasiparticle weights given by the residues of the Green’s func-
tion,

w
γ
λ(k) =

1

2
+

εk − µ− λvF|k|+ µTI

2γ
√
(εk − µ− λvF|k|+ µTI)2 + 4t2

, (5.13)

where λ,γ = ±. The bands are plotted in Fig. 5.4 for typical parameter
values for conventional s-wave and high-Tc d-wave superconductors.
In both cases we see that for certain choices of µTI there is a strong
hybridization of the bands close to the Fermi level, leading to only
one band crossing and thus a reduced density of states at the Fermi
level. This could in turn result in a reduced superconducting gap.
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In the superconducting state we have the bands

E
γ
λ(k) =

1√
2

{
E2k + (λvF|k|− µTI)

2 + 2t2

+ γ
{
[E2k − (λvF|k|− µTI)

2]2

+ 4t2[(εk − µ+ λvF|k|− µTI)
2 + |∆(k)|2]

} 1
2

} 1
2
, (5.14)

where Ek =
√
(εk − µ)2 + |∆(k)|2, and ∆(k) = ∆v(k) is determined

self-consistently from the gap equation

1 =
g

4V

∑
k

∑
λ,γ

v(k)2
E
γ
λ(k)

2 − (λvF|k|− µTI)
2

E
γ
λ(k)

[
E
γ
λ(k)2 − E

γ̄
λ(k)2

] tanh
βE
γ
λ(k)
2

.

(5.15)

Solving the gap equation numerically, we get the dependence on µTI

and t shown in Fig. 5.5a) and b) for the s-wave and d-wave cases,
which we discuss in more detail in the following.

5.3.1 s-wave superconductors

In the s-wave case there is a reduction in the superconducting gap
when µλ,−

TI < µTI < µ
λ,+
TI , where

µλ,±
TI (t) = λ

√
2mv2F(µ∓ωD)±

t2

ωD
, (5.16)

with cut-off frequencies ω± set to the Debye frequency ωD. This cor-
responds to chemical potentials where one normal band [Eq. (5.12)]
does not cross the Fermi level within a range of momenta given
by the cut-off frequencies, see the inset in Fig. 5.4a). Naively we
therefore expect a reduction in the gap to the value |∆| = |∆0|e

−1/λ,
where λ = gD0 is the dimensionless coupling constant and D0 is the
normal density of states at the Fermi level, since this corresponds
to the density of states being halved. From the inset in Fig. 5.5a) we
see that this is in good agreement with the numerical results. The



70 topological superconducting proximity effect

0.0

0.5

1.0

|∆
|/
|∆

0
|

0.0

0.5

1.0

1.5

2.0

2.5

|∆
|/
|∆

0
|

0 0.1 0.2 0.3
0

1

2

3

4

5

µ
T

I
[e
V

]

(a)

0.00 0.02 0.04 0.06 0.08 0.10
t [eV]

-0.5

0

0.5

µ
T

I
[e
V

]

(b)

0 5µTI [eV]

10
0

10
−1

10
−2

10
−3 |∆

|/
|∆

0
|

0.10.2

t = 0.3 eV

Figure 5.5: Plots of the superconducting gap at T = 0 normalized to the
bulk value ∆0 as a function of µTI and t for the (a) s-wave and
(b) d-wave cases. The inset in (a) shows the normalized gap as a
function of µTI at three specific values of t, where the dashed
line indicates the value e−1/λ, where λ is the dimensionless
coupling constant.

reduction of ∆ thus decreases for increasing λ, as seen in Fig. 5.6,
consistent with the fact that the superconducting state is more robust
for higher coupling constants.

For most conventional s-wave superconductors the values µλ,±
TI (t ≈

0) lie far outside the bulk gap of the TI due to the high chemical
potential µ, meaning a strong coupling t is necessary to observe the
strongly reduced gap. Since no strong inverse proximity effect has
been observed, e.g. in Ref. [193], it seems that the coupling is too
weak in most systems. This is also in agreement with the results in
Refs. [200–202]. Moreover, since we only consider the surface states,
our model is not valid for chemical potentials outside the bulk gap.
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Figure 5.6: Plot of the normalized superconducting gap as a function of
µTI for different effective coupling constants λ for the (a) s-wave
and (b) d-wave cases, showing that the suppression decreases
for increasing λ.

5.3.2 d-wave superconductors

In the case of d-wave superconductors, the chemical potential is typ-
ically much lower, leading to strong suppression for µTI inside the
bulk band gap even at very low coupling, see Fig. 5.5b), and should
therefore be experimentally more accessible. We here use cut-off
frequencies of the order of the characteristic energies of antiferromag-
netic fluctuations assumed to be relevant for high-Tc superconductors
[61–63, 215–220]. The suppression now occurs when the hybridiza-
tion of the bands Eq. (5.12) is so strong that the bands bend away
from the Fermi level, see Fig. 5.4b), leading to a reduced number of
bands crossing the Fermi level. However, when the maxima or min-
ima of the bent bands are located close to the Fermi level the density
of states is increased, thus explaining the increase in the normalized
gap seen in Fig. 5.5b). In principle it could therefore be possible to
tune the superconducting gap by a few orders of magnitude by small
variations in µTI. From Fig. 5.6 we again see that increasing λ leads
to smaller suppression of the gap, and a reduced increase at µ±TI. The
inverse proximity effect between a high-Tc superconductor and a TI
was also studied in Ref. [221] using dynamical mean field theory,
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showing that the coupling to a TI could lead to a large suppression
of the gap for certain parameter values.



6
M A G N O N - M E D I AT E D S U P E R C O N D U C T I V I T Y

In the previous chapter we discussed superconductivity on the sur-
face of topological insulators due to proximity to superconductors.
In this chapter we will discuss another proximity system, namely a
topological insulator coupled to a ferromagnetic insulator (FMI). Kar-
garian, Efimkin and Galitski [222] showed that the coupling between
the topological surface states of the TI and the magnetic fluctuations
— the magnons — in the FMI could lead to a novel type of super-
conductivity called Amperean pairing [223], where the momenta of
the Cooper pair electrons point in the same direction, see Fig. 6.1, in
contrast to regular BCS pairing where the momenta are opposite.

The idea of magnons being mediators of attractive interactions
leading to superconductivity is not unique to TI-FMI systems, as
it is one of the proposed mechanisms for superconductivity in cer-
tain unconventional superconductors [224, 225], where there can
be either competing or coexisting magnetic and superconducting
phases [61–63, 215–220, 226–231]. Moreover, there have also been

Ampére’s force law

I2

I1

F21

F12

Amperean paring

Figure 6.1: In analogy with the attractive force between two current-
carrying wires, Amperean pairing is caused by attractive in-
teractions between fermions with close to parallel momenta.

73
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Figure 6.2: The topological surface states are coupled to the magnetic
moments in the ferromagnetic insulator with magnetization
direction determined by the angle θ relative to the z axis.

studies of superconductivity in systems consisting of ferromagnetic
and antiferromagnetic insulators coupled to normal metals [232–236].

In this chapter we will discuss the results of Papers [4] and [5],
focusing on a TI coupled to an FMI, allowing for a tilted magneti-
zation, see Fig. 6.2. In Paper [4] we also considered coupling to an
antiferromagnetic insulator (AFMI), giving similar results to that of
an FMI. However, this model does not capture important differences
between the FMI and AFMI cases, such as the enhanced interaction
strengths due to asymmetric couplings between the AFMI sublattices
[234, 236–239]. For this reason, we will focus on the FMI case for the
remainder of the chapter.

6.1 ferromagnetic insulator

The ferromagnetic insulator is modeled using the action [222, 240]

Sm =

β∫
0

dτ

∫
dr
[
b(m) · i∂τm +

κ

2
(∇m)2 − λ(m · â)2

]
, (6.1)

where m is the magnetic moment in the FMI, and â = sin θx̂+ cos θẑ.
In general, we could also have included a y-component in â, but this
can be shown to be equivalent with the chosen axis â. The first term
in Sm is the Berry phase term describing how the action depends
on the trajectory, and thus history, of the magnetic moment [110].
b(m) is the Berry connection satisfying ∇m × b(m) = m/|m|2 [110,
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p. 104], where ∇m = (∂mx ,∂my ,∂mz). κ must be positive in order for
the system to be stable.

Assuming no time- and space-dependence, the action is minimized
by maximizing m in the direction of â for positive λ. Therefore, in
the ground state all spins are oriented along â. Fixing the length of
m, |m| = m̄, we parametrize the magnetic moment vector in terms of
fluctuations n in the directions orthogonal to â,

m =
√
1− n2m̄â + m̄n, (6.2)

with

n = (nx,ny,nz) = n(cos θx̂− sin θẑ) +nyŷ, (6.3)

where we assume the fluctuations are small, |n| � 1. We have
two independent fluctuation directions orthogonal to the axis â
parametrized by n and ny. For the Berry connection, we use [222]

b =
â × n
2

, (6.4)

which to lowest order in fluctuations results in ∇m × b = â/m̄.
Rewriting the action in terms of the fluctuations and Fourier trans-

forming, we get to second order in n

Sn =
m̄

βV

∑
q

[
Ωn

2
[n(−q)× n(q)] · â +ωqn(−q) · n(q)

]
, (6.5)

where we have defined the magnon dispersion

ωq =
κm̄

2
q2 + λm̄. (6.6)

From this we see that the magnon energy increases quadratically
with increasing wavenumber, and that there is a finite energy cost
λm̄ of creating any spin wave due to the easy-axis anisotropy.

In Paper [4] we used a slightly different model, where the TI
surface states and the FMI magnetization are indirectly coupled by
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fermions residing on the surface of the FMI [240]. This leads to a
renormalization of the parameter λ in the magnon model, making
negative values of λ possible for the fluctuations. We will therefore
also discuss negative values of λ below, interpreting it as an effective
value for the fluctuations due to a more complex underlying model,
while still having an easy-axis along â.

6.2 magnon-mediated interaction

On the surface between the FMI and TI we couple the surface
states and magnetic moments via an exchange interaction term with
strength J

Sc = −

β∫
0

dτ

∫
dr Jm ·Ψ†σΨ, (6.7)

where Ψ = (ψ↑, ψ↓)T , where ψσ describe the electrons on the surface
of the TI with spin σ =↑, ↓. Fourier transforming the coupling term,
and separating the mean-field and fluctuation terms we get Sc =

Sm̄c + Sn
c , with

Sm̄c = −
Jm̄

βV

∑
k

Ψ
†
kâ ·σΨk, (6.8a)

Sn
c = −

Jm̄

(βV)2

∑
k,q

Ψ
†
k+qn(q) ·σΨk, (6.8b)

to leading order in n. The six vertexes in Eq. (6.8b) are shown in
Fig. 6.3.

Adding Eq. (6.8a) to the TI action

STI =
1

βV

∑
k

Ψ
†
k[−iωn + vF(kxσy − kyσx) − µ]Ψk, (6.9)

results in a gap and/or a k-space shift in the surface state dispersion
of the ± helicity states (see Section 4.4),

ε±(k) = ±
√
v2Fk

2
x + v

2
F(ky −Ky)

2 +M2 − µ, (6.10)
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Figure 6.3: Diagrams for interaction vertexes in Eq. (6.8b), and the resulting
interaction vertexes when projecting to the + helicity band, see
Eq. (6.11). The coupling functions for each vertex is written in
blue font, denoted vik,k+q with i = x,y, z for the + helicity band
in the rightmost column.

where we have definedM = Jm̄ cos θ and vFKy = Jm̄ sin θ. Assuming
that µ > 0, only the + helicity states will contribute significantly to
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Figure 6.4: Diagrams for effective interactions mediated by (a) n and (b) ny,
constructed from the diagrams in Fig. 6.3.

any dynamical processes in the system. Hence, we get the mapping
between the spin basis and the + band,

ψk↑ → sk√
nk
ψk+, (6.11a)

ψk↓ → rk√
nk
ψk+, (6.11b)

where sk = vF(ky − Ky) + ivFkx, rk = M+
√
M2 + |sk|2, and nk =

r2k + |sk|
2. Inserting this mapping into the coupling term Eq. (6.8b),

the interaction vertexes are transformed as shown in Fig. 6.3, leading
to new effective coupling functions between the surface states and
magnon species n and ny, denoted vik,k+q with i = x,y, z. These
coupling functions reflect the fact that due to the spin-orbit coupling
the spin-up and spin-down weights of a surface state depend on the
momentum direction, and thus the scattering processes depend on
the incoming and outgoing momenta of the surface states.

As with phonons in the BCS theory, the interactions between
surface states and magnons lead to interactions between the surface
states mediated by the n or ny magnons, as illustrated in Fig. 6.4.
Including all possible diagrams to second order in J, we get the
following theory for the + fermions,
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S+ =
1

βV

∑
k

[−iωn + ε+(k) − µ]ψ
†
kψk

+
1

(βV)3

∑
k,k ′,q

Vkk ′(q)ψ†
k+q

2
ψ

†
−k+q

2
ψ−k ′+q

2
ψk ′+q

2
,

(6.12)

where we have dropped the subscript + for notational simplicity, and
defined the symmetrized interaction matrix

Vkk ′(q) = −
J2m̄

8

[
D(k− k ′)Λq(k, k ′) −D(k+ k ′)Λq(k,−k ′)

]

(6.13)

with magnon propagator

D(q) =
ωq

(Ωn/2)2 +ω2q
, (6.14)

and scattering form factor

Λq(k, k ′) =
∏
i,j=x,z

vik ′+q
2 ,k+q

2
v
j

−k ′+q
2 ,−k+q

2

+ vy
k ′+q

2 ,k+q
2
v
y

−k ′+q
2 ,−k+q

2
. (6.15)

6.3 the gap equation

In the above interaction term we have allowed for a finite center-of-
mass momentum q, which could in principle lead to Cooper pairing
with a finite center-of-mass momentum. Moreover, whenever Ky 6= 0,
the dispersion ε+(k) is centered at k = (0,Ky), meaning that Cooper
pairs can have a finite center-of-mass momentum even when located
at opposite sides of the Fermi surface. This would be analogous to
FFLO states [51, 52], and we thus have some similarities with the
Rashba spin-orbit coupled and Zeeman split system discussed in
Section 3.4.
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Introducing a bosonic Cooper pair field ∆ through a Hubbard-
Stratonovich decoupling, and deriving the gap equation along the
lines sketched in Section 2.3, we arrive at

∆
†
Q(k

′) =
2

βV

∑
k

∆
†
Q(k)Vkk ′(Q)

[iωn− εoQ(k) − EQ(k)][iωn− ε
o
Q(k) + EQ(k)]

.

(6.16)

Here we have specialized to one center-of-mass momentum Q, while
the center-of-mass frequency is set to zero, meaning Q = (0, Q). We
have also defined the even and odd parts of the dispersion relation

εoQ(k) =
ε+

(
k + Q

2

)
− ε+

(
−k + Q

2

)

2
, (6.17a)

εeQ(k) =
ε+

(
k + Q

2

)
+ ε+

(
−k + Q

2

)

2
, (6.17b)

and the function

EQ(k) =
√
[εeQ(k)]

2 + |∆Q(k)|2. (6.18)

Notice that EQ(k) depends on the Matsubara frequency ωn through
the frequency dependence of ∆Q(k).

Since the gap function ∆†
Q(k) describes pseudo-spin triplet Cooper

pairs — the interaction is only between + helicity fermions — we see
from Table 2.1 that the gap function must either be even in frequency
and odd in momentum, or odd in frequency and even in momentum.
From Eqs. (6.13) and (6.16) we see that the only dependence on the
free frequency ω ′

n comes from the magnon propagator. Neglecting
the frequency dependence in the propagator [228, 229, 237] thus
amounts to specializing to the odd-momentum state. We will study
possible superconducting states in this limit first, before later treating
the frequency-dependent gap equation.
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Figure 6.5: Plot of 4TχQ(k) with ∆Q = 0 as a function of momentum for
different center-of-mass momenta Q = (Qx, 0). The tilt angle
θ = 0, resulting in Ky = 0, and the temperature is set to kBT =

2× 10−3 eV . We get similar results when when increasing Qy.

6.4 zero frequency limit

In the zero frequency limit the magnon propagator simplifies to
D(q) = ω−1

q , leading to a simplified gap equation

∆
†
Q(k

′) = −
2

V

∑
k

Vkk ′(Q)∆†
Q(k)χQ(k), (6.19)

with

χQ(k) =
1

4EQ(k)

{
tanh

β
[
εoQ(k) + EQ(k)

]

2

− tanh
β
[
εoQ(k) − EQ(k)

]

2

}
. (6.20)

For notational simplicity we shift Q → Q + 2K, with K = (0,Ky),
which ensures that the dispersion εeQ(k) is always centered at the
origin when Q = 0 independent of the tilt angle θ. Plots of χQ(k) for
different center-of-mass momenta Q are shown in Fig. 6.5. From the
figure we see that for zero center-of-mass momentum, corresponding
to the regular BCS type pairing, χQ gives a large contribution around
the entire Fermi surface |k| = kF, thus resulting in a large phase-space.
The reason for this is that εoQ(k) = 0 for all k in this case, giving
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kx
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P
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Figure 6.6: The figure shows the momentum space coordinates used when
studying the BCS and Amperean cases. While both k and −k can
reside on the Fermi surface (blue) in the BCS case, it becomes
increasingly difficult to place both momenta P ± k close to the
Fermi surface when |k| increases in the Amperean case.

χQ a sharp peak at the Fermi level. Increasing Qx shifts the zeros
of ε+(±k + Q/2) apart, giving a strong peak only where the Fermi
surfaces intersect, thus dramatically reducing the phase-space. The
points at which the two Fermi surfaces intersect are brought closer
together for increasing Qx, and coalesce to one point at Qx = 2kF,
leading to an extended peak around the origin. Hence, we have the
largest phase-space for Q = 0, and a significant, but smaller phase-
space for |Q| ≈ 2kF. We therefore investigate the possibility of pairing
at these two center-of-mass momenta, illustrated in Fig. 6.6.

6.4.1 BCS type pairing (Q = 0)

Setting Q = 0 and assuming that the gap M is small compared to the
chemical potential µ, the functions sk and rk defined after Eq. (6.11)
are simplified to sk = i|k|e−iφk and rk = |k|. Assuming that k and k ′

lie close to the Fermi surface, we get the scattering form factor

Λ0(k, k ′) ≈ −eiφk−iφk ′
[
1− sin2 θ sinφk sinφk ′

]
. (6.21)

As seen in Fig. 6.7a) the form factor becomes anisotropic in k space
when the magnetization has an in-plane component. However, the
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Figure 6.7: (a) Plot of the absolute value of Λ0 in Eq. (6.21) as a function of
φk with φk ′ = π/2 for different tilt angles θ. (b) Eigenvalues η
of the gap equation Eq. (6.22) as a function of λ.

expression in the square brackets never changes sign, and for φk =

φk the interaction Vkk ′(0) is always positive for λ > 0. For negative
λ, however, the magnon dispersion and thus the magnon propagator
can change sign, resulting in a negative interaction potential for
certain momentum values. Solving the eigenvalue problem derived
from the linearized gap equation [39],

η∆
†
0(k

′) = −
〈
2Vkk ′(0)∆†

0(k)
〉

k,FS
(6.22)

where 〈. . .〉k,FS denotes a Fermi surface average, we get the eigen-
values in Fig. 6.7b). The critical temperature is proportional to ec/η

with some constant c, and we therefore see that we have finite critical
temperatures for λ < 0. For positive λ, however, the eigenvalues are
very small, and by inspecting the eigenvectors one finds that these
are not actual solutions of the gap equation. Based on numerical
calculations we therefore conclude that BCS pairing is possible for
λ < 0 and µ > M, i.e. when the Fermi momentum is finite. Moreover,
remembering that the dispersion actually is shifted by K even when
Q = 0, the pairing is of FFLO type whenever the magnetization has
a finite in-plane component.
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6.4.2 Amperean pairing (|Q| = 2kF)

For notational simplicity we define the vector P = kF(cosφP, sinφP),
where kF =

√
µ2 −M2/vF, such that in the Amperean pairing case

Q = 2P. To zeroth order in momenta at µ�M, we get the scattering
form factor

Λ2P(k, k ′) = 1− sin2 θ sin2φP +O(|k|, |k ′|), (6.23)

leading to a decrease in the scattering strength for certain center-of-
mass momenta when the magnetization has an in-plane component.
More importantly, the form factor has the opposite sign compared to
the BCS case, and the interaction should therefore be attractive when
λ > 0.

Solving the linearized gap equation numerically [241] we indeed
find solutions which are odd in k, as seen from Fig. 6.8a) and b)
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for the real and imaginary part of ∆, where the critical temperature
depends on the coupling J as shown in Fig. 6.8c). From Eq. (6.23) we
expect the critical temperature to decrease for increasing θ when 0 <
φP < π, which agrees with the numerical results in Fig. 6.8d). Hence,
whenever the magnetization has an in-plane component, we expect
the superconducting pairing to arise for center-of-mass momenta
P = (±kF, 0). From the figure we also see that the critical temperature
increases for φP = 0, the reason for which is not apparent from
the lowest order expression Eq. (6.23), and is probably caused by
higher-order terms in Λ2P.

6.5 frequency dependent gap solutions

When including the frequency dependence of the magnon propa-
gator we can no longer neglect the frequency dependence of the
superconducting gap itself. This is evident when writing out the
linearized gap equation

∆
†
Q(N

′, k ′) =
J2m̄

πV

∑
N,k

t∆
†
Q(N, k)

[
Nt+ iε+

(
k + Q

2

)][
Nt− iε+

(
−k + Q

2

)]

×
[

ωk−k ′ΛQ(k, k ′)
(N−N ′)2t2 + (2ωk−k ′)2

− (k ′ → −k ′)
]

,

(6.24)

where we have written the Matsubara frequencies as ωn = Nt with
N = 2n + 1 being odd numbers, and t = πkBT is a temperature
parameter. Since the right-hand side of the equation depends on
the free frequency parameter N ′, the gap must also be frequency
dependent. Based on the fact that the gap has the overall symmetry
∆Q(N, k) = −∆Q(−N,−k), we therefore have two possible symmetry
channels (see Table 2.1),

∆Q(N, k) = ∆eQ(N, k) +∆oQ(N, k), (6.25)

where ∆e/oQ (N, k) = [∆Q(N, k)±∆Q(−N, k)]/2 is even (odd) in fre-
quency and odd (even) in momentum.
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Including a finite number Nω and Nk of positive Matsubara fre-
quencies and reciprocal lattice points respectively, we can numer-
ically solve the gap equation as a matrix equation ∆ = M∆ by
finding the temperature t where the largest eigenvalue of the matrix
M is equal to 1. Here ∆ is a vector of length 2NωNk and M is a
(2NωNk)× (2NωNk) matrix.

We normalize the eigenvectors such that

1 =
1

V

Nω∑
n=−Nω

∑
k

|∆Q(2n+ 1, k)|2

=
1

V

Nω∑
n=−Nω

∑
k

[
|∆eQ(2n+ 1, k)|2 + |∆oQ(2n+ 1, k)|2

]
, (6.26)

and define the weight function for frequency index N and symmetry
i = e,o,

wi(N) =
1

V

∑
k

[∆iQ(N, k)]†∆Q(N, k) =
1

V

∑
k

|∆iQ(N, k)|2,

(6.27)

which is an even function of N. Hence, the total weight of each
symmetry channel is determined by

Wi =

Nω∑
n=−Nω

wi(2n+ 1), (6.28)

which satisfies We +Wo = 1.
Solving the gap equation numerically in the case of Amperean

pairing (Q = 2P) we find that the odd-frequency channel is the dom-
inating channel, Wo � We, independent of coupling strength, tilt
angle and orientation of P, see Fig. 6.9. The reason for this might be
that the interaction is maximized when k = 0, a point which does not
contribute to the gap equation for an even frequency, odd momentum
state. The gap equation for the odd-frequency gap will therefore get
a much larger contribution from the area around k = 0 compared to
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Figure 6.9: Plot of (a) critical temperature and (b) weight functions Wi
as functions of coupling J for different Nω, and (c) critical
temperature and (d) weight functions as functions of tilt angle θ
for different orientations of P.

the even-frequency gap, enhancing its value compared to the even-
frequency solution. Moreover, it has previously been shown that a
finite center-of-mass momentum stabilizes odd-frequency pairing
[242–244], consistent with the present results.

The fact that there is close to no change in the results for Tc when
increasing Nω [Fig. 6.9a)] probably reflects the fact that this is not a
strong coupling calculation which takes the renormalization of sur-
face state and magnon propagators into account [222]. Without this
renormalization, the largest contribution to the gap equation always
comes from N = N ′ = ±1, independent of Nω. It would therefore
be interesting to perform a strong coupling calculation using e.g.
Eliashberg theory [245–247], especially for antiferromagnetic insula-
tors which might have enhanced critical temperatures compared to
ferromagnetic insulators [234, 236, 239].





7
O U T L O O K

In this thesis we have considered the possible superconducting states
in the effectively two-dimensional systems occurring in different
heterostructures, and in particular on the surface of topological insu-
lators. While the previous chapters have introduced and summarized
the work leading to the enclosed research papers, I would now like
to take a brief look forward to possible future research.

The first point is rather general and applies to most, if not all the
enclosed papers related to topological insulators. When modeling the
TI we chose to always include only the surface states in the model.
This includes only the most relevant states close to the interface to
other materials, and thus simplifies the analysis greatly. It would
however be interesting to consider the entire topological insulator,
including the insulating bulk, not just to check the robustness of our
results, but also in the hope of finding new interesting phenomena.

There are many possible avenues for further research on magnon-
mediated superconductivity in TIs coupled to ferromagnetic or an-
tiferromagnetic insulators. First of all one should investigate the
possible superconducting states in a strong coupling calculation
such as Eliashberg theory. Moreover, it would be interesting to ex-
amine what experimental signatures the even- and odd-frequency
Amperean pairing states would have by for instance performing
transport calculations, or study the Meissner response by deriving
and studying the Ginzburg-Landau theory. This could give a means
to distinguishing the Amperean state from the BCS state.

89



90 outlook

Common for the systems studied in Papers [1–5] is the role of
spin-orbit coupling in generating interesting superconducting states,
both by itself and in cooperation with exchange fields. It will be
interesting to see what developments will come in this research venue,
both in expanding our knowledge and hopefully in technological
applications.



B I B L I O G R A P H Y

1. H. G. Hugdal and A. Sudbø,
Physical Review B, 97, 024515 (2018).

2. M. Amundsen, H. G. Hugdal, A. Sudbø and J. Linder,
Physical Review B, 98, 144505 (2018).

3. H. G. Hugdal, M. Amundsen, J. Linder and A. Sudbø,
Physical Review B, 99, 094505 (2019).

4. H. G. Hugdal, S. Rex, F. S. Nogueira and A. Sudbø,
Physical Review B, 97, 195438 (2018).

5. H. G. Hugdal and A. Sudbø,
Physical Review B, 102, 125429 (2020).

6. M. Tinkham,
Introduction to Superconductivity 2nd ed.
isbn: 978-0-486-43503-9
(Dover Publications, Mineola, N.Y, 2004).

7. J. D. Martin,
Physics Today, 72, 30–37 (2019).

8. P. W. Anderson,
Science, 177, 393–396 (1972).

9. M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff,
P. Eitenne, G. Creuzet, A. Friederich and J. Chazelas,
Physical Review Letters, 61, 2472 (1988).

10. G. Binasch, P. Grünberg, F. Saurenbach and W. Zinn,
Physical Review B, 39, 4828 (1989).

11. The Royal Swedish Academy of Sciences,
The Nobel Prize in Physics 2007 - Information for the public (2007).
https://www.nobelprize.org/uploads/2018/06/popular-

physicsprize2007-1.pdf.

91



92 bibliography

12. V. L. Ginzburg and E. A. Andryushin,
Superconductivity Revised Ed.
isbn: 981-238-913-X
(World Scientific Publishing, Singapore, 2004).

13. A. Hirohata, K. Yamada, Y. Nakatani, L.-I. Prejbeanu, B. Diény,
P. Pirro and B. Hillebrands,
Journal of Magnetism and Magnetic Materials, 509, 166711 (2020).

14. A. Brataas, B. van Wees, O. Klein, G. de Loubens and M. Viret,
Physics Reports, 885, 1–27 (2020).

15. M. Eschrig,
Physics Today, 64, 43–49 (2011).

16. J. Linder and J. W. A. Robinson,
Nature Physics, 11, 307–315 (2015).

17. M. Eschrig,
Reports on Progress in Physics, 78, 104501 (2015).

18. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, et
al.,
Nature, 574, 505–510 (2019).

19. K. Fossheim and A. Sudbø,
Superconductivity: Physics and Applications
isbn: 9780470844526

(Wiley, Chichester, 2004).

20. H. Kamerlingh Onnes,
Communications from the Physical Laboratory at Leyden, 12, 120

(1911).

21. W. Meissner and R. Ochsenfeld,
Naturwissenschaften, 21, 787–788 (1933).

22. F. London and H. London,
Proceedings of the Royal Society of London A, 149, 71–88 (1935).

23. V. L. Ginzburg and L. D. Landau,
Zhurnal Éksperimental’noı̆ i Teoreticheskoı̆ Fiziki, 20, 1064 (1950).



bibliography 93

24. A. L. Fetter and J. D. Walecka,
Quantum Theory of Many-Particle Systems
isbn: 0486428273

(Dover Publications, Mineola, N.Y, 2003).

25. S. Elitzur,
Physical Review D, 12, 3978 (1975).

26. M. Greiter,
Annals of Physics, 319, 217–249 (2005).

27. N. R. Poniatowski,
American Journal of Physics, 87, 436 (2019).

28. D. J. Griffiths,
Introduction to Electrodynamics 4th ed.
isbn: 978-0-321-85656-2
(Pearson, 2013).

29. A. B. Pippard,
Proceedings of the Royal Society of London, A216, 547–568 (1953).

30. A. A. Abrikosov,
Doklady Akademii Nauk SSSR, 86, 489 (1952).

31. A. A. Abrikosov,
Zhurnal Éksperimental’noı̆ i Teoreticheskoı̆ Fiziki, 32, 1442 (1957).
Soviet Physics JETP 5, 1174 (1957).

32. E. Maxwell,
Physical Review, 78, 477 (1950).

33. C. A. Reynolds, B. Serin, W. H. Wright and L. B. Nesbitt,
Physical Review, 78, 487 (1950).

34. J. Bardeen,
Physical Review, 80, 567–574 (1950).

35. J. Bardeen, L. N. Cooper and J. R. Schrieffer,
Physical Review, 108, 1175–1204 (1957).

36. L. N. Cooper,
Physical Review, 104, 1189–1190 (1956).



94 bibliography

37. L. P. Gor’kov,
Zhurnal Éksperimental’noı̆ i Teoreticheskoı̆ Fiziki, 36, 1918 (1959).
Soviet Physics JETP 36, 1364 (1959).

38. A. A. Abrikosov, L. P. Gor‘kov and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics
isbn: 9780486632285

(Dover Publications, New York, 1975).

39. M. Sigrist,
AIP Conference Proceedings, 789, 165 (2005).

40. A. Altland and B. Simons,
Condensed Matter Field Theory 2nd ed.
isbn: 978-0-521-76975-4
(Cambridge University Press, Cambridge, 2010).

41. T. Lancaster and S. Blundell,
Quantum Field Theory for the Gifted Amateur
isbn: 9780191779435

(Oxford University Press, Oxford, 2014).

42. J. W. Negele and H. Orland,
Quantum Many-Particle Systems
isbn: 0-7382-0052-2
(Westview Press, Boulder, Colorado, 1998).

43. H. Bruus and K. Flensberg,
Many-Body Quantum Theory in Condensed Matter Physics
isbn: 978-0-19-856633-5
(Oxford University Press, Oxford, 2004).

44. J. Linder and A. V. Balatsky,
Reviews of Modern Physics, 91, 045005 (2019).

45. V. L. Berezinskii,
Pis’ma v Zhurnal Éksperimental’noı̆ i Teoreticheskoı̆ Fiziki, 20, 628

(1974).
JETP Letters 20, 287 (1974).



bibliography 95

46. A. Balatsky and E. Abrahams,
Physical Review B, 45, 13125–13128 (1992).

47. E. Abrahams, A. Balatsky, D. J. Scalapino and J. R. Schrieffer,
Physical Review B, 52, 1271–1278 (1995).

48. F. S. Bergeret, A. F. Volkov and K. B. Efetov,
Reviews of Modern Physics, 77, 1321–1373 (2005).

49. Y. Tanaka, M. Sato and N. Nagaosa,
Journal of the Physical Society of Japan, 81, 011013 (2012).

50. C. Triola and A. V. Balatsky,
Physical Review B, 94, 094518 (2016).

51. P. Fulde and R. A. Ferrell,
Physical Review, 135, A550 (1964).

52. I. A. Larkin and Y. N. Ovchinnikov,
Zhurnal Éksperimental’noı̆ i Teoreticheskoı̆ Fiziki, 47, 1136 (1964).
Soviet Physics JETP 20, 762 (1965).

53. F. Wegner,
Supermathematics and its Applications in Statistical Physics
isbn: 978-3-662-49168-3
(Springer-Verlag Berlin Heidelberg, 2016).

54. F. N. Krohg and A. Sudbø,
Physical Review B, 98, 014510 (2018).

55. J. A. Ouassou.
Full Proximity Effect in Spin-Textured Superconductor/Ferromagnet
Bilayers
Specialization Project (Norwegian University of Science and
Technology, 2014).

56. C. Kittel,
Introduction to Solid State Physics 8th ed.
isbn: 9780471415268

(Wiley, Hoboken, N.J, 2005).



96 bibliography

57. N. W. Ashcroft and N. D. Mermin,
Solid State Physics
isbn: 0030839939

(Holt, Rinehart and Winston, New York, 1976).

58. F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W.
Franz and H. Schäfer,
Physical Review Letters, 43, 1892 (1979).

59. M. Sigrist and K. Ueda,
Reviews of Modern Physics, 63, 239–311 (1991).

60. J. Bednorz and K. Müller,
Zeitschrift für Physik B: Condensed Matter, 64, 189 (1986).

61. P. Monthoux, A. V. Balatsky and D. Pines,
Physical Review Letters, 67, 3448 (1991).

62. P. Monthoux and D. Pines,
Physical Review Letters, 69, 961 (1992).

63. P. Monthoux, A. V. Balatsky and D. Pines,
Physical Review B, 46, 14803 (1992).

64. W. Kohn and J. M. Luttinger,
Physical Review Letters, 15, 524 (1965).

65. N. D. Mermin and H. Wagner,
Physical Review Letters, 17, 1133–1136 (1966).

66. H. Nishimori and G. Ortiz,
Elements of Phase Transitions and Critical Phenomena
isbn: 9780198754084

(Oxford University Press, Oxford, 2015).

67. V. L. Berezinskii,
Zhurnal Éksperimental’noı̆ i Teoreticheskoı̆ Fiziki, 59, 907 (1970).
Soviet Physics JETP 32, 493 (1971).

68. V. L. Berezinskii,
Zhurnal Éksperimental’noı̆ i Teoreticheskoı̆ Fiziki, 61, 1144 (1971).
Soviet Physics JETP 34, 610 (1972).



bibliography 97

69. J. M. Kosterlitz and D. J. Thouless,
Journal of Physics C: Solid State Physics, 5, L124 (1972).

70. J. M. Kosterlitz and D. J. Thouless,
Journal of Physics C: Solid State Physics, 6, 1181–1203 (1973).

71. Class for Physics of the Royal Swedish Academy of Sciences,
Topological Phase Transition and Topological Phases of Matter (2016).
https://www.nobelprize.org/uploads/2018/06/advanced-

physicsprize2016.pdf.

72. J. Pearl,
Applied Physics Letters, 5, 65 (1964).

73. B. I. Halperin and D. R. Nelson,
Journal of Low Temperature Physics1, 36, 599–616 (1979).

74. M. R. Beasley, J. E. Mooij and T. P. Orlando,
Physical Review Letters, 42, 1165–1168 (1979).

75. K. Epstein, A. M. Goldman and A. M. Kadin,
Physical Review Letters, 47, 534–537 (1981).

76. S. Doniach and B. A. Huberman,
Physical Review Letters, 42, 1169–1172 (1979).

77. Y. S. Kim, M. Brahlek, N. Bansal, E. Edrey, G. A. Kapilevich,
K. Iida, M. Tanimura, Y. Horibe, S.-W. Cheong and S. Oh,
Physical Review B, 84, 073109 (2011).

78. A. A. Taskin, S. Sasaki, K. Segawa and Y. Ando,
Physical Review Letters, 109, 066803 (2012).

79. S. Raghu, S. A. Kivelson and D. J. Scalapino,
Physical Review B, 81, 224505 (2010).

80. S. Maiti and A. V. Chubukov,
AIP Conference Proceedings, 1550, 3 (2013).

81. A. V. Chubukov and M. Yu Kagan,
Journal of Physics: Condensed Matter, 1, 3135–3138 (1989).

82. J. M. Luttinger and W. Kohn,
Physical Review, 97, 869–883 (1955).



98 bibliography

83. J. R. Schrieffer and P. A. Wolff,
Physical Review, 149, 491 (1966).

84. S. Bravyi, D. P. DiVincenzo and D. Loss,
Annals of Physics, 326, 2793–2826 (2011).

85. E. Lake, C. Webb, D. A. Pesin and O. A. Starykh,
Physical Review B, 93, 214516 (2016).

86. S. Raghu and S. A. Kivelson,
Physical Review B, 83, 094518 (2011).

87. A. V. Chubukov,
Physical Review B, 48, 1097–1104 (1993).

88. M. Y. Kagan and A. V. Chubukov,
Pis’ma v Zhurnal Éksperimental’noı̆ i Teoreticheskoı̆ Fiziki, 50, 483

(1989).
JETP Letters 50, 517 (1989).

89. A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov and R. A. Duine,
Nature Materials, 14, 871–882 (2015).

90. B. H. Bransden and C. J. Joachain,
Quantum Mechanics 2nd ed.
isbn: 0-582-35691-1
(Pearson - Prentice Hall, Harlow, 2000).

91. F. Herman, C. D. Kuglin, K. F. Cuff and R. L. Kortum,
Physical Review Letters, 11, 541–545 (1963).

92. A. Ito and K. Tanaka,
Applications of Carbon Nanotubes and Graphene in Spin Electronics
in Carbon Nanotubes and Graphene
2nd ed.
(Elsevier, 2014).
isbn: 9780080982328.

93. Y. A. Bychkov and E. I. Rashba,
Pis’ma v Zhurnal Éksperimental’noı̆ i Teoreticheskoı̆ Fiziki, 39, 66

(1984).
JETP Letters 39, 78 (1984).



bibliography 99

94. O. Vafek and L. Wang,
Physical Review B, 84, 172501 (2011).

95. L. Wang and O. Vafek,
Physica C, 497, 6–18 (2014).

96. N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Ham-
merl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi,
D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone and J.
Mannhart,
Science, 317, 1196–1199 (2007).

97. A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler,
J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank
and H. Hilgenkamp,
Nature Materials, 6, 493–496 (2007).

98. A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schnei-
der, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart and J.-M.
Triscone,
Nature, 456, 624–627 (2008).

99. S. Gariglio, N. Reyren, A. D. Caviglia and J.-M. Triscone,
Journal of Physics: Condensed Matter, 21, 164213 (2009).

100. M. Sachs, D. Rakhmilevitch, M. Ben Shalom, S. Shefler, A.
Palevski and Y. Dagan,
Physica C: Superconductivity and its Applications, 470, S746–S748

(2010).

101. D. A. Dikin, M. Mehta, C. W. Bark, C. M. Folkman, C. B. Eom
and V. Chandrasekhar,
Physical Review Letters, 107, 056802 (2011).

102. J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H. Y. Hwang
and K. A. Moler,
Nature Physics, 7, 767–771 (2011).

103. L. Li, C. Richter, J. Mannhart and R. C. Ashoori,
Nature Physics, 7, 762–766 (2011).



100 bibliography

104. M. Ben Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski and
Y. Dagan,
Physical Review Letters, 104, 126802 (2010).

105. A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri
and J.-M. Triscone,
Physical Review Letters, 104, 126803 (2010).

106. L. P. Gor’kov and E. I. Rashba,
Physical Review Letters, 87, 037004 (2001).

107. V. Barzykin and L. P. Gor’kov,
Physical Review Letters, 89, 227002 (2002).

108. D. F. Agterberg and R. P. Kaur,
Physical Review B, 75, 064511 (2007).

109. F. Loder, A. P. Kampf and T. Kopp,
Journal of Physics: Condensed Matter, 25, 362201 (2013).

110. A. Auerbach,
Interacting Electrons and Quantum Magnetism
isbn: 978-1-4612-6928-1
(Springer, 1994).

111. E. H. Hall,
American Journal of Mathematics, 2, 287–292 (1879).

112. M. I. D’yakonov and V. I. Perel’,
Pis’ma v Zhurnal Éksperimental’noı̆ i Teoreticheskoı̆ Fiziki, 13, 657

(1971).
JETP Letters 13, 467 (1971).

113. M. I. Dyakonov and V. I. Perel,
Physics Letters A, 35, 459 (1971).

114. J. E. Hirsch,
Physical Review Letters, 83, 1834 (1999).

115. S. Murakami, N. Nagaosa and S.-C. Zhang,
Science, 301, 1348 (2003).



bibliography 101

116. J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth and
A. H. Macdonald,
Physical Review Letters, 92, 126603 (2004).

117. Y. K. Kato, R. C. Myers, A. C. Gossard and D. D. Awschalom,
Science, 306, 1910 (2004).

118. J. Wunderlich, B. Kaestner, J. Sinova and T. Jungwirth,
Physical Review Letters, 94, 047204 (2005).

119. K. von Klitzing, G. Dorda and M. Pepper,
Physical Review Letters, 45, 494–497 (1980).

120. J. E. Avron, D. Osadchy and R. Seiler,
Physics Today, 56, 38–42 (2003).

121. D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs,
Physical Review Letters, 49, 405–408 (1982).

122. C. Day,
Physics Today, 61, 19–23 (2008).

123. M. Z. Hasan and C. L. Kane,
Reviews of Modern Physics, 82, 3045–3067 (2010).

124. X.-L. Qi and S.-C. Zhang,
Physics Today, 63, 33 (2010).

125. X.-L. Qi and S.-C. Zhang,
Reviews of Modern Physics, 83, 1057–1110 (2011).

126. C. L. Kane and E. J. Mele,
Physical Review Letters, 95, 226801 (2005).

127. B. A. Bernevig and S.-C. Zhang,
Physical Review Letters, 96, 106802 (2006).

128. J. E. Moore,
Nature, 464, 194 (2010).

129. T. Wehling, A. Black-Schaffer and A. Balatsky,
Advances in Physics, 63, 1–76 (2014).

130. C. L. Kane and E. J. Mele,
Physical Review Letters, 95, 146802 (2005).



102 bibliography

131. B. A. Bernevig, T. L. Hughes and S.-C. Zhang,
Science, 314, 1757–1761 (2006).

132. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W.
Molenkamp, X.-L. Qi and S.-C. Zhang,
Science, 318, 766–771 (2007).

133. L. Fu, C. L. Kane and E. J. Mele,
Physical Review Letters, 98, 106803 (2007).

134. J. E. Moore and L. Balents,
Physical Review B, 75, 121306(R) (2007).

135. R. Roy,
Physical Review B, 79, 195322 (2009).

136. J. C. Y. Teo, L. Fu and C. L. Kane,
Physical Review B, 78, 045426 (2008).

137. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang and S.-C. Zhang,
Nature Physics, 5, 438–442 (2009).

138. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava and
M. Z. Hasan,
Nature, 452, 970–974 (2008).

139. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil,
D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hasan,
Nature Physics, 5, 398–402 (2009).

140. Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L.
Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R.
Fisher, Z. Hussain and Z.-X. Shen,
Science, 325, 178–182 (2009).

141. C. Brüne, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buh-
mann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang and L. W.
Molenkamp,
Physical Review Letters, 106, 126809 (2011).

142. P. A. M. Dirac,
Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 117, 610–624 (1928).



bibliography 103

143. S.-Q. Shen,
Topological Insulators: Dirac Equation in Condensed Matters
isbn: 978-3-642-32858-9
(Springer-Verlag, Berlin Heidelberg, 2012).

144. C. L. Kane,
Topological band theory and the Z2 invariant
in Topological Insulators
(eds. M. Franz and L. Molenkamp)
(Elsevier, 2013).
isbn: 9780444633149.

145. J. K. Asbóth, L. Oroszlány and A. Pályi,
A Short Course on Topological Insulators
isbn: 978-3-319-25607-8
(Springer, Cham, 2015).

146. L. Fu and C. L. Kane,
Physical Review B, 76, 045302 (2007).

147. R. Roy,
Physical Review B, 79, 195321 (2009).

148. C.-X. Liu, X.-L. Qi, H. Zhang, X. Dai, Z. Fang and S.-C. Zhang,
Physical Review B, 82, 045122 (2010).

149. X.-L. Qi, T. L. Hughes and S.-C. Zhang,
Physical Review B, 78, 195424 (2008).

150. A. Zee,
Quantum Field Theory in a Nutshell 2nd ed.
isbn: 9780691140346

(Princeton University Press, Princeton, N.J, 2010).

151. Y. Tokura, K. Yasuda and A. Tsukazaki,
Nature Reviews Physics, 1, 126 (2019).

152. P. Wei, F. Katmis, B. A. Assaf, H. Steinberg, P. Jarillo-Herrero,
D. Heiman and J. S. Moodera,
Physical Review Letters, 110, 186807 (2013).



104 bibliography

153. Q. I. Yang, M. Dolev, L. Zhang, J. Zhao, A. D. Fried, E. Schemm,
M. Liu, A. Palevski, A. F. Marshall, S. H. Risbud and A. Kapit-
ulnik,
Physical Review B, 88, 081407(R) (2013).

154. F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer,
P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P.
Jarillo-Herrero and J. S. Moodera,
Nature, 533, 513 (2016).

155. C. Tang, C. Z. Chang, G. Zhao, Y. Liu, Z. Jiang, C. X. Liu, M. R.
McCartney, D. J. Smith, T. Chen, J. S. Moodera and J. Shi,
Science Advances, 3, e1700307 (2017).

156. J. Choi, S. Choi, J. Choi, Y. Park, H. M. Park, H. W. Lee, B. C.
Woo and S. Cho,
Physica Status Solidi B, 241, 1541–1544 (2004).

157. Q. Liu, C.-X. Liu, C. Xu, X.-L. Qi and S.-C. Zhang,
Physical Review Letters, 102, 156603 (2009).

158. Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G.
Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S. Y. Xu, D. Qian,
M. Z. Hasan, N. P. Ong, A. Yazdani and R. J. Cava,
Physical Review B, 81, 195203 (2010).

159. Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H.
Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto,
T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain and Z. X.
Shen,
Science, 329, 659–662 (2010).

160. L. A. Wray, S. Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov, Y. S. Hor,
R. J. Cava, A. Bansil, H. Lin and M. Z. Hasan,
Nature Physics, 7, 32–37 (2011).

161. S. Y. Xu, M. Neupane, C. Liu, D. Zhang, A. Richardella, L. An-
drew Wray, N. Alidoust, M. Leandersson, T. Balasubramanian,
J. Sánchez-Barriga, et al.,
Nature Physics, 8, 616–622 (2012).



bibliography 105

162. C.-Z. Chang, J. Zhang, M. Liu, Z. Zhang, X. Feng, K. Li, L.-L.
Wang, X. Chen, X. Dai, Z. Fang, X.-L. Qi, S.-C. Zhang, Y. Wang,
K. He, X.-C. Ma and Q. .-K. Xue,
Advanced Materials, 25, 1065–1070 (2013).

163. X. Kou, L. He, M. Lang, Y. Fan, K. Wong, Y. Jiang, T. Nie, W.
Jiang, P. Upadhyaya, Z. Xing, Y. Wang, F. Xiu, R. N. Schwartz
and K. L. Wang,
Nano Letters, 13, 4587–4593 (2013).

164. X. Kou, M. Lang, Y. Fan, Y. Jiang, T. Nie, J. Zhang, W. Jiang,
Y. Wang, Y. Yao, L. He and K. L. Wang,
ACS Nano, 7, 9205–9212 (2013).

165. M. Li, C. Z. Chang, L. Wu, J. Tao, W. Zhao, M. H. Chan, J. S.
Moodera, J. Li and Y. Zhu,
Physical Review Letters, 114, 146802 (2015).

166. L. Zhang, D. Zhao, Y. Zang, Y. Yuan, G. Jiang, M. Liao, D.
Zhang, K. He, X. Ma and Q. Xue,
APL Materials, 5, 076106 (2017).

167. J. Teng, N. Liu and Y. Li,
Journal of Semiconductors, 40, 081507 (2019).

168. W. Buckel and R. Kleiner,
Superconductivity 2nd ed.
isbn: 3-527-40349-3
(Wiley-VCH, Weinheim, 2004).

169. J. F. Annet,
Superconductivity, Superfluidity and Condensates
isbn: 0-19-850756-9
(Oxford University Press, 2004).

170. A. I. Buzdin,
Reviews of Modern Physics, 77, 935–976 (2005).



106 bibliography

171. V. Chandrasekhar,
Proximity-Coupled Systems: Quasiclassical Theory of Superconduc-
tivity
in Superconductivity: Conventional and Unconventional Supercon-
ductors
(eds. K. H. Bennemann and J. B. Ketterson)
(Springer-Verlag Berlin Heidelberg, 2008).
isbn: 9783540732532.

172. B. Josephson,
Physics Letters, 1, 251–253 (1962).

173. J. B. Ketterson and S. N. Song,
Superconductivity
isbn: 0521565626

(Cambridge University Press, Cambridge, 1999).

174. L. Fu and C. L. Kane,
Physical Review Letters, 100, 096407 (2008).

175. G. E. Volovik,
Pis’ma v Zhurnal Éksperimental’noı̆ i Teoreticheskoı̆ Fiziki, 70, 601

(1999).
JETP Letters 70, 609 (1999).

176. N. Read and D. Green,
Physical Review B, 61, 10267 (2000).

177. D. A. Ivanov,
Physical Review Letters, 86, 268 (2001).

178. A. Y. Kitaev,
Annals of Physics, 303, 2–30 (2003).

179. G. Moore and N. Read,
Nuclear Physics B, 360, 362–396 (1991).

180. C. Nayak, S. H. Simon, A. Stern, M. Freedman and S. Das
Sarma,
Reviews of Modern Physics, 80, 1083–1159 (2008).



bibliography 107

181. J. Alicea,
Reports on Progress in Physics, 75, 076501 (2012).

182. C. W. Beenakker,
Annual Review of Condensed Matter Physics, 4, 113–136 (2013).

183. B. Sacépé, J. B. Oostinga, J. Li, A. Ubaldini, N. J. Couto, E.
Giannini and A. F. Morpurgo,
Nature Communications, 2, 575 (2011).

184. M. Veldhorst, M. Snelder, M. Hoek, T. Gang, V. K. Guduru,
X. L. Wang, U. Zeitler, W. G. van der Wiel, A. A. Golubov, H.
Hilgenkamp and A. Brinkman,
Nature Materials, 11, 417 (2012).

185. M.-X. Wang, C. Liu, J.-P. Xu, F. Yang, L. Miao, M.-Y. Yao, C. L.
Gao, C. Shen, X. Ma, X. Chen, Z.-A. Xu, Y. Liu, S.-C. Zhang,
D. Qian, J.-F. Jia and Q.-K. Xue,
Science, 336, 52–55 (2012).

186. F. Yang, Y. Ding, F. Qu, J. Shen, J. Chen, Z. Wei, Z. Ji, G. Liu,
J. Fan, C. Yang, T. Xiang and L. Lu,
Physical Review B, 85, 104508 (2012).

187. L. Maier, J. B. Oostinga, D. Knott, C. Brüne, P. Virtanen, G.
Tkachov, E. M. Hankiewicz, C. Gould, H. Buhmann and L. W.
Molenkamp,
Physical Review Letters, 109, 186806 (2012).

188. P. Zareapour, A. Hayat, S. Y. F. Zhao, M. Kreshchuk, A. Jain,
D. C. Kwok, N. Lee, S.-W. Cheong, Z. Xu, A. Yang, G. D. Gu,
S. Jia, R. J. Cava and K. S. Burch,
Nature Communications, 3, 1056 (2012).

189. E. Wang, H. Ding, A. V. Fedorov, W. Yao, Z. Li, Y.-F. Lv, K.
Zhao, L.-G. Zhang, Z. Xu, J. Schneeloch, R. Zhong, S.-H. Ji,
L. Wang, K. He, X. Ma, G. Gu, H. Yao, Q.-K. Xue, X. Chen and
S. Zhou,
Nature Physics, 9, 621–625 (2013).



108 bibliography

190. I. Sochnikov, A. J. Bestwick, J. R. Williams, T. M. Lippman, I. R.
Fisher, D. Goldhaber-Gordon, J. R. Kirtley and K. A. Moler,
Nano Letters, 13, 3086 (2013).

191. S. Cho, B. Dellabetta, A. Yang, J. Schneeloch, Z. Xu, T. Valla,
G. Gu, M. J. Gilbert and N. Mason,
Nature Communications, 4, 1689 (2013).

192. S.-Y. Xu, N. Alidoust, I. Belopolski, A. Richardella, C. Liu,
M. Neupane, G. Bian, S.-H. Huang, R. Sankar, C. Fang, B.
Dellabetta, W. Dai, Q. Li, M. J. Gilbert, F. Chou, N. Samarth
and M. Z. Hasan,
Nature Physics, 10, 943–950 (2014).

193. I. Sochnikov, L. Maier, C. A. Watson, J. R. Kirtley, C. Gould,
G. Tkachov, E. M. Hankiewicz, C. Brüne, H. Buhmann, L. W.
Molenkamp and K. A. Moler,
Physical Review Letters, 114, 066801 (2015).

194. J. Wiedenmann, E. Bocquillon, R. S. Deacon, S. Hartinger, O.
Herrmann, T. M. Klapwijk, L. Maier, C. Ames, C. Brüne, C.
Gould, A. Oiwa, K. Ishibashi, S. Tarucha, H. Buhmann and
L. W. Molenkamp,
Nature Communications, 7, 10303 (2016).

195. C. X. Trang, N. Shimamura, K. Nakayama, S. Souma, K. Sug-
awara, I. Watanabe, K. Yamauchi, T. Oguchi, K. Segawa, T.
Takahashi, Y. Ando and T. Sato,
Nature Communications, 11, 159 (2020).

196. Y. Tanaka, T. Yokoyama and N. Nagaosa,
Physical Review Letters, 103, 107002 (2009).

197. T. D. Stanescu, J. D. Sau, R. M. Lutchyn and S. Das Sarma,
Physical Review B, 81, 241310(R) (2010).

198. J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbø and N. Nagaosa,
Physical Review Letters, 104, 067001 (2010).

199. J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbø and N. Nagaosa,
Physical Review B, 81, 184525 (2010).



bibliography 109

200. A. M. Black-Schaffer,
Physical Review B, 83, 060504(R) (2011).

201. M. Lababidi and E. Zhao,
Physical Review B, 83, 184511 (2011).

202. A. M. Black-Schaffer and A. V. Balatsky,
Physical Review B, 86, 144506 (2012).

203. T. Yokoyama,
Physical Review B, 86, 075410 (2012).

204. A. M. Black-Schaffer and A. V. Balatsky,
Physical Review B, 87, 220506(R) (2013).

205. G. Tkachov,
Physical Review B, 87, 245422 (2013).

206. G. Tkachov and E. M. Hankiewicz,
Physica Status Solidi B, 250, 215–232 (2013).

207. K. D. Usadel,
Physical Review Letters, 25, 507–509 (1970).

208. A. Zyuzin, M. Alidoust and D. Loss,
Physical Review B, 93, 214502 (2016).

209. I. V. Bobkova, A. M. Bobkov, A. A. Zyuzin and M. Alidoust,
Physical Review B, 94, 134506 (2016).

210. H. G. Hugdal, J. Linder and S. H. Jacobsen,
Physical Review B, 95, 235403 (2017).

211. J. A. Krieger, A. Pertsova, S. R. Giblin, M. Döbeli, T. Prokscha,
C. W. Schneider, A. Suter, T. Hesjedal, A. V. Balatsky and Z.
Salman,
Physical Review Letters, 125, 026802 (2020).

212. Y. Takane and R. Ando,
Journal of the Physical Society of Japan, 83, 014706 (2014).

213. M. J. Park, J. Yang, Y. Kim and M. J. Gilbert,
Physical Review B, 96, 064518 (2017).



110 bibliography

214. N. Sedlmayr, E. W. Goodwin, M. Gottschalk, I. M. Dayton,
C. Zhang, E. Huemiller, R. Loloee, T. C. Chasapis, M. Salehi,
N. Koirala, M. G. Kanatzidis, S. Oh, D. J. V. Harlingen, A.
Levchenko and S. H. Tessmer,
Dirac surface states in superconductors: a dual topological proximity
effect (2018).
arXiv: 1805.12330.

215. T. Moriya, Y. Takahashi, K. Ueda, T. Moryia, Y. Takahashi and
K. Ueda,
Journal of The Physical Society of Japan, 59, 2905 (1990).

216. D. Pines,
Journal of Physics and Chemistry of Solids, 54, 1447 (1993).

217. T. Moriya and K. Ueda,
Journal of the Physical Society of Japan, 63, 1871 (1994).

218. T. Moriya and K. Ueda,
Advances in Physics, 49, 555–606 (2000).

219. T. Moriya and K. Ueda,
Reports on Progress in Physics, 66, 1299 (2003).

220. T. Moriya,
Proceedings of the Japan Academy, Series B, 82, 1–16 (2006).

221. X. Lu and D. Sénéchal,
Physical Review B, 101, 054512 (2020).

222. M. Kargarian, D. K. Efimkin and V. Galitski,
Physical Review Letters, 117, 076806 (2016).

223. S.-S. Lee, P. A. Lee and T. Senthil,
Physical Review Letters, 98, 067006 (2007).

224. D. J. Scalapino,
Reviews of Modern Physics, 84, 1383 (2012).

225. G. R. Stewart,
Advances in Physics, 66, 75–196 (2017).

226. T. R. Kirkpatrick, D. Belitz, T. Vojta and R. Narayanan,
Physical Review Letters, 87, 127003 (2001).



bibliography 111

227. H. Suhl,
Physical Review Letters, 87, 167007 (2001).

228. T. R. Kirkpatrick and D. Belitz,
Physical Review B, 67, 024515 (2003).

229. N. Karchev,
Physical Review B, 67, 054416 (2003).

230. R. Kar, T. Goswami, B. C. Paul and A. Misra,
AIP Advances, 4, 087126 (2014).

231. H. Funaki and H. Shimahara,
Journal of the Physical Society of Japan, 83, 123704 (2014).

232. X. Gong, M. Kargarian, A. Stern, D. Yue, H. Zhou, X. Jin, M.
Victor, V. M. Yakovenko, J. Xia, V. M. Galitski, V. M. Yakovenko
and J. Xia,
Science Advances, 3, e1602579 (2017).

233. N. Rohling, E. L. Fjærbu and A. Brataas,
Physical Review B, 97, 115401 (2018).

234. E. Erlandsen, A. Kamra, A. Brataas and A. Sudbø,
Physical Review B, 100, 100503(R) (2019).

235. E. L. Fjærbu, N. Rohling and A. Brataas,
Physical Review B, 100, 125432 (2019).

236. E. Erlandsen and A. Sudbø,
Schwinger boson study of superconductivity mediated by antiferro-
magnetic spin fluctuations (2020).
arXiv: 2009.07862.

237. Ø. Johansen, A. Kamra, C. Ulloa, A. Brataas and R. A. Duine,
Physical Review Letters, 123, 167203 (2019).

238. A. Kamra, E. Thingstad, G. Rastelli, R. A. Duine, A. Brataas,
W. Belzig and A. Sudbø,
Physical Review B, 100, 174407 (2019).

239. E. Erlandsen, A. Brataas and A. Sudbø,
Physical Review B, 101, 094503 (2020).



112 bibliography

240. S. Rex, F. S. Nogueira and A. Sudbø,
Physical Review B, 95, 155430 (2017).

241. B. Nijholt, J. Weston, J. Hoofwijk and A. Akhmerov,
Adaptive: parallel active learning of mathematical functions (2020).

242. P. Coleman, E. Miranda and A. Tsvelik,
Physical Review Letters, 70, 2960–2963 (1993).

243. P. Coleman, E. Miranda and A. Tsvelik,
Physica B, 186-188, 362–364 (1993).

244. P. Coleman, E. Miranda and A. Tsvelik,
Physical Review B, 49, 8955 (1994).

245. G. M. Eliashberg,
Zhurnal Éksperimental’noı̆ i Teoreticheskoı̆ Fiziki, 38, 966 (1960).
Soviet Physics JETP 11, 696 (1960).

246. G. M. Eliashberg,
Zhurnal Éksperimental’noı̆ i Teoreticheskoı̆ Fiziki, 39, 1437 (1960).
Soviet Physics JETP 12, 1000 (1961).

247. G. D. Mahan,
Many-Particle Physics 3rd ed.
isbn: 0306463385

(Kluwer Academic / Plenum Publishers, New York, 2000).

248. J. P. Ellis,
Computer Physics Communications, 210, 103–123 (2017).



A B B R E V I AT I O N S

2D two-dimensional.
2DEG 2D electron gas.
3D three-dimensional.

AFMI antiferromagnetic insulator.

BCS Bardeen-Cooper-Scrieffer.
BKT Berezinskii-Kosterlitz-Thouless.

c.c. complex conjugate.

FFLO Fulde-Ferrel-Larkin-Ovchinnikov.
FMI ferromagnetic insulator.

GL Ginzburg-Landau.

h.c. Hermitian conjugate.
HS Hubbard-Stratonovich.

QHE quantum Hall effect.
QSHE quantum spin Hall effect.

S superconductor.
SHE spin Hall effect.
SOC spin-orbit coupling.

TI topological insulator.
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A
PAT H I N T E G R A L F O R M A L I S M

We here give a brief introduction to the many-body path integral
formalism, meant mostly as a reference, following the treatment in
Altland and Simons [40] and Lancaster and Blundell [41].

The Schrödinger equation describes the evolution of a particle,

i∂t |ψ〉 = Ĥ |ψ〉 , (A.1)

where Ĥ is the Hamiltonian operator. Assuming that the Hamiltonian
has no explicit time-dependence, we can integrate the Schrödinger
equation between an initial and final time ti and tf respectively,

|ψ(tf)〉 = e−iĤ(tf−ti) |ψ(ti)〉 ≡ U(tf, ti) |ψ(ti)〉 , (A.2)

where we have defined the unitary time evolution operator U(t ′, t) =
e−iĤ(t ′−t), which describes the evolution of state |ψ〉 from time
t to t ′. From this definition it is clear that U has the property
U(t ′′, t ′)U(t ′, t) = U(t ′′, t), from which we see that we can write

e−iĤ(tf−ti) =
[
e−iĤ∆t

]N
, where the time has been split into N

smaller time intervals ∆t = (tf − ti)/N.
This can be used when calculating for instance the amplitude A of

a particle going from coordinate qi at time ti = 0 to coordinate qf at
time tf = t,

A = 〈qf|U(t, 0) |qi〉 = 〈qf|
[
e−iĤ∆t

]N
|qi〉

= 〈qf| e−iĤ∆t...e−iĤ∆t |qi〉 . (A.3)
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Here |q〉 is a position eigenstate, which forms a complete set and
thus satisfies the identity

1 =

∫
dq |q〉〈q| . (A.4)

Inserting such identities between each operator U(∆t, 0) in the ex-
pression for A, we get

A =

∫
dqN−1...

∫
dq1 〈qf| e−iĤ∆t |qN−1〉 ... 〈q1| e−iĤ∆t |qi〉

=

∫
dqN−1...

∫
dq1

N−1∏
n=0

An, (A.5)

where An = 〈qn+1| e−iĤ∆t |qn〉, and we use q0 = qi and qN = qf.
We have essentially divided the trajectory between the spacetime
points (ti,qi) and (tf,qf) into N independent trajectories with time
intervals ∆t, and then sum over all possible intermediate positions
qn between the points qi and qf. In other words, in the limit N→ ∞
we sum over all possible trajectories between (ti,qi) and (tf,qf).
This is what is often called the Feynman path integral approach.
We will not proceed here with the single particle path integral, but
instead focus on the path integral for many-particle systems.

In the many-body case we are interested in the quantum partition
function1

Z =
∑
n

〈n| e−βĤ |n〉 , (A.6)

where the states {|n〉} represent a complete set in Fock space. Since
the many-body Hamiltonian is given in terms of creation and annihi-
lation operators, it is convenient to use states which are eigenstates
of these operators, namely coherent states.

1For notational simplicity we have included the µN̂ term in Ĥ.
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a.1 coherent states

We define the coherent state |ψ〉 as an eigenstate of the annihilation
operator cα with quantum number α,

cα |ψ〉 = ψα |ψ〉 , (A.7)

where ψα is the eigenvalue. The fermionic annihilation operators
anticommute, which means we must have

cαcβ |ψ〉 = |ψ〉ψαψβ = −cβcα |ψ〉 = − |ψ〉ψβψα. (A.8)

We see that the eigenvalues must also anticommute,ψαψβ = −ψβψα,
meaning they can not be ordinary complex values, but rather Grass-
mann numbers. The Grassmann numbers also anticommute with the
fermionic operators cα and c†α. From the anticommutation relations
we also see that ψα = 0, meaning that any function of Grassmann
numbers can only go up to linear order in each number ψα.

We now show that the fermionic coherent states are defined by

|ψ〉 = e−
∑
αψαc

†
α |0〉 , (A.9)

where |0〉 is the vacuum state. Operating with an operator cβ, we get

cβ |ψ〉 = cβ
∞∑
k=0

[
−
∑
αψαc

†
α

]k

k!
|0〉 = cβ

∏
α

(1−ψαc
†
α) |0〉

=
∏
α6=β

(1−ψαc
†
α)ψβ |0〉 = ψβ |ψ〉 , (A.10)

where we have used ψ2β = 0 to rewrite ψβ |0〉 = ψβ(1−ψβc
†
β) |0〉.

The adjoint coherent state is given by

〈ψ| = 〈0| e
∑
αψ

†
αcα , (A.11)
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where it is important to note that ψ†
α is an independent variable, and

not the hermitian conjugate of ψα. From this we find that the overlap
between two coherent states is

〈η|ψ〉 = 〈0|
∏
α,β

(1+ η†αcα)(1−ψβc
†
β) |0〉

= 〈0|
∏
α

(1+ η†αψαcαc
†
α) |0〉 = e

∑
α η

†
αψα . (A.12)

Finally, the coherent states have the completeness relation

1 =

∫
dψ†dψ e−

∑
αψ

†
αψα |ψ〉〈ψ| , (A.13)

where dψ†dψ =
∏
α dψ

†
αdψα. To show that this holds, we insert the

identity into

〈η|η〉 =
∫
dψ†dψ e−

∑
αψ

†
αψα 〈η|ψ〉〈ψ|η〉

=

∫
dψ†dψ e−

∑
αψ

†
αψαe

∑
β η

†
βψβe

∑
γψ

†
γηγ

=

∫
dψ†dψ e−

∑
α[ψ

†
αψα−η

†
αψα−ψ

†
αηα]. (A.14)

This has the form of a Gaussian integral. The Gaussian integral for
Grassmann numbers is given by∫

dψ†dψ e−ψ
†aψ+ψ†η+η†ψ =

∫
dψ†dψ(1−ψ†aψ

+ψ†η+ η†ψ+ψ†ηη†ψ)

= a+ η†η = ae
η†η
a , (A.15)

where a is a complex number, and we have used the definitions∫
dψ = 0 and

∫
dψ ψ = 1 for integration of Grassmann variables.

Generalizing this to multiple Grassmann variables results in∫
dψ†dψ e−ψ

†
αAαβψα+ψ

†
αηα+η

†
αψα = detA eη

†
αA

−1
αβηβ , (A.16)
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where summation of repeated indexes is implied, and A is a complex
matrix. Applying the latter equation to Eq. (A.14), we get

〈η|η〉 = e
∑
α η

†
αηα , (A.17)

which is in agreement with Eq. (A.12), showing that the completeness
relation does indeed hold.

While we have here focused solely on the fermionic coherent states,
the bosonic coherent states are defined in exactly the same way,
and the relations above hold for both, with only a differing sign in
some cases [40, p. 164]. However, since we are mostly interested in
fermionic systems, we will focus on this case in the following.

a.2 coherent state path integral

We now use the fermionic coherent states when constructing the
path integral. Inserting the completeness relation Eq. (A.13) into the
quantum partition function Eq. (A.6), we get

Z =

∫
dψ†dψ

∑
n

e−
∑
αψ

†
αψα 〈n|ψ〉 〈ψ| e−βĤ |n〉

=

∫
dψ†dψ e−

∑
αψ

†
αψα 〈−ψ| e−βĤ |ψ〉 . (A.18)

We now follow essentially the same procedure as at the beginning
of the appendix: We split the imaginary time interval β into N

equally spaced segments ∆τ = β/N, and insert N− 1 copies of the
completeness relation Eq. (A.13). To simplify the notation we will
now use ψ to mean a vector of all ψα, such that ψ†ψ ≡ ∑

αψ
†
αψα.

We also use the notation ψn for ψ at imaginary time n∆τ. Hence, we
have

Z =

∫( N∏
n=1

dψ†
ndψn

)
〈ψN| e−ψ

†
N−1ψN−1e−Ĥ∆τ |ψN−1〉

× 〈ψN−1| ... e−ψ
†
1ψ1e−Ĥ∆τ |ψ1〉〈ψ1| e−ψ

†
0ψ0e−Ĥ∆τ |ψ0〉 ,

(A.19)
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where ψN = −ψ0. Using

〈ψn+1| Ĥ(c†, c) |ψn〉 = H(ψ†
n+1,ψn)eψ

†
n+1ψn , (A.20)

we see that the partition function gets terms in the exponential which
can be written

N−1∑
n=0

(ψ†
n −ψ†

n+1)ψn =

N−1∑
n=0

ψ
†
n+1(ψn+1 −ψn), (A.21)

where we have used ψ†
0ψ0 = ψ

†
NψN after shifting n→ n+ 1 in the

first term. Inserting this into the partition function we get

Z =

∫( N∏
n=1

dψ†
ndψn

)
e
−∆τ

∑N−1
n=0

[
ψ

†
n+1

ψn+1−ψn
∆τ +H(ψ†

n+1,ψn)
]
.

(A.22)

Since ∆τ→ 0 in the limit N→ ∞, we let

∆τ

N−1∑
n=0

→
β∫
0

dτ, (A.23)

H[ψ†
n+1,ψn] → H[ψ†(n∆τ),ψ(n∆τ)], (A.24)

and define

∂τψ(τ)
∣∣
τ=n∆τ

≡ lim
∆τ→0

ψn+1 −ψn
∆τ

, (A.25)

Dψ†Dψ ≡ lim
N→∞

N∏
n=1

dψ†
ndψn. (A.26)

Hence, we arrive at the path integral (or functional integral)

Z =

∫
Dψ†Dψ e−S[ψ

†,ψ], (A.27)
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where we have defined the action

S[ψ†,ψ] =

β∫
0

dτ
[
ψ†∂τψ+H(ψ†,ψ)

]
. (A.28)

Though we have focused on fermionic coherent states, the result
is exactly the same for bosons. The difference lies in the boundary
conditions of the fields ψ† and ψ,

ψ(β) = ±ψ(0), ψ†(β) = ±ψ†(0), (A.29)

where the upper (lower) sign is for bosons (fermions).
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We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive
interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting
Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean
field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the
critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing
symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum
channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to
change the momentum dependence of the order parameter by tuning n. Moreover, n also determines which band
has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states
that for small momenta reduce to a chiral px ± ipy type state for out-of-plane fields, to a nodal p-wave-type state
for purely in-plane fields.

DOI: 10.1103/PhysRevB.97.024515

I. INTRODUCTION

Much attention has been paid to the possibility of un-
conventional superconductivity due to weak repulsive inter-
actions, as first pointed out by Kohn and Luttinger in 1967
[1]. They found that because of oscillations in long-range
interactions, a p-wave superconducting state could be formed
in a three-dimensional electron gas at O(U 2) in the inter-
action strength U . In two dimensions, no such state can be
formed at O(U 2) [2]; it is only present at O(U 3) and zero
temperature [3]. However, by applying a magnetic field the
effect is present on the majority band also at second order
in U [2,4].

In systems with broken inversion symmetry, either due
to crystal structure or an applied electric field, one has to
include the effects of spin-orbit interactions by including a
Rashba spin-orbit coupling (SOC) term [5,6]. A Rashba term
in the system Hamiltonian will lead to a coupling between the
spin-up and spin-down Fermi surfaces, and hence opens up
the possibility of proximity-induced superconductivity on the
minority band [4,7]. Reference [8] provides a recent review on
superconductivity in systems with broken inversion symmetry.
The effects of magnetic fields and spin-orbit coupling in
two-dimensional systems has been studied in various cases,
in limiting cases of, e.g., the strength of the SOC or the
direction of the magnetic field [4,9–14]. Recently Lake et al. [7]
studied a weakly spin-orbit-coupled two-dimensional electron
gas (2DEG) with a magnetic field which could be rotated in
and out of the plane. They reported that topological p + ip

superconductivity is realized when the field is perpendicular

*henning.g.hugdal@ntnu.no
†asle.sudbo@ntnu.no

to the plane, while an in-plane magnetic field in the x direction
leads to a py momentum dependence of the order parameter.
In either case, only the majority band was found to be
superconducting.

In this paper, we perform an analysis similar to that of
Ref. [7] to study the superconducting order in a weakly repul-
sive, spin-polarized Hubbard model on a two-dimensional (2D)
square lattice with weak SOC. Such systems can be realized,
e.g., at the interface between LaAlO3 and SrTiO3, which has
been shown to exhibit a 2D superconducting state [15–17], a
magnetic state [18], and coexistence of superconductivity and
magnetism [19–22]. Moreover, it has been shown that the SOC
at the interface can be tuned by a gate voltage or an applied
electric field [23,24].

By finding the superconducting state that emerges at the
critical temperature Tc, we study the dominating pairing
symmetries on the two bands for different filling fractions and
magnetic field orientations. We find that superconductivity can
be induced on both bands, depending on the filling fraction.
We also find that two different pairing symmetries are realized,
one for nearly empty or nearly filled bands, and one close to
half filling. However, the small-momentum limit of the order
parameters are the same in both regions, a chiral px ± ipy

symmetry for purely out-of-plane fields and p-wave state state
for purely in-plane fields. We also find that the Cooper pairs
have a finite center-of-mass momentum [7,14,25], i.e., a Fulde-
Ferrell-Larkin-Ovchinnikov state (FFLO) [26,27], whenever
the magnetic field has an in-plane component.

The remainder of the paper is organized as follows: The
model system is presented in Sec. II together with the derivation
of the effective Hamiltonian and self-consistent equations for
the mean field superconducting gap. The numerical solution
strategy is discussed in Sec. III, the results of which are pre-
sented in Sec. IV. Finally, we summarize our results in Sec. V.

2469-9950/2018/97(2)/024515(10) 024515-1 ©2018 American Physical Society
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FIG. 1. Sketch of system geometry, where the 2D lattice is located
in the xy plane and the magnetic field B can point in any direction.

II. MODEL

Our starting point is a two-dimensional lattice in the pres-
ence of an external magnetic field, and with broken inversion
symmetry such that SOC is present. A sketch of the geometry is
shown in Fig. 1. We use the Hubbard model augmented by SOC
to describe the fermions on the lattice, with a spin-diagonal
hopping integral between nearest-neighbor lattice sites given
by t , and the electrons interact via a onsite repulsion Uni↑ni↓,
U > 0. We will assume that the interaction is weak, i.e., the
energy scale of the Hubbard interaction is small compared
to the kinetic energy, U/t � 1. Time-reversal symmetry is
broken by applying an external magnetic field B, which couples
to the electrons via the Zeeman coupling −gμBB · σ/2, where
g is the g factor and μB is the Bohr magneton. This lifts the
degeneracy between the spin directions. The effect of SOC
is included via a Rashba term with spin-orbit axis normal
to the lattice plane, αR(p × σ ) · ẑ, where αR is the strength
of the spin-orbit coupling. We thus obtain the total system
Hamiltonian H = Ht + HB + HR + HI = H0 + HI , with

Ht =
∑
σ,k

εkc
†
kσ ckσ , (1a)

HR = αR

∑
k

∑
σ,σ ′

(
σ

y

σσ ′ sin kx − σx
σσ ′ sin ky

)
c
†
kσ ckσ ′ , (1b)

HB = −H ·
∑

k

∑
σ,σ ′

σ σσ ′c
†
kσ ckσ ′ , (1c)

HI = U

V

∑
k1,k2,k3

c
†
k1↑c

†
k2↓ck3↓ck1+k2−k3,↑, (1d)

where εk ≡ −2t(cos kx + cos ky) − μ is the square-lattice
tight-binding dispersion relative the chemical potential μ,
σ =↑ , ↓ denotes spin-up and spin-down electrons re-
spectively, H = gμBB/2 = h(cos θ sin δx̂ + sin θ sin δŷ +
cos δẑ), and V is the volume of the system. For notational
simplicity, we have set h̄ and the lattice constant a to 1
throughout the paper.

A. Diagonalization of noninteracting Hamiltonian

Following Ref. [7], we will treat the SOC as a perturbation,
assuming that αR/h � 1. Hence, we expect that when diago-
nalizing the noninteracting Hamiltonian H0, the lowest order
expression will simply be that of a tight-binding system with
spins polarized along the direction of H. We therefore rotate
the spin quantization axis to point along the magnetic field
using the unitary rotation operator Rn(α) = exp(−iασ · n̂/2),
where α is the angle of rotation about an axis n̂: We first rotate
an angle θ about n̂ = ẑ, and then an angle δ about n̂ = ŷ. This
yields

H0 =
∑

k

∑
σ,σ ′

Eσσ ′(k)c†kσ ckσ ′ , (2)

where

E(k) = εkσ
0 − hσ z + αR[(sin kx sin θ − sin ky cos θ ) cos δσ x

+ (sin kx cos θ + sin ky sin θ )σy

+ (sin ky sin θ − sin ky cos θ ) sin δσ z]. (3)

Diagonalizing H0 leads to two bands with eigenenergies

ελ(k) = εk − ζλ

√
h2 − 2hαR(sin kx sin θ − sin ky cos θ ) sin δ + α2

R(sin2 kx + sin2 ky)

≈ εk − ζλ

[
h − αR(sin kx sin θ − sin ky cos θ ) sin δ + α2

R

2h
(sin kx cos θ + sin ky sin θ )2

+ α2
R

2h
(sin kx sin θ − sin ky cos θ )2 cos2 δ

]
, (4)

where ζλ=1(2) = +(−)1 for the majority (minority) band. In
the last line, we have kept terms only up to first order in
αR/h. In the limit |k| � 1 and θ = 0, this result agrees with
Ref. [7]. When the magnetic field has an in-plane component,
the momentum q corresponding the minima of the band
dispersions will shift away from the origin according to

qx ≈ −ζλαR

2t
sin δ sin θ, (5a)

qy ≈ +ζλαR

2t
sin δ cos θ. (5b)

This shift is illustrated in Fig. 2.
Using the eigenvalues in Eq. (4), we also find relations

between the spin and band creation and annihilation operators,
which to second order in αR/h are given by

ck↑ =
[

1 − α2
R

8h2
|γ (k,δ,θ )|2

]
ak1 + αR

2h
γ (k,δ,θ )ak2, (6a)

ck↓ = −αR

2h
γ †(k,δ,θ )ak1 +

[
1 − α2

R

8h2
|γ (k,δ,θ )|2

]
ak2,

(6b)

024515-2
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FIG. 2. Plot of the Fermi levels for an in-plane magnetic field (δ =
π/2) with angle θ = π/4 relative to the x axis, for filling fraction n =
0.3, magnetic field strength h/t = 1, and SOC strength αR/t = 0.2.
The momenta corresponding to the minima of the band dispersions
are shifted away from the origin according to Eq. (5). Note that the
shift is exaggerated compared to what will be considered throughout
the paper.

where we have defined the function

γ (k,δ,θ ) = (sin kx sin θ − sin ky cos θ ) cos δ

− i(sin kx cos θ + sin ky sin θ )

and a
†
kλ and akλ are the creation and annihilation operators

for band λ respectively. Using these relations, we find that
the expectation value of the z component of the spin is
1/2 for the majority λ = 1 band and −1/2 for the minority
λ = 2 band, with the corrections being second order in αR/h.
Hence, to lowest order, the majority and minority bands consist
of spin-up and spin-down particles, respectively. This has
consequences for the momentum dependence of any intraband
interaction which could lead to superconductivity. In the next
section, we will transform the interaction Hamiltonian using
the above operator relations and obtain an effective low-energy
theory using a Schrieffer-Wolff transformation [28].

B. Transformation of the interaction Hamiltonian

Since the interaction Hamiltonian HI is proportional to U ,
where we have assumed that the interaction is weak, U/t � 1,
we have to consider what powers of U and αR/h to keep when
transforming the Hamiltonian to the eigenbasis according to
Eq. (6). Following Ref. [7], we keep terms of O(U 2/t2) and
O(Uα2

R/th2), while disregarding terms of O(U 2αR/t2h); i.e.,
we assume αR/h � U/t .

Transforming the creation and annihilation operators in
HI , we get four main types of terms: intraband and pair-
hopping terms a

†
k1λ

a
†
k2λ

ak3μak4μ of O(Uα2
R/h2); interband

terms a
†
k1λ

a
†
k2λ̄

ak3λ̄ak4λ of O(U ); and mixed terms such as

a
†
k1λ

a
†
k2λ

ak3λak4λ̄ of O(UαR/h) and higher. The notation λ̄

denotes the opposite band of λ. We collect the intraband and

pair-hopping terms in H1 and the remaining terms in H2:

H1 =
∑

k,k′,q

∑
λ,μ

Uα2
R

4V h2
�λ

(
k + q

2

)
�†

μ

(
k′ + q

2

)

× a
†
−k+ q

2 ,λ
a
†
k+ q

2 ,λ
ak′+ q

2 ,μa−k′+ q
2 ,μ, (7)

where

�λ(k) = ζλ[sin kx cos θ + sin ky sin θ

+ iζλ(sin kx sin θ − sin ky cos θ ) cos δ] (8)

and

H2 = U

2V

∑
k1,k2,k3

∑
λ

a
†
k1λ

a
†
k2λ̄

ak3λ̄ak1+k2−k3,λ + O

(
UαR

h

)
.

(9)

The terms in H2 correspond to processes where the resulting
quasiparticles are on different bands, and including such
interactions in a mean-field treatment would require order
parameters with mixed-band indices. In order to get a form
of the interaction suitable for analysis within a mean-field
theory, we perform a Schrieffer-Wolff transformation; see, e.g.,
Ref. [29] for a review. This enables us to get rid of the lowest
order processes in H2 while still including the effects of H2 to
higher order, such as an intraband process at O(U 2). This is
obtained by the unitary transformation

H ′ = e−SHeS = H0 + H1 + H2 + [H0 + H1 + H2,S]

+ 1
2 [[H0 + H1 + H2,S],S] + · · · , (10)

where S is an antiunitary operator chosen such that
[H0,S] = −H2. The lowest order term in S is necessar-
ily of O(U/t), and this is the only contributing term
to the order we are working. Using as an ansatz S =∑

k1,k2,k3

∑
λ Cλ(k1,k2,k3,k4)a†

k1λ
a
†
k2λ̄

ak3λ̄ak4λ, where k4 =
k1 + k2 − k3, we find

S = U

2V

∑
k1,k2,k3,k4

∑
λ

a
†
k1λ

a
†
k2λ̄

ak3λ̄ak4λδ(k1 + k2 − k3 − k4)

ελ(k4) + ελ̄(k3) − ελ̄(k2) − ελ(k1)
.

(11)

Since S comes with a factor U , we can neglect most of the
terms in the transformed Hamiltonian, leaving us with H ′ =
H0 + H1 + [H2,S]/2. Hence, the contributing higher order
processes due to H2 are found by calculating the commutator
between H2 and S.

The commutator leads to two kinds of terms of relevant
order: a four-operator interband term proportional to a

†
λa

†
λ̄
aλ̄aλ

and six-operator terms a
†
λa

†
λaλaλa

†
λ̄
aλ̄, both of O(U 2/t2).

However, since the interactions must conserve momentum,
and the interacting particles are close to the Fermi level, the
phase space of the interband interaction is severely limited,
as illustrated in Fig. 3. Although the figure does not include
the shifts in the minima of the dispersions away from the
origin, Eq. (5), these shifts are small when αR/h � 1, and the
argument should still hold. Hence we will neglect this term,
and include only the six-operator terms.

An effective intraband process on band λ is obtained
from the six-operator terms a

†
λa

†
λaλaλa

†
λ̄
aλ̄ by projecting the
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FIG. 3. The figures illustrate that the interband scattering from
k + q/2 and −k + q/2 to k′ + q/2 and −k′ + q/2 has a very limited
phase space for both low (top) and high (bottom) filling fractions n.
Here we have not included the shifts in center-of-mass momenta, since
the shifts are small when αR/h � 1.

operators a
†
λ̄
aλ̄ to the noninteracting λ̄ band, which results

in a replacement a
†
λ̄kaλ̄k′ → δ(k − k′)f (ελ̄(k)) [4,7]. Here,

f (ε) is the Fermi-Dirac distribution function. Since the shifts
in center-of-mass momenta are small, including them in the
interaction terms leads to a correction of higher order than
we are considering. We therefore specialize to the case where
the total momentum of the particles interacting is zero, which
yields the result for the commutator

1

2
[H2,S] = U 2

2V

∑
k,k′

∑
λ

χλ̄(k − k′)a†
−k′,λa

†
k′,λak,λa−k,λ,

(12)
where we have defined the susceptibility

χλ(q) = 1

V

∑
p

f (ελ(p + q)) − f (ελ(p))
ελ(p + q) − ελ(p)

. (13)

In contrast to the 2DEG case [4,7], we have not been able to
calculate the susceptibility analytically for the lattice model.
However, a numerical calculation is possible, the results of
which will be discussed in Sec. III A.

Setting the total momentum of an interacting pair of parti-
cles to zero also in H1, and collecting all terms, we arrive at

the effective low-energy Hamiltonian

H ′ = H0 +
∑
k,k′

∑
λ,μ

gλμ(k,k′)a†
−k,λa

†
k,λak′,μa−k′,μ, (14)

where we have defined the interaction matrix

gλμ(k,k′) = U 2

2V
δλμχλ̄(k′ − k) + Uα2

R

4V h2
�λ(k)�†

μ(k′), (15)

where �λ(k) is defined in Eq. (8). The first term in Eq. (15) is
an intraband interaction due to the Kohn-Luttinger mechanism.
The second term, which is caused by the SOC, contains both
intraband and pair-hopping terms, with opposite signs due to
the factors ζλζμ. We thus expect the two terms in Eq. (15) to give
rise to different superconducting states. The first term gives rise
to uncoupled ordered states on the two bands with different Tc,
while the second term couples the order parameters and should
lead to simultaneous superconductivity on both bands.

C. Mean-field treatment

Defining the mean-field order parameters (gap functions)

λ(k) = −
∑
k′,μ

2gλμ(k,k′)〈ak′μa−k′μ〉, (16)

†
μ(k) = −

∑
k′,λ

2gλμ(k′,k)〈a†
−k′λa

†
k′λ〉, (17)

we rewrite the Hamiltonian in the standard way

H ′ =
∑
k,λ

1

2
{[ελ(−k) − μ] + λ(k)〈a†

−kλa
†
kλ〉}

+ 1

2

∑
k,λ

ψ
†
kλEλ(k)ψkλ. (18)

Here, we have defined the Nambu spinors ψkλ = (akλ a
†
−kλ)T

and the matrix

Eλ(k) =
(

ελ(k) − μ λ(k)


†
λ(k) −ελ(−k) + μ

)
. (19)

Performing a Bogoliuobov transformation yields

H ′ = E0 +
∑
k,λ

[
ελ(k) − ελ(−k)

2
+ Eλ(k)

]
nkλ, (20)

where nkλ is the number operator of the Bogoliubov quasipar-
tices in the rotated basis and

Eλ(k) =
√

ξ 2
λ (k) + |λ(k)|2 (21)

is the approximate quasiparticle dispersion with ξλ(k) ≡
[ελ(k) + ελ(−k)]/2. Moreover,

E0 = 1

2

∑
k,λ

[ξλ(k) − Eλ(k) + λ(k)〈a†
−kλa

†
kλ〉]. (22)

Since the SOC term in the system Hamiltonian is the only
term which breaks inversion symmetry, we have [ελ(k) −
ελ(−k)]/2 ∼ αR . The [ελ(k) − ελ(−k)] term in the diagonal-
ized Hamiltonian thus leads to higher order corrections and
will therefore be neglected. Minimizing the free energy with
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respect to 
†
λ(k) yields the gap equations

λ(k) = −
∑
k′,μ

gλμ(k,k′)μ(k′)
Eμ(k′)

tanh

(
βEμ(k′)

2

)
, (23)

where β = 1/kBT . Note that we have set αR = 0 in Eλ(k),
since including the effects of the SOC in the dispersion give
rise to terms of higher order than what we are considering.

III. NUMERICAL SOLUTION STRATEGY

A. Calculation of the susceptibility

The susceptibility is obtained numerically from Eq. (13)
in the zero-temperature limit. Since the susceptibility enters
the gap equations Eq. (23) with a prefactor proportional to
U 2, we can neglect the effects of SOC and thus set αR = 0
in the calculations. The results for the majority band for three
different n are shown in Fig. 4, together with the analytical
result for the 2DEG with Zeeman splitting treated in Refs. [4,7].
For low n, the susceptibility is isotropic and resembles the
2DEG result. Closer to half-filling, the susceptibility becomes
more anisotropic due to the anisotropy of the dispersion.

In order to find the dominating attractive pairing channels
due to the Kohn-Luttinger term in the gap equations, we expand
the results for the susceptibility in square lattice harmonics;
see the Appendix for details. Considering only the dominant
attractive pairing channels, we find that the susceptibility to

good approximation can be written

χλ(k − k′)

= χ1
λ [gx+iy(k)gx−iy(k′) + gx−iy(k)gx+iy(k′)]

+χ2
λ [gx(k)gx(k′) + gy(k)gy(k′)]

+χ3
λ [gx(kx,2ky)gx(k′

x,2k′
y) + gy(kx,2ky)gy(k′

x,2k′
y)

+ gx(2kx,ky)gx(2k′
x,k

′
y) + gy(2kx,ky)gy(2k′

x,k
′
y)], (24)

where we have defined the functions

2πgx+iy(k) = sin kx + i sin ky, (25a)

2πgx−iy(k) = sin kx − i sin ky, (25b)

2πgx(k) = 2πgx(kx,ky) = 2 sin kx cos ky, (25c)

2πgy(k) = 2πgy(kx,ky) = 2 cos kx sin ky. (25d)

These functions are orthonormal, i.e.,
∫

1BZ dkgi(k)g†
j (k) =

δij .
The values for the expansion coefficients χi

λ for different
filling fractions n are shown in Fig. 5 for h = 0.2t at zero
temperature. Notice that χi

λ(n) = χi
λ̄
(1 − n). We will in the

following focus on filling fractions where the first two terms
in Eq. (24) suffice to describe the most attractive pairing
channel, i.e., the channel with the most negative coeffi-
cient χi

λ. Regions where this does not simultaneously hold
for both susceptibilities, because of significant or dominant

FIG. 4. Plot of numerically calculated susceptibilities for the majority band at filling fraction (a) n = 0.02, (b) n = 0.2, and (c) n = 0.45,
which is close to half-filling of the band. The spikes at q = 0 are numerical divergences that do not contribute to the results when expanding in
square lattice harmonics. The susceptibility in the 2DEG case with Zeeman splitting treated in Refs. [4,7], χ (q) ∝ −1 + Re

√
q2 − (2kF )2/q,

is shown in panel (d) with kF /π = 0.2 for comparison.
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FIG. 5. Plot of expansion coefficients χi
λ in Eq. (24) as a function

of filling fraction n for h = 0.2t at zero temperature. Filling fraction
n = 0 corresponds to a completely empty system, and n = 1 to two
completely filled bands. The gray regions indicate where keeping only
the first two terms in the expansion in Eq. (24) is not sufficient due to
dominant contributions to attractive pairing from other square lattice
harmonics, such as the χ 3

λ term in Eq. (24).

contributions from other channels, are indicated by the gray
regions in the figure. The coefficients χi

λ should, strictly
speaking, be calculated at the temperature of the system, but
we expect the superconducting transition temperature to be
sufficiently low for this to be a good approximation.

The plots of the coefficients χi
λ in Fig. 5 illustrate two

important points. First, the dominant attractive Kohn-Luttinger
pairing channel depends strongly on the filling fraction. For
instance, the dominant attractive channel for intermediate
filling fractions differs from low and high filling fractions. This
is related to the shape of the Fermi surfaces in these regions and
could lead to significantly different k dependences of the order
parameters in these regions. Second, the plots also show that the
majority and minority bands have the most negative expansion
coefficient in different filling fraction intervals. Therefore,
there exists a possibility that there can be a switching between
bands with the highest Tc.

B. Momentum dependence of the order parameter

From the preceding subsection, we found that the poten-
tially dominating momentum dependence of the supercon-
ducting gap due to the Kohn-Luttinger term in the interaction
Eq. (15) could be any of the four functions in Eq. (25). If,
however, the solution were to be determined by the second
term in Eq. (15), the solution should be proportional to �λ(k)
in Eq. (8), which can be rewritten in terms of gx±iy(k),

�λ(k) = πgx+iy(k)(ξλ − cos δ)(cos θ − i sin θ )

+πgx−iy(k)(ξλ + cos δ)(cos θ + i sin θ ). (26)

Therefore, keeping only the dominant terms, the superconduct-
ing gap can be expanded using the four functions in Eq. (25),

λ(k) = 
x+iy

λ gx+iy(k) + 
x−iy

λ gx−iy(k) + x
λgx(k)

+
y

λgy(k). (27)

C. Solutions close to the critical temperature Tc

The physically realizable solution of the gap equations
is the solution which corresponds to a global minimum of
the free energy. However, when solving the gap equations
numerically using, e.g., a root solver, the solution might just as
well correspond to a local minimum of the free energy. These
solutions will have a lower Tc and will therefore not be realized
when cooling down the system. In order to circumvent this
problem, we instead calculate Tc and find the corresponding
solution.

Close to and below Tc, we linearize the gap equations,

λ(k,T −
c ) = −

∑
k′,μ

gλμ(k,k′)μ(k′,T −
c )

|ξμ(k′)| tanh

(
βc|ξμ(k′)|

2

)
.

(28)
By multiplying this equation by (2π )2g

†
j (k)/V , where j =

{x + iy,x − iy,x,y}, and summing over the first Brillouin
zone, we get a system of linear equations

i
λ =

∑
j

∑
μ

Mij

λμ(Tc)j
μ, (29)

where

Mij

λμ(Tc) = − (2π )2

V

∑
k′

[(∑
k

gλμ(k,k′)g†
j (k)

)

× gi(k′)
|ξμ(k′)| tanh

(
βc|ξμ(k′)|

2

)]
, (30)

which may conveniently be written in the form

� = M(Tc) �. (31)

Here, � = (x+iy

1 
x−iy

1 . . . 
y

2)T . Thus, for a nontrivial
solution to exist we require that det(M(Tc)) = 0, which allows
for a computation of Tc. In cases where this holds for multiple
temperatures, the highest Tc corresponds to the channel where
superconductivity actually occurs. When Tc is determined, � is
found by calculating the eigenvector of M(Tc) corresponding
to eigenvalue 1. The eigenvector only gives information about
the relative size of the coefficients in Eq. (27), not the absolute
scale. This is nonetheless enough information to determine
the dominant momentum dependence of the order parameter
close to Tc, and hence in which channel superconductivity first
appears upon cooling.

IV. RESULTS AND DISCUSSION

Using the procedure described in the previous section, we
have calculated the eigenvector of M(Tc), focusing on filling
fractions n = 0.1 and n = 0.45. These values are indicated in
Fig. 5. All results are obtained with h = 0.2t . For n = 0.1,
the results as a function of tilt angle δ at θ = 0 is shown in
Fig. 6. We see that for a pure out-of-plane field, δ = 0, 1(k) ∝
sin kx + i sin ky , which for small momenta corresponds to a
chiral kx + iky order parameter. For a pure in-plane field in
the x direction, 1(k) ∝ sin ky , which corresponds to a ky

dependence in the low-|k| limit. This is in agreement with
the results of Lake et al. [7]. It is important to note that when
calculating the eigenvectors at Tc, we do not get information
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FIG. 6. Plot of the (a) absolute value, (b) real part, and (c) imaginary part of the dominant elements of the eigenvector ofM(Tc) corresponding
to eigenvalue 1 as a function of δ for n = 0.1 and θ = 0. The terms proportional to the function gx±iy(k) are the dominant terms in 1(k).
2(k) = 0, not shown in the plot.

about the absolute value of the gaps, nor the relative size of the
gap coefficients between, e.g., δ = 0 and δ = π .

Rotating the magnetic field in the xy plane, the k de-
pendence of the gap also changes accordingly, from a pure
sin ky dependence for θ = 0, to a pure sin kx dependence
for θ = π/2, as seen from the values of the coefficients in
Fig. 7(a). This change coincides with the rotation of the center
momentum q in Eq. (5). The reason for this might be that the
superconducting state is of FFLO kind whenever there is an
in-plane component of the field. In the above calculations, we

0.0 0.1 0.2 0.3 0.4 0.5
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FIG. 7. Plot of dominating terms of the eigenvector as a function
of θ for pure in-plane magnetic field and filling fraction (a) n = 0.1
and (b) n = 0.45. In the small-|k| limit, the k dependence is changed
from pure ky to a pure kx as the field is rotated. The overall phase is
chosen such that the dominating contribution at θ = 0 is real.

neglected the shift in the center momentum of the Fermi levels,
Eq. (5), since they lead to higher order corrections. However,
since the Fermi levels in fact are shifted, the Cooper pairs have
a finite center momentum 2q and thus are FFLO Cooper pairs.
This is in agreement with Ref. [7].

Though the majority band has the highest Tc here, we see
from Fig. 5 that also the minority band is attractive in the
gx±iy channel for low filling fractions, in contrast to what
has been found in other studies with quadratic dispersions
[4,7]. Instead of being completely flat for |k − k′| < 2|kFλ|,
as in the quadratic case, the susceptibility develops a dome
in this region when increasing the filling fraction. In this
way, the susceptibility on the majority band also becomes
k-dependent for interactions between particles close to the
Fermi surface on the minority band, leading to the possibility
of attractive interactions. We therefore expect that the minority
band becomes superconducting at some finite temperature
lower than Tc on the majority band.

Performing similar calculations close to half-filling, with
n = 0.45, we find that the momentum dependence for the
order parameter is dominated by the functions gx(k) and gy(k).
Moreover, superconductivity is now induced on the minority
band at Tc, as shown in Fig. 8. The value n = 0.45 is close to
the filling fraction for which the majority band is half-filled,
which corresponds to a van Hove singularity in the density
of states of the majority band. The fact that the minority
band has the highest Tc can thus be explained by the vast
number of particles on the majority band which can mediate
an effective intraband interaction. Again, the functional form
of the gap is changed by rotating the magnetic field: When
δ = 0, 2(k) ∝ sin kx cos ky − i cos kx sin ky , which in the
small-|k| limit corresponds to kx − iky , and thus has the
opposite chirality compared to the n = 0.1 case. For a pure
in-plane field, we get 2(k) ∝ cos kx sin ky , which for small
momenta corresponds to a pure ky dependence. As for n = 0.1,
rotating the field in-plane changes the k dependence, as shown
in Fig. 7(b).

Since the coefficients χi
λ have the symmetry χi

λ(n) =
χi

λ̄
(1 − n), we have also performed the above analysis for

n = 0.9 and n = 0.55. In both cases, superconductivity is
now present on the opposite band compared to the n =
0.1 and n = 0.45 cases, again with helicity kx + iky for
λ = 1 and kx − iky for λ = 2. Therefore, it appears that a
superconducting state with the same helicity as the band is
favored [7].
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FIG. 8. Plot of the (a) absolute value, (b) real part, and (c) imaginary part of the dominant elements of the eigenvector ofM(Tc) corresponding
to eigenvalue 1 as a function of δ for n = 0.45 and θ = 0. The terms proportional to the functions gx(k) and gy(k) are the dominant terms in
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In both previous cases, only one band is superconducting
at Tc. This indicates that the second term in Eq. (15) does
not contribute significantly to the superconducting pairing, as
this would lead to simultaneous superconductivity on both
bands. Moreover, from the form of �λ(k), we see that this
term should lead to superconductivity of opposite chirality
of what was found here, kx ∓ iky on the majority/minority
band [7]. Notice also that it is in principle possible to read
off the dominating functional form of the superconducting gap
directly from Fig. 5.

Finally, we have found that the value of αR/h has no
impact on Tc, while it depends strongly on the value of
U/t . These are indications that the Kohn-Luttinger term in
the interaction is responsible for the physically realizable
superconducting order, and thus due to pure intraband in-
teractions. This allows to make some predictions regarding
parts of the gray regions in Fig. 5, where the χ3

λ term is
the dominating attractive term. From the above results, it
is reasonable to assume that the solution in these regions
is of the form λ(k) = 

x,2y

λ gx(kx,2ky) + 
y,2y

λ gy(kx,2ky) +


x,2x
λ gx(2kx,ky) + 

y,2x

λ gy(2kx,ky), with the same small-|k|
functional form as found above. This, however, has not been
checked explicitly.

The fact that superconductivity is not proximity induced on
the opposite band by the second term in Eq. (15), requires that
λ(k) satisfies

∑
k

�
†
λ(k)λ(k)

|ξλ(k)| tanh

(
β|ξλ(k)|

2

)
= 0. (32)

Using this requirement, we derive an ansatz for the functional
form of the superconducting gaps,

1(k) = 1
1

[
1 + cos δ√

2(1 + cos2 δ)
(cos θ − i sin θ )gx+iy(k)

− 1 − cos δ√
2(1 + cos2 δ)

(cos θ + i sin θ )gx−iy(k)

]

+2
1

[
cos θ − i cos δ sin θ√

1 + cos2 δ
gy(k)

− sin θ + i cos δ cos θ√
1 + cos2 δ

gx(k)

]
, (33a)

2(k) = 1
2

[
1 + cos δ√

2(1 + cos2 δ)
(cos θ + i sin θ )gx−iy(k)

− 1 − cos δ√
2(1 + cos2 δ)

(cos θ − i sin θ )gx+iy(k)

]

+2
2

[
cos θ + i cos δ sin θ√

1 + cos2 δ
gy(k)

− sin θ − i cos δ cos θ√
1 + cos2 δ

gx(k)

]
, (33b)

where i
λ in general can depend on the field alignment angle.

Using this ansatz to find Tc and the solution eigenvectors,
we find the same results as presented above. Hence, we see
that even though the results do not depend directly on the
SOC strength, the fact that SOC is present affects the realized
pairing symmetry [7]. The results of Ref. [14] indicate that
this conclusion might not hold for all values of αR/h, and
an interesting development would therefore be to study this
system for general SOC strengths.

The Tc quickly decreases with decreasing U/t , and for
values in the regime set by the derivation of the gap equations,
a numerical solution is impossible. Hence, we have performed
the above analysis for a range of values of U/t and αR/h, and
found that the results were qualitatively unchanged. The facts
that the results agree with Ref. [7] for small filling fractions and
that Tc depends only on U/t indicate that the results presented
above should be valid also for realistic values of U/t and αR/h.

There could in principle exist a transition to a magnetic state,
such as the antiferromagnetic phase found for the 2D repulsive
Hubbard model at half-filling in the weak-coupling limit [30].
However, applying a Zeeman field splits the degenerate spin
bands, and we therefore expect that no antiferromagnetic
ordering can exist as long as h > U . Though the application of
a Zeeman field could favor a ferromagnetic phase, other studies
have indicated that ferromagnetic ordering does not appear in
the weak-coupling limit of the 2D Hubbard model [30,31], a
result we expect to hold also in the present case.

V. CONCLUSION

We have investigated the role of a weak spin-orbit coupling
on a spin-polarized weakly repulsive Hubbard system on a
square lattice. Performing an analysis along the same lines as
done by Lake et al. [7] for the 2D electron gas, we found that
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the superconducting order was caused by the SOC-independent
Kohn-Luttinger term in the interaction. The pairing symmetry
was, however, indirectly determined by the SOC: The realized
superconducting gap has the same chirality as the band. We also
found that the momentum dependence of the superconducting
gap could be tuned by rotating the magnetic field and changing
the filling fraction. The filling fraction also determines which
band has the highest Tc.
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APPENDIX: EXPANSION OF SUSCEPTIBILITY
IN SQUARE LATTICE HARMONICS

To the order we are working, we can set αR = 0 when
calculating the susceptibility, Eq. (13). In this case, the dis-
persion in Eq. (4) has the symmetries of the C4v group and is
invariant under spatial inverision, k → −k, 4-fold rotations,
(kx,ky) → (ky,−kx), mirror operations, (kx,ky) → (−kx,ky),
etc. Since we in Eq. (13) sum over the 1 BZ, it can be shown
that the susceptibility has the same symmetries. The expansion
of the susceptibility thus has to be invariant under the same
operations, which greatly reduces the possible terms in the
expansion. Since the susceptibility is even under inversions
(only the SOC term breaks inversion symmetry, which is
neglected here), the expansion must contain only even terms,
which we write in a general form [32] as

χ (q) =
∑
m,n

amn cos(mqx + nqy), (A1)

where m and n are integers, and the band index has been
dropped for notational simplicity. From the requirement
χ (qx,qy) = χ (−qx,qy), we find amn = am,−n = a−m,n, and
similarly from χ (qx,qy) = χ (qy,−qx) we find amn = a−n,m =
anm. Using these relations, we simplify the above equation:

χ (q) = a00 +
∑

(m,n)>0

2amn[cos(mqx + nqy)

+ cos(mqx − nqy)]. (A2)

Separating the terms according to if m = n or not, we get

χ (q) = D00G00 +
∑

m>n>0

DmnGmn(q)

+
∑
m>0

[D0mG0m(q) + DmmGmm(q)], (A3)

where we have redefined the expansion coefficients amn and
defined the orthonormal functions

G00 = 1

2π
, (A4a)

G0m(q) = cos mqx + cos mqy

2π
, (A4b)

Gmm(q) = cos mqx cos mqy

π
, (A4c)

Gmn(q) = cos mqx cos nqy + cos nqx cos mqy√
2π

. (A4d)

We now insert q = k − k′ and rewrite the above functions in
terms of products of functions of k or k′ separately,

4πG0m(k − k′) = [(sin mkx + i sin mky)(sin mk′
x − i sin mk′

y)

+ H.c.] + [sin → cos],

πGmm(k − k′) = [(cos mkx cos mky)(cos mk′
x cos mk′

y)

+ (cos mkx sin mky)(cos mk′
x sin mk′

y)]

+ [sin ↔ cos],

√
2πGmn(k − k′) = [(cos mkx cos nky)(cos mk′

x cos nk′
y)

+ (cos mkx sin nky)(cos mk′
x sin nk′

y)

+ (sin mkx cos nky)(sin mk′
x cos nk′

y)

+ (sin mkx sin nky)(sin mk′
x sin nk′

y)]

+ [n ↔ m].

Since the SOC is weak, the interaction can be regarded to be
between particles of equal spin to the order we are working.
Hence, the interaction must be odd in k and k′. In this way,
we can neglect most of the above terms and are left with an
expansion of the form

χ (k − k′) =
∑
m

χ0m[gx+iy(mk)gx−iy(mk′) + H.c.]

+
∑
m

χmm[gx(mk)gx(mk′) + gy(mk)gy(mk′)]

+
∑
m>n

χmn[gx(mkx,nky)gx(mk′
x,nk′

y)

+ gy(mkx,nky)gy(mk′
x,nk′

y) + m ↔ n], (A5)

where m,n > 0 and we have used the functions defined
in Eq. (25). The leading-order terms included in Eq. (24)
correspond to the χ01, χ11, and χ21 terms in the above equation.
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Spin-valve structures are usually associated with the ability to modify the resistance of electrical currents. We
here demonstrate a profoundly different effect of a spin-valve. In combination with a topological insulator and
superconducting materials, we show that a spin-valve can be used to toggle quantum vortices in and out of exis-
tence. In the antiparallel configuration, the spin valve causes superconducting vortex nucleation. In the parallel
configuration, however, no vortices appear. This switching effect suggests a new way to control quantum vortices.

DOI: 10.1103/PhysRevB.98.144505

I. INTRODUCTION

Topological insulators (TI) are fascinating materials which
are insulating in their bulk, but have topologically protected
conducting surface states [1]. When a conventional s-wave
superconductor is placed in contact with a topological in-
sulator, the superconducting correlations induced on the TI
surface gain a topological character [2]. This may give rise
to a range of exotic phenomena, such as the appearance of
Majorana bound states at vortices [3], which provides an
exciting avenue toward non-Abelian statistics and topological
quantum computation [4].

A particularly interesting property of the surface states of a
TI is the presence of spin–momentum locking. By proximity
coupling both superconducting and ferromagnetic elements to
the topological insulator, this may be used to create complex
supercurrent density distributions [5]. A key observation is
that the exchange field enters the Hamiltonian for the surface
states of a TI in the same way as the magnetic vector potential
does, due to the spin-momentum locking. Because of this,
one might expect that quantum vortices with a phase-winding
could be induced by an exchange field alone on the surface
of a TI in contact with a superconductor, without the need of
any external magnetic flux. The study of superconducting vor-
tices induced in nonsuperconducting materials via proximity
has recently attracted attention both theoretically [5–9] and
experimentally [10].

In this paper, we show that a spin-valve structure combined
with a topological insulator and superconducting materials
can be used to toggle quantum vortices in and out of existence.
These vortices behave in the exact same way as conventional
proximity-induced vortices in superconducting heterostruc-
tures, except for the crucial difference of being generated by
an inhomogeneous in-plane exchange field, rather than the
orbital effect of an applied magnetic flux. Indeed, we will
show that vortex nucleation may be understood in terms of
the presence of an effective flux created by the exchange
field, completely analogously to the flux produced by a mag-
netic vector potential. An advantage of using an exchange

*Corresponding author: morten.amundsen@ntnu.no

field to generate vortices is that it provides greater freedom
in studying inhomogeneous effective flux densities than is
possible with an applied perpendicular magnetic field, and
hence may give rise to more complex vortex patterns. The
spin valve consists of two ferromagnetic layers which can be
either in a parallel (P) or antiparallel (AP) configuration. In
the P configuration, the spin valve does not cause supercon-
ducting vortex nucleation. In contrast, vortices can exist in the
AP configuration. This switching effect suggests a new way
to control quantum vortices in heterostructures. The precise
conditions under which this can occur will be detailed below.

II. THEORY AND MODEL

To demonstrate the spin-valve effect, we consider the
system shown in Fig. 1. Two superconductors are placed on
top of a topological insulator, maintaining a good electrical
contact to induce a measurable proximity effect. This can,
for instance, be a Nb-Bi2Te3-Nb heterostructure, in which
the presence of a Josephson effect has been experimentally
verified [11]. Between the superconductors is placed a pair
of ferromagnets. This creates an effective SFS Josephson
weak link on the two-dimensional surface of the TI via the
proximity effect. The distance between the superconductors
is L = 2ξ , where ξ is the superconducting coherence length,
which is assumed to also be the width of the system. The
exchange field in the ferromagnet is directed along the x

axis (between the superconductors). The magnitude of the
exchange field is constant in the x direction, but can be toggled
between either a P or AP configuration. Such a system can be
experimentally designed by separating the two ferromagnets
by a thin nonmagnetic spacer layer. If the ferromagnets have
different coercive fields, one may toggle between configura-
tions, for instance, by heating the system to above the critical
temperature of the superconductors, Tc, apply a magnetic field
in the x direction large enough to switch the magnetization in
one of the layers, and then cool the system to below Tc. To
ensure different coercive fields, the ferromagnets may either
be different materials or have different sizes.

The surface of the three-dimensional diffusive topolog-
ical insulator here considered may be described by using
quasiclassical theory [12,13]. In the following, we use units

2469-9950/2018/98(14)/144505(4) 144505-1 ©2018 American Physical Society
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z

h

FIG. 1. The geometry considered. Two superconductors and a
spin valve are placed on top of a topological insulator. The spatial
variation of the exchange field induced by the antiparallel configura-
tion of the ferromagnets creates vortices in the TI. The spin valve is
shown lifted for clarity.

where h̄ = 1. In equilibrium, all physical observables may be
computed from the 2×2 retarded Green’s function

G =
(

g f

f̃ −g

)
, (1)

where g and f are the normal and anomalous Green’s func-
tions, respectively, and f̃ (ε) = f ∗(−ε). G has structure only
in particle–hole space, and the spin structure has been factored
out by a unitary transformation to take the spin–momentum
locking into account. A detailed description of this procedure
is given in Ref. [14]. In the diffusive limit, the Green’s
function is governed by the Usadel equation [15]

2Di∇̂ · (G∇̂G) = [εσ3,G], (2)

where ∇̂G = ∇G − i
vF

[hσ3,G], h is the in-plane exchange
field, D is the diffusion constant, ε is the quasiparticle energy,
vF is the Fermi velocity, and σ3 is the third Pauli matrix.
We solve Eq. (2) in the region of the TI located between
the superconductors, which we consider as large enough to
be described by their bulk expressions, GBCS, as given in
Ref. [14]. The numerical method we employ is described in
detail in Ref. [16], and only slight modifications are necessary
to adapt it to topological insulators. We neglect the inverse
proximity effect, which is a good approximation as long as
the Fermi level μTI in the TI is substantially different from
±

√
2mv2

F μS, where m and μS are the electron mass and Fermi
level in the superconductor, respectively [17]. We further as-
sume transparent boundary conditions to the superconductors,
while the vacuum interfaces are described by the Neumann
boundary condition ∇̂G = 0. We note in particular that the in-
plane exchange field enters Eq. (2) in precisely the same way
as does the vector potential in a normal metal. A consequence
of this is that the system will react to a spatial variation in h
in the same way as if an effective flux �h = ∫

A
∇×h d r is

applied, where A is the area of the TI surface. This means
that for a sufficiently large inhomogeneous exchange field,
vortices may appear. Note that for a curl-free inhomogenous
h, vortices do not appear. An analogy to an SNS junction with
a uniform applied magnetic flux is found by considering an

exchange field h = −h0yx̂. In the Fraunhofer limit, where
the width of the junction (in the y direction) is much larger
than its length, the number of vortices in the system is equal
to the number of flux quanta that is applied. The relevant
flux quantum for the exchange-field-induced vortices in the
present paper is then �0 = πvF . The square geometry of the
system studied herein influences the number and position of
the vortices. However, the number of flux quanta produced
by the effective flux �h still remains a good estimate for the
number of vortices.

From the retarded Green’s function, G, the density of
states, normalized by its value at the Fermi level, may be
computed as N (r, ε) = Re g(r, ε), with g(r, ε) defined in
Eq. (1). Furthermore, the pair correlation in the TI, which is
a measure of the strength of the superconducting correlations
induced by the proximity effect, may be computed from

�(r ) = N0

∫
dε [f (r, ε) − f (r,−ε)] tanh

βε

2
, (3)

where β = 1/kBT , T is the temperature and N0 is the density
of states at the Fermi level. Finally, the current density is given
as

J (r ) = J0

∫
dε Re

[
f ∇f̃ − f̃ ∇f − 4i

vF

hf f̃

]
tanh

βε

2
,

(4)

with J0 = N0eD.

III. RESULTS AND DISCUSSION

We consider an in-plane exchange field and set h =
hx (y)x̂. The necessary (but not sufficient) requirement for
inducing vortices is then that ∂yhx �= 0. To be specific, we
assume that the AP configuration of the ferromagnets induces
an antisymmetric exchange field with a spatial variation given
by h = h0 tanh(αy/L)x̂, where α is a shape factor which
determines the size of the transition region. We note that the
size of the effective flux �h, and thus the net number of
vortices introduced, does not depend on the specific shape
of the exchange field since, by the fundamental theorem
of calculus, �h = L[h(L/2) − h(−L/2)]. To model the P
configuration, a constant exchange field h = h0x̂ is assumed.

The two configurations show markedly different behaviors,
as is shown in Fig. 2 where we set α = 20 (the results are
qualitatively the same for all α � 1, which corresponds to
the magnetization saturating before it reaches the outer edges
of the magnetic regions). The uniform exchange field in the
P configuration introduces a phase shift between the super-
conductors, so that a net supercurrent flows between them.
Otherwise, the system is unaffected. The pair correlation
decays towards the center of the TI, but remains nonzero
everywhere, as seen in Fig. 2(a). In the AP configuration, there
is no net current due to the antisymmetry of the exchange field,
which induces an antisymmetric current-density distribution.
Furthermore, the exchange field produces a net effective flux
�h � 2h0L, which may cause vortex nucleation. This is
shown in Fig. 2(b) for h0 = 2vF /ξ . In this case, two vortices
appear along the x axis—the region of largest effective flux
density. Figures 2(c) and 2(d) show the spatial distribution
of the density of states at zero energy for the two configu-
rations. In the P configuration, N (r, 0) is clearly uniformly
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Pair correlation Density of states

FIG. 2. A comparison of the results for the parallel (upper row)
and antiparallel (lower row) configuration of the spin valve. (a)
and (b) show the absolute value of the pair correlation for the
two configurations, as given by Eq. (3). The localized zeros in the
antiparallel case indicate vortices. (c) and (d) show the density of
states N at zero energy, which is gapped in the parallel configuration
and admits a normal state solution at the location of the vortices in
the antiparallel configuration.

suppressed throughout the entire system, as is expected due
to the presence of a proximity-induced energy gap. In the AP
configuration, on the other hand, the presence of the vortices,
which have normal cores, leads to a more complicated topog-
raphy of the density of states, wherein a normal state value of
N = 1 is found in localized regions surrounding the vortices.
The topological nature of these vortices is illustrated by the
phase of the pair correlation, which is shown in Fig. 3(a).
It is seen that for any closed contour around a vortex, it is
necessary to traverse two discontinuous jumps of value π ,
giving a total winding of 2π . This is the hallmark of a vortex.
Another signature of vortices is circulating supercurrents, as is
shown in Fig. 3(b), in which streamlines of the current density,
as given by Eq. (4), are plotted. Since the eddies produce an
out-of-plane magnetic field, which should be detectable using,
for instance, a scanning nanoSQUID device [18], this provides
means for experimentally verifying the presence of vortices. It
is interesting to note that there are currents circulating around
the origin of the system, as seen in Fig. 3(b). A conventional
vortex has a phase gradient that goes like ∇φ ∼ 2πn

r
, where

n is the winding number of the vortex, and r is the radius
from its center. This means that the phase gradient diverges
at the vortex core, leading to a suppression of the pair cor-
relation. The observed flow pattern in the present case is not
accompanied by such a suppression, and is hence not a vortex
in the topological sense. Rather, it is caused by an accidental
cancellation of the phase gradient at the origin due to the ap-
plied exchange field. This can be seen from the current density

(a) (b)

FIG. 3. Evidence of vortex nucleation. (a) The phase of the pair
correlation, showing a winding of 2π around each of the vortices.
(b) Streamlines of the current density, as given by Eq. (4), which
gives its direction at every point, showing that supercurrents circulate
around the vortices.

J ∼ ∇φ. The x component, Jx , is antisymmetric about the
x axis due to the antisymmetric exchange field. It therefore
vanishes along the x axis. The y component on the other hand,
must change direction as one moves along the x axis from
one vortex to the other. Jy is therefore zero in the origin as
well. This means that the magnitude of the current is zero at
this point, thereby producing the observed current pattern. We
emphasize that this eddy is not topologically protected, and
may be removed by minor perturbations of the exchange field.

The behavior of the vortices is greatly influenced by the
symmetries of the system. The model considered herein is
symmetric about the y axis, and either symmetric or antisym-
metric about the x axis, depending on the applied exchange
field. This means that a single vortex pair can only be located
on symmetrically opposite sides of the origin, along either
the x or the y axis without breaking the symmetries of the
system. For an increasing exchange field amplitude, h0, the
AP configuration will lead to the appearance of an increasing
number of vortices. The vortices enter the system from the
vacuum edges, and must do so in pairs from opposite sides.
Due to the low flux density near the vacuum edges, even the
slightest additional increase in h0 will cause the vortices to
translate along the y axis, meet at the origin, and stabilize
at a location along the x axis, as shown in Fig. 2. As h0

is increased further, vortices accumulate along the x axis.
This will, in turn, result in a complete suppression of the
density of states in their vicinity, whereas superconductivity
will still be present closer to the vacuum edges. We point out
that while the present discussion relies on the symmetry, the
symmetry is not crucial to observe the spin-valve effect. The
only requirement is the ability to switch between a rotational
and an irrotational exchange field. Another interesting feature
of the inhomogeneous effective flux density is that it leads
to significant vortex pinning. Indeed, if the superconducting
leads are given a phase difference, for instance by applying a
current bias, so that a net supercurrent flows between them, the
vortex positions are only slightly perturbed. This is in contrast
to the behavior of conventional SNS Josephson weak links
with an applied magnetic flux, where a phase difference leads
to a transversal shift of the vortex positions [6,7].
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FIG. 4. An analysis of the effect of the spacer layer. (a) The
transversal distribution of the exchange field h for increasing size
δ of the central region of suppressed magnetization. (b) The zero-
energy density of states along the y axis for the exchange fields in
(a). (c) The phase of the pair correlation for the case where δ = 0.2,
showing the appearance of a vortex–antivortex pair.

The exchange field induced on the topological insulator
is assumed generated by two separate ferromagnets with an
intermediate spacer layer. In the P configuration, this will
likely create a suppression of the induced exchange field
beneath the spacer. The resulting ∂yhx �= 0 could in itself
induce vortices in the system, in addition to the switching-
effect we have described above. To investigate this, we con-
sider a P exchange field h(y) = h0{1 + 0.5(tanh[α(y/L − δ)]
− tanh[α(y/L + δ)])}x̂, where δ is another shape factor indi-
cating the width of the central dip in h(y). The exchange field
is plotted along the transversal direction y for increasing δ in
Fig. 4(a). Since the exchange field is symmetric, the effective
flux �h = 0. Nonetheless, topological excitations in the form
of vortex–antivortex pairs may be induced. It is clear that
this can happen if an effective flux greater than �0 passes
through any subdomain of the system within which vortex
nucleation is allowed by symmetry. The central dip in the
exchange field will cause vortices to nucleate where ∇×h
is largest and positive, at y = δL, whereas antivortices will
nucleate at y = −δL, where the largest negative effective flux

density is found. To conserve the symmetry of the system, a
single vortex–antivortex pair must appear along the y axis.
The first appearance of such a pair may therefore be gauged
from the zero-energy density of states along this line, as is
shown in Fig. 4(b). It is seen that N remains gapped for a
sufficiently small dip, as exemplified by δ = 0.05 and δ = 0.1.
This shows that the vortex spin-valve effect is robust against
small deviations from a constant exchange field due to the
presence of the spacer layer. For δ = 0.2, however, a vortex–
antivortex pair appears, and the gap in the density of states
closes. This is verified from the phase of the pair correlation,
shown in Fig. 4(c), where the two vortices along the y axis are
seen to have opposite windings.

IV. CONCLUSION

We have considered a Josephson weak link made on the
surface of a topological insulator, onto which is proximity
coupled two ferromagnets separated by a spacer. By using
microscopic calculations, we have shown that it is possible to
switch vortices on and off in this system solely by toggling
between an AP and P configuration of the ferromagnets,
respectively. We further show that this vortex spin-valve effect
is robust against small deviations in the induced exchange
field caused by the spacer layer.

An interesting direction for future work would be to study
the effect of an electrically induced phase gradient in the
superconducting leads, which has recently been shown to
generate vortices in proximitized normal metals [9].
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We study the inverse proximity effect in a bilayer consisting of a thin s- or d-wave superconductor (S) and
a topological insulator (TI). Integrating out the topological fermions of the TI, we find that spin-orbit coupling
is induced in the S, which leads to spin-triplet p-wave ( f -wave) correlations in the anomalous Green’s function
for an s-wave (d-wave) superconductor. Solving the self-consistency equation for the superconducting order
parameter, we find that the inverse proximity effect can be strong for parameters for which the Fermi momenta
of the S and TI coincide. The suppression of the gap is approximately proportional to e−1/λ, where λ is the
dimensionless superconducting coupling constant. This is consistent with the fact that a higher λ gives a more
robust superconducting state. For an s-wave S, the interval of TI chemical potentials for which the suppression
of the gap is strong is centered at μTI = ±

√
2mv2

Fμ, and increases quadratically with the hopping parameter t .
Since the S chemical potential μ typically is high for conventional superconductors, the inverse proximity effect
is negligible except for t above a critical value. For sufficiently low t , however, the inverse proximity effect is
negligible, in agreement with what has thus far been assumed in most works studying the proximity effect in
S-TI structures. In superconductors with low Fermi energies, such as high-Tc cuprates with d-wave symmetry,
we again find a suppression of the order parameter. However, since μ is much smaller in this case, a strong
inverse proximity effect can occur at μTI = 0 for much lower values of t . Moreover, the onset of a strong inverse
proximity effect is preceded by an increase in the order parameter, allowing the gap to be tuned by several orders
of magnitude by small variations in μTI.

DOI: 10.1103/PhysRevB.99.094505

I. INTRODUCTION

Topological insulators (TIs) are insulating in the bulk, but
host metallic surface states protected by the topology of the
material [1–3]. For three-dimensional topological insulators,
the two-dimensional (2D) surface states can be described by
a massless analog of the relativistic Dirac equation, having
linear dispersions and spin-momentum locking. Many inter-
esting phenomena are predicted to occur by coupling the TI
to a superconductor, thus inducing a superconducting gap in
the TI [4]. For instance, such systems have been predicted
to host Majorana bound states [5], which could be used
for topological quantum computing. Moreover, the Dirac-
like Hamiltonian σ · k has consequences for the response to
exchange fields, allowing the phase difference in a Josephson
junction to be tuned by an in-plane magnetization to values
other than 0 and π [6], and inducing vortices by an in-plane
magnetic field [7,8].

Numerous papers have studied the interesting phenom-
ena that have been discovered in topological insulators with
proximity-induced superconductivity [9–22]. To our knowl-
edge, however, much less attention has been paid to the
inverse superconducting, or topological [23], proximity ef-
fect, i.e., the effect that the topological insulator has on the
superconductor order parameter. There have been indications
that superconductivity might be suppressed [17], while other

*Corresponding author: asle.sudbo@ntnu.no

studies have found no suppression [20], One recent study
demonstrated that the proximity to the TI induces spin-orbit
coupling in the superconductor (S), possibly making a Fulde-
Ferrel [24] superconducting state energetically more favorable
near the interface of a magnetically doped TI [25]. Another
study showed that the TI surface states can leak into the su-
perconductor, resulting in a Dirac cone in the density of states
[26]. In this paper, we focus on the superconducting gap itself
and study under what circumstances the inverse proximity
effect is negligible, as is often assumed in theoretical works.

Using a field-theoretical approach, we study an atomically
thin Bardeen-Cooper-Schrieffer (BCS) s-wave superconduc-
tor and d-wave superconductor coupled to a TI. While this
is an approximation for most conventional and high-Tc super-
conductors such as, e.g., Nb, Al, and YBa2Cu3O7, supercon-
ductivity has been observed in, e.g., single-layer NbSe2 [27]
and FeSe [28–30]. Integrating out the TI fermions, we obtain
an effective action for the S electrons. Due to the induced
spin-orbit coupling, spin-triplet p-wave ( f -wave) correlations
are induced in the s-wave (d-wave) superconductor.

Solving the mean-field equations, using parameters valid
for both conventional s-wave superconductors and high-Tc d-
wave superconductors, we find that in both cases a strong
suppression of the superconducting gap is possible. For con-
ventional superconductors, where the Fermi energy μ is high
compared to the cut-off frequency, the coupling between the S
and the TI has to be quite large in order for the inverse proxim-
ity effect to be strong for relevant TI chemical potentials μTI.
This can explain the lack of any inverse proximity effect in

2469-9950/2019/99(9)/094505(11) 094505-1 ©2019 American Physical Society
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experiments [20]. In high-Tc d-wave superconductors, on the
other hand, where the Fermi energy is much smaller, we find
a strong gap suppression at much lower coupling strengths,
which might therefore be experimentally observable. For
these systems, we also find an increase in the gap for μTI just
outside the region of strong inverse proximity effect.

The remainder of the paper is organized as follows: The
model system is presented in Sec. II, and the effective action
for the S fermions and order parameter is derived in Sec. III.
In Sec. IV we derive the mean-field gap equations for the
order parameter. Numerical results for the superconducting
gap are presented and discussed in Sec. V, and summarized
in Sec. VI. Further details on the calculation of the criteria
for strong proximity effect, the Nambu space field integral,
the zero-temperature, noninteracting gap solutions, and the
numerical methods used, are presented in the Appendices.

II. MODEL

We model the bilayer consisting of a thin superconductor
(S) coupled to a TI by the action

S = SS + STI + St . (1)

In Matsubara and reciprocal space, the superconductor is
described by

SS = 1

βV

∑
k

c†(k)

(
−iωn + k2

2m
− μ

)
c(k)

−
∑
k,k′,q

Vk′,k

(βV )3
c†
↑(k′)c†

↓(−k′ + q)c↓(−k + q)c↑(k),

(2)

where c(k) = [c↑(k) c↓(k)]T with c↑(↓)(k) denoting the anni-
hilation operator for spin-up (spin-down) electrons, m is the
electron mass, and μ is the chemical potential in the S. β =
1/kBT and V = LxLy are the inverse temperature and system
area, respectively. We have used the notation k = (ωn, k) [q =
(�n, q)], where ωn (�n) is a fermionic (bosonic) Matsubara
frequency, and k (q) the fermionic (bosonic) in-plane wave
vector. Vk,k′ is the pairing potential, which can be written [31]

Vk,k′ = gv(k)v(k′), (3)

where v(k) = 1 for s-wave pairing, and v(k) = √
2 cos(2φk )

for dx2−y2 -wave pairing, where φk is the angle of k relative
to the kx axis. The coupling constant g is assumed to be
nonzero only when −ω− < k2/2m − μ < ω+, where ±ω± is
the upper (lower) cut-off frequency. For conventional s-wave
superconductors this is typically taken to be the characteristic
frequency ωD of the phonons, while the cut-off frequencies in
high-Tc superconductors are of the order of the characteristic
energy of the antiferromagnetic fluctuations present in these
materials [32–35]. We will set h̄ = 1 throughout the paper.
For the TI we use the Dirac action

STI = 1

βV

∑
k

�†(k)(−iωn + vFk · σ − μTI)�(k), (4)

where �(r) = [ψ↑(r) ψ↓(r)]T describes the TI fermions, vF is
the Fermi velocity, and μTI is the TI chemical potential. The

S and TI layers are coupled by a hopping term [25,26,36,37]

St = − 1

βV

∑
k

t[c†(k)�(k) + �†(k)c(k)]. (5)

Similar models were recently used in Refs. [25,26] when
studying similar systems with an s-wave S. The full partition
function of the system is therefore

Z =
∫

D[c†, c]e−SS

(∫
D[�†, �]e−STI−St

)
. (6)

III. EFFECTIVE ACTION

As we are interested in the inverse proximity effect in
the S and its consequences for the superconducting gap, we
integrate out the TI fermions by performing the functional
integral ZTI,t = ∫

D[�†, �]e−STI,t , where

STI,t = 1

βV

∑
k

{
�†(k)

( − G−1
TI

)
�(k) − t[c†(k)�(k)

+�†(k)c(k)]
}
. (7)

Here, we have defined the matrix G−1
TI = iωn − vFk · σ + μTI.

Performing the functional integration leads to an additional
term in the S action,

δSS = t2

βV

∑
k

c†(k)GTIc(k), (8)

with the TI Green’s function

GTI = iωn + μTI + vFk · σ

(iωn + μTI)2 − v2
Fk2

. (9)

The effective S action thus reads

Seff
S = − 1

βV

∑
k

c†(k)G−1
0 c(k) −

∑
k,k′,q

Vk′,k

(βV )3
c†
↑(k′)

× c†
↓(−k′ + q)c↓(−k + q)c↑(k), (10)

where we have defined the inverse noninteracting Green’s
function

G−1
0 = iωn − k2

2m
+ μ − t2GTI. (11)

From this we see that the coupling to GTI in Eq. (9) leads to
an induced spin-orbit coupling ∼k · σ in the S, in agreement
with Ref. [25].

Performing a Hubbard-Stratonovich decoupling [38], the
four-fermion term in the S action can be rewritten in terms of
bosonic fields ϕ(q) and ϕ†(q),

−
∑
k,k′,q

Vk′,k

(βV )3
c†
↑(k′)c†

↓(−k′ + q)c↓(−k + q)c↑(k) → − 1

βV

×
∑
k,q

[ϕ(q)v(k)c†
↑(k)c†

↓(−k + q) + H.c.]. (12)

This also leads to an additional term in the total system action

S0
ϕ = βV

g

∑
q

ϕ†(q)ϕ(q), (13)
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and a functional integration of the bosonic fields in the parti-
tion function. Note that the decoupling is performed such that
the bosonic fields have units of energy.

By defining the Nambu spinor

C(k) = [c↑(k) c↓(k) c†
↑(−k) c†

↓(−k)]T , (14)

the effective S action can be written

Seff
S = − 1

2βV

∑
k,k′

C†(k)G−1(k, k′)C(k′), (15)

where

G−1(k, k′)=
(

G−1
0 (k)δk,k′ ϕ(k − k′)v(k)iσy

−ϕ†(−k + k′)v(k)iσy −[
G−1

0 (−k)
]T

δk,k′

)
.

(16)

Performing the functional integration over the fermionic
fields, we arrive at the effective action for the bosonic fields

Sϕ = βV

g

∑
q

ϕ†(q)ϕ(q) − 1

2
Tr ln(−G−1). (17)

The additional factor 1/2 in front of the trace is due to the
change in integration measure when changing to the Nambu

spinor notation (see Appendix B and, e.g., Ref. [39] for
details).

IV. MEAN-FIELD THEORY

Since G−1
0 (iωn, k) is still inversion symmetric in the di-

agonal basis (see below), we assume that the bosonic field
ϕ(q) is temporally and spatially homogeneous as in the
regular BCS case. However, a recent study has shown that
introducing in-plane magnetic fields in the TI breaks this
symmetry and can make a Fulde-Ferrel [24] order parameter
energetically more favorable in an s-wave S [25]. Calculating
the matrix G(k) assuming a spatially homogeneous bosonic
field φ(q) = δq,0, and defining the superconducting order
parameter (k) =  · v(k), we get

G(k) =
(

G(k) F (k)

F †(k) −GT (−k)

)
, (18)

where to leading order in t

G(k) = −εk + iωn

ξ 2
k + ω2

n

− t2 (εk + iωn)2[(iωn + μTI) + vFk · σ](
ξ 2

k + ω2
n

)2[
v2

Fk2 − (iωn + μTI)2
] − t2 |(k)|2[(iωn − μTI) − vFk · σ](

ξ 2
k + ω2

n

)2[
v2

Fk2 − (iωn − μTI)2
] , (19)

F (k) = (k)

ξ 2
k + ω2

n

{
1 + 2t2

(
v2

Fk2 − μ2
TI − ω2

n

)
εkμTI − ω2

n

(
v2

Fk2 + μ2
TI + ω2

n

)
(
ξ 2

k + ω2
n

)[
(vF|k| − μTI)2 + ω2

n

][
(vF|k| + μTI)2 + ω2

n

]
+ 2t2

(
v2

Fk2 − μ2
TI + ω2

n

)
εk − 2ω2

nμTI(
ξ 2

k + ω2
n

)[
(vF|k| − μTI)2 + ω2

n

][
(vF|k| + μTI)2 + ω2

n

]vFk · σ

}
iσy, (20)

with εk = k2/2m − μ and ξk =
√

ε2
k + |(k)|2. As men-

tioned above, the proximity-induced spin-orbit coupling leads
to nondiagonal terms in G(k). Moreover, F (k) now has diago-
nal terms ∝k · σiσy, signaling that p-wave ( f -wave) triplet
superconducting correlations are induced in the s-wave (d-
wave) superconductor. This has been shown to be the case
in s-wave superconductors when the spin degeneracy is lifted
by spin-orbit coupling [40]. A similar expression was found
for the anomalous Green’s function on the TI side of an S-TI
bilayer in Ref. [41]. The results in Ref. [41] also suggest
that odd-frequency triplet pairing could be induced in the
S by including a magnetic exchange term m · σ in the TI
Lagrangian.

Gap equation

While the above Green’s functions contain information
about the correlations in the superconductor, the supercon-
ducting gap must be determined self-consistently. We first
change to the basis which diagonalizes the nonsuperconduct-
ing normal inverse Green’s function G−1

0 . We find G−1
d,0(k) =

P(k)G−1
0 (k)P†(k), where G−1

d,0(k) = diag[G−1
+,0(k), G−1

−,0(k)],

with

G−1
±,0(k) = iωn − εk − t2

iωn + μTI ∓ vF|k| (21)

and

P(k) = 1√
2

(
1 e−iφk

1 −e−iφk

)
t . (22)

Here φk is the angle of k relative to the kx axis. + (−) here
denotes the Green’s function for positive (negative) chirality
states. Inverting G−1

d,0 we find the Green’s functions

G±,0(k) = iωn ∓ vF|k| + μTI

[iωn − ε+
± (k)][iωn − ε−

± (k)]
, (23)

where

εγ
α (k) = 1

2 [εk + αvF|k| − μTI

+ γ
√

(εk − αvF|k| + μTI)2 + 4t2], (24)
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with α, γ = ±1. The Green’s function has residues

wγ
α (k) = 1

2
+ εk − αvF|k| + μTI

2γ
√

(εk − αvF|k| + μTI)2 + 4t2
. (25)

We next transform the entire inverse Green’s function G
using G−1

d (k) = P (k)G−1(k)P†(k), where

P (k) =
(

P(k) 0

0 P∗(−k)

)
, (26)

which yields

G−1
d (k) =

(
G−1

d,0(k) −(k)e−iφkσz

−†(k)eiφkσz −G−1
d,0(−k)

)
. (27)

Hence the full Green’s function matrix for the superconductor
is

Gd (k) =
(

Gd (k) Fd (k)

F †
d (k) −Gd (−k)

)
, (28)

where we have defined the 2 × 2 matrices Gd (k) =
diag[G+(k), G−(k)] and Fd (k) = diag[F+(k), F−(k)], and
Green’s functions

G±(k) = [iωn + ε+
± (k)][iωn + ε−

± (k)][iωn ∓ vF|k| + μTI]

[iωn − ξ+
± (k)][iωn + ξ+

± (k)][iωn − ξ−
± (k)][iωn + ξ−

± (k)]
, (29a)

F±(k) = ± (k)e−iφk [(iωn)2 − (±vF|k| − μTI)2]

[iωn − ξ+
± (k)][iωn + ξ+

± (k)][iωn − ξ−
± (k)][iωn + ξ−

± (k)]
. (29b)

The eigenenergies of the system are now given by the poles in the above equation, where

ξγ
α (k) = 1√

2

{
ξ 2

k + (αvF|k| − μTI)
2 + 2t2 + γ

√[
ξ 2

k − (αvF|k| − μTI)2
]2 + 4t2[(εk + αvF|k| − μTI)2 + |(k)|2]

}1/2
. (30)

The gap equation for the amplitude  is found by requiring
δSϕ

δ
= 0 [38], which yields

† = − g

2βV

∑
k

tr F †
d (k)v(k)σze

−iφk . (31)

Inserting the Hermitian conjugate of Eq. (29b) and performing
the sum over Matsubara frequencies, we get the gap equation,

1 = g

4V

∑
k

v(k)2

{
ξ+
+ (k)2 − (vF|k| − μTI)2

ξ+
+ (k)[ξ+

+ (k)2 − ξ−
+ (k)2]

tanh
βξ+

+ (k)

2

− ξ−
+ (k)2 − (vF|k| − μTI)2

ξ−
+ (k)[ξ+

+ (k)2 − ξ−
+ (k)2]

tanh
βξ−

+ (k)

2

+ ξ+
− (k)2 − (vF|k| + μTI)2

ξ+
− (k)[ξ+

− (k)2 − ξ−
− (k)2]

tanh
βξ+

− (k)

2

− ξ−
− (k)2 − (vF|k| + μTI)2

ξ−
− (k)[ξ+

− (k)2 − ξ−
− (k)2]

tanh
βξ−

− (k)

2

}
. (32)

Setting t = 0 simply yields the regular BCS gap equation,
which results in a gap 0 = 2ωDe−1/λ in the s-wave case [42],
where λ = gD0/V is a dimensionless coupling constant, and
D0 is the density of states at the Fermi level. d-wave pairing
results in a slightly smaller gap for the same values for λ

and the cut-off frequencies (see Appendix C for details). For
t �= 0, the above equation can be expressed in terms of an
energy integral over εk using vF|k| = vF

√
2m(εk + μ).

V. RESULTS AND DISCUSSION

From the expressions for the system eigenenergies in the
nonsuperconducting case, Eq. (24), we see that the S and
TI bands have hybridized, leading to avoided crossings. The
effect of this hybridization is largest when the chemical

potential of both the S and TI is tuned such that the Fermi
momenta coincide, i.e., for μTI = ±

√
2mv2

Fμ. A possibly
strong proximity effect should therefore be expected to occur
in a region close to these values of μTI, the size of which
increases with increased hopping t . In the following we
numerically solve the gap equations for both s- and d-wave
superconductors for relevant parameter values.

A. s-wave pairing

Using numerical values μ ∼ 5 eV, a cutoff correspond-
ing to the Debye frequency, h̄ω± = h̄ωD ∼ 25 meV [43],
h̄2/2m ∼ 40 meV nm2, h̄vF ∼ 300 meV nm [20,44], and λ =
0.2, we solve the gap equation in Eq. (32) for different values
of t and μTI at T = 0 for an s-wave superconductor. The
results in Fig. 1(a) show that the absolute value of the gap
is not changed significantly due to the inverse proximity
effect for small t , except for μTI close to

√
2mv2

Fμ. Both
for μTI above and below this region, the inverse proximity
effect is small, signifying that the disappearing gap in the
region where the inverse proximity effect is strong cannot
be simply related to the increasing density of states in the
TI. For increasing t , the region where superconductivity is
suppressed increases quadratically with t , eventually leading
to suppressed superconductivity also at μTI = 0.

The strong suppression of the order parameter can be
understood from the fact that the pairing potential is attractive
only when |k2/2m − μ| � ωD, corresponding to wave vectors
between k± ≡

√
2m(μ ± ω±). This means that the Fermi

wave vectors kF of the bands in Eq. (24), the value of |k|
for which ε

γ
α (k) = 0, have to satisfy k− < kF < k+ in order

to contribute significantly to the integral in the gap equations
and thus give a finite gap. This can be seen by comparing
the left panels in Fig. 1(b), where the upper left panel shows
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FIG. 1. (a) Plot of the superconducting gap at T = 0 for an s-wave superconductor as a function of μTI and t and with an upper cutoff
ω+ = 0.0025 eV, normalized to the bulk value |0| for parameter values relevant for Nb-HgTe bilayers. The kF values for the TI appear vertical
on this plot as a function of μTI due to the small value of the cutoff ω+. The numerical results show that the zero-temperature gap essentially is
unaffected by the proximity to the TI for small values of t , where the suppression is severe only for values of μTI close to

√
2mv2

Fμ, a value far
too large to be experimentally achievable. However, for increasing t , the region where superconductivity is suppressed increases quadratically
with t , eventually leading to a suppression also for μTI = 0. The inset shows the normalized gap at t = 0.1, 0.2, and 0.3 eV, indicating that
the gap is not suppressed entirely in most cases, but rather to a reduced value of 0e−1/λ (dashed line), consistent with there being only one
band contributing to superconductivity in this region. The exception is close to μTI = 0 for t = 0.3 eV, where there are no bands with Fermi
wave vector between k− and k+, resulting in  = 0. This is the case in the area restricted by the dotted line in the main figure. (b) The upper
left panel is a plot of the integrand in the gap equation, Eq. (32), evaluated at 0 for wave vectors k− < |k| < k+ and t = 0.1 eV, where light
colors correspond to high values of the integrand. The three remaining panels show the magnitude of the Fermi wave vectors kF of the bands
defined in Eq. (24) (left axis) in the same interval at t = 0.1, 0.2 and 0.3 eV, and the normalized gap (right axis). Notice that the plots are
close to symmetric around μTI = 0 since ωD  μ. The dash-dotted lines are kS

F and kTI
F (μTI ), the Fermi wave vectors of the S and TI for t = 0,

respectively. Comparing the two left panels it is clear that the main contribution to the integral in the gap equation comes from wave vectors
close to the Fermi wave vectors of the bands in the relevant |k| interval. μα,±

TI (t ) are plotted as dashed (α = 1) and dotted (α = −1) lines in all
plots, indicating the onset of the region in parameter space where superconductivity is greatly suppressed.

the integrand of the gap equation, Eq. (32), and the lower
left panel plots kF for the bands in Eq. (24) as a function of
μTI. The main contribution to the gap equation clearly comes
from the values |k| = kF. From Fig. 1(b) we also see that as
μTI approaches ±

√
2mv2

Fμ, the value where the Fermi wave
vectors for the bare the S and TI bands, kS

F and kTI
F (μTI) cross,

the wave vector of one of the bands exceeds k+ and thus does
not contribute to the gap equation. Now there is only one
nondegenerate band inside the relevant region, meaning that
the density of states and thus λ is halved compared to the t = 0
case, where the band is doubly degenerate. Hence the resulting
gap is suppressed to 0e−1/λ = 2ωDe−2/λ, in good agreement
with the numerical results, as shown by the dashed line in the
inset in Fig. 1(a). This also means that the suppression is less
severe for higher λ, which we have confirmed by numerical
simulations.

For positive μTI, the Fermi wave vector in one band exits
the integration interval [k−, k+] at μTI = μ+,−

TI , while a new
band enters this region at μTI = μ+,+

TI , where we have defined

μα,±
TI (t ) = α

√
2mv2

F(μ ∓ ωD) ± t2

ωD
(33)

(see Appendix A for details). A similar argument holds
for negative μTI, and hence superconductivity is strongly
suppressed for

μα,−
TI < μTI < μα,+

TI , (34)

indicated by the dashed and dotted lines in Fig. 1. If the hop-
ping parameter is large enough, t2 > ωD

√
2mv2

F(μ ∓ ωD) ≡
(t∓)2, μ−,+

TI and μ+,−
TI change sign. Hence, for |t | > |t+| > |t−|

and μ+,−
TI < μTI < μ−,+

TI , no bands have a Fermi wave vector
between k− and k+, resulting in  = 0, as seen for t ≈ 0.3 eV
and low μTI in Fig. 1. Since μ � ωD, all results are close to
symmetric about μTI = 0, as seen in Fig. 1(b).

In order for strong suppression to occur for some value of
μTI, we must require μα,−

TI < μα,+
TI . For α = −1 this always

holds, while for α = +1 we get a lower limit for t2,

t2 > ωD
[√

2mv2
F(μ + ωD) −

√
2mv2

F(μ − ωD)
]
. (35)

For conventional s-wave superconductors μ � ωD, meaning
strong suppression can occur even at low values of t , though
for TI chemical potentials close to ±

√
2mv2

Fμ.
While this result is strictly only valid in the limit of an

atomically thin superconductor, we expect that this effect
in principle could reduce the zero-temperature gap and thus
also reduce the critical temperature in superconducting thin
films. However, for typical parameter values in TIs and s-wave
superconductors, the values of μTI where superconductivity
vanishes is inaccessible, tuning μTI by several eV would place
the Fermi level inside the bulk bands of the TI, where our
model is no longer valid. The only exception from this is
when |t | � |t−|, when superconductivity is suppressed even
at μTI = 0. The fact that no strong inverse proximity effect
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FIG. 2. (a) Plot of the superconducting gap at T = 0 for a d-wave superconductor as a function of μTI and t with upper cutoff ω+ =
0.15 eV, normalized to the bulk value |0| for parameter values relevant for bilayers consisting of HgTe and high-Tc superconductors. The gap
is strongly suppressed for μ−

TI < μTI < μ+
TI, where the approximate (exact numerical) functions μ±

TI(t ) in Eq. (36) are plotted as dotted (dashed)
lines. The approximate solution is only valid for kF ≈ kS

F , corresponding to small t . For μTI ≈ μ±
TI(t ) the gap increases beyond 0. (b) Plot of

the magnitude of the Fermi wave vectors of the bands in Eq. (24) in the interval k− < kF < k+ (left axis), together with the normalized gap
(right axis) for ω+ = 0.15 and 0.04 eV. The upper limit k+ in the left axis corresponds to ω+ = 0.04 eV. The black dash-dotted lines show the
S and TI Fermi wave vectors for t = 0. As for the s-wave case, the strong suppression of the gap is due to only one band having a Fermi wave
vector in the integration interval. Note how the values of kF(μTI ) of the hybridized bands (originating with the left t = 0 crossing of the kF’s of
the TI and the S) bend back in a pronounced way as a function of μTI (kF is a multivalued function of μTI since there are four bands). This leads
to an enhanced density of states for these values of μTI. This in turn gives an enhancement of the gap in the immediate vicinity of the region of
μTI where the gap is suppressed by the disappearance of bands crossing the TI Fermi surface. This effect is not seen in the s-wave case, where
the pronounced back bending of kF(μTI ) does not occur inside the integration interval with the much lower values of ω± [see Fig. 3(a)].

has been observed, e.g., in Ref. [20], might indicate that the
coupling constant t is below this limit, meaning that an un-
physical high chemical potential is needed in the TI to observe
the vanishing of superconductivity. Since conventional s-wave
superconductors have high Fermi energies, it might not be
possible to reach the parameter regions where superconduc-
tivity vanishes, unless the chemical potential in the S can be
lowered significantly, the Fermi velocity of the TI is lowered
by renormalization, as was proposed in Ref. [26], or the
coupling between the layers can be increased beyond t−. How-
ever, as we show below, similar effects are present also for
unconventional, high-Tc superconductors, for which the Fermi
energy is lower. Examples of such superconductors would be
the high-Tc cuprates and the heavy-fermion superconductors.1

B. d-wave pairing

Using a much lower chemical potential in the S, μ ∼
35 meV [45], and an upper cut-off frequency comparable to
the spin fluctuation energy in the high-Tc cuprates, ω+ ∼
0.04−0.15 eV [32,33,46], ω− = μ, and parameters otherwise
as for the s-wave case, we solve the gap equations for a d-
wave superconductor. First of all, the effect of the d-wave gap
structure, compared to an s-wave gap, is an overall change in
scaling, just as is the case for 0 (see Appendix C). Hence, the
results for s−wave/s−wave

0 are identical to d−wave/d−wave
0

1Although heavy-fermion superconductors nominally have a
quitelow critical temperature in absolute terms, they are nevertheless
high-Tc superconductors. Their critical temperatures are a significant
fraction of their Fermi-temperatures.

when using the same parameters, and we have therefore
solved the numerically more efficient s-wave gap equations
with parameters valid for high-Tc superconductors.

Figure 2(a) shows the numerical results for the normalized
gap as a function of μTI and t . The most prominent difference
compared to the results in Fig. 1 is that the results are no
longer symmetric about μTI = 0, which can be understood
from the fact that ω± is of the same order of magnitude or
larger than μ. Due to the anticrossing of the Fermi wave
vectors at negative μTI, there is only one Fermi wave vector
between k− and k+ for μ−

TI < μTI < μ+
TI [dashed lines in

Fig. 2(a)], leading to strong suppression for negative μTI.
This is illustrated in Fig. 2(b), where we plot the Fermi wave
vectors of the bands together with the normalized gap as a
function of μTI for different values of t . The figure also shows
how the regions of strong mixing between the bands increases
with increasing t . Interestingly, the suppression of the gap is
preceded by an increased  at μ±

TI, due to the bending of
the Fermi wave vectors away from the crossing point of kS

F
and kTI

F (μTI), which leads to an increase in the density of
states at the Fermi level. This is illustrated in Fig. 3(b), where
for TI chemical potentials μ±

TI the bands have a minimum
(maximum) at the Fermi level, resulting in high densities of
states. The difference in the gap enhancement between μ+

TI
and μ−

TI is due to the combined effects of different spectral
weights, indicated by the linewidths in Fig. 3(b), and the size
of the Fermi surface, leading to a net larger increase in || at
μ−

TI. In the small t limit, we find the approximate expressions

μ±
TI = −

√
2mv2

Fμ ± 2

(
mv2

F

2μ

)1/4

t + 1

4μ
t2. (36)
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FIG. 3. Plots of the bands εγ
α (k) in Eq. (24) for (a) s-wave and (b) d-wave parameter values and different values of μTI. The linewidths are

proportional to the spectral weights wγ
α (k) of the bands [see Eq. (25)]. In (a) the values of μTI correspond to a barely suppressed (μTI = 0.0 eV)

and strongly suppressed (μTI = −3.3 eV ≈ −
√

2mv2
Fμ) gap for coupling t = 0.2 eV. The inset shows that there is no hybridization of bands

close to the Fermi level (dashed line) for the lowest μTI, while the strong hybridization for μTI = 3.3 eV leads to only one band crossing the
Fermi level in the interval [k−, k+] (dotted lines). In (b) we see that only one band crosses the Fermi level for μTI = −0.25 eV, explaining the
strong suppression in this case. At μTI = μ±

TI we have an increase in ||, which can be explained by the bands having minima/maxima at the
Fermi level in these cases, leading to high densities of states.

These lines are plotted in Fig. 2(a) (dotted lines) together with
the exact numerical solutions (dashed lines) (see Appendix A
for details). This increase in || is not due to the the d-wave
symmetry, and should therefore be present for μTI = μ±

TI
whenever the interval [k−, k+] includes either of the points
kS

F ± |δkF|, where δkF is defined in Eq. (A7).
For positive μTI there is a small reduction in  close

to μTI =
√

2mv2
Fμ, even though there are three bands with

kF ∈ [k−, k+]. However, since the numerator of each term in
the gap equation, Eq. (32), can be written ξ±

α (k)2 − (αvF|k| −
μTI)2, regions where ξ±

α (k) are similar to the bare TI bands
contribute little to the gap equations, resulting in a small
decrease of .

The effect of using a lower upper cutoff in the solution of
the gap equations is also shown in Fig. 2. Comparing the ω+ =
0.15 and 0.04 eV lines, we see that for high t , the mixing of
the S and TI bands is still significant at kF = k+, leading to
abrupt changes in . For the negative μTI the main effect of
lowering the upper cutoff ω+ is a further increase of  at μ±

TI.
From the above results, it is clear that a strong suppression

of the gap is more probable in S-TI bilayers consisting of a
high-Tc S, where both the chemical potential −

√
2mv2

Fμ cor-
responding to kS

F = kTI
F (μTI) and the hopping strength needed

for strong suppression at μTI = 0 is much lower. Hence, we
may expect a strong inverse proximity effect in such systems,
with a strength determined by λ, as illustrated in Fig. 4 for
both the s- and the d-wave case. Increasing λ leads to a
reduced suppression of the gap, consistent with the fact that
the superconducting state is more robust for higher λ. For the
s-wave case, the suppression is proportional to e−1/λ. This
holds only approximately for the d-wave case due to other
factors than Fermi level crossings affecting the suppression,
such as changes in the spectral densities at the Fermi level and
changes in the size of the Fermi surface (see Fig. 3), effects
which are small in the s-wave case. From the results in Fig. 2
we also see that it should be possible to change  by several

orders of magnitude by small changes in μTI, again depending
on the value of λ as illustrated in Fig. 4.

VI. SUMMARY

We have theoretically studied the inverse superconducting
proximity effect between a thin s-wave or d-wave supercon-
ductor and a topological insulator. Using a field-theoretical
approach, we have found that in both cases there are regions in
parameter space where the inverse proximity effect is strong,
leading to a strong suppression of the gap approximately
proportional to e−1/λ. The suppression can be related to the
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FIG. 4. The figure shows how the dimensionless coupling con-
stant λ affects the suppression of the superconducting gap for s-
wave S with t = 0.2 eV (top) and d-wave S with t = 0.05 eV and
ω+ = 0.15 eV (bottom). Increasing λ makes the superconducting
state more robust, reducing both the suppression of , and also the
increase in  at μ±

TI in the d-wave case.
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hybridization of the TI and S bands, and the large degree of
mixing which occurs when the Fermi wave vectors of the S
and TI coincide for chemical potential μTI = ±

√
2mv2

Fμ. A
larger value of λ results in a more robust superconducting
state, and hence less suppression.

For parameter values relevant for s-wave superconductors,
the interval of suppression grows quadratically with the hop-
ping t , and eventually leads to strong suppression even at
μTI = 0. However, since there have been no experimental
indications of a strong inverse proximity effect, we must
conclude that the hopping is too weak to lead to suppression
for experimentally accessible values of μTI. Neglecting the
inverse proximity effect regarding the stability of the super-
conducting order therefore seems to be a good approximation
for conventional s-wave superconductors.

A similar effect of suppressed superconductivity is also
present for d-wave superconductors with parameter values
relevant for the high-Tc superconductors. In this case the
strong suppression is found for TI chemical potentials close
to −

√
2mv2

Fμ, where the interval of strong suppression of
the gap grows approximately linearly with t . Since the Fermi
energy μ is much lower for high-Tc superconductors, both
the magnitude of the chemical potential −

√
2mv2

Fμ, and the
hopping strength needed for strong suppression at μTI = 0 is
much lower, making a strong inverse proximity effect more
probable in such systems. In contrast to the s-wave case, the
region of strong suppression was preceded by an increase in 

above 0. This is, however, not a consequence of the pairing
symmetry, but rather the difference in system parameters. For
large enough cut-off frequencies, the integration region will
include a band minimum/maximum just touching the Fermi
level, leading to a large increase in the density of states, and
thus increased gap.

We also find that the spin-triplet p-wave ( f -wave) super-
conducting correlations are induced in the s-wave (d-wave)
S due to the proximity-induced spin-orbit coupling. Possible
further work could include breaking the translation symmetry
in the x or y direction and probing the density of states normal
to the z axis, possibly revealing signatures of p-wave or f -
wave pairing. Moreover, it could be interesting to study the
spatial variation of the order parameter in a superconductor
with finite thickness.

ACKNOWLEDGMENTS

J.L. and A.S. acknowledge funding from the Research
Council of Norway Center of Excellence Grant No. 262633,
Center for Quantum Spintronics. A.S. and H.G.H. also ac-
knowledge funding from the Research Council of Norway
Grant No. 250985. J.L. acknowledges funding from Research
Council of Norway Grant No. 240806. J.L. and M.A. also
acknowledge funding from the NV-faculty at the Norwegian
University of Science and Technology. H.G.H. thanks F. N.
Krohg for useful discussions.

APPENDIX A: CRITERIA FOR STRONG
PROXIMITY EFFECT

For superconductivity to occur, the Fermi wave vector
of at least one of the bands has to lie within the interval

of attractive pairing, which for s-wave superconductors is√
2m(μ − ωD) < |k| <

√
2m(μ + ωD). We find the Fermi

wave vector of the energy bands by setting ε
γ
α (k) = 0, which

yields the equation

[αvF|k| − μTI]εk − t2 = 0. (A1)

Inserting |k| = k± we get the value of μTI for which the Fermi
wave vector of a band enters or leaves the interval of attractive
pairing,

μα,±
TI (t ) = α

√
2mv2

F(μ ∓ ωD) ± t2

ωD
. (A2)

The Fermi wave vectors of the bands ε−
α (k) exceed

k+ at μα,−
TI , while the Fermi wave vectors of ε+

α (k)
enter the interval [k−, k+] at μα,+

TI . μ+,+
TI (μ−,−

TI ) is
always positive (negative), while μ+,−

TI and μ−,+
TI

change sign when t2 > ωD

√
2mv2

F(μ + ωD) ≡ (t+
0 )2 and

t2 > ωD

√
2mv2

F(μ − ωD) ≡ (t−
0 )2, respectively, where

|t+
0 | > |t−

0 |.
Hence we have strong suppression when

μα,−
TI < μTI < μα,+

TI , (A3)

which for α = +1 requires

t2 > ω
[√

2mv2
F(μ + ωD) −

√
2mv2

F(μ − ω)
]
.

Moreover, for |t | > |t+| and μ+,−
TI < μTI < μ−,+

TI no bands
have a Fermi wave vector inside the relevant interval, and the
gap is zero.

For the d-wave S we find an increase in the gap function for
certain values of μTI. An increase in the gap would occur in
regions where the Fermi wave vectors of two bands approach
each other and finally coincide as a function of μTI, resulting
in a region of closely spaced Fermi wave vectors. This can
be seen to happen in Fig. 2(b). To find the value of μTI

corresponding to the increase in  we find the local minima of

μTI(kF) = αvFkF − t2

εkF

(A4)

by requiring ∂kFμTI(kF) = 0, from which we get the equation
for kF,

αvF + t2kF

mε2
kF

= 0. (A5)

Solving this equation numerically with α = −1 and inserting
the results into Eq. (A4) yields the dashed lines in Fig. 2, in
good agreement with the numerical results of the gap equa-
tion. To get an approximate analytical expression, we assume
that kF = kS

F + δkF, where δkF  kS
F , which is valid for suffi-

ciently small t . Neglecting terms of O(δk3
F) and higher, we get

δk2
F + t2m

αvFkS
F

+ t2m

αvF
(
kS

F

)2 δkF = 0. (A6)

Neglecting the last term yields, effectively keeping terms up
to O(t2), results in

δkF = ±
√

− 1

α

(
m

2v2
Fμ

)1/4

t, (A7)
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from which it is clear that we only have solutions for α = −1.
Inserting this expression into Eq. (A4), we get to O(t2)

μ±
TI ≈ −

√
2mv2

Fμ ± 2

(
mv2

F

2μ

)1/4

t + 1

4μ
t2. (A8)

This result is plotted as dotted lines in Fig. 2(a), and is
in good agreement with the exact numerical results for
small t . For μ−

TI < μTI < μ+
TI, there is only one Fermi wave

vector in the integration region, leading to a suppressed
gap.

APPENDIX B: FUNCTIONAL INTEGRAL IN NAMBU SPINOR NOTATION

We begin by considering the Gaussian integral over Grassmann variables [47],

I =
(∏

i

∫
dai

)
e−1/2

∑
i, j aiMi j a j =

(∏
i

∫
dai

) ∏
i, j

(
1 − 1

2
aiMi ja j

)
= Pf

(
M − MT

2

)
, (B1)

where Pf[(M − MT )/2] is the Pfaffian of the antisymmetric part of M, where Pf(A)2 = det(A). As an example we consider only
two variables, a1 and a2. In this case, terms containing Mii disappear, since a2

i = 0, as do second-order terms in M. For the above
integral we therefore get

I =
∫

da1da2
1

2
(−a1M12a2 − a2M21a1) = M12 − M21

2
=

√
det

M − MT

2
=

√
det MA = Pf(MA). (B2)

Here, MA is the antisymmetric part of M.
Applying this to the problem of integrating exp(−Seff

S ), we first write the action in terms of the Nambu spinor C:

Seff
S = − 1

βV

∑
k,k′

CT (−k)

(
ϕ†(k′ − k) σx−iσy

2 0

G−1
0 (k)δk,k′ ϕ(k − k′) σx+iσy

2

)
C(k′) ≡ − 1

2βV

∑
k,k′

CT (−k)A(k, k′)C(k′)

= − 1

βV

∑
k,k′

CT (k)

(
−ϕ†(k − k′) σx+iσy

2 −[
G−1

0 (k)
]T

δk,k′

0 −ϕ(k′ − k) σx−iσy

2

)
C(−k′) ≡ − 1

2βV

∑
k,k′

CT (k)[−A(k′, k)]T C(−k′).

Combining these two expressions, we get

Seff
S = − 1

2βV

∑
k,k′

CT (−k)

(
−ϕ†(k′ − k)iσy −[

G−1
0 (−k)

]T
δk,k′

G−1
0 (k)δk,k′ ϕ(k − k′)iσy

)
C(k′)

= − 1

2βV

∑
k,k′

CT (−k)
A(k, k′) − AT (−k′,−k)

2
C(k′) = − 1

2βV

∑
k,k′

CT (−k)AA(k, k′)C(k′), (B3)

where AA(k, k′) denotes the antisymmetric part of A. This is exactly equal to Eq. (15), as can be seen by the following
manipulations. For notational simplicity we use the two-vector notation

C(k) =
(

c(k)

c∗(−k)

)
, (B4)

i.e., [C(k)]1 = c(k), [C(k)]2 = c∗(−k). Hence the matrix multiplication in Eq. (B3) can be written∑
i j

[CT (−k)]i[A
A(k, k′)]i j[C(k′)] j = − [CT (−k)]1ϕ

†(k′ − k)iσy[C(k′)]1 − [CT (−k)]1
[
G−1

0 (−k)δk,k′
]T

[C(k′)]2

+ [CT (−k)]2G−1
0 (−k)δk,k′ [C(k′)]1 + [CT (−k)]2ϕ(k − k′)iσy[C(k′)]2. (B5)

We use the fact that [C†(k)]1 = [CT (−k)]2 and [C†(k)]2 = [CT (−k)]1, and relate the remaining factors to the elements of
G−1(k, k′) in Eq. (16),

CT (−k)AA(k, k′)C(k′) = [C†(k)]2[G−1(k, k′)]21[C(k′)]1 + [C†(k)]2[G−1(k, k′)]22[C(k′)]2 + [C†(k)]1[G−1(k, k′)]11[C(k′)]1

+ [C†(k)]1[G−1(k, k′)]12[C(k′)]2

= C†(k)G−1(k, k′)C(k′), (B6)

which shows that Eqs. (B3) and (15) are equivalent. Using Eq. (B1), the functional integral of the action in Eq. (B3) results in

Z =
∫

Dc†Dce−Seff
S =

√
det[−AA], (B7)
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where we have neglected various numerical constants. By interchanging an even number of rows, it can be shown that
AA(k, k′) → G−1(k, k′), and since the determinant is invariant under an even number of interchanges, we find [39]

Z = e1/2 Tr ln(−G−1 ). (B8)

APPENDIX C: ZERO-TEMPERATURE GAP FOR t = 0

When t = 0, the gap equation, Eq. (32), reduces to

1 = g

2V

∑
k

v2(k)√
εk + |0(k)|2

(C1)

in the zero-temperature limit. Transforming this to an integra-
tion over φk and energy, we get

1 = λ

2

∫ ω+

−ω−
dε

∫ 2π

0

dφk

2π

v2(φk )√
ε + |0(φk )|2

, (C2)

where ω± are positive. Performing the energy integral we get

1 = λ

2

∫ 2π

0

dφk

2π
v2(φk ) ln

√
|0(φk )|2 + ω2+ + ω+√
|0(φk )|2 + ω2− − ω2−

≈ λ

2

∫ 2π

0

dφk

2π
v2(φk )

[
ln

4ω−ω+
2

0

− 2 ln |v(φk )|
]
, (C3)

where we in the last line have assumed that the gap is small
compared to the cut-off energy. For an s-wave superconduc-
tor v(φk ) = 1, and we get simply 0 = 2

√
ω−ω+e−1/λ. For

d-wave pairing we can instead write the gap as

0 = 2
√

ω−ω+e−(1/λ)−I , (C4)

where we have defined the integral

I =
∫ 2π

0

dφk

2π
v2(φk ) ln |v(φk )| = 1 − ln 2

2
≈ 0.153 426.

(C5)

Hence, the maximum d-wave gap amplitude is marginally
smaller than the s-wave gap for the same values of λ and ω±.

APPENDIX D: NUMERICAL INTEGRATION
PROCEDURES

When solving the gap equation numerically, the k sum is
rewritten in terms of an energy integral over εk and an integral
over φk, which in the s-wave case is simply equal to 2π . In
the s-wave case we therefore only have to perform the energy
integral for energies in the interval [−ω−, ω+], in our case
using Python and the implementation TRAPZ of the trapezoidal
method in the SCIPY library. In the d-wave case, we use the
QUADPY library’s implementation of the numerical integration
method in Ref. [48] when calculating the 2D integral in the
εk-φk plane.
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We study the effective interactions between Dirac fermions on the surface of a three-dimensional topological
insulator due to the proximity coupling to the magnetic fluctuations in a ferromagnetic or antiferromagnetic
insulator. Our results show that the magnetic fluctuations can mediate attractive interactions between Dirac
fermions of both Amperean and BCS types. In the ferromagnetic case, we find pairing between fermions with
parallel momenta, so-called Amperean pairing, whenever the effective Lagrangian for the magnetic fluctuations
does not contain a quadratic term. The pairing interaction also increases with increasing Fermi momentum and
is in agreement with previous studies in the limit of high chemical potential. If a quadratic term is present, the
pairing is instead of BCS type above a certain chemical potential. In the antiferromagnetic case, BCS pairing
occurs when the ferromagnetic coupling between magnons on the same sublattice exceeds the antiferromagnetic
coupling between magnons on different sublattices. Outside this region in parameter space, we again find that
Amperean pairing is realized.

DOI: 10.1103/PhysRevB.97.195438

I. INTRODUCTION

Topological insulators (TIs) have attracted much attention
since their discovery a decade ago [1,2]. Although being
insulating in the bulk, the surface of a three-dimensional TI has
topologically protected metallic surface states. These metallic
surface states are well described by the two-dimensional
(2D) massless Dirac equation, having linear dispersions and
spin-momentum locking, and are therefore often called Dirac
fermions [3]. A gap in the dispersion, analogous to the mass gap
for massive relativistic fermions, can be opened by breaking
the time-reversal symmetry of the system, for instance, by
applying a magnetic field normal to the TI surface or by
proximity coupling to a magnetic insulator [4–8].

Many theoretical works have studied heterostructures con-
sisting of TIs and ferromagnetic (FM) insulators, focusing in
particular on the effects on the magnetization in the magnetic
layer [9–20]. One recent study focused instead on the effective
interactions between Dirac fermions on the surface of a TI
coupled to a FM insulator with mean-field magnetization
perpendicular to the TI surface [21]. It showed that interactions
between the Dirac fermions and the transverse magnons in the
FM lead to an effective attractive pairing between fermions
with parallel momenta, so-called Amperean pairing [22,23].
In the presence of spin-momentum locking, this exotic pairing
also implies that the pairs will form spin triplets. However,
the chemical potential was assumed to be tuned far away

*Corresponding author: asle.sudbo@ntnu.no

from the gap thus neglecting the effects of the mass gap
in the Dirac fermion dispersion. This raises the question
how the pairing is affected when the chemical potential is
tuned towards the gap as the pairing must disappear in the
absence of a Fermi surface. Moreover, the pairing mediated by
fluctuations in other magnetic configurations than FM order
have not yet been studied. Bilayer systems of antiferromagnetic
(AFM) insulators and TI films, for instance, are also under
experimental investigation [24].

Rex et al. [20] recently studied the effective theory for the
magnetic moments in a bipartite magnetic insulator (BMI)
coupled to the Dirac fermions on a TI surface. Their model
allows to continously tune the magnet from a FM to an AFM
configuration. In the present paper we will use the same model,
restricted to the limiting FM and AFM cases, to study the
effective interactions between the Dirac fermions induced by
the magnetic fluctuations, including the effects of the mass
gap. Possible material choices for such systems are Bi2Se3 or
Bi2Te3 as the TI, EuS as FM [4,25], and NiO or CoO as AFM
[26–30]. In both cases, we find that pairing between Dirac
fermions is possible in certain regions of parameter space.
For coupling to ferromagnetic fluctuations, the pairing is of
the Amperean type whenever there is no quadratic coupling
term between the magnons, in agreement with Ref. [21] in the
limit of high chemical potential. However, as the Fermi level
is moved towards the gap, the pairing decreases, vanishing
when the chemical potential is tuned inside the gap. We also
find that pairing of the Bardeen-Cooper-Schrieffer (BCS) type,
i.e., where the interacting particles have momenta in opposite
directions, is possible in certain regions of the parameter space.

2469-9950/2018/97(19)/195438(9) 195438-1 ©2018 American Physical Society
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FM
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AFM

TI

x

y

z

FIG. 1. Bilayer heterostructures consisting of ferromagnetic and
antiferromagnetic insulators proximity coupled to a TI are modeled
using a bipartite magnetic insulator with tunable mean-field magne-
tizations [20]. The surface of the TI is placed in the xy plane, and the
mean-field magnetization of the magnetic insulators is perpendicular
to the interface.

In the antiferromagnetic case we again find pairing of both
types, depending on the relative strength between the intra- and
interlattice couplings. Hence, we find that, for both magnetic
configurations, magnon-induced superconductivity due to the
attractive interactions is possible.

The remainder of the article is organized as follows: The
model is presented in Sec. II together with the derivation of
the effective action for the TI surface fermions. Subsequently,
the effective pairing interaction on the TI surface is discussed
for the FM and AFM cases in Secs. III and IV, respectively.
The results are summarized in Sec. V. Further details regarding
the derivation of the effective TI action are presented in the
Appendix.

II. MODEL

The bilayer heterostructures are described by taking into
account the surface of the TI and magnetic insulator, the bulk
of the magnetic insulators, and hopping across the interface
due to the proximity [20]. In order to treat heterostructures
with FM and AFM insulators simultaneously, we will consider
a BMI consisting of two FMs with lattice magnetizations m1

and m2 as is illustrated in Fig. 1. We set h̄ = 1 throughout
the paper and work close to zero temperature utilizing the
zero-temperature Matsubara frequency formalism. The bulk
of the magnetic insulator is described by the Lagrangian
LBMI = L1 + L2 + Lex, where

Li = −b(mi) · ∂tmi − κ

2
(∇mi)

2 (1)

amounts to a continuum description of each of the two
sublattices with i = 1,2, whereas

Lex = −λm1 · m2 (2)

describes the exchange interaction. κ > 0 is the ferromagnetic
exchange-coupling constant, whereas the coupling between the
two lattices is ferromagnetic or antiferromagnetic for λ < 0 or
λ > 0, respectively. b denotes the Berry connection, satisfying
∇mi

× b(mi) = mi/m2
i .

The surface of the TI is described by the 2D Dirac
Lagrangian together with a weak quadratic term in the deriva-
tives leading to particle-hole asymmetry [31–34],

LTI = �†[i∂t − ivF(σy∂x − σx∂y) + E0
(
∂2
x + ∂2

y

)+ μ
]
�,

(3)

where � = (ψ↑,ψ↓)T is the spinor of the Dirac fermions, ↑,↓
label the spin in the z direction, vF is the Fermi velocity, and μ is
the chemical potential. The second derivative term is assumed
small compared to the Dirac term. We have not included the
fluctuating Coulomb interactions between the Dirac fermions
since this interaction is screened whenever we have a Fermi
surface. For the ferromagnetic case, there will also be a demag-
netizing field outside the ferromagnet, resulting in a coupling
to a mostly in-plane vector potential in the TI Hamiltonian [35].
This coupling in turn leads to circular orbits with radii of the
order of the magnetic length l ∼ √

eμ0|M|/h̄ [33] where M
is the magnetization, μ0 is the vacuum permeability, and e is
the electron charge. This coupling can only be neglected when
the motion of the TI fermions is unaffected on the relevant
length scale, which for superconductivity is the coherence
length ξ , i.e., we must have l � ξ . Using ξ ∼ h̄vF/kBTc [36]
where Tc is the critical temperature, we get the requirement
that |M| � eμ0k

2
BT 2

c /h̄v2
F. We will assume that this holds in

the following. Since antiferromagnets have close to zero stray
fields [37,38], the coupling to the vector potential can be safely
disregarded in the AFM case.

In order to couple the TI fermions and BMI magnetization,
Rex et al. [20] introduced auxiliary fermionic fields χi =
(χ↑,χ↓)T on the surface of the magnet for the two sublattices
i = 1,2. These fields can be interpreted as electrons in the
magnetic insulator, which are localized in the atomic limit.
Their spins Si = 1

2χ
†
i σχi are coupled to the magnetization

of the corresponding sublattice, and in proximity to the TI,
hopping across the interface is taken into account. Thus, the
Hamiltonian of χ1,χ2 is

Hsurf = −t(χ †
1χ2 + χ

†
2χ1) − J

∑
i=1,2

χ
†
i mi · σχi

−h[�†(χ1 + χ2) + (χ †
1 + χ

†
2 )�]. (4)

Here, t is the coupling between the surface fermions, J and
h are the strengths of the coupling to the magnetization mi

at z = 0 and to the Dirac fermions, respectively, and σ is the
Pauli matrix vector.

A. Integration of magnetic moments

By integrating out the χi fermions, an effective theory
for the Dirac fermions and magnetizations was obtained in
Ref. [20], including effective couplings between � and mi . In
the following, we will assume that the length of the magneti-
zations mi is fixed to the mean-field value of |mi | = ±m̄i and
write the magnetization vector as [21]

mi = m̄i ẑ

√
1 − m̃2

i

m̄2
i

+ m̃i , (5)

where m̃i = m̃x
i x̂ + m̃

y

i ŷ. By fixing the length in this way,
the fluctuations in the z direction are of second order in |m̃i |.
Working to second order in m̃

x/y

i , we get the Berry connection,

b(mi) = − m̃
y

i x̂ − m̃x
i ŷ

2m̄i

, (6)

195438-2
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and the effective Lagrangian for the magnetic fluctuations can
be written as

Lm̃ =
∑
i=1,2

{
−
(

1

2m̄i

− 2D0z
i

)
ẑ · (m̃i × ∂tm̃i) − κ

2
(∇m̃i)

2

+ 1

2

[
m̄3−i

m̄i

λ − 2J 2
(
D00

i − Dzz
i

)]
m̃i · m̃i

+�†Jim̃i · σ�

}
− [λ + 2J 2(T 00 − T zz)]m̃1 · m̃2

+ 2J 2T 0zẑ · (m̃1 × ∂tm̃2 + m̃2 × ∂tm̃1), (7)

where

Ji = h2J

(t2 − J 2m̄1m̄2)2

(
J 2m̄2

3−i − t2
)

(8)

is the effective magnetic coupling of the TI surface states
to mi . The coefficients D00

i , Dzz
i , D0z

i , T 00, T zz, and T 0z

depend only on the model parameters and are described in
detail in Ref. [20]. Since h is assumed small compared to

t and J m̄i [20], we have neglected terms of O(h2|m̃i |2)
in Eq. (7). Note that the exchange couplings between
fluctuations are renormalized in the above Lagrangian,

λ̃i = m̄3−i

2m̄i

λ − J 2
(
D00

i − Dzz
i

)
, (9a)

λeff = λ + 2J 2(T 00 − T zz). (9b)

Integration of the χ fermions also results in an additional
term in the Dirac Lagrangian due to the mean-field magneti-
zations in the BMI,

δLMF = �†(J1m̄1σz + J2m̄2σz)�. (10)

As will be shown in the next section, this term can create a gap
in the Dirac fermion dispersion.

Specializing to the ferromagnetic (m̄2 = m̄1 = m̄) and
antiferromagnetic (m̄2 = −m̄1 = −m̄) cases, we define ν =
m̄2/m̄1 = ±1 for notational simplicity. In both cases the mag-
netic couplings in Eq. (8) are identical on the two sublattices
J1 = J2 ≡ J̄ . Transforming to imaginary time T = it in the
zero-temperature limit and Fourier transforming both the time
and the space variables [44], we arrive at the functional integral
in the magnon fields,

Z =
∫

D[M]e−Smag , (11)

where

Smag =
∫

d3q

(2π )3

{
MT (−q)K(q)M(q) − 1

2
[J T (q)M(q) + MT (−q)J (−q)]

}
. (12)

Here, we have defined the matrix,

K(q) =
(

κ
2 q2 − λν

2 + J 2D − iσy

2m∗ 
λ
2 + J 2T + J 2(1 + ν)T 0ziσy

λ
2 + J 2T + J 2(1 + ν)T 0ziσy

κ
2 q2 − λ

2ν
+ J 2D − iσy

2νm∗ 

)
, (13)

and the four-component fluctuation vectors,

M(q) = [
m̃x

1 (q) m̃y

1 (q) m̃x
2 (q) m̃y

2 (q)
]T

, (14)

and

J (q) =
∫

d3k

(2π )3

⎛
⎜⎜⎜⎜⎝

J̄�†(k)σx�(k − q)

J̄�†(k)σy�(k − q)

J̄�†(k)σx�(k − q)

J̄�†(k)σy�(k − q)

⎞
⎟⎟⎟⎟⎠. (15)

The functions D, T , and m∗ are defined in the Appendix.
We have also used the notation q = (,q) and k = (ω,k) for
the bosonic and fermionic fields, respectively. Performing the
functional integral, we get the additional contribution to the
Dirac action,

δSTI = −1

4

∫
d3q

(2π )3
J T (q)K−1(q)J (−q). (16)

After calculating K−1, details of which are given in the
Appendix, the effective action in the FM and AFM cases
can be calculated separately. However, the resulting magnon-
mediated interaction between the � fermions is given in the

chirality basis rather than the spin basis. Therefore, we will
derive the corresponding operator transformations for the �

operators entering Eq. (16) through the current vector J in
Eq. (15).

B. Diagonalization of the TI Hamiltonian

The operator transformations are derived by diagonalizing
the TI Hamiltonian including the interaction with the mean-
field magnetizations in Eq. (10),

HTI =
∫

d2r �†[ivF(σy∂x − σx∂y) − E0∇2

−μ − J̄ (1 + ν)m̄σz]�,

=
∫

d2r �†HTI�. (17)

Fourier transforming the Hamiltonian and solving the eigen-
value problem HTI�± = E�±, we find the eigenenergies,

E±(k) = E0k2 ±
√

J̄ 2m̄2(1 + ν)2 + v2
Fk2 − μ, (18)

195438-3



HUGDAL, REX, NOGUEIRA, AND SUDBØ PHYSICAL REVIEW B 97, 195438 (2018)

and eigenvectors,

�±(k) =
(

ψ+(k)
ψ−(k)

)
= 1√

Nk

(
s∗

k rk
−rk sk

)
�(k), (19)

where we have defined the functions,
sk = vF(ky + ikx), (20a)

rk = J̄ m̄(1 + ν) +
√

J̄ 2m̄2(1 + ν)2 + v2
F|k|2, (20b)

Nk = r2
k + |sk|2. (20c)

The subscripts + and − denote Dirac fermions with positive
and negative chiralities, respectively. Note that the eigenvectors
of HTI are unaffected by the value of E0 since this is a
diagonal term. If μ > 0, the conduction band will consist of
ψ+ fermions. Considering only the fermions which are free to
interact, i.e., projecting onto the conduction band, allows us to
make the substitutions,

ψ↑(k) → sk√
Nk

ψ+(k) and ψ↓(k) → rk√
Nk

ψ+(k), (21)

in the effective action δSTI. This results in a momentum-
dependent scattering form factor �kk′(q) characterizing the
interaction between the fermions in the effective action, which
we write as

δSTI =
∫

d3q

(2π )3

∫
d3k

(2π )3

∫
d3k′

(2π )3

×Vkk′(q)ψ†(k + q)ψ†(k′ − q)ψ(k′)ψ(k). (22)

with the interaction matrix defined as

Vkk′(q) = −J̄ 2D(q)�kk′(q), (23)

where D(q) is the magnon propagator. We refer to the
Appendix for further details. If the effective action leads to
an attractive interaction, it can be shown that this results in a
superconducting instability, e.g., by performing a mean-field
treatment of the effective theory. We will, however, not perform
such an analysis but rather focus on the type of effective
interaction that arises due to the proximity to the magnetic
layer. In the following two sections, we will analyze the
effective action in the FM and AFM cases separately.

III. FERROMAGNETIC CASE

In the ferromagnetic case, the magnon propagator is given
by

DFM(q) =
κ
2 q2 − J

2a2m̄
�(1 − τ )(


2m

)2 + (
κ
2 q2 − J

2a2m̄
�(1 − τ )

)2 , (24)

where we have used the definitions of Dαα
i and T αα given

in Ref. [20] and m is defined in the Appendix. Here, a is
the lattice constant, introduced when using π/a as a cutoff
in diverging momentum integrals [20], �(x) is the Heaviside
step function, and τ = t2/J̄ 2m̄2 is a dimensionless parameter
signifying the strength of the coupling between χ1 and χ2

relative to the coupling between χi and the magnetic moments,
see Eq. (4). Assuming that the Dirac fermions move at speeds
higher than the ferromagnetic magnons, which certainly holds
for small momentum transfers |q|, we set  to zero in the

kx

ky

kF

k

k+ q

k− q
φk

FIG. 2. The figure shows parts of the Fermi surface and the
momenta of the interacting particles k = k′, k + q, and k − q. The
figure illustrates that only small momentum transfers |q| compared to
kF are kinematically allowed since the momenta must lie within a thin
shell (red dotted lines) around kF (black line). This also implies that
a process with momentum transfer −q is necessarily kinematically
allowed if the process with q is allowed.

magnon propagator. This yields

DFM(0,|q|) = 1
κ
2 q2 − J

2a2m̄
�(1 − τ )

. (25)

Note that if τ > 1, DFM(0,|q|) is positive for any q. Because
the coupling constants D

αβ

i and T αβ are discontinuous at ν = τ

[20], values of τ ≈ 1 are excluded from the analysis in the
ferromagnetic case.

Kargarian et al. [21] found attractive interactions between
particles with parallel momenta, dubbed Amperean pairing
[22], in the high-doping regime. We expand this analysis to
also include the gap in the Dirac fermion dispersion, i.e., by
not setting m̄ = 0 in the operator transformations, Eqs. (19)
and (20). Since k ≈ k′ for Amperean pairing, a process is only
possible if both k + q and k − q lie within a thin shell of the
Fermi level. This restricts the kinematically allowed values of
q to those with small |q| as illustrated in Fig. 2. Moreover, if
a process with momentum transfer q is possible, the process
with momentum transfer −q is necessarily also possible. Thus,
any term linear in q in the form factor disappears when
performing the q integration in δSTI. Expanding the form factor
in vF|q|/|J̄ m̄| and neglecting linear terms in q, we get to
leading order,

�(φk,φk′) =
v2

Fk
2
F

(
2J̄ m̄ +

√
(2J̄ m̄)2 + k2

F

)2
cos(φk − φk′)

2
[
v2

Fk
2
F + (2J̄ m̄)2 + 2J̄ m̄

√
(2J̄ m̄)2 + v2

Fk
2
F

]2
,

(26)

where we have set |k| = |k′| = kF and introduced the polar
angle φk of each momentum in the xy plane. Setting m̄ =
0, we get � = cos(φk − φk′)/2, which is in agreement with
Ref. [21]. This corresponds to the limit vFkF � |J̄ m̄| for which
the interaction is strongest. The interaction strength decreases
for decreasing kF and disappears at kF = 0, as illustrated in
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FIG. 3. (a) Variation of �(φk = φ′
k) in Eq. (26). The form factor

increases when increasing kF, corresponding to moving the Fermi
level away from the gap in the dispersion. �(φk = φ′

k) approaches
1/2 in the limit vFkF � |J̄ m̄|. (b) A diagram showing the regions in
parameter space where Amperean or BCS pairing is possible for TI
surface states coupled to a ferromagnet. μ = |2J̄ m̄| corresponds to
kF = 0.

Fig. 3(a). This is as expected since there must be a Fermi surface
in the conduction band in order for interactions to be possible.

From the above results of the form factor and integrated
magnon propagator, we see that the overall interaction matrix
Vkk′ is negative for all kinematically allowed q if τ > 1 and k
and k′ are parallel. Hence, superconductivity with Amperean
pairing is possible if τ > 1. This is in agreement with the
results in Ref. [21], which treats an analogous situation. Setting
m̃1 = m̃2 in the magnon Lagrangian Eq. (7), we note that the
ferromagnetic coupling between magnons,

λ̃1 + λ̃2 − λeff = −2J 2
(
D00

1 − Dzz
1 − T 00 + T zz

)
= J

a2m̄
�(1 − τ ) (27)

disappears when τ > 1, which is, again, similar to the situation
discussed in Ref. [21].

For τ < 1, DFM(0,|q|) is negative for |q| <
√

J/a2m̄κ ,
resulting in repulsive interactions, and changes sign as |q| is
increased. Since Amperean pairing is kinematically possible
only for small |q|, Amperean pairing is suppressed for increas-
ing J/m̄κ . However, note that for small |q| and φk − φk′ ≈ π ,
corresponding to normal BCS pairing, the interaction matrix
is attractive. Therefore, the possibility of BCS pairing is
investigated further.

In the BCS case k′ = −k, the length of q is less re-
stricted since |k′ − q| = |k + q| ≈ kF is satisfied for the
same momentum transfer q. Requiring |k| = |k + q| = kF, we
find

|q| =
{−2kF cos(φk − φq), if π � |φk − φq | � π

2 ,

0, otherwise.
(28)

Inserted into the form factor, we find

�BCS(φk,φq)

=
v2

Fk
2
Fe

2i(φk−φq )
[
2J̄ m̄ +

√
v2

Fk
2
F + (2J̄ m̄)2

]2

2
[
v2

Fk
2
F + (2J̄ m̄)2 + 2J̄ m̄

√
v2

Fk
2
F + (2J̄ m̄)2

]2
. (29)

Since the signs of DFM(0,|q|) with kinematically allowed |q|,
and �BCS(φk,φq) both vary with φk − φq , the overall sign of

0.5 0.75 1
0

1

2

3

4

5

(φk −φq)/π

η

−3

0

3

V
k
,−

k
(η
,φ

k
−

φ q
)

[a
.u

.]

FIG. 4. Plot of Vk,−k in Eq. (30) as a function of η and φk − φq ,
showing that the BCS pairing is attractive only for certain scattering
angles φq . The black dotted lines show where the interaction changes
sign. For η > 1, shown by the red dashed line, integrating over the
scattering angle gives a dominantly attractive pairing.

the real part of the interaction matrix will depend on φk − φq

as

Vk,−k ∝ −2a2m̄

J

cos 2(φk − φq)

η2 cos2(φk − φq) − 1
, (30)

if π � |φk − φq | � π
2 , where η ≡ 2kF/

√
J/a2m̄κ . This quan-

tity is plotted in Fig. 4 where it is clear that a BCS-type
interaction is both attractive and repulsive depending on the
scattering angle. Integrating Vk,−k over φq gives a measure to
whether most scattering angles are attractive or repulsive and
in this way gives a conservative estimate of when BCS pairing
is possible. The results show that the overall interaction is
attractive whenever η > 1, i.e., when 2kF >

√
J/a2m̄κ , which

corresponds to chemical potential μ > μc, where

μc = E0J

4a2m̄κ
+
√

(2J̄ m̄)2 + v2
FJ

4a2m̄κ
. (31)

Hence BCS pairing is possible for τ < 1 and μ > μc. The
attractive pairing is most dominant close to μc and decreases
for increasing chemical potential. It is however important to
note that the phase space of the pairing is reduced since not
all scattering angles give attractive interactions, and the overall
pairing is thus weakened compared to a normal BCS pairing.

To summarize, we find that, for τ > 1, which corresponds
to a disappearing m̃2 term in the magnon Lagrangian, super-
conductivity with Amperean pairing occurs. For τ < 1 and
μ > μc we instead have BCS pairing. The pairing strength
decreases for decreasing kF in the Amperean case, vanishing
when the Fermi level lies inside the mass gap, whereas the BCS
pairing is strongest close to μc. A simplified diagram showing
for which parameter values Amperean and BCS pairings occur
is presented in Fig. 3(b).

IV. ANTIFERROMAGNETIC CASE

In the antiferromagnetic case, the net mean-field mag-
netization is zero, and hence a gap is not opened in the
dispersion. This also gives significantly simplified operator
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transformations, resulting in a scattering form factor,

�kk′(q) = 2k · k′ − i(k × q − k′ × q) · ẑ − k · q + k′ · q
4|k||k′| ,

(32)

where we have used |k + q| ≈ |k|. The magnon propagator in
the antiferromagnetic case is given by

DAFM(q)

=
κ
2 q2 − J

2a2m̄
√

1+τ(


2m

)2 + (
κ
2 q2 − J

2a2m̄
√

1+τ

)(
κ
2 q2 − J

2a2m̄(1+τ )3/2 + λ
) .

(33)

The frequency of antiferromagnetic magnons typically lies in
the microwave range [39] and can therefore also be considered
slow compared to the TI fermions, which have group velocities
vF ∼ 105 m/s (see, e.g., Ref. [40]). Setting  = 0 in the above
propagator yields

DAFM(0,|q|) = 1
κ
2 q2 − J

2a2m̄(1+τ )3/2 + λ
. (34)

Plots of DAFM as a function of |q| and τ for λ > J/2a2m̄ and
λ < J/2a2m̄ are shown in Fig. 5. From the figure we see that
the propagator is positive for all |q| and τ when λ > J/2a2m̄.
For λ < J/2a2m̄ the propagator is positive for all |q| if τ > τc,
where

τc =
( |J/2a2m̄|

λ

)2/3

− 1, (35)

and for |q| > qc if τ < τc, where

qc =
√∣∣∣∣ J

2a2m̄κ

∣∣∣∣ 2

(1 + τ )3/2
− 2

λ

κ
, τ < τc. (36)

In the Amperean case we are again restricted to small mo-
mentum transfers, which to lowest order gives the form factor
�Amp = 1/2. Hence magnon-induced Amperean pairing be-
tween Dirac fermions is possible either when λ > J/2a2m̄ or
when λ < J/2a2m̄ and τ > τc.

For BCS pairing, however, we get the form factor �BCS =
e2i(φk−φq )/2, which corresponds to setting m̄ = 0 in Eq. (29).
The real part of the overall interaction can then be written

Vk,−k ∝ −
(

J

2a2m̄(1 + τ )3/2
− λ

)−1 cos 2(φk − φq)

η2 cos2(φk − φq) − 1

(37)

for π/2 < |φk − φq | < π . Here we have used Eq. (28) and de-
fined η = 2kF/

√
J/a2m̄(1 + τ )3/2κ − 2λ/κ . Again, the sign

of the interaction depends on the parameter η and the scat-
tering angle φk − φq in exactly the same way as in the
FM case. Therefore the interaction is dominantly attractive
when η > 1, which corresponds to μ > μc(τ ), where μc(τ ) =
E0qc(τ )2/4 + vFqc(τ )/2. Hence, BCS pairing can be realized
whenλ < J/2a2m̄, τ < τc, andμ > μc. This is a conservative
limit as there are attractive regions of phase space also when
μ < μc. The type of pairing realized for different values of τ

and μ is shown in Fig. 6.
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F
M
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|)
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0

1
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κD
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(0
,0
)

FIG. 5. Plot of DAFM as a function of |q| and τ for λ > J/2a2m̄

(top) and λ < J/2a2m̄ (bottom). In the former case DAFM � 0 for
all q and τ . In the latter case however, the integrated propagator is
negative in a region around |q| = 0 and τ = 0. This region is bounded
by the curve qc(τ ) (dashed red) given in Eq. (36) and increases for
increasing J/2a2m̄λ. The white region indicates values outside the
color bar range. The propagator for |q| = 0 is plotted in the insets.

τc corresponds to the value where λ̃1 + λ̃2 − λeff , see
Eq. (9), changes sign from positive to negative, i.e., the point
where the ferromagnetic coupling between spins on each of
the two sublattices becomes weaker than the antiferromagnetic
coupling between spins on different sublattices. Thus, for both
the FM and the AFM cases, BCS pairing seems to be possible

0
τ

µ

BCS

Amperean

τc

µ
c (τ)

λ < J/2a2m̄

0
τ

µ
λ > J/2a2m̄

Amperean

FIG. 6. Diagram showing the regions in parameter space where
BCS or Amperean pairing is possible for TI surface states coupled to
an antiferromagnet. BCS pairing is possible only when λ < J/2a2m̄

when τ < τc and μ > μc(τ ).
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when the quadratic m̃2 term dominates over the interlattice
coupling.

V. SUMMARY

We have studied the possible electron pairing due to mag-
netic fluctuations at the interface of a TI and a FM or AFM
insulator. In the FM case, we have expanded the results of
Ref. [21] to be valid also for chemical potentials close to the
gap in the TI fermion dispersion. We find that for τ > 1, which
corresponds to a vanishing quadratic term ∝m̃2 in the magnon
Lagrangian, Amperean pairing occurs. The pairing strength
decreases for decreasing kF and vanishes when the chemical
potential lies inside the mass gap. For τ < 1, Amperean
pairing is suppressed for increasing J/m̄κ , and instead BCS
pairing occurs above a critical chemical potential. In the AFM
case BCS pairing is realized only when the ferromagnetic
coupling between magnons on the same sublattice exceeds
the antiferromagnetic coupling between magnons on different
sublattices. For other parameter values, Amperean pairing
is realized with an interaction strength independent of the
chemical potential. In both the FM and the AFM cases, the BCS
pairing has a limited phase space compared to the regular BCS

interaction and could therefore be a weak effect depending on
the chemical potential of the system.

In conclusion, magnetic fluctuations at the interface be-
tween a TI and a magnetic insulator can mediate attractive in-
teractions between Dirac fermions, giving pairing of both BCS
and Amperean types, depending on the degree of anisotropy
of the magnetic fluctuations in the system. Investigating other
magnetic configurations, such as ferrimagnetic insulators,
would be an interesting further development. We also leave it
for future work to consider bilayers involving magnetic metals
where a similar pairing mechanism is likely to remain in effect.
For the metallic FM case, non-s-wave pairing has already
been reported in recent experiments on superconducting Ni-Bi
bilayers [41–43].
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APPENDIX: CALCULATION OF EFFECTIVE TI ACTION

In the cases m̄2/m̄1 = ν = ±1, we have the relations D00
1 = D00

2 , Dzz
1 = Dzz

2 , and D0z
1 = νD0z

2 , whereas T zz and T 0z are
zero in the antiferromagnetic case. To handle this, we write T zz = (1 + ν)T zz/2 and T 0z = (1 + ν)T 0z/2. Inserting this into the
magnon action and rewriting in vector form, we defined the matrix K in Eq. (13) using the functions,

D = D00
1 − Dzz

1 , (A1a)

T = T 00 − 1 + ν

2
T zz, (A1b)

1

2m∗ = 1

2m̄
− 2J 2D0z

1 (A1c)

for notational simplicity.
The inverse of K can be written in the form

K−1 = 1

det K

(
A0 + Ayiσy B0 + Byiσy

B0 + Byiσy A0 + νAyiσy

)
, (A2)

where

det K =
(κ

2
q2 + J 2D

)2
{[(κ

2
q2 + J 2D

)
− νλ

]2
+ 2

[(


2m∗

)2

+ (1 + ν)2(T 0z)2

]
− 2λT − 2T 2

}

+ 2
(κ

2
q2 + J 2D

)[
νλT (λ + T ) + 4T (1 + ν)

T 0z2

2m∗ − λν

(


2m∗ − (1 + ν)T 0z

)2]

+ T 2

[
(T + λ)2 + 2ν

(


2m∗

)2

+ 2(1 + ν)2(T 0z)2

]
+ (1 + ν)2 λ2

22

(


2m∗ − 2T 0z

)2

+ 2λνT

(


2m∗ − (1 + ν)T 0z

)2

+
[(



2m∗

)2

− (1 + ν)2(T 0z)2

]2

, (A3)
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and

A0 =
(κ

2
q2 + J 2D

)3
− 3νλ

2

(κ

2
q2 + J 2D

)2
+
(κ

2
q2 + J 2D

)[λ2

2
− λT − T 2 +

(


2m∗

)2

+ (1 + ν)2(T 0z)2

]

+ ν

2
λT (λ + T ) + 2(1 + ν)T

T 0z2

2m∗ − νλ

2

(


2m∗ − (1 + ν)T 0z

)2

, (A4a)

Ay =
(κ

2
q2 + J 2D

)2 

2m∗ +
(κ

2
q2 + J 2D

)[
(1 + ν)(2T + λ)T 0z − νλ



2m∗

]

+ 

2m∗

[(


2m∗

)2

− (1 + ν)2(T 0z)2 + νT 2 + (1 + ν)
λ2

4
+ νλT

]
− (1 + ν)

λ

2
(λ + 2T )T 0z, (A4b)

B0 = −1

2

(κ

2
q2 + J 2D

)2
(λ + 2T ) +

(κ

2
q2 + J 2D

)[λ

2
(λ + 2T ) + (1 + ν)2 T 0z2

2m∗

]
+ 1

2
λ2T

+ νT

[(


2m∗

)2

+ (1 + ν)2(T 0z)2

]
+ T 2

(
T + 3

2
λ

)
+ ν

λ

2

[


2m∗ − (1 + ν)T 0z

]2

, (A4c)

By = − 

2m∗ (1 + ν)

(
λ

2
+ T

)(
κ

2
q2 + J 2D − λ

2

)
− (1 + ν)T 0z

×
[

(1 + ν)2(T 0z)2 +
(

κ

2
q2 + J 2D − λ

2

)2

+
(

λ

2
+ T

)2

−
(



2m∗

)2
]
. (A4d)

The above equations have been simplified using ν2 = 1 and 1/ν = ν and are therefore valid only when m̄2 = ±m̄1.
Performing the matrix multiplication in Eq. (16) using the above form of K−1 and the definition of J (q) in Eq. (15), we get

δSTI = −J̄ 2
∫

d3q

(2π )3

∫
d3k

(2π )3

∫
d3k′

(2π )3

{
A0 + B0

det K [ψ†
↑(k)ψ†

↓(k′)ψ↑(k′ + q)ψ↓(k − q) + ψ
†
↓(k)ψ†

↑(k′)ψ↓(k′ + q)ψ↑(k − q)]

+ i
Ay(1 + ν) + 2By

2 det K [ψ†
↑(k)ψ†

↓(k′)ψ↑(k′ + q)ψ↓(k − q) − ψ
†
↓(k)ψ†

↑(k′)ψ↓(k′ + q)ψ↑(k − q)]

}
. (A5)

In the antiferromagnetic case, Ay(1 + ν) + 2By is exactly equal to zero. In the ferromagnetic case however, this term has an
overall factor of , making it less divergent in the low-frequency limit. We will therefore neglect this term [21].

Projecting onto the conduction band using Eq. (21), we get the effective action,

δSTI = −J̄ 2
∫

d3q

(2π )3

∫
d3k

(2π )3

∫
d3k′

(2π )3
D(q)�kk′(q)ψ†(k + q)ψ†(k′ − q)ψ(k′)ψ(k), (A6)

where we have dropped the subscript + for notational simplicity and defined the magnon propagator,

D(q) = A0(q) + B0(q)

det K(q)
, (A7)

and the scattering form factor,

�kk′(q) = s∗
k+qrk′−qsk′rk + rk+qs

∗
k′−qrk′sk√

NkNk′Nk−qNk′+q
. (A8)

Defining the parameter m such that

1

2m
= 1

2m̄
− 2J 2D0z

1 − J 2(1 + ν)T 0z, (A9)

and using the results in Eqs. (A4a) and (A4c), we get the ferromagnetic propagator (ν = 1),

DFM(q) =
κ
2 q2 + J 2(D + T )(


2m

)2 + (
κ
2 q2 + J 2(D + T )

)2
, (A10)

and the antiferromagnetic propagator (ν = −1),

DAFM(q) =
κ
2 q2 + J 2(D − T )(


2m

)2 + (
κ
2 q2 + J 2(D − T )

)(
κ
2 q2 + J 2(D + T ) + λ

) . (A11)
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We study the magnon-mediated pairing between fermions on the surface of a topological insulator (TI)
coupled to a ferromagnetic insulator with a tilted mean field magnetization. Tilting the magnetization toward
the interfacial plane reduces the magnetic band gap and leads to a shift in the effective TI dispersions. We
derive and solve the self-consistency equation for the superconducting gap in two different situations, where we
neglect or include the frequency dependence of the magnon propagator. Neglecting the frequency dependence
results in p-wave Amperean solutions. We also find that tilting the magnetization into the interface plane favors
Cooper pairs with center-of-mass momenta parallel to the magnetization vector, increasing Tc compared to the
out-of-plane case. Including the frequency dependence of the magnon propagator, and solving for a low number
of Matsubara frequencies, we find that the eigenvectors of the Amperean solutions at the critical temperature are
dominantly odd in frequency and even in momentum, thus opening the possibility for odd-frequency Amperean
pairing.

DOI: 10.1103/PhysRevB.102.125429

I. INTRODUCTION

Spin fluctuations are one of the proposed mechanisms for
superconductivity in unconventional superconductors [1,2],
for which the phase diagrams often have both antifer-
romagnetic and superconducting regions [3–9], or where
ferromagnetism and superconductivity appear simultaneously
[10–15]. Recently, there have been studies focusing on the
possibility of magnon-mediated superconductivity in het-
erostructures consisting of magnetic insulators and a normal
metal or topological insulator (TI) [16–22], where the elec-
trons couple to magnetic fluctuations at the interface. In TIs
the superconductivity can be between fermions with parallel
momenta, so-called Amperean pairing [23]. It has also been
shown that a coupling to magnons can lead to indirect exciton
condensation [24].

Coupling the magnetic insulator to the TI surface states
[25,26] has a few interesting consequences compared to cou-
pling to the electrons in a normal metal. First of all, the
metallic states are restricted to the surface, locating them close
to the spin fluctuations, ensuring a strong coupling. Moreover,
due to the spin-momentum locking in the TI, the response
to the magnetization is very different compared to a normal
metal. While an exchange field leads to a band splitting and
thus pair-breaking effects for any spin-0 Cooper pairs in a
normal metal, the exchange field in a TI leads only to a
gap and/or shift in the surface state dispersions, but no band
splitting. Hence, the Fermi level only crosses one band, and
the Cooper pairs must necessarily be pseudospin triplets.

In this work we study a TI exchange coupled to a ferromag-
netic insulator (FMI) with a mean field magnetization that can
be tilted toward the plane of the interface between the TI and

FMI. We derive the gap equation for the static gap, and study
the possibility of both Bardeen-Cooper-Schrieffer (BCS) [27]
type superconductivity and Amperean superconductivity, fo-
cusing on the changes due to the in-plane component of the
magnetization. We also derive the gap equation including the
frequency dependence of the magnon propagator, and solve
these equations including only a few Matsubara frequencies.
Our results show that the eigenvectors are mostly odd in
frequency [28–36], thus showing the possibility for magnon-
mediated odd-frequency Amperean superconductivity.

The remainder of the paper is organized as follows: The
model is presented in Sec. II, as is the derivation of the
effective magnon-mediated action. The general gap equations
are derived in Sec. III, and specifically studied for the static
and frequency-dependent cases in Secs. IV and V. Finally, the
main results are summarized in Sec. VI. Further details re-
garding the derivations and material parameters are presented
in the Appendix.

II. MODEL

A sketch of the system is shown in Fig. 1. We model the
FMI using the Lagrangian

Lm = −b(m) · ∂t m − κ

2
(∇m)2 + λ(m · â)2, (1)

where â is the direction of the mean field magnetization,
parametrized by â = sin θ x̂ + cos θ ẑ, and λ > 0. A general
mean field magnetization including a y component can be
shown to be equivalent to considering only an xz-plane
magnetization by rotating the spin-quantization axis and the
coordinate system. b(m) is the Berry connection, satisfying

2469-9950/2020/102(12)/125429(11) 125429-1 ©2020 American Physical Society
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FIG. 1. Sketch of the system consisting of TI coupled to a FMI
with a mean field magnetization tilted in the xz plane by angle θ with
respect to the z axis. J is the strength of the exchange coupling.

∇m × b(m) = m/m̄2 [37], where ∇m = (∂mx , ∂my , ∂mz ). Here
m̄ is the length of the mean field magnetization along â. We
have set h̄ = 1 throughout the paper. The Lagrangian of the TI
surface states reads as

LTI = �†[i∂t − ivF(σy∂x − σx∂y) + μ]�, (2)

where � = (ψ↑, ψ↓)T is a vector of spin-up and spin-down
electrons in the TI, vF is the Fermi velocity, and μ is the chem-
ical potential. The TI and FMI are coupled via the exchange
coupling term

Lc = J�†m · σ�, (3)

where J is the coupling strength.
We fix the length of the magnetization vector to m̄, and thus

write

m =
√

1 − n2m̄â + m̄n, (4)

where n is the fluctuation vector perpendicular to â,

n = n(cos θ x̂ − sin θ ẑ) + nyŷ. (5)

We assume that n, ny � 1.
We next calculate the Berry connection by generalizing the

leading-order expression b = (ẑ × n)/2 [16] to a mean field
direction along â:

b = â × n
2

= −ny cos θ x̂ − nŷ − ny sin θ ẑ

2
. (6)

Hence, to lowest order, we have

∇m × b = â
m̄

. (7)

Switching to imaginary time τ = it and Fourier transform-
ing,1 we get the three contributions to the action:

Sm = 1

βV

∑
q

{[
κm̄2

2
q2 + λm̄2

]
n(−q) · n(q)

− �nm̄

2
[ny(−q)n(q) − n(−q)ny(q)]

}
, (8)

1We use the convention

f (τ, r) = 1

βV

∑
ωn,k

f (ωn, k)eik·r−iωnτ

for the Fourier transform.

STI = 1

βV

∑
k

�†(k)[−iωn − vF(kxσy − kyσx ) − μ]�(k),

(9)

Sc = Sm̄
c + Sn

c

= − Jm̄

βV

∑
k

�†(k)â · σ�(k)

− Jm̄

(βV )2

∑
q,k

�†(k + q)n(q) · σ�(k). (10)

Here, we have used the notation q = (�n, q) and k = (ωn, k)
for bosonic and fermionic Matsubara frequencies and mo-
menta, respectively. We have also kept only leading-order
terms in the fluctuations in the coupling term. Using a more
general model as a starting point, such as the one in Ref. [38],
λ could in principle be renormalized to take negative val-
ues, meaning that an antiferromagnetic alignment between the
magnetic fluctuations n could be favored.

A. Integrating out the magnons

To obtain the effective, magnon-mediated interaction be-
tween Dirac electrons, we need to integrate out the magnons.
This can be done by rewriting the full magnon action Sn =
Sm + Sn

c by introducing the vectors N (q) = (n(q), ny(q))T

and

j(q) = Jm̄

βV

∑
k

(
�†(k + q)(cos θσx − sin θσz )�(k)

�†(k + q)σy�(k)

)
,

(11)

resulting in

Sn = 1

βV

∑
q

{
N (−q)T

[
κm̄2

2
q2 + m̄2λ + i�nm̄σy

2

]
N (q)

− NT (−q) j(−q) + jT (q)N (q)

2

}
. (12)

Performing the functional integral, we get an additional term
in the TI action:

δSTI = − 1

4βV m̄

∑
q

jT (q)
κm̄
2 q2 + m̄λ − 4 i�n

2 σy(
�n
2

)2 + (
κm̄
2 q2 + m̄λ

)2
j(−q).

(13)

In the low-frequency limit, the last term in the numerator
is less singular than the other two terms, and we therefore
neglect it in the following [16]. We therefore get

δSTI = − 1

4βV m̄

∑
q

ωq(
�n
2

)2 + ω2
q

jT (q) j(−q), (14)

where we have defined the magnon dispersion

ωq = κm̄

2
q2 + m̄λ. (15)

125429-2



POSSIBLE ODD-FREQUENCY AMPEREAN … PHYSICAL REVIEW B 102, 125429 (2020)

−3 −2 −1 0 1 2 3
vFky/Jm̄

−4

−2

0

2

4

(0
,k

y
)/
J
m̄

θ
0
π/4
π/2

FIG. 2. Plot of eigenenergies in Eq. (23) as a function of ky with
kx = 0 and μ = 0 for different values of θ . Increasing θ toward π/2
reduces the mass gap and shifts the center of the dispersion away
from ky = 0. At π/2 we have a Dirac point located at ky = Jm̄/vF.

B. Diagonalization of mean field TI action

We next diagonalize the mean field TI action

Smf
TI = − 1

βV

∑
k

�†(k)G−1(k)�, (16)

where we have defined the inverse Green’s function

G−1(k) = iωn + μ + Mσz + vFkxσy − vF(ky − Ky)σx, (17)

where M = Jm̄ cos θ and Ky = Jm̄ sin θ/vF. Diagonalizing
the Green’s function results in

G−1
d = PkG−1P†

k = diag(λ+, λ−), (18)

where the diagonal entries are

λ± = iωn + μ ∓
√

v2
Fk2

x + v2
F(ky − Ky)2 + M2, (19)

and the Green’s function is diagonalized by the matrix

Pk = 1√
nk

( s∗
k rk

−rk sk

)
, (20)

where

sk = vF(ky − Ky) + ivFkx, (21a)

rk = M +
√

|sk|2 + M2, (21b)

nk = r2
k + |sk|2. (21c)

The eigenvectors �±(k) in the helicity basis are given by
a transformation from the spin basis �(k), defined below
Eq. (2), as follows:

�±(k) ≡
(
ψ+
ψ−

)
= Pk�(k), (22)

where the helicity index is denoted by + or −. The eigenen-
ergies are given by the zeros of the diagonal entries

ε±(k) = ±
√

v2
Fk2

x + v2
F(ky − Ky)2 + M2 − μ. (23)

Hence, M leads to a gap in the dispersion, while Ky shifts the
dispersion along the ky axis. This is illustrated in Fig. 2.

C. Magnon-mediated interaction

We now rewrite the effective action in Eq. (14) in terms of
the Dirac fermions defined by Eq. (22), assuming that μ > M

and thus restricting the problem to only considering the ψ+
fermions. This results in (see Appendix A for details)

δSTI = − J2m̄

4(βV )3

∑
q,k,k′

D(q)�k′k(q)

× ψ†(k′ + q)ψ†(k − q)ψ (k)ψ (k′), (24)

where we for notational simplicity have dropped the subscript
+ on the fields ψ+, and defined the magnon propagator

D(q) = ωq

(�n/2)2 + ω2
q
, (25)

and the scattering form factor �k′k(q) = �0
k′k(q) +

�x
k′k(q) + �xz

k′k(q), with

�0
k′k(q) = cos2 θ + 1√

nknk−qnk′nk′+q

× [sk′s∗
k−qrk′+qrk + sks∗

k′+qrk′rk−q], (26)

�x
k′k(q) = sin2 θ√

nknk−qnk′nk′+q

× [sk′sks∗
k′+qs∗

k−q − sk′s∗
k′+qrkrk−q

− sks∗
k−qrk′rk′+q + rkrk−qrk′rk′+q

− sk′skrk′+qrk−q − s∗
k′+qs∗

k−qrk′rk], (27)

�xz
k′k(q) = − cos θ sin θ√

nknk−qnk′nk′+q

× [sk′sks∗
k−qrk′+q + sksk′s∗

k′+qrk−q

+ sks∗
k−qs∗

k′+qrk′ + sk′s∗
k′+qs∗

k−qrk

− sk′rk′+qrkrk−q − skrk−qrk′rk′+q

− s∗
k′+qrk′rkrk−q − s∗

k−qrkrk′rk′+q]. (28)

The first expression is the same expression as was analyzed in
Refs. [16,19], except it now has a θ dependence and an overall
multiplicative factor of 2 when θ = 0. This term is, however,
always nonzero. The other two expressions were not present
in Refs. [16,19], as they both require an x component in the
mean field magnetization. The last expression also requires a
finite z component. Hence, we may have differences in the
pairing depending on the angle of the mean field direction,
which will be analyzed after calculating the gap equations for
the system.

III. GAP EQUATIONS

Including the symmetrized magnon-mediated interaction
in the action, we get the following effective action for the +
fermions:

S+ = − 1

βV

∑
k

ψ†(k)λ+(k)ψ (k) + 1

(βV )3

∑
k,k′,q

Vk′k (q)

× ψ†
(

k′ + q

2

)
ψ†

(
−k′ + q

2

)
ψ

(
−k + q

2

)
ψ

(
k + q

2

)
,

(29)

125429-3
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with the symmetrized interaction

Vk′k (q) = − J2m̄

8
[D(k′ − k)�q(k′, k)

− D(k′ + k)�q(k′,−k)]. (30)

For notational simplicity we have defined

�q(k′, k) ≡ �k+ q
2 ,−k+ q

2
(k′ − k). (31)

We have also relabeled the momenta to allow for a finite
center-of-mass momentum q for the Cooper pairs, which is
necessary for Amperean pairing. Moreover, since the mini-
mum of the dispersion is shifted away from k = 0 for nonzero
θ there is also the possibility of BCS Cooper pairs with
finite center-of-mass momentum, i.e., a Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state [39,40]. As such, the system has
some similarities to two-dimensional normal metal systems
with Rashba spin-orbit coupling coupled to a Zeemann field
with an in-plane component, leading to a shift in the disper-
sion and thus the possibility of a FFLO state [41–46].

We now perform a Hubbard-Stratonovich decoupling [47]
by introducing bosonic fields ϕq and φ†

q (see Appendix B for
details), resulting in the functional integral

Z =
∫

Dψ†Dψ e−S′
∫

Dϕ†
qDϕq e−S0

φ , (32)

where we have the fermionic action containing the coupling
to the bosonic fields

S′ = − 1

βV

∑
k

{
ψ†(k)λ+(k)ψ (k)

+
∑

q

[
ϕ†

q (k)ψ
(
−k + q

2

)
ψ

(
k + q

2

)

+ ψ†
(

k + q

2

)
ψ†

(
−k + q

2

)
ϕq(k)

]}
, (33)

and the additional bosonic action

S0
φ = − βV

∑
q,k′k

ϕ†
q (k′)[Vk′k (q)]−1ϕq(k). (34)

Before proceeding any further, we will assume that the mean
field bosonic field is of the form

ϕq(k) = 1
2δq,Qδ�n,0�Q(k). (35)

This effectively restricts the analysis to only consider
Cooper pairs with one common center-of-mass momentum. In
general, these will couple to Cooper pairs with other center-
of-mass momenta. However, since any interaction between
them does not conserve momentum, the couplings are likely
to be small, and we therefore focus on only one Q in the
following.

In order to integrate out the fermions, we rewrite the action
using the vector

�Q(k) =
(

ψ (k)
ψ†(−k + Q)

)
, (36)

where Q = (0, Q), leading to

S′ = − 1

2βV

∑
k

�
†
Q

(
k + Q

2

)
G−1

Q (k)�Q

(
k + Q

2

)
, (37)

where we have defined the inverse Green’s function matrix

G−1
Q (k) =

(
λ+

(
k + Q

2

)
�Q(k)

�
†
Q(k) −λ+

(−k + Q
2

)). (38)

Integrating out the fermions, we finally get the effective action
for the bosonic fields

Sφ = − βV

4

∑
k′k

�
†
Q(k′)[Vk′k (Q)]−1�Q(k)

− 1

2
Tr ln

( − G−1
Q

)
. (39)

The gap equation follows from using the saddle-point ap-
proximation [47]

δSφ

δ�Q(p)
= 0, (40)

resulting in

βV

4

∑
k′

�
†
Q(k′)[Vk′ p(Q)]−1 = �

†
Q(p)

2 detG−1
Q (p)

, (41)

where detG−1
Q (k) = −λ+(k + Q/2)λ+(−k + Q/2) −

|�Q(k)|2. Multiplying both sides with Vpk (Q)/βV and
summing over p, we get

�
†
Q(k) = 2

βV

∑
ω′

n,k
′

�
†
Q(k′)Vk′k (Q)[

iω′
n − εo

Q(k′) − EQ(k′)
][

iω′
n − εo

Q(k′) + EQ(k′)
] , (42)

where we have defined

εo
Q(k′) = ε+

(
k′ + Q

2

) − ε+
(−k′ + Q

2

)
2

, (43)

εe
Q(k′) = ε+

(
k′ + Q

2

) + ε+
(−k′ + Q

2

)
2

, (44)

EQ(k′) =
√[

εe
Q(k′)

]2 + |�Q(k′)|2. (45)

It is important to point out that since we have included only the
ψ+ states in the analysis, the gap equation is for pseudospin
triplets, the “spin” in this case being the helicity index + or
−. The physical spin is not a good quantum number because
of the spin-orbit coupling in the system. Therefore, following
the symmetry analysis in, e.g., Ref. [36], the gap function has
to be odd in ωn and even in k, or even in ωn and odd in k.

We will now treat the gap equation in two different ways:
(1) We neglect the frequency dependence of the magnon
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propagator in Eq. (25) [12,13,19,24] and study the static limit,
and (2) we use an approach similar to the Eliashberg equations
[48–50], solving the gap equations directly including only a
low number of Matsubara frequencies.

IV. FREQUENCY-INDEPENDENT SOLUTION

In the static limit, we set the frequency to zero in the
magnon propagator,

D(q) → D(q) = 1

ωq
, (46)

such that the interaction now only depends on the momenta
Vk′k (q) → Vk′k(q). Hence, there is no longer a free frequency
in the gap equation, and we can perform the remaining Mat-
subara sum, resulting in

�
†
Q(k) = − 2

V

∑
k′

Vk′k(Q)�Q(k′)χQ(k′), (47)

with

χQ(k) = 1

4EQ(k′)

[
tanh

β
(
εo

Q(k) + EQ(k)
)

2

− tanh
β
(
εo

Q(k) − EQ(k)
)

2

]
, (48)

where β = 1/kBT . Since the surface states are pseudospin
triples, and we have neglected the frequency dependence,
�Q(k) must now be an odd function of k [36], which is evi-
dent also from the interaction. For simplicity, we now define
K = (0, Ky), and let Q = 2K + 2P, such that the center of the
Fermi surface is at the origin when P = 0 independent of the
angle θ .

A. BCS pairing

We first study the case P = 0, which resembles the reg-
ular BCS pairing case with circular Fermi surface. Now,
εo

2K(k) = 0 for all k, and the temperature-dependent factor in
the gap equation simplifies to

χ2K(k) = 1

2E2K(k)
tanh

βE2K(k)

2
, (49)

which is peaked at the minima of E2K, at Fermi momenta
vFkF =

√
μ2 − M2. Instead of solving the gap equation di-

rectly, we write the linearized gap equation [51]

�
†
2K(k) = − 〈2Vk′k(2K)�2K(k′)〉k′,FS

∫
dk′

2π
k′χ2K(k′),

(50)

which can be written as an eigenvalue problem

η�2K(k′) = −〈2Vk′k(2K)�2K(k′)〉k′,FS, (51)

where FS denotes an average over the Fermi surface. The
critical temperature is then proportional to e−c/η, where η is
the highest positive eigenvalue [51], and c is some constant.

TABLE I. Material parameters used unless otherwise stated.

h̄vF 0.4 eV nm [57]
μ 0.2 eV [58]
a 0.4 nm [57]
Jm̄ 10 meV [59,60]
m̄κ 0.03 meV nm2 [61]
λ/κ 0.01 nm−2

Assuming M � μ, we get for the scattering form factor

�2K(k′, k) ≈ −e−iφk+iφk′ [1 − sin2 θ sin φk sin φk′]. (52)

The expression in the square brackets never changes sign, but
introduces anisotropy in k space. Hence, for φk = φk′ , the
interaction Vk′k(2K) is always positive as long as the easy-axis
parameter λ > 0 [see Eq. (1)], giving the wrong overall sign
in order for a nontrivial solution of the gap equation to be
possible. To verify this, we solve Eq. (51) numerically as a
function of λ using the parameter values in Table I, resulting
in the eigenvalues shown in Fig. 3 for tilt angle θ = 0. The
figure shows that η is very small for positive values of λ.
We also calculated the eigenvectors, which were randomly
fluctuating for positive λ. For other tilt angles, the results are
qualitatively the same. Hence, we conclude that BCS pairing
is not possible in the static limit for λ > 0. For λ < 0 we
find finite eigenvalues η and smooth eigenvectors, meaning
that the system has a superconducting instability in this case,
the reason being that the magnon propagator, and thus the
interaction potential, now can change sign. This is consistent
with the results in Ref. [19]. In systems where λ < 0 and
θ �= 0 is possible, this would lead to FFLO Cooper pairs with
momentum 2K. However, for the present system, we have
assumed that λ > 0, thus, we do not find a solution to the gap
equation in the BCS-type case.

B. Amperean pairing

As has been shown in previous work [16,19,22], it is possi-
ble to get a superconducting instability where the Cooper pairs
reside on the same side of the Fermi surface, and the Cooper

-0.01 0 0.01 0.02λ/κ [nm−2]

10−14

10−11

10−8

10−5

10−2

101

η
[a
.u
]

FIG. 3. Plot of solutions to the eigenvalue problem (51) as a func-
tion of λ for θ = 0 and J = 0.01eV nm2. We see that the eigenvalues
are very small for λ > 0, indicative of the gap equation not having
solutions. For λ < 0, however, we get finite eigenvalues, meaning
that the gap equation has solutions for negative λ.
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FIG. 4. Plot of the logarithm of 4T χQ(k) with Q = 2K + 2P for
P = (kF, 0), kBT = 5 × 10−4 eV, and �Q = 0. The white areas are
outside the range of the color bar. The red lines indicate k2

‖ + k2
⊥ ±

2k‖kF = 0.

pairs thus have a finite center-of-mass momentum of 2kF.
In the present case, this means setting Q = 2K + 2P, where
|P| = kF. In the limit T → 0, χ (k) quickly drops off to zero
when the εo

2K+2P(k) term in the tanh terms dominates over the
εe

2K+2P(k) term in the � = 0 limit, i.e., approximately when

k2
‖ + k2

⊥ ± 2k‖kF > 0, (53)

where k⊥ (k‖) is perpendicular to (parallel with) P [23] (see
Fig. 4). Even inside this region, we see that χ (k) is largest
for small |k|. In the limit |k|, |k′| � |P| the form factor to
lowest order is

�2K+2P(0, 0) = v2
Fk2

F(1 − sin2 φP sin2 θ ) + M2 sin2 θ

M2 + v2
Fk2

F

, (54)

a plot of which is shown in Fig. 5. The figure shows that
as θ increases toward π/2, the isotropy in the xy plane is
broken, and pairing of particles with P pointing along the x
axis becomes increasingly more favored. Importantly, the sign

FIG. 5. Plot of �2K+2P(0, 0) for different tilt angles θ as a func-
tion of φP and chemical potential μ. The pairing is zero for μ < M =
Jm̄ cos θ since we have no Fermi surface in this case.

is opposite compared to the BCS case studied above. Solv-
ing the linearized gap equation numerically in the Amperean
pairing case as a function of tilt angle θ for different orienta-
tions of P = kF(cos φP, sin φP ), we get the results shown in
Fig. 6(a). As expected from Fig. 5 the critical temperature
decreases when θ increases toward π/2 when φP = π/4 and
π/2 compared to φP = 0. For φP = 0, the critical temperature
increases for increasing θ , meaning that Amperean supercon-
ductivity might be easier to detect in a system where the FMI
magnetization lies in the interface plane. It must be noted
that the change in Tc due to changes in J [see Fig. 6(b)]
is quite large for J ∼ 0.01eV nm2, and might explain the
rather large relative increase in Tc for φP = 0 when tuning the
magnetization into the plane. Figures 6(c) and 6(d) show
the real and imaginary parts of the eigenvector, showing that
the eigenvector is odd in k. The eigenvector is similar to that
obtained in Ref. [22] for a topological insulator coupled to an
antiferromagnetic insulator.

For systems with a finite in-plane component of the magne-
tization, the system no longer has many degenerate solutions
for all the possible choices of the vector P. The highest Tc

will be for P = (±kF, 0), and hence we expect the system to
condense to either or both of these P vectors. Although con-
densing with P = (±kF, 0) is equally probable, there is still
an overall shift 2K in the center-of-mass momentum, meaning
we always have a net shift in the Cooper pair center-of-mass
momentum.

V. FREQUENCY-DEPENDENT TREATMENT

We next solve the gap equations including the frequency
dependence of the gap function and magnon propagator. In
this way we allow for both even-frequency/odd-momentum
solutions, and odd-frequency/even-momentum solutions. The
latter has, to our knowledge, not been considered in the con-
text of Amperean pairing in other works. Writing out the
interaction potential in Eq. (42), we get

�
†
Q(iωn, k) = J2m̄

βV

∑
ω′

n,k
′

∑
γ

× γωk′−γ k�Q(k′, γ k)�†
Q(iω′

n, k′)

[iω′
n − z1][iω′

n − z2][iω′
n − z+

γ ][iω′
n − z−

γ ]
,

(55)

where γ = ±1, and the poles are given by

z1,2 = εo
Q(k′) ± EQ(k′), (56a)

z±
γ = γ iωn ± 2ωk′−γ k. (56b)

To find Tc we linearize the above gap equation, and define
the indices N = 2n + 1 and M = 2n′ + 1, and the temperature
parameter t = πkBT , such that the Matsubara frequencies can
be written ωn = Nt and ω′

n = Mt . For notational simplic-
ity, we also define �

†
Q(N, k) = �

†
Q(iωn, k). Inserted into the
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FIG. 6. (a) Plot of Tc normalized to that at φP = 0 and θ = 0 for J = 0.01eV nm2. We see that as the tilt angle θ increases, the critical
temperature is no longer the same for different P: It decreases for θ increasing toward π/2 for φP = π/4 and π/2, as we would expect from
Fig. 5. For φP = 0 it actually increases for increasing θ . We use a momentum cutoff of 3kF for kx and ky. (b) Plot of Tc as a function of J
normalized to the value of Tc at J = 1eV nm2, showing a very sharp decrease in the critical temperature for J < 0.01eV nm2. The error bar
shows the sample standard deviation for five calculations of Tc. (c), (d) Show the real and imaginary parts of the eigenvector � at Tc for φP = 0,
θ = 0, and clearly shows that the eigenvector is odd in k.

linearized equation, we get

�
†
Q(N, k) = J2m̄

πV
t
∑
M,k′

× �
†
Q(M, k′)[

Mt + iε+
(
k′ + Q

2

)][
Mt − iε+

( − k′ + Q
2

)]
×

[
ωk′−k�Q(k′, k)

(M − N )2t2 + (2ωk′−k )2

− ωk′+k�Q(k′,−k)

(M + N )2t2 + (2ωk′+k )2

]
. (57)

Including a finite number Nω of positive Matsubara frequen-
cies, and Nk reciprocal lattice points k, we can write this as
a matrix equation � = M(t )�, where M(t ) is a (2NωNk ) ×
(2NωNk ) matrix. Hence, the critical temperature is given by
the value of t such that the highest eigenvalue of M is 1.

Since we did not find any BCS-type solutions, except for
λ < 0 in the frequency-independent treatment above, we will
focus only on Amperean pairing. Solving the eigenvalue prob-
lem numerically for the Amperean case with Q = 2K + 2P,
P = (kF, 0) for θ = 0, we find the dependence on coupling J
as shown in Fig. 7(a) for Nω = 1, 2, and 3. The critical temper-
ature does not change significantly by increasing the number
of Matsubara frequencies included in the calculation. The
reason for this is that this is not a strong coupling calculation,
and thus the renormalization of the fermion propagator is not
included. Hence, the largest eigenvalues of M are given by
M = N = ±1, and necessarily do not change when including
more frequencies.

We also calculate the eigenvalues �(N, k) at Tc when solv-
ing the matrix equation. Under particle exchange, we must

have �(N, k) = −�(−N,−k) [36] which means the eigen-
vectors can be written in the form

�(N, k) = �e(N, k) + �o(N, k), (58)

where �e/o is even/odd in the frequency index N . Hence, we
have

�e(N, k) = �(N, k) + �(−N, k)

2
, (59a)

�o(N, k) = �(N, k) − �(−N, k)

2
, (59b)

where �e/o necessarily is odd/even under k → −k. Numeri-
cally, we normalize the eigenvectors such that

1 = 1

V

Nω∑
n=−Nω

∑
k

|�(2n + 1, k)|2

= 1

V

Nω∑
n=−Nω

∑
k

[|�e(2n + 1, k)|2 + |�o(2n + 1, k)|2].

(60)

For an index N , we define the weighting function for odd-
or even-frequency pairing

wi(N ) = 1

V

∑
k

�
†
i (N, k)�(N, k)

= 1

V

∑
k

�
†
i (N, k)[�e(N, k) + �o(N, k)]

= 1

V

∑
k

|�i(N, k)|2 = wi(−N ), (61)
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FIG. 7. (a) Plot of the critical temperature for different couplings J and Nω normalized to that at J = 1eV nm2 and Nω = 1. (b) Plot of the
total weight Wi for odd- (solid) and even- (dashed) frequency solutions as a function of J for different Nω. For the entire range of couplings,
the eigenvectors are dominantly odd in frequency. For both plots we see that there is no significant difference between the plots for different
Nω. (c) Plot of Tc normalized to that at φP = θ = 0 and (d) the total weight Wi as functions of tilt angle θ for different P orientations for
J = 10−1eV nm2 and Nω = 1. The error bars show the sample standard deviation for 5 runs with momentum cutoff kF .

where i = e/o, and the total weight for each symmetry is
defined as

Wi =
Nω∑

n=−Nω

wi(2n + 1). (62)

Hence, we must have

1 =
Nω∑

n=−Nω

[we(2n + 1) + wo(2n + 1)] = We + Wo. (63)

A plot of Wi is shown in Fig. 7(b), and shows that the
odd-frequency part of the eigenvectors dominates the even-
frequency part. Hence, this points to the possibility of
magnon-mediated odd-frequency Amperean pairing, which
is consistent with the fact that pairing at finite momentum
has been shown to stabilize odd-frequency superconductivity
[30–32]. Moreover, the reason odd-frequency solutions are
favored might be understood from the fact that s-wave solu-
tions allow for a finite gap close to k = 0, corresponding to
a maximum of the first term in Eq. (57). The even-frequency
p-wave solution, however, has to be zero at k = 0, and thus
gets a much smaller contribution from these areas of k space.

Again, we see negligible change when increasing Nω.
Figure 8 shows the effects of increasing the number of
momentum-space grid points on the critical temperature and
weights Wi, showing that Tc converges quickly for the given
parameter values. For lower couplings J (not shown), the
convergence is slower due to the increasing sharpness of
the potential when the temperature decreases. However, the
qualitative picture still remains the same independent of the
number of grid points, namely, that the odd-frequency solu-
tion dominates.

Figures 7(c) and 7(d) show the critical temperature and
weight functions Wi as functions of tilt angle θ for different
orientations of P for J = 10−1eV nm2. The overall θ depen-
dence is similar to that in Fig. 6(a), which is expected since

the θ dependence of Tc is determined by the scattering form
factor. Compared to Fig. 6(a) the changes in Tc are somewhat
less pronounced due to the fact that Tc changes less rapidly
as a function of pairing strength in this case, as seen when
comparing Figs. 7(a) and 6(b).

VI. SUMMARY

We have derived and solved the gap equation for magnon-
mediated superconductivity in a TI/FMI bilayer for a
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FIG. 8. (a) Plot of the critical temperature and (b) weights Wi as
functions of the total number of grid points Nk used in the numerical
calculation, for φP = θ = 0, J = 0.1 eV nm2, and momentum cutoff
kF. The critical temperature is normalized to the value at the highest
number of grid points. The figures show an average over five runs,
with the error bars showing the sample standard deviation. The
deviation in the number Nk is due to the way the number of grid
points is set by the adaptive Python library [52].
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general magnetization direction. Neglecting the frequency
dependence of the magnon propagator, we found that only
Amperean-type pairing was possible for easy-axis anisotropy
coupling λ > 0. Tilting the magnetization toward the interface
plane led to an overall shift in the Cooper pair center-of-mass
momenta, and an increase in Tc for Cooper pairs with P
parallel to the magnetization vector.

Including the frequency dependence of the magnon
propagator, we found that odd-frequency, even-momentum
solutions to the gap equations dominated, thus leading to
odd-frequency Amperean pairing. If odd-frequency pairing
is found in such a system, it is an example of a natu-
rally occurring odd-frequency superconductor, in contrast to
odd-frequency pairing due to superconductors coupled to
magnetic or spin-orbit-coupled materials [53–55]. This pos-
sibility should be further investigated by performing a strong
coupling Eliashberg calculation, where also the frequency-
dependent renormalization of the fermion propagator is taken
into account. In addition, there are many other properties
that should be calculated, such as the Meissner response [56]
and the transport properties of the system, which might yield
interesting results.
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APPENDIX A: DETAILS OF THE CALCULATION
OF THE MAGNON-MEDIATED INTERACTION

We rewrite the effective action in Eq. (14) in terms of the
Dirac fermions defined by Eq. (22). We first get

j(q)

= J

βV

∑
k

(
�

†
±(k + q)Pk+q(cos θσx − sin θσz )P†

k �±(k)
�

†
±(k + q)Pk+qσyP†

k �±(k)

)
,

(A1)

and performing the matrix calculations results in

Pk+qσxPk = 1√
nknk+q

(
skrk+q + s∗

k+qrk s∗
ks∗

k+q − rkrk+q

sksk+q − rkrk+q −s∗
krk+q − sk+qrk

)
,

Pk+qσyPk = i√
nknk+q

(
skrk+q − s∗

k+qrk −s∗
ks∗

k+q − rkrk+q

sksk+q + rkrk+q −s∗
krk+q + sk+qrk

)
,

Pk+qσzPk = 1√
nknk+q

(
sks∗

k+q − rkrk+q −s∗
krk+q − s∗

k+qrk

−skrk+q − sk+qrk −sk+qs∗
k + rkrk+q

)
.

We will now assume that the chemical potential μ > M � 0, meaning that the Fermi level will lie in the + fermion band, and
hence only the positive-helicity fermions will be free to interact. We therefore keep only the upper diagonal term in the above
matrices, resulting in

j(q) = Jm̄

βV

∑
k

ψ
†
+(k + q)ψ+(k)√

nknk+q

(
(skrk+q + s∗

k+qrk ) cos θ − (sks∗
k+q − rkrk+q) sin θ

i(skrk+q − s∗
k+qrk )

)
. (A2)

We therefore get, dropping the + subscript on the fields,

δSTI = − J2m̄

4(βV )3

∑
q,k,k′

D(q)
ψ†(k′ + q)ψ†(k − q)ψ (k)ψ (k′)√

nknk−qnk′nk′+q

× [(sk′s∗
k−qrk′+qrk + sks∗

k′+qrk′rk−q)(cos2 θ + 1) + (sk′sks∗
k′+qs∗

k−q − sk′s∗
k′+qrkrk−q

− sks∗
k−qrk′rk′+q + rkrk−qrk′rk′+q − sk′skrk′+qrk−q − s∗

k′+qs∗
k−qrk′rk ) sin2 θ

− (sk′sks∗
k−qrk′+q + sksk′s∗

k′+qrk−q + sks∗
k−qs∗

k′−qrk′ + sk′s∗
k′+qs∗

k−qrk

− sk′rk′+qrkrk−q − skrk−qrk′rk′+q − s∗
k′+qrk′rkrk−q − s∗

k−qrkrk′rk′+q) cos θ sin θ ] (A3)

≡ − J2m̄

4(βV )3

∑
q,k,k′

D(q)�kk′ (q)ψ†(k′ + q)ψ†(k − q)ψ (k)ψ (k′), (A4)

where D(q) and �kk′ (q) are defined in the main text.
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APPENDIX B: HUBBARD-STRATONOVICH DECOUPLING

We perform a Hubbard-Stratonovich decoupling [47] by using the identity

1 =
∫

Dϕ†
qDϕq exp

[
βV

∑
q,k′k

ϕ†
q (k′)[Vk′k (q)]−1ϕq(k)

]
. (B1)

Rescaling the bosonic fields ϕq,

ϕ†
q (k′) → ϕ†

q (k′) + 1

(βV )2

∑
p

ψ†
(

p + q

2

)
ψ†

(
−p + q

2

)
Vpk′ (q), (B2)

ϕq(k) → ϕq(k) + 1

(βV )2

∑
p

Vkp(q)ψ
(
−p + q

2

)
ψ

(
p + q

2

)
, (B3)

we get

βV
∑
q,k′,k

ϕ†
q (k′)[Vk′k (q)]−1ϕq(k) → βV

∑
q,k′,k

ϕ†
q (k′)[Vk′k (q)]−1ϕq(k)

+ 1

βV

∑
q,k

[
ϕ†

q (k)ψ
(
−k + q

2

)
ψ

(
k + q

2

)
+ ϕq(k)ψ†

(
k + q

2

)
ψ†

(
−k + q

2

)]

+ 1

(βV )3

∑
q,k′,k

ψ†
(

k′ + q

2

)
ψ†

(
−k′ + q

2

)
Vk′k (q)ψ

(
−k + q

2

)
ψ

(
k + q

2

)
. (B4)

Hence, we arrive at the functional integral given in Eq. (32).

APPENDIX C: MATERIAL PARAMETERS

Unless otherwise stated, we have used the parameter values presented in Table I.
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