
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Code Writing vs Code Completion Puzzles:
Analyzing Questions in an E-exam

Guttorm Sindre
Dept. of Computer Science

Norwegian University of Science and Technology (NTNU)
Trondheim, Norway

ORCID: 0000-0001-5739-8265

Abstract—This Research Full Paper investigates the
relationship between code writing tasks and other tasks like
program comprehension and completion. In the context of
exams, it is interesting to know whether auto-gradable
comprehension and completion tasks can to some extent replace
harder-to-grade code writing tasks and still test the same
learning outcomes. This paper reports on the post mortem
analysis of the 2019 e-exam in a university level programming
course. Questions were analyzed for difficulty level, correlation,
and discrimination. Program puzzles were found to correlate
well with code writing, which is in line with previous findings by
others. On average, code writing questions had higher difficulty,
discrimination, and correlation with the total score than the
other question formats – but not uniformly so. A more fine
granular analysis of performance on individual interaction
items sheds light on reasons why some questions worked better
than others, with implications for future question design.

Keywords—programming, e-exam, question types, item
analysis

I. INTRODUCTION
There has been much research on the

relationship between code writing tasks and other
tasks like program comprehension and completion
e.g., [1,2,3,4]. Code writing tends to be the
dominant exam question type in Introductory
courses in computer science (often called “CS1”)
[5], and perceived as more authentic vs. work-life
tasks. However, they may be tedious to grade
reliably, and often require students to master
several concepts at once [6]. Comprehension and
completion tasks may better allow for items testing
the understanding of single concepts [7].

This paper reports on the post mortem analysis
of the Autumn 2019 e-exam in a university level
course in Programming and Numerical Analysis,
taken by near 250 students. The programming part
was introductory Python. Manually graded code
writing tasks made up for only 30% of the exam
weight. The rest utilized various question formats
that could be auto-graded in the e-exam tool used at
the university, such as multiple choice questions
(MCQs), pair matching, and various program
completion puzzles, using formats like inline
choice, fill-in-blank, and drag and drop. The latter

are often called Parsons’ problems [8] in
computing education.

There are many different aspects of this exam
that could be interesting to investigate. The research
in this paper focuses on the relationship between
code completion tasks and code writing tasks, our
research questions (RQ) being as follows:

RQ1: Do code completion and code writing
tasks have equal difficulty, item-rest correlation,
discrimination, and time spent relative to grading
weight?

RQ2: What is the correlation between code
completion and code writing tasks?

RQ3: What guidelines for task improvement can
be elicited from analysis of the interaction items
within code completion tasks?

The rest of this paper is structured as follows:
Section II explains the research method. Section III
describes how the exam was designed. Section IV
then presents the results, and section V provides a
discussion and some concluding remarks.

II. RESEARCH METHOD
The exam itself was not designed primarily for

the purpose of research, but for assessing whether
the students had achieved the learning outcomes,
and to give valid and reliable grades. With a pure
research focus, we might have designed the test in
a more sophisticated way, such as having two or
more groups of students getting different variations
of the same task (e.g., some getting Task 4 as code
writing, others getting it as code completion, and
then opposite for Task 5). This was considered
infeasible here, both for technical reasons and risks
to exam fairness, should one version of the test turn
out to be more difficult than the other.

Hence, the research reported in this paper is a
post hoc study of results from a test designed for
another purpose, which must be acknowledged as a
weakness. However, the exam did have a mixture
of various question genres that allows analysis
related to the RQs stated above. Also, whereas an The research for this paper was done at the Excited Centre for

Excellent IT Education, funded by DIKU.

ungraded controlled experiment would allow
increased freedom of test design, an exam has some
advantages, too: There is no challenge in recruiting
participants, and most have a strong (albeit
extrinsic) motivation to do their best, which is not
necessarily the case for ungraded experiments.
Previous research has also indicated that analysis of
exam results can give interesting findings [4,9,10].

After grading was finished, answer data were
extracted from the e-exam system as a JSON-file,
anonymized by removing anything that could link
back to students, and flattened into a spreadsheet for
further analysis. Since the statistical analyses were
fairly simple, Excel was used (Office 365 Excel for
Mac, v16.35), rather than a more sophisticated
statistics tool. The following analyses were
performed:

• Simple descriptive statistics for scores and
time spent, i.e. means, standard deviations.

• Reliability of the exam as a whole,
Cronbach’s Alpha [11].

• Correlations between scores on items and the
sum of all other items, i.e., the item-rest
correlation [12], and correlation between
task genres, using Pearson correlation [13].

• Discrimination of tasks, i.e., how well they
separate between strong and weak students.
Here, we used the metric by Kelley [14],
comparing p-values for the top 27% and
bottom 27% of the students.

For code writing tasks, which were manually
graded, scores, correlations, and discrimination
were calculated only for the task as a whole. For
auto-graded tasks, with several interaction items
within the task, analyses could be made both for the
task as a whole, and for each single interaction item.

III. DESIGN OF THE EXAM
Our university uses the e-exam system Inspera

Assessment (henceforth IA), supporting question
authoring, exam execution, and the subsequent
grading process. It offers 18 different question
types, whereof 8 were used in our exam, as shown
in Table I. The column Qno is the question label
(order of appearance in the exam set), and W%
indicates percentage weight towards the total grade.
The column #it gives the number of interaction
items within each question. For code writing
questions (pink) this was just 1, for others several.
For instance, Q8 had 10 different fill-in fields, each
of which could be filled correctly or incorrectly, and

Q14 had 10 different MCQs. The exam had a 68/32
split between general programming and numerical
analysis, and a 70/30 split between tasks that were
auto-scored and manually scored (code writing).

TABLE I. TASKS IN THE EXAM, IN ORDER OF APPEARANCE

The column Qtype gives the question type used

in IA, and color indicates the genre: Pink for code
writing, purple for code completion, blue for code
tracing and error identification, and green for
theoretical knowledge. Finally, Topic indicates
curricular coverage, though not exhaustively, as
most questions include many basic programming
constructs. In the following, we focus mainly on the
tasks with code writing (pink) and code completion
(purple), as these are the most relevant for our
research questions.

Table II shows the teacher’s model solutions to
the code writing tasks, made available to students
and graders after the exam. The task is briefly
explained under each code fragment, the
explanation in the exam set was somewhat more
thorough. For Q4, students were allowed to use a
function developed in Q3, and similarly for Q5 the
function made in Q4. In all such cases, functions
can be used and assumed to work even if the student
failed at the previous task, thus avoiding any
follow-on errors. At the same time, this enables us
to test if students are able to use one function in
another function, so that the exam does not just
become a long tirade of small, unrelated functions.

TABLE II. SOLUTIONS TO CODE WRITING TASKS

Q4. In: a tuple (int, int), both int > 0. Return: string exponential
expression, e.g., (5,3) → "53". But, (5,1) → "5", exponent not to
be included if 1.

Q5. In: list of tuples [(int,int), (int,int), …], all int > 0. Return: a
string for a product of factors, , e.g., [(2,2), (3,1), (5,3)] →
"22·3·53". Return empty string for empty list.

Q10. In: filename (string). Return: a list of lists with the data in
the file, converted to numbers where appropriate, or empty list
if exceptions occur.

Q13. Given a matrix (list of lists) of int, return a list of lists where
included entries [I,j] all of those for which the sum of row i
equals the sum of column j.

Q18. Calculate the integral of function f(x) from a to b using the
Simpson 3/8 rule (math formula shown in task description)

All problems were previously unseen by the

students, but would to some extent resemble

problems from exercises and lecture examples. Q4
needed only 5 code lines for a solution, one if-
sentence, no loops, thus assumed to be the clearly
easiest. Q10 needed the longest code (21 lines).
Since students often struggle with files and
exceptions, this was assumed to be a difficult task,
but maybe not the most difficult. After all, it follows
a typical scheme: open file, read line by line, split
the line, convert strings to numbers, append to list
of lists, return result – plus handle exceptions. Q13,
though shorter, was believed to be more difficult,
with deeper nesting and an intricate algorithm with
less similarity to previously seen problems.

Table III shows the three 2D Parsons problems
in the exam set. In the graphical user interface of
IA, students saw a 2D grid, code lines jumbled on
the side to be dragged in place in the correct vertical
order and with appropriate indent. The GUI of IA is
rather spacious, so rather than screenshots we
present the task more compactly by resulting
solution code. The explanatory texts are also much
shorter than the ones used in the exam set.

TABLE III. SOLUTIONS TO 2D PARSONS PROBLEMS

Q4. In: a string st. Return: a dictionary where characters of the
string are keys, and the value is a list of indices where the
character is found. E.g., ‘EGGS’ → {‘E’: [0], ‘G’: [1,2], ‘S’: [3] }

Q9. str_shuffle() in: a string. Return: string w/same characters
randomly shuffled. start_seq() in: string. Return: a randomly
shuffled string which passes the is_ok() test. Two distractors:
while lst == random.shuffle(lst): and return str(list) .

Q16. Make a function which solves and ODE on the form
ẏ = f(y) using the Forward Euler method, which is
yk+1 = yn + Δt f(yk)

Table IV shows the tasks of the types Inline Gap
Match, Inline Choice, and Fill in Blanks. Common
for all these, full code skeletons were presented, but
with several gaps inside.

TABLE IV. SOLUTIONS TO GAP FILLING TASKS

Q3 (left) num2exp() receives an int >= 0, returns a string with
the same number as superscript, e.g. num2exp(12) -> ‘12’. The
question also had 3 distractors, not shown here.
Q6 (right) factors() receives an int >= 2, returns a list of tuples
containing the prime factorization of the number, e.g.,
factors(60) → [(2,2), (3,1), (5,1)] because 60 = 22⋅31⋅51

Q8. is_ok() receives a string of 8 characters, whereof two B,
two N, two R, one K, one Q. It shall return True if the K is
somewhere between the R’s, one B is at an odd index and one
at an even index. Otherwise False.

Q11. list2dic() receives a list of lists, returns a dictionary w/
first elements of inner lists as keys, values as lists of lists with
the remaining elements.

Q12. seq_in_tab() receives a list S and a matrix M which both
contain ints. Returns True if M contains the number sequence
in S, otherwise False. If the optional parameter wrap is True,
the sequence can wrap across several lines in M.
Q15. Solve f(x) = 0 using the Secant method.

Differences between these three question types
are as follows: Inline Gap Match (Q3) shows
candidate fillers for the gaps beside the code, to be
dragged in place. Inline Choice (Q6, Q12, Q15)
gives a dropdown menu of options when clicking a
gap. In our case with 3 options, one correct. Fill in
Blanks (Q8, Q11) requires the student to type in the
missing content, no options given.

All of these were set up to give some score per
correctly filled gap, e.g. for Q8, each correctly filled
gap would score 0.5 points, so all correct would add
up to the total 5 point weight of the question. For
Inline Choice questions, which had three options
per gap, proportional negative penalty was given
for wrong answers, e.g., for Q12, each correct
would give +0.5, each wrong -0.25, hence
completely random guessing would have an
expected outcome of 0. Negative points only
applied locally within the task.

IV. RESULTS
Of 232 students showing up for the exam, 13

withdrew without delivering, and another 5
delivered blank or almost blank answers. Grading
was according to a letter scale,. Excluding
withdrawn and blank-on-purpose, 214 students are
included in our analysis. The grades for these were
21 A (9,6%), 43 B (19,6%), 46 C (21,0%), 52 D
(23,7%), 18,7 E (19,2%), and F (failure, 5,1%).
These grades may appear poor, but the scale used
has similarities with the European ECTS scale,
where C is considered the normal, average grade, so
the grades in this course were somewhat – but not
much – below average.

The Cronbach Alpha for the exam, taking the 19
tasks as separate items, was 0.90, which is
considered a very good value [15]. Table V shows
results broken down on the 19 questions, here
sorted by p-value, which in exam item analysis
means students’ average score on each task,
adjusted for weight so that all end up in a 0-1
interval [16]. As can be seen, the easiest was Q7
with an average score of 86%, and the hardest Q12
with just 37%. The other columns are σ: standard
deviation of the student scores, C: the item-rest
correlation, and D: discrimination values (as
explained in the Methods section). T+/- gives the
percentage point difference between fraction of
time spent on a task and fraction of weight that it
had in the exam set. E.g., -2.0 in the first row of
Table V says that while Q7 had a weight of 5%,
students spent on average just 3% of their logged
exam time on this question. A positive number

would instead mean that students spent more time
than the weight would suggest. Finally, Tσ gives
the standard deviation for the T+/- time difference.

TABLE V. EXAM TASKS, EASIEST TO HARDEST

Our main interest according to the research

questions lie in the code completion tasks (purple)
vs the code writing tasks (pink). Hence, more
detailed results will be presented for these.
A. Difficulty and Time Spent

According to [17], most questions on a full-
range test should be within 30%-80% difficulty. All
but Q7 and Q15 fell within this range. Completion
tasks inhabit the entire spectrum from easiest to
hardest, while our code writing tasks went from
medium difficulty to hard. For completion, the
mean score was 30,4 of 46, i.e., 66%. For code
writing, only 16,5 of 30, i.e., 55%. Q4 was meant to
be the easiest of the code writing questions, but
turned out to be harder than intended, with a lower
p-value than the presumably more difficult Q5. Of
completion tasks, especially the 2D Parsons tasks
leaned towards the easier end, while the other
question types were of more mixed difficulty.

The total exam time was 4 hours. For the T+/-
column we compare how many percentage of the
total exam time was spent on a task vs. the task’s
grade weight. The most overspending task was Q2
(Matching), taking 11,2% of the time while
weighing only 4% (hence 7,2% percentage point
difference). Most underspending was Q14 (MCQ)
with 10% weight, only 4,3% spent. For the types of
tasks most relevant to our research questions, some
of the easier code completion tasks (Q7, Q15, Q16)

required relatively less time, while some tasks
towards the more difficult end of the spectrum took
more time, but not systematically so.
B. Item-Rest Correlation and Discrimination

Values for the item-rest correlation and
discrimination of each question are shown in the C
and D columns of Table V. Color is used to give a
snapshot view of whether values were good. For
correlation, these thresholds are used: >0.6: very
good, 0.5-0.6: good, 0.4-0.5: fair, 0.0-0.4: poor. For
discrimination: >0.4: very good, 0.3-0.4:
reasonably good, 0.2-0.3: marginal, 0.0-0.2: poor
[18]. For both C and D, negative values would be
considered even worse, but this did not happen for
any of the questions. The code writing tasks had
green values for C and D, and so had all code
completion tasks except the two easiest ones. Easy
tasks ending up with lowish C and D values is not
surprising. For these, many weaker students will
also have scored well, hence they do not
discriminate so much. The highest C-value was
achieved by Q11 (Fill in Blanks) followed by code
writing tasks Q5 and Q10. The highest D-value was
achieved by Q18, followed by Q5 (both code
writing) and then Q12 (Inline Choice).
C. Correlation, code completion vs code writing

The correlation between the scores on code
completion tasks (purple in Table V, solutions in
Table III and IV) and code writing tasks (pink in
Table V, solutions in Table II) was 0.80. Also
significant, though smaller, correlations were found
with the code comprehension tasks (blue), at 0.44
and 0.49 with code writing and code completion,
respectively. Table VI gives a more detailed view
of the correlation between these two genres.
Columns p and C are the p-value and overall item-
rest correlation as before. Then, SGC is the Same
Genre Correlation, e.g., for code completion task
Q7, how well does it correlate with other code
completion tasks, and for code writing task Q13,
how well does it correlate with other code writing
tasks. Contrarily, OGC is the Other Genre
Correlation, e.g. how does code completion task Q7
correlate with code writing tasks, or how does code
writing task Q13 correlate with code completion
tasks. The rightmost column in Table V shows the
difference between these two correlations. Most
differences are close to zero, and there is no
systematic tendency that tasks correlate better with
other tasks of the same genre than with tasks of the
other genre. Q7 and Q9 are perhaps the exception.
These were rather easy, and might thus correlate
better with other completion tasks in the easier half

of the spectrum, than with code writing tasks that
were in the middle to difficult range.

TABLE VI. CODE COMPLETION VS CODE WRITING

In spite of the fact that most code completion and

code writing tasks correlated well, there was some
variation in student performance across these two
main question genres. Fig. 1 shows the scatterplot
of code completion (y) vs code writing (x). The blue
line is the diagonal (student doing equally well with
both these genres), while the dotted red is the trend
line. As can be seen, some students are above the
blue line, doing better at code writing than code
completion – but more are below, and some way
below, doing considerably worse at coding. Some
few were almost blank at coding, yet had fair scores
on completion tasks. These would typically have
too low total scores to pass, anyway. The R² value
was 0.6388, indicating that 64% of the code writing
performance could be predicted by completion
tasks in this exam.

Fig. 1. Scatter of scores on code completion (x) vs code writing (y).
Dotted red line is the trend line. Blue line is the diagonal, where students
do equally well with both genres.

D. Analysis of individual tasks
For space reasons, we can only show detailed

results for some of the tasks. The interested reader
is referred to the technical report [19] for more
details and results on other tasks. Table VII shows
the p, C, and D values for the each code line to be
dragged in Q3 (Inline Gap Match). The 6 rows are
the correct code gap fillers, in order. A1-A6 indicate
these, while the three distractors were A7: result +
p ; A8: expo[num] ; A9: num = 0.

TABLE VII. DETAILED RESULTS FOR Q3

As indicated by Table VII, the first gap was very

easy, almost all got it correct. This was one of the
few tasks that had a negative D-value (-0.02) –
among the very few students who did not place
num==0 in this gap, there happened to be 4 in the
top 27%, just 3 in the bottom 27%. The reason for
this is hard to know – it could be pure coincidence,
or maybe the better students were over-confident
that the task was easy and quickly picked the num
= 0 distractor, while weaker students for whom
everything appears difficult were more careful and
noticed there was one with = and one with ==.
Anyway, the occurrence of this one sub-item with a
slightly negative D did not hurt the task overall,
which came out with decent C=0.64, D=0.46.

 Table VIII shows the 2D Parsons Problem Q7,
which turned out to be the easiest question in the
exam. Almost all students (96% upwards) placed
the first 3 lines correctly, and most (90%) also the
return statement (for those who did not, the problem
was typically wrong indentation).

TABLE VIII. DETAILED RESULTS FOR Q7

Q7 did not use any distractors and most code

lines may have been easy to place, thus many
scored well on this question. The only lines that

caused notable problems were the 5th and 7th, which
even some better students swapped. These two sub-
items thus had good D values, but this was not
enough to yield good values for the entire Q7.

Table IX shows the results for items within the
task Q11 (Fill in blanks). Solution has the same
code fragments as shown in Table IV, while Alt
gives other fill-ins that would also be correct.

TABLE IX. DETAILED RESULTS FOR Q11

Also for Q11 the first couple of fill-ins were

easy, with poor D-values. However, a majority of
items were difficult, all in all giving the question C
and D values among the highest in the exam set.

Table X shows the results for Q12 (Inline
Choice), the most difficult task in the exam set.
Especially the three last fill-ins (#8-10) turned out
to be hard, as the fraction of correct answers for
these were just slightly above the random guessing
percentage (33, as there were 3 options for each
choice). Still, the difficult items got good D-values
here, as students in the top 27% also had a high
tendency of getting these items right, while others
largely failed. Negative penalties that weaker
students got for failing these will also have
contributed to the high C and D values of the task
as a whole. Four values in the W1, W2 columns in
Table X are below 0.05, so-called “non-functional
distractors” [19], used by less than 5% of the
students. This only happened to 4 of 20 distractors
(marked in purple), and for all items except the
easiest one, there was at least one functional
distractor.

TABLE X. DETAILED RESULTS FOR Q12

V. DISCUSSION AND CONCLUSION
A. Answers to Research Questions

RQ1: Do code completion tasks have the same
difficulty, item-rest correlation, discrimination, and
time spent as code writing tasks? Except for a
couple of code completion questions at the easy end
of the spectrum (Q7, Q9, Q15) which had poorer
discrimination and item-rest correlations, the purple
code completion tasks ended up with values in the
green range, just like code writing tasks, cf. Table
V. There was no systematic tendency for code
completion tasks to take less time. In one way, one
might have thought they should take less time.
However, it must be remembered that the code
completion tasks consisted of several sub-items.
E.g., for Q6, Q8 the student is actually answering
10 questions within each of them, namely what
shall be placed in the 10 different gaps in the code.
When the code is highly perforated with gaps, it can
be quite challenging to understand what solution
approach the code skeleton is aiming at.

RQ2: What is the correlation between code
completion and code writing tasks? Do the same
students excel at both, or struggle with both, or are
there differences? Again, apart from the easiest
completion tasks, the correlation between the two
genres was good, cf. Table VI. A tempting question,
then: Could code-writing tasks have been removed,
to achieve an exam that was 100% auto-corrected?
Many students would have ended up with the same
grade, anyway, but as Fig. 1 indicates, some few
would have lost a little in such a situation (those
who scored very well for code writing, but made
some mistakes in the completion tasks), and some
more would have benefitted, cf. the many students
considerably below the blue line in Fig. 1.

RQ3: Can any guidelines for task improvement
be elicited from analysis of the interaction items
within code completion tasks? There are two
primary causes why completion tasks had much
better average score than code writing tasks: (i)
some completion tasks, especially the 2D Parsons
problems, turned out to be easier than perhaps
intended. The first code lines of a function (e.g., def
statement, initialization of a local variable), and the
last (return) are often trivial to place, giving away
some points almost for free. This could have been
avoided by having these lines as fixed in the code
already, so that scorable code lines were only the
more intricate ones in the middle of the functions.
However, even if easy tasks necessarily get poorer
C and D values, it does make sense to have some of

these in an exam, too – so that weak students are
able to show that they do know something. In our
case, the exam would have turned out way too
difficult, with much higher failure rates, were it not
for the presence of some easy tasks. (ii) There were
no code writing tasks towards the easy end of the
spectrum. Q4 was meant to be easy, expecting a
mean in the range 70-80%, but turned out
unexpectedly hard for the students. One reason for
this is that many appeared to have problems
accessing the two integer values from the tuple
parameter. While tuples had been covered in the
textbook and lecture series (as being the same as
lists, only immutable), the coverage was rather
limited compared to lists, and many students
seemed not to remember. In retrospect, it would
have been better to let the parameter be a list of two
values – or even better just two separate parameters,
one for the mantissa and another for the exponent.

Another observation is that auto-scored tasks
with many items within (e.g., Fill in Blanks Q8 and
Q11, or Inline Choice Q6, Q12 – each with 10 gaps
in the code) did better in terms of C and D values
than tasks with fewer items (e.g., Inline Choice Q15
with 4 gaps, or the error finding tasks Q17 and Q19,
with 2 MCQs each). This is not surprising. With
few sub-items, tasks become more vulnerable to
coincidental student slips or lucky guessing, while
with many items, this will tend to even out. Having
as much as 10 gaps within relatively short
functions, so that the code was quite perforated with
missing fragments, did not appear to be a problem
– the tasks with 10 gaps all had good C and D
values. Three advice for question design are thus:
1. If possible, have many gaps within completion

tasks, rather than just a few.
2. Unless a task is meant to be very easy, avoid

free giveaways. Rather have the easiest code
lines as part of context shown up front.

3. For code writing tasks meant to be easy, be
very careful to avoid unintended intricacies.

B. Related Work
Substantial early research in code completion vs.

code writing was done by [1], then mainly as an
instruction strategy, rather than for summative
assessment. Completion tasks were found to have
less cognitive load than code writing, thus giving
better learning vs. spent time. Garner [18] also
found that students needed less time and less help
with completion tasks than with code writing tasks.

In recent years, there has been especially much
research on Parsons problems [8], cf. the review

[19]. An early report about usage in exams was [9],
finding good correlation between these tasks and
code writing. The concept of 2D Parsons problems
was suggested by [20], specifically suitable for
Python, where indents have semantic significance,
and a comparison by [21] compared 2D Parsons
problems with code writing tasks, finding better
learning efficiency for the Parsons problems. Cheng
and Harrington [22] proposed so-called “code
mangler” tasks, which resemble Parsons problems
in that students are faced with a coding task they
should complete, and with a list of jumbled
candidate code lines on the side. This study also
found good correlation between such tasks and code
writing tasks. They also ran experiments with TAs
to compare marking speed and reliability of the
Code Mangler tasks with similar code writing tasks.

In our study, comparison of marking speed was
of little relevance, since all the code completion
tasks were auto-scored, hence with close to zero
human labor. However, our findings of a strong
correlation between code completion and code
writing tasks is similar to previous studies and thus
no surprise. A difference, though, is that our exam
had a mixture of different types of code completion
tasks, not just Parsons problems. In our case, other
question types, such as Inline Gap Match, Inline
Choice and Fill in Blanks, did better than the
Parsons problems in terms of item-rest correlation
and discrimination values. This, however, is likely
not an inherent weakness of Parsons problems but
related to the particular task selection and scoring
approach in this exam.
C. Conclusions and Future Work

As stated early on, a weakness of this research is
that it is a post hoc analysis of an exam made for
assessment rather than answering the research
questions. An interesting idea for future work
would be to run controlled experiments with a large
number of students, comparing different question
types based on the same solution code. This might
give a more detailed view into advantages and
disadvantages with various question genres.

ACKNOWLEDGMENT
Thanks to Benjamin K. Tapley who lectured the

course, and made and graded questions 14-19 in the
exam set. Also, thanks to Lars K. Tvinnereim who
trial-solved and proofread the exam set.

REFERENCES

[1] J. J. Van Merriënboer and M. B. De Croock, “Strategies for computer-

based programming instruction: Program completion vs. program
generation”. Journal of Educational Computing Research, 8(3), 365-
394, 1992.

[2] M. Lopez, J. Whalley, P. Robbins, and R. Lister, “Relationships
between reading, tracing and writing skills in introductory
programming”. In Proceedings of the fourth international workshop on
computing education research, pp. 101-112, September 2008.

[3] S. Shuhidan, M. Hamilton, and D. D'Souza, “A taxonomic study of
novice programming summative assessment”. In Proceedings of the
Eleventh Australasian Conference on Computing Education-Volume
95 (pp. 147-156), 2009.

[4] R. Lister, et al., “Naturally occurring data as research instrument:
analyzing examination responses to study the novice programmer”.
ACM SIGCSE Bulletin, 41(4), pp. 156-173, 2010.

[5] J. Sheard, et al., “Exploring programming assessment instruments: a
classification scheme for examination questions”. In Proceedings of
the seventh international workshop on Computing education research,
pp. 33-38), August 2011.

[6] A. Luxton-Reilly and A. Petersen, “The compound nature of novice
programming assessments”. In Proceedings of the Nineteenth
Australasian Computing Education Conference, pp. 26-35, January
2017.

[7] D. Zingaro, A. Petersen, and M. Craig, “Stepping up to integrative
questions on CS1 exams”. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education, pp. 253-258, February
2012.

[8] D. Parsons and P. Haden, “Parson's programming puzzles: a fun and
effective learning tool for first programming courses”. In Proceedings
of the 8th Australasian Conference on Computing Education-Volume
52 , pp. 157-163, January 2006.

[9] P. Denny, A. Luxton-Reilly, and B. Simon, “Evaluating a new exam
question: Parsons problems”. In Proceedings of the fourth international
workshop on computing education research, pp. 113-124, September,
2008.

[10] J. Harland, D. D'Souza, and M. Hamilton, “A comparative analysis of
results on programming exams”. In Proceedings of the Fifteenth

Australasian Computing Education Conference-Volume 136, pp. 117-
126, January 2013.

[11] L. J. Cronbach, “Coefficient alpha and the internal structure of tests”.
Psychometrika. 16, 297-334, 1951.

[12] T. M. Bechger, G. Maris, H. H. Verstralen, and A. A. Béguin, “Using
classical test theory in combination with item response theory”.
Applied psychological measurement, 27(5), 319-334, 2003.

[13] E. S. Pearson, “The test of significance for the correlation coefficient”.
Journal of the American Statistical Association, 26, 128-134, 1931.

[14] T. L. Kelley, “The selection of upper and lower groups for validation
of test items”. J Educ Psychol 30: 17-24, 1939.

[15] J. C. Nunnally, “Psychometric Theory”, New York: McGraw-Hill,
1978.

[16] R. K. Hambleton, H. Swaminathan, and H. J. Rogers, “Fundamentals
of item response theory”, Newbury Park, CA: Sage, 1991.

[17] J. Kehoe, “Basic item analysis for multiple-choice tests”. Practical
Assessment, Research, and Evaluation, 4(1), 10, 1994.

[18] R. L. Ebel and D. A. Frisbie, “Essentials of Educational Measurement”,
5th Ed. Englewood Cliffs, NJ: Prentice-Hall, 1991.

[19] J. M. Kilgour and S. Tayyaba, “An investigation into the optimal
number of distractors in single-best answer exams”. Advances in
Health Sciences Education, 21(3), 571-585, 2016.

[20] S. Garner, “An Exploration of How a Technology-Facilitated Part-
Complete Solution Method Supports the Learning of Computer
Programming”. Issues in Informing Science & Information
Technology, 4, 2007

[21] Y. Du, A. Luxton-Reilly, and P. Denny, “A Review of Research on
Parsons Problems”. In Proceedings of the Twenty-Second Australasian
Computing Education Conference, pp. 195-202, February 2020.

[22] P. Ihantola and V. Karavirta, “Two-dimensional Parson’s puzzles: The
concept, tools, and first observations”. Journal of Information
Technology Education, 10(2), 119-132, 2011.

[23] Ericson, B. J., Margulieux, L. E., & Rick, J. (2017, November). Solving
parsons problems versus fixing and writing code. In Proceedings of the
17th Koli Calling International Conference on Computing Education
Research (pp. 20-29).

[24] Cheng & Harrington. "The Code Mangler: Evaluating Coding Ability
Without Writing any Code." Proceedings of the 2017 SIGCSE 2017.

