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Schwinger boson study of superconductivity mediated by antiferromagnetic spin fluctuations
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We study superconductivity in a normal metal, arising from effective electron-electron interactions mediated
by spin fluctuations in a neighboring antiferromagnetic insulator. Introducing a frustrating next-nearest neighbor
interaction in a Néel antiferromagnet with an uncompensated interface, the superconducting critical temperature
is found to be enhanced as the frustration is increased. Further, for sufficiently large next-nearest neighbor
interaction, the antiferromagnet is driven into a stripe phase, which can also give rise to attractive electron-
electron interactions. For the stripe phase, as previously reported for the Néel phase, the superconducting
critical temperature is found to be amplified for an uncompensated interface where the normal metal conduction
electrons are coupled to only one of the two sublattices of the magnet. The superconducting critical temperature
arising from fluctuations in the stripe phase antiferromagnet can be further enhanced by approaching the
transition back to the Néel phase.

DOI: 10.1103/PhysRevB.102.214502

I. INTRODUCTION

Recent studies have investigated whether spin fluctua-
tions in a magnetic material can induce attractive interactions
between electrons in an adjacent conductor, leading to a su-
perconducting instability [1–8]. Both ferromagnetic (FMIs)
and antiferromagnetic insulators (AFMIs) have been consid-
ered as potential sources for the magnetic fluctuations. In
order to ensure magnetic ordering, these materials typically
ought to be of a three-dimensional nature [9,10]. Since a
three-dimensional crystal has more than one crystal plane,
the issue arises whether it makes a difference which crystal
plane is exposed at the interface. For the simplest type of
ferromagnet, all lattice sites can be considered to be iden-
tical, and the choice of crystal plane does not affect the
coupling to an external system. For the simplest case of an
antiferromagnet on a bipartite lattice, there are two differ-
ent types of lattice sites. Depending on the chosen crystal
plane, it is possible that either both sublattices (compen-
sated interface) are exposed at the interface, or only one of
the sublattices (uncompensated interface) is exposed at the
interface [11–13].

As outlined in Ref. [14], the presence of an antiferromag-
netic eigenexcitation with spin unity is associated with a large,
and oppositely directed, spin located on each of the two sub-
lattices. An external system that is only coupled to one of the
two sublattices is then essentially interacting with a large spin,
potentially leading to a strong coupling interaction. In ac-
cordance with this picture, uncompensated antiferromagnetic
interfaces have been predicted to enhance the spin transfer to
a neighboring conductor [15], and produce magnon-mediated
indirect exciton condensation [16]. Moreover, importantly for
our purposes, coupling a conductor to an uncompensated,
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instead of compensated, antiferromagnetic interface might
produce a stronger induced electron-electron interaction and
higher superconducting critical temperature [6,7].

In view of the fact that the superconductivity arises from
magnetic fluctuations, it is natural to ask whether amplifying
the fluctuations can be favorable. One way of achieving such
an amplification is to include next-nearest neighbor frustration
in the AFMI. This type of frustration is common in anti-
ferromagnets, and has been predicted to increase the critical
temperature of superconductivity induced on the surface of
a topological insulator [7]. Using the picture from Ref. [14],
this increase in critical temperature can be understood from
the amplified fluctuations increasing the average spin on each
sublattice associated with an antiferromagnetic magnon. The
effect of coupling to only one of the two sublattices then
becomes stronger.

The previous study of the effect of frustration, however,
employed a Holstein-Primakoff treatment of the AFMI, start-
ing from a staggered Néel state [7]. This framework is
expected to accurately describe the system when the anti-
ferromagnetic next-nearest neighbor exchange coupling J2 is
relatively small compared to the nearest neighbor coupling J1.
The previous study therefore limited itself to this parameter
region [7]. Hence, it is of interest to investigate the rest of the
phase diagram of the J1-J2 Heisenberg model. On a square
or cubic lattice, this model contains two distinct magnetically
ordered phases, a Néel phase for J2/J1 � 1 and a stripe phase
for J2/J1 � 1 [17,18]. In the stripe phase, the spins in, e.g.,
one column could be aligned with each other and antialigned
with the spins in the neighboring columns, creating alternating
stripes of spins. This state arises from two decoupled, in-
terpenetrating, Néel ordered antiferromagnets (J2/J1 → ∞),
which align themselves and create a stripe pattern for finite
J1 [19,20]. Given the origin of the stripe phase, it could be
possible that coupling to only the up/down spins of both Néel
ordered antiferromagnets could give a similar effect as only
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coupling to one of the sublattices of a single Néel ordered
antiferromagnet.

The transition between the Néel and stripe phases takes
place in the vicinity of J2/J1 = 0.5, with variations de-
pending on the spin quantum number and lattice structure
[17,18,21,22]. For the spin-1/2 system on a square lattice,
it is predicted that there is an intermediate region where the
magnetic long-range order is destroyed by quantum fluctua-
tions [17,23–25]. A similar intermediate region might also be
present for the spin-1/2 system on a simple cubic lattice, in
contrast to the case of a body-centered cubic lattice [18,26].
We will, however, focus on the properties of the ordered
phases. While the Néel phase is more commonly encountered,
the stripe configuration has attracted attention as the magnetic
ground state of the iron oxypnictide LaOFeAs, which is the
original undoped parent compound of the high-Tc iron pnic-
tides [27]. This layered material has been found to be well
described by the square lattice J1-J2 Heisenberg model with
spin S > 1/2 and J2/J1 > 1/2 [28,29].

In this paper, we consider an AFMI, with both nearest-
neighbor and next-nearest neighbor antiferromagnetic ex-
change interaction, which is proximity coupled to a normal
metal (NM). The AFMI can be in either a Néel or stripe state,
and the interface can be either compensated or uncompen-
sated. In order to accurately describe the physics of the AFMI
when the system is strongly frustrated, focusing on the case
where the two magnetically ordered phases are separated by a
direct phase transition, we perform a Schwinger boson study,
rather than the usual Holstein-Primakoff treatment which has
been employed for these systems in the past. Conventional
spin-wave theory would in this case, e.g., incorrectly predict a
vanishing magnetization close to J2/J1 = 0.5 instead of a di-
rect phase transition between two magnetically ordered phases
[21,30]. Moreover, the two subsystems are coupled through
an interfacial exchange coupling, which produces effective
electron-electron interactions in the NM. We explore the effect
of the induced interactions through a BCS-type mean-field
treatment, and numerically solve the gap equation in order
to determine how the critical temperature depends on the
properties of the AFMI.

For a Néel AFMI with small next-nearest neighbor frus-
tration, the results for the superconductivity are similar to
the results obtained through a Holstein-Primakoff treatment
of the AFMI [6]. As before, the strength of the effective
interactions is enhanced for an uncompensated interface,
leading to an amplified critical temperature. Increasing the
frustration, the effect of coupling to only one of the two
sublattices of the AFMI becomes stronger, as expected [7].
Further, the increased frustration also lowers the cutoff on
the boson spectrum, and reduces the sublattice magnetiza-
tion in the AFMI, which is found to reduce the strength
of the induced electron-electron interactions. The overall
effect is, however, still typically a rise in the critical tem-
perature when the frustration is increased. For the stripe
phase, coupling to an uncompensated AFMI interface is
found to enhance the critical temperature, like in the Néel
case. Moreover, approaching the transition point between the
two magnetic phases from the stripe side does, like from
the Néel side, leads to a further increase in the critical
temperature.

FIG. 1. The system consists of a normal metal (NM), which is
proximity coupled to an antiferromagnetic insulator (AFMI). The
AFMI can be either in a Néel phase (a) or a stripe phase (b).

The paper is organized as follows. In Sec. II we introduce
the modeling of the system. In Sec. III the Schwinger boson
treatment of the antiferromagnet is covered for both the Néel
phase and the stripe phase. Next, the NM and the coupling
between the two subsystems is treated in Sec. IV. In Sec. V,
we derive an effective theory of interacting electrons, and in
Sec. VI we investigate the possibility of a superconducting
instability through a weak-coupling mean-field theory. The
results from the numerical treatment of the gap equation are
presented in Sec. VII. Finally, in Sec. VIII, we summarize
our results. Additional details concerning the derivation of the
interaction potential are included in the Appendix.

II. MODEL

The system, consisting of a NM proximity coupled to an
AFMI, is displayed in Fig. 1. The real system we have in mind
would consist of a three-dimensional AFMI grown on top of
a thin NM layer. However, in order to capture the physics at
the interface, we apply two-dimensional lattice models, with
continuous boundary conditions, for the two subsystems. The
AFMI is described by a Heisenberg Hamiltonian with nearest
neighbor and next-nearest neighbor exchange interaction, as
well as easy-axis anisotropy (K). By tuning the next-nearest
neighbor interaction, the ground state of the AFMI can then
be changed from a Néel phase to a stripe phase. The NM is
described by a tight-binding hopping model. The two sub-
systems are coupled together through an interfacial exchange
coupling (J̄) where the spins of the NM conduction electrons
are coupled to the AFMI lattice site spins [3,5,31–33].

For each of the magnetic phases we define two sublat-
tices. In Fig. 1, the lattice sites with blue spins constitute
one sublattice, and the lattice sites with oppositely aligned
red spins constitute the other sublattice. The sublattices are
therefore defined differently for the Néel phase and the stripe
phase. As mentioned earlier, depending on which crystal plane
of the three-dimensional AFMI that constitutes the interface,
it is possible that either both sublattices or only one of the
sublattices is exposed at the interface. In order to describe this,
we apply a model where the NM electrons are coupled to both
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sublattices of the AFMI, but where the coupling strength is al-
lowed to differ for the two sublattices (J̄A/J̄B) [6]. This model
allows us to tune between the two cases of a compensated or
uncompensated interface.

The system is modeled by a Hamiltonian H = HAFMI +
HNM + Hint where

HAFMI = J1

∑
〈i, j〉

Si · Sj + J2

∑
〈〈i, j〉〉

Si · Sj − K
∑

i

S2
iz, (1a)

HNM = −t
∑
〈i, j〉σ

c†
iσ c jσ − μ

∑
iσ

c†
iσ ciσ , (1b)

Hint = −2J̄A

∑
i∈A

c†
i τci · Si − 2J̄B

∑
i∈B

c†
i τci · Si. (1c)

Here, c†
i = (c†

i↑, c†
i↓) and c†

iσ creates an electron with spin
σ on lattice site i. The electron hopping amplitude is denoted
by t , and μ is the chemical potential. The easy-axis anisotropy
constant K is taken to be positive, favoring ordering of spins
in the z direction in spin space, which could be either parallel
with or normal to the interface. In the interaction part of the
Hamiltonian, τ is the vector of Pauli matrices, representing
the NM electron spin which is coupled to the lattice site spin
Si in the AFMI. Further, it should be noted that the lattices are
assumed to be square, the sums over nearest and next-nearest
neighbors include the neighbors in both positive and negative
spatial directions, and we have set h̄ = a = 1, where a is the
lattice constant.

III. ANTIFERROMAGNET

In order to treat the AFMI, we will represent the lattice site
spins in terms of Schwinger bosons [34–36]. For our purposes,
where we will couple an external system to the two sublattices
of the AFMI, it will be useful to define different Schwinger
bosons for the two sublattices A and B [37]:

SA
i+ = a†

i↑ai↓, (2a)

SA
i− = a†

i↓ai↑, (2b)

SA
iz = 1

2
(a†

i↑ai↑ − a†
i↓ai↓), (2c)

SB
i+ = −b†

i↓bi↑, (3a)

SB
i− = −b†

i↑bi↓, (3b)

SB
iz = −1

2
(b†

i↑bi↑ − b†
i↓bi↓). (3c)

An ordered Néel or stripe state can then be described through
a condensation [35,36,38] of ↑-bosons with momentum k = 0
on both the A and B sublattice, producing a spatially uniform
state with opposite magnetization on the two sublattices. In
order to fix the length of the spins, we have the condition [35],

ni,A =
∑

α

a†
iαaiα = 2S,

n j,B =
∑

α

b†
jαb jα = 2S, (4)

on each lattice site. In the following mean-field treatment,
this condition on the number of Schwinger bosons will be

enforced on the average. In order to rewrite the AFMI Hamil-
tonian in terms of Schwinger boson operators, we introduce
bond operators quadratic in the boson operators. We follow
the recipe of Ref. [39], as outlined in Refs. [38,40]. When the
Schwinger boson operators have been defined equally on all
lattice sites, the bond operators then take the form,

Ai j = 1

2

(
ai↑a j↓ − ai↓a j↑

)
, (5a)

Bi j = 1

2

(
ai↑a†

j↑ + ai↓a†
j↓

)
. (5b)

Here, Ai j corresponds to an antiferromagnetic bond and Bi j

corresponds to a ferromagnetic bond [19,38]. This choice of
bond operators captures the cost of frustrating bonds, which is
essential for frustrated antiferromagnets, and has been shown
to preserve the time-inversion properties of the spins [19]. As
we have defined different Schwinger boson operators on the
two sublattices, we should perform the following transforma-
tion on the operators living on the B sublattice in the above
definitions of the bond operators,

ai↑ → −bi↓,

ai↓ → bi↑.

A. Néel phase

For the Néel phase, the AFMI Hamiltonian can be ex-
pressed on the form,

HNéel
AFMI = J1

∑
i∈A
jnni

SA
i · SB

j + J1

∑
i∈B
jnni

SB
i · SA

j

+ J2

∑
i∈A
jnnni

SA
i · SA

j + J2

∑
i∈B
jnnni

SB
i · SB

j

− K
∑
i∈A

S2
iz − K

∑
i∈B

S2
iz. (6)

We then introduce the bond operators,

A1,A
i j = 1

2

(
ai↑b j↑ + ai↓b j↓

)
, (7a)

B1,A
i j = 1

2

(
ai↓b†

j↑ − ai↑b†
j↓

)
, (7b)

A1,B
i j = 1

2

( − bi↓a j↓ − bi↑a j↑
)
, (7c)

B1,B
i j = 1

2

(
bi↑a†

j↓ − bi↓a†
j↑

)
, (7d)

A2,A
i j = 1

2

(
ai↑a j↓ − ai↓a j↑

)
, (7e)

B2,A
i j = 1

2

(
ai↑a†

j↑ + ai↓a†
j↓

)
, (7f)

A2,B
i j = 1

2

(
bi↑b j↓ − bi↓b j↑

)
, (7g)

B2,B
i j = 1

2

(
bi↑b†

j↑ + bi↓b†
j↓

)
, (7h)
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and write out the Hamiltonian as

HNéel
AFMI = J1

∑
i∈A
jnni

[(
B1,A

i j

)†
B1,A

i j − (
A1,A

i j

)†
A1,A

i j − 1

4
ni,A

]

+ J1

∑
i∈B
jnni

[(
B1,B

i j

)†
B1,B

i j − (
A1,B

i j

)†
A1,B

i j − 1

4
ni,B

]

+ J2

∑
i∈A
jnnni

[(
B2,A

i j

)†
B2,A

i j − (
A2,A

i j

)†
A2,A

i j − 1

4
ni,A

]

+ J2

∑
i∈B
jnnni

[(
B2,B

i j

)†
B2,B

i j − (
A2,B

i j

)†
A2,B

i j − 1

4
ni,B

]

− K
∑
i∈A

S2
iz − K

∑
i∈B

S2
iz + λA

∑
i∈A

(
ni,A − κ

)

+ λB

∑
i∈B

(
ni,B − κ

)
.

(8)

Here κ = 2S and λA, λB are Lagrange multipliers that have
been included in order to enforce the constraint on the number
of Schwinger bosons per site. The choice of κ = 2S seems
sensible based on Eq. (4), and fixes the magnitude of the spins
to the correct value. For this value of κ , the spin fluctuations
are, however, somewhat overestimated [35]. Another possibil-
ity is therefore to adjust κ in order to obtain the correct result
for the fluctuations, at the expense of the spin length [41]. We
will mostly be interested in how the results vary depending
on J2 for typical values of the rest of the parameters, and the
specific choice of κ therefore is not of great importance.

We next perform a mean-field decoupling of a bond vari-
able Ci j as follows:

Ci j = 〈Ci j〉 +
(
Ci j − 〈Ci j〉

)
≡ 〈Ci j〉 + δ(Ci j ),(

Ci j
)†

Ci j ≈ 〈Ci j〉†Ci j + 〈Ci j〉
(
Ci j

)† − |〈Ci j〉|2. (9)

Here, we have neglected quadratic terms in the deviations
from the mean-field values. Moreover, we choose an Ansatz
for the expectation values of the bond operators that will
produce a Néel-type state,〈

B1,A
i j

〉 = 〈
B1,B

i j

〉 = 0,〈
A1,A

i j

〉 = − 〈
A1,B

i j

〉 ≡ Aδ1 ,〈
B2,A

i j

〉 = 〈
B2,B

i j

〉 ≡ Bδ2 ,〈
A2,A

i j

〉 = 〈
A2,B

i j

〉 = 0, (10)

where all quantities are assumed to be real [40,41]. We also
take λA = λB ≡ λ. For the easy-axis terms we do the same
mean-field treatment as above and take 〈SC

iz〉 ≡ mC .
We introduce Fourier transformations for the Schwinger

boson operators,

aiσ = 1√
NA

∑
k∈♦

eik·ri akσ , (11a)

FIG. 2. Unit cell and Brillouin zone for the full lattice and the
sublattices.

biσ = 1√
NB

∑
k∈♦

eik·ri bkσ , (11b)

where NA and NB are the number of lattice sites in the A and
B sublattices, respectively. The momenta live in the reduced
Brillouin zone of the sublattices ♦, as displayed in Fig. 2.

The AFMI Hamiltonian then takes the following form:

HNéel
AFMI = 2NA

[
J1

∑
δ1

(
Aδ1

)2 − J2

∑
δ2

(
Bδ2

)2
]

+
[
λ − 1

4

(
J1z1 + J2z2

)] ∑
k∈♦
σ

(
a†

kσ
akσ + b†

kσ
bkσ

)

− KmA

∑
k∈♦
σ

σa†
kσ

akσ + KmB

∑
k∈♦
σ

σb†
kσ

bkσ

+
∑
k∈♦
σ

γ
B2
k

(
a†

kσ
akσ + bkσ b†

kσ

) + KNA
(
m2

A + m2
B

)

−
∑
k∈♦
σ

γ
A1
k

(
b†

kσ
a†

−kσ
+ akσ b−kσ

) − 2NAκλ, (12)

where z1 and z2 are the number of nearest neighbors and
next-nearest neighbors, respectively. Throughout this paper,
the quantity σ = ±1 takes on a positive sign for spin-up, and
a negative sign for spin-down. We have also introduced the
form factors,

γ
A1
k ≡ J1

∑
δ1

Aδ1 cos(k · δ1), (13a)

γ
B2
k ≡ J2

∑
δ2

Bδ2 cos(k · δ2), (13b)

where the sums over nearest neighbors (δ1) and next-nearest
neighbors (δ2) cover both positive and negative directions. We
then define λ′ ≡ λ − 1

4 (J1z1 + J2z2), rename λ′ → λ, and ne-
glect constant terms that do not contain any of the mean-field
parameters.
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In order to make progress, we split the Hamiltonian up into
three parts HNéel

AFMI = E0 + H↑ + H↓ where

E0 = 2NA

[
J1

∑
δ1

(
Aδ1

)2 − J2

∑
δ2

(
Bδ2

)2
]

− 2NAλ(κ + 1) + KNA
(
m2

A + m2
B

)
, (14)

and

Hσ =
∑
k∈♦

(
λ + γ

B2
k − σKmA

)
a†

kσ
akσ

+
∑
k∈♦

(
λ + γ

B2
k + σKmB

)
bkσ b†

kσ

−
∑
k∈♦

γ
A1
k

(
b†

kσ
a†

−kσ
+ akσ b−kσ

)
. (15)

We can then perform a Bogoliubov transformation,

akσ = ukσαkσ − vkσ β
†
−kσ

,

b†
−kσ

= vkσαkσ − ukσ β
†
−kσ

.
(16)

where ukσ and vkσ are taken to be real and are parametrized
by ukσ = cosh(θkσ ), vkσ = sinh(θkσ ). The value of θkσ that
diagonalizes the Hamiltonian is given by

tanh(2θkσ ) = γ
A1
k

λ + γ
B2
k + σ K

2

(
mB − mA

) . (17)

In order to simplify the expressions, we take mB = −mA,
which is consistent with a Néel phase. The diagonalized
Hamiltonian now takes the form,

HNéel
AFMI = E ′

0 +
∑
k∈♦
σ

ωkσ

(
α

†
kσ

αkσ + β
†
kσ

βkσ

)
,

(18)

where

ωkσ =
√(

λ + γ
B2
k − σKmA

)2 − (
γ

A1
k

)2
, (19)

and E ′
0 = E0 + ∑

kσ ωkσ .
The mean-field parameters should be determined self-

consistently from minimization of the free energy. The free
energy per lattice site is given by

f = E ′
0

N
+ 2

βN

∑
k∈♦
σ

ln(1 − e−βωkσ ).
(20)

Minimizing the free energy with respect to Aδ1 , Bδ2 , λ, and
mA, we then obtain the following self-consistent equations for
the mean-field parameters,

Aδ1 = 1

2N

∑
k∈♦
σ

γ
A1
k

ωkσ

(
1+2nkσ

)
cos(k · δ1), (21a)

Bδ2 = 1

2N

∑
k∈♦
σ

(
λ + γ

B2
k − σKmA

)
ωkσ

(
1+2nkσ

)
cos(k · δ2),

(21b)

κ̄ = 1

2N

∑
k∈♦
σ

(
λ + γ

B2
k − σKmA

)
ωkσ

(
1+2nkσ

)
, (21c)

mA = 1

2N

∑
k∈♦
σ

σ
(
λ + γ

B2
k − σKmA

)
ωkσ

(
1+2nkσ

)
. (21d)

The Bose-Einstein occupation factor is here denoted by
nkσ , and we have defined κ̄ = 1

2 (κ + 1). As mentioned ear-
lier, in our description of the system, a Néel-type state with
mA > 0 arises from condensation of ↑-bosons with k = 0. It
should be noted that the condensation only takes place in the
thermodynamic limit and that the bosonic energy cannot be
taken to zero without also taking the system size to infinity.
For condensation to take place, we need |λ + γ

B2
0 − KmA| =

|γ A1
0 |. In the following, we will take Aδ1 to be positive. For

the interaction potential that will enter into the Hamiltonian
describing the effective theory of interacting electrons, we
need the ground-state properties of the antiferromagnet. From
the Bose-Einstein occupation factors, at zero temperature, we
then only get a contribution from the condensate n0↑. Defining
ζkσ ≡ γ

A1
0 − γ

B2
0 + γ

B2
k + 2KmAδσ,↓, we now have

κ̄ = 1

2N

∑
k∈♦
σ

′ ζkσ

ωkσ

+ 1

N
Q0, (22a)

mA = 1

2N

∑
k∈♦
σ

′ σ ζkσ

ωkσ

+ 1

N
Q0, (22b)

Aδ1 = 1

2N

∑
k∈♦
σ

′ γ
A1
k

ωkσ

cos(k · δ1) + 1

N
Q0, (22c)

Bδ2 = 1

2N

∑
k∈♦
σ

′ ζkσ

ωkσ

cos(k · δ2) + 1

N
Q0, (22d)

where

Q0 = γ
A1
0

ω0↑

(
n0↑ + 1

2

)
. (23)

Note that the sums no longer include k = 0, σ =↑. We can
then eliminate

Q̃0 ≡ 1

N
Q0 = κ̄ − 1

2N

∑
k∈♦
σ

′ ζkσ

ωkσ

,
(24)

and obtain

mA − κ̄ + 1

N

∑
k∈♦

′ ζk↓
ωk↓

= 0, (25a)

A − κ̄ − 1

2N

∑
k∈♦
σ

′ γ
A1
k cos(kx ) − ζkσ

ωkσ

= 0, (25b)

B − κ̄ − 1

2N

∑
k∈♦
σ

′ ζkσ

ωkσ

[
cos(kx + ky) − 1

]
= 0, (25c)
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FIG. 3. Schwinger boson dispersion relations ωkσ for K =
0.001J1, S = 1, and σ =↓. The value for J2 varies between the two
subfigures.

where we have taken A ≡ Aδ1 and B ≡ Bδ2 . In the thermo-
dynamic limit, we can convert the sums to integrals and solve
the coupled set of equations numerically using a multidimen-
sional root finder [42].

Solving the self-consistent equations for the mean-field
parameters, the properties of the antiferromagnet can be deter-
mined, e.g., for different values of J2. In Fig. 3, the Schwinger
boson dispersion relation ωkσ is presented both deep into the
Néel regime and close to the transition to the stripe phase.
Note how local minima have developed close to the zone
edges of the Brillouin zone for J2/J1 = 0.5, which are nearly
degenerate with the dispersion minimum at the zone center.
This indicates the vicinity of an instability of the Néel state
into a new spin-ordered state. For the same parameters, the
Schwinger boson coherence factor ukσ is presented in Fig. 4.
All quantities are displayed for σ =↓, because, as we will see
in the following, ωk↓ and uk↓, vk↓ are the quantities, arising
in the effective electron-electron interaction potential, that
correspond to the magnon energies and coherence factors en-
countered in the Holstein-Primakoff treatment of the AFMI.

B. Stripe phase

For the stripe phase we write out the AFMI Hamiltonian as

HStripe
AFMI = J1

∑
i∈A

j = i ± x̂

SA
i · SB

j + J1

∑
i∈A

j = i ± ŷ

SA
i · SA

j

+ J1

∑
i∈B

j = i ± x̂

SB
i · SA

j + J1

∑
i∈B

j = i ± ŷ

SB
i · SB

j

FIG. 4. Schwinger boson coherence factors ukσ for K = 0.001J1,
S = 1, and σ =↓.

+ J2

∑
i∈A
jnnni

SA
i · SB

j + J2

∑
i∈B
jnnni

SB
i · SA

j

− K
∑
i∈A

S2
iz − K

∑
i∈B

S2
iz, (26)

where we have assumed that the stripes are oriented in the
y direction. The results for the superconductivity are not ex-
pected to depend on the spatial direction of the stripes. The
bond operators, this time, take the form,

AAx
i j = 1

2

(
ai↑b j↑ + ai↓b j↓

) = A2,A
i j , (27a)

BAx
i j = 1

2

(
ai↓b†

j↑ − ai↑b†
j↓

) = B2,A
i j , (27b)

A
Ay

i j = 1

2

(
ai↑a j↓ − ai↓a j↑

)
, (27c)

B
Ay

i j = 1

2

(
ai↑a†

j↑ + ai↓a†
j↓

)
, (27d)

ABx
i j = 1

2

( − bi↓a j↓ − bi↑a j↑
) = A2,B

i j , (27e)

BBx
i j = 1

2

(
bi↑a†

j↓ − bi↓a†
j↑

) = B2,B
i j , (27f)

A
By

i j = 1

2

(
bi↑b j↓ − bi↓b j↑

)
, (27g)

B
By

i j = 1

2

(
bi↓b†

j↓ + bi↑b†
j↑

)
. (27h)

Including the Lagrange multiplier terms, the AFMI Hamil-
tonian can then be written out as

HStripe
AFMI = J1

∑
i∈A

j = i ± x̂

[(
BAx

i j

)†
BAx

i j − (
AAx

i j

)†
AAx

i j − 1

4
ni,A

]

+ J1

∑
i∈A

j = i ± ŷ

[(
B

Ay

i j

)†
B

Ay

i j − (
A

Ay

i j

)†
A

Ay

i j − 1

4
ni,A

]

+ J1

∑
i∈B

j = i ± x̂

[(
BBx

i j

)†
BBx

i j − (
ABx

i j

)†
ABx

i j − 1

4
ni,B

]

+ J1

∑
i∈B

j = i ± ŷ

[(
B

By

i j

)†
B

By

i j − (
A

By

i j

)†
A

By

i j − 1

4
ni,B

]

+ J2

∑
i∈A
jnnni

[(
B2,A

i j

)†
B2,A

i j − (
A2,A

i j

)†
A2,A

i j − 1

4
ni,A

]

+ J2

∑
i∈B
jnnni

[(
B2,B

i j

)†
B2,B

i j − (
A2,B

i j

)†
A2,B

i j − 1

4
ni,B

]

− K
∑
i∈A

S2
iz − K

∑
i∈B

S2
iz + λA

∑
i∈A

(
ni,A − κ

)

+ λB

∑
i∈B

(
ni,B − κ

)
.

(28)
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FIG. 5. Unit cell and Brillouin zone for the full lattice and the
sublattices.

In order to make progress, we introduce the mean-field decou-
pling from Eq. (9), and choose an Ansatz for the mean-field
parameters that will produce a stripe phase,

〈
AAx

i j

〉 = −〈
ABx

i j

〉 ≡ Aδx , (29a)〈
BAx

i j

〉 = 〈
BBx

i j

〉 = 0, (29b)〈
A

Ay

i j

〉 = 〈
A

By

i j

〉 = 0, (29c)〈
B

Ay

i j

〉 = 〈
B

By

i j

〉 ≡ Bδy , (29d)〈
B2,A

i j

〉 = 〈
B2,B

i j

〉 = 0, (29e)〈
A2,A

i j

〉 = −〈
A2,B

i j

〉 ≡ Aδ2 . (29f)

As before, we take λA = λB ≡ λ and treat the easy-axis
anisotropy terms in the same mean-field fashion as for the
Néel state. Next, we introduce Fourier transformations for the
boson operators,

aiσ = 1√
NA

∑
k∈ �

eik·ri akσ , (30a)

biσ = 1√
NB

∑
k∈�

eik·ri bkσ , (30b)

where the sum over momentum covers the reduced Brillouin
zone of the sublattices , as displayed in Fig. 5. The Hamilto-
nian then takes the form,

HStripe
AFMI = 2NA

[
J1

∑
δx

(
Aδx

)2 − J1

∑
δy

(
Bδy

)2

+ J2

∑
δ2

(
Aδ2

)2
]

− 2NAκλ + KNA
(
m2

A + m2
B

)

+
[
λ − 1

4
(J1z1 + J2z2)

] ∑
k∈

σ

(
a†

kσ
akσ + b†

kσ
bkσ

)

− KmA

∑
k∈

σ

σ a†
kσ

akσ + KmB

∑
k∈

σ

σ b†
kσ

bkσ

+
∑
k∈

σ

γ
By

k

(
a†

kσ
akσ + bkσ b†

kσ

)

−
∑
k∈

σ

(
γ

Ax
k + γ

A2
k

)(
b†

kσ
a†

−kσ
+ akσ b−kσ

)
, (31)

where we have defined

γ
Ax
k = J1

∑
δx

Aδx cos(k · δx), (32a)

γ
By

k = J1

∑
δy

Bδy cos(k · δy), (32b)

γ
A2
k = J2

∑
δ2

Aδ2 cos(k · δ2). (32c)

The sums over nearest neighbors still cover both positive and
negative directions. We then redefine λ as we did for the
Néel phase and exclude constant terms not involving mean-
field parameters. Splitting up the Hamiltonian in three parts
HStripe

AFMI = E0 + H↑ + H↓, we write

E0 = 2NA

[
J1

∑
δx

(
Aδx

)2 − J1

∑
δy

(
Bδy

)2 + J2

∑
δ2

(
Aδ2

)2
]

− 2NAλ(κ + 1) + KNA
(
m2

A + m2
B

)
, (33)

Hσ =
∑
k∈

(
λ + γ

By

k − σKmA
)
a†

kσ
akσ

+
∑
k∈

(
λ + γ

By

k + σKmB
)
bkσ b†

kσ

−
∑
k∈

(
γ

Ax
k + γ

A2
k

)(
b†

kσ
a†

−kσ
+ akσ b−kσ

)
. (34)

As in the Néel case, the Bogoliubov transformation of Eq. (16)
diagonalizes the Hamiltonian, where θkσ this time is given by

tanh(2θkσ ) = γ
Ax
k + γ

A2
k

λ + γ
By

k + σ K
2

(
mB − mA

) . (35)

Taking mB = −mA, we obtain the following expression for the
diagonalized Hamiltonian:

HStripe
AFMI = E ′

0 +
∑
k∈

σ

ωkσ

(
α

†
kσ

αkσ + β
†
kσ

βkσ

)
,

(36)

where

ωkσ =
√(

λ + γ
By

k − σKmA
)2 − (

γ
Ax
k + γ

A2
k

)2
, (37)

and E ′
0 = E0 + ∑

kσ ωkσ . Minimizing the free energy with
respect to Aδx , Aδ2 , Bδy , λ, and mA, we obtain

Aδx = 1

2N

∑
k∈

σ

(
γ

Ax
k + γ

A2
k

)
ωkσ

(
1 + 2nkσ

)
cos(k · δx ), (38a)
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Aδ2 = 1

2N

∑
k∈

σ

(
γ

Ax
k + γ

A2
k

)
ωkσ

(
1 + 2nkσ

)
cos(k · δ2), (38b)

Bδy = 1

2N

∑
k∈

σ

(
λ + γ

By

k − σKmA
)

ωkσ

(
1 + 2nkσ

)
cos(k · δy),

(38c)

κ̄ = 1

2N

∑
k∈

σ

(
λ + γ

By

k − σKmA
)

ωkσ

(
1 + 2nkσ

)
, (38d)

mA = 1

2N

∑
k∈

σ

σ
(
λ + γ

By

k − σKmA
)

ωkσ

(
1 + 2nkσ

)
. (38e)

Here, we have once again defined κ̄ = 1
2 (κ + 1). For a

stripe-type state with mA > 0, we will have condensation of
↑-bosons with k = 0, and we then need |λ + γ

By

0 − KmA| =
|γ Ax

0 + γ
A2
0 |. The mean-field parameters Aδx and Aδ2 will be

assumed to be positive. At zero temperature, we once again
only get contributions from nkσ from the condensate. We then
define ζkσ = γ

Ax
0 + γ

A2
0 − γ

By

0 + γ
By

k + 2KmAδσ,↓, and write

κ̄ = 1

2N

∑
k∈

σ

′ ζkσ

ωkσ

+ 1

N
Q0, (39a)

mA = 1

2N

∑
k∈

σ

′ σ ζkσ

ωkσ

+ 1

N
Q0, (39b)

Ax = 1

2N

∑
k∈

σ

′
(
γ

Ax
k + γ

A2
k

)
ωkσ

cos(kx ) + 1

N
Q0, (39c)

A2 = 1

2N

∑
k∈

σ

′
(
γ

Ax
k + γ

A2
k

)
ωkσ

cos(kx + ky) + 1

N
Q0, (39d)

By = 1

2N

∑
k∈

σ

′ ζkσ

ωkσ

cos(ky) + 1

N
Q0, (39e)

where

Q0 =
(
γ

Ax
0 + γ

A2
0

)
ω0↑

(
n0↑ + 1

2

)
, (40)

and we have taken Ax ≡ Aδx , A2 ≡ Aδ2 , and By ≡ Bδy . We
can then once again eliminate Q0,

Q̃0 ≡ 1

N
Q0 = κ̄ − 1

2N

∑
kσ

′ ζkσ

ωkσ

, (41)

FIG. 6. Schwinger boson dispersion relations ωkσ for K =
0.001J1, S = 1, and σ =↓. The value for J2 varies between the two
subfigures.

and obtain the equations,

mA = κ̄ − 1

N

∑
k∈

′ ζk↓
ωk↓

, (42a)

Ax = κ̄ + 1

2N

∑
k∈

σ

′
(
γ

Ax
k + γ

A2
k

)
cos(kx ) − ζkσ

ωkσ

, (42b)

A2 = κ̄ + 1

2N

∑
k∈

σ

′
(
γ

Ax
k + γ

A2
k

)
cos(kx + ky) − ζkσ

ωkσ

,

(42c)

By = κ̄ + 1

2N

∑
k∈

σ

′ ζkσ

ωkσ

[
cos(ky) − 1

]
. (42d)

In the thermodynamic limit, we can then convert the sums
into integrals and solve the coupled set of equations numeri-
cally.

As for the Néel phase, we present dispersion relations and
coherence factors for values of J2/J1 deep into the stripe phase
and close to the transition to the other magnetic phase. These
results are displayed in Figs. 6 and 7. In addition, we also ex-
plore in Fig. 8 how the mean-field parameters depend on J2/J1

for the two phases. Notably, the factor Q̃0, which is closely
related to the sublattice magnetization, decreases towards the
phase transition and is reduced more on the Néel side of the
transition than on the stripe side. This factor will show up later
in the effective electron-electron interaction potential.

FIG. 7. Schwinger boson coherence factors ukσ for K = 0.001J1,
S = 1, and σ =↓.
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FIG. 8. Mean-field parameters for the Néel and stripe phase for
K/J1 = 0.001 and S = 1. The transition between the two phases is
found to take place around J2/J1 = 0.549.

IV. COUPLING TO THE NM

When considering the coupling to the normal metal (NM),
we will treat both the Néel phase and stripe phase simultane-
ously as the calculation is identical for both phases. It should
then be understood that the expressions for the factor Q̃0,
the Schwinger boson energies ωkσ , and the Schwinger boson
coherence factors ukσ , vkσ , depend on the magnetic phase.

Through a Fourier transformation, the NM Hamiltonian is
brought on diagonal form,

HNM =
∑
k∈�

σ

εkc†
kσ

ckσ , (43)

with

εk = −tz1γk − μ. (44)

Here, the sum over momentum covers the Brillouin zone of
the full lattice � and the number of nearest neighbors z1 is
the same as in the AFMI. In addition, the NM is exchange
coupled to the two sublattices of the antiferromagnet, Hint =
H (A)

int + H (B)
int ,

H (A)
int = −2J̄ 


∑
i∈A

(a†
i↑ai↓ c†

i↓ci↑ + a†
i↓ai↑ c†

i↑ci↓)

− J̄ 

∑
i∈Aσ

σc†
iσ ciσ (a†

i↑ai↑ − a†
i↓ai↓), (45)

H (B)
int = 2J̄

∑
i∈B

(b†
i↓bi↑ c†

i↓ci↑ + b†
i↑bi↓ c†

i↑ci↓)

+ J̄
∑
i∈B
σ

σc†
iσ ciσ (b†

i↑bi↑ − b†
i↓bi↓). (46)

Here, we have defined 
 ≡ J̄A/J̄B, as visualized in Fig. 9,
and J̄ ≡ J̄B. For magnetic ordering in the z direction in spin
space, the z component of the coupling gives rise to a stag-
gered magnetic exchange field. For asymmetric coupling to

AFMI NMAFMI NM

(a) (b)

Ω ≡ J̄A/J̄B < 1 Ω = 0

FIG. 9. (a) Illustration of our model where the coupling to the
two sublattices is allowed to differ. The coupling asymmetry is
parametrized by 
. (b) Shown is an uncompensated interface, where
only one of the two sublattices is present, producing a coupling
corresponding to 
 = 0.

the two sublattices, the NM electrons are then exposed to a
net magnetic field, which will influence the superconductivity.
For an in-plane magnetic field, the dominant effect is the Pauli
pair-breaking mechanism, rather than the orbital effect [43].
As described in Ref. [6], this paramagnetic effect, arising from
the z component of the coupling, is not expected to destroy
the superconductivity in the considered system, and can be
counteracted by, e.g., applying an oppositely directed external
magnetic field [44]. The effect of the z component of the
coupling will therefore be neglected in the following.

We then perform Fourier transformations, where the elec-
tron operators are transformed as

ciσ = 1√
N

∑
k∈RBZ

(ckσ eik·ri + ck+G,σ ei(k+G)·ri ), (47)

where G ≡ π (x̂+ŷ)
a for the Néel phase and G ≡ π x̂

a for the
stripe phase. The sum over momentum covers the reduced
Brillouin zone (RBZ) of the sublattices. Umklapp processes
where the momentum of the outgoing electron is shifted by a
reciprocal lattice vector of the sublattices, will arise due to the
electrons and Schwinger bosons living in different Brillouin
zones [6,7]. These processes are expected to be important for
induced superconductivity in the case of an AFMI coupled
to a NM close to half-filling [5]. Away from half-filling, the
Umklapp processes are, however, of less importance. In addi-
tion, for a real uncompensated interface, the NM will be lattice
matched with the AFMI sublattice it is coupled to, removing
the Umklapp processes from the coupling. The Umklapp pro-
cesses will therefore not be included in our treatment of the
system.

We are now left with the coupling terms,

H (A)
int = −2J̄ 


N

∑
q∈�

∑
kk′

∈ RBZ

(a†
k↑ak′↓c†

q↓ck+q−k′↑ + H.c.),

(48)
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H (B)
int = 2J̄

N

∑
q∈�

∑
kk′

∈ RBZ

(b†
k↓bk′↑c†

q↓ck+q−k′↑ + H.c.).

(49)

Expressing the the sublattice Schwinger boson operators in
terms of the boson operators that diagonalized the AFMI
Hamiltonian, we have the final expression for the electron-
boson coupling,

H (A)
int = −2J̄ 


N

∑
q∈�

∑
kk′

∈ RBZ

[(uk↑α
†
k↑ − vk↑β−k↑)

× (uk′↓αk′↓ − vk′↓β
†
−k′↓)c†

q↓ck+q−k′↑ + H.c.], (50)

H (B)
int = 2J̄

N

∑
q∈�

∑
kk′

∈ RBZ

[(
vk↓α−k↓ − uk↓β

†
k↓

)

× (
vk′↑α

†
−k′↑ − uk′↑βk′↑

)
c†

q↓ck+q−k′↑ + H.c.
]
. (51)

In the next section, we will derive effective electron-electron
interactions, mediated by Schwinger bosons, arising from this
electron-boson coupling.

V. EFFECTIVE INTERACTION

We now perform a Schrieffer-Wolff transformation [45]
in order to integrate out the boson operators and obtain an
effective theory of interacting electrons. As we have two bo-
son operators in the initial electron-boson coupling, we will
end up with electron-electron scattering processes where there
are still two boson operators present. The remaining pair of
boson operators will be replaced by its ground-state expecta-
tion value in order to obtain an effective theory of interacting
electrons. We define H = H0 + ηH1 with

H0 ≡ E ′
0 +

∑
k∈RBZ

σ

ωkσ (α†
kσ

αkσ + β
†
kσ

βkσ )

+
∑
k∈�

σ

εkc†
kσ

ckσ ,
(52)

and

ηH1 = ηH (A)
1 + ηH (B)

1 ≡ H (A)
int + H (B)

int . (53)

We then perform a canonical transformation,

H ′ = e−ηSH eηS = H + η[H, S] + η2

2!
[[H, S], S] + O(η3)

= H0 + η(H1 + [H0, S]) + η2
(

[H1, S] + 1

2
[[H0, S], S]

)
+ O(η3),

(54)

where we choose ηS = ηS(A) + ηS(B) such that we have

ηH (L)
1 + [H0, ηS(L)] = 0. (55)

The result is then

H ′ = H0 + 1

2

∑
LL′

[ηH (L)
1 , ηS(L′ )] + O(η3), (56)

where L ∈ {A, B}. We then make appropriate choices for ηSA

and ηSB [46], compute the commutators, consider that we
have condensation of ↑-bosons, and restrict ourselves to BCS-
type scattering processes where the two incoming, as well as
outgoing, electrons have opposite momenta. See Appendix for
details. The pairing Hamiltonian then takes the form,

Hpair =
∑
kk′

Vkk′c†
k↑c†

−k↓c−k′↓ck′↑, (57)

where

Vkk′ = −V 2Q̃0
2ωk+k′↓

(εk′ − εk)2 − ω2
k+k′↓

A(k + k′,
)

− V 2

N

∑
h∈RBZ

′ B(k + k′ + h, h,
)

× 2(ωk+k′+h↑ + ωh↓)

(εk′ − εk)2 − (ωk+k′+h↑ + ωh↓)2
,

(58)

and we have defined

A(q,
) = 1

2
(
2 + 1)

(
u2

q↓ + v2
q↓

) − 2 
 uq↓vq↓, (59)

as well as

B(q, h,
) = 1

2
(
2 + 1)

(
u2

q↑v2
h↓ + v2

q↑u2
h↓

)
− 2 
 uq↑vh↓vq↑uh↓.

(60)

Here, we have introduced V ≡ 2J̄/
√

N . The two momenta
in the sum in Eq. (57) are restricted such that the separation
between them is limited to a momentum living in the reduced
Brillouin zone of the sublattices. The A factor is the same
function as in Ref. [6], but due to different choices for the
sign of the coherence factors, the sign in front of the uq↓vq↓
term is negative instead of positive in this case. Both coher-
ence factors are, in this case, positive for small momenta for
both the Néel and stripe phase. For 
 = 0, the A factor then
grows large, while for 
 = 1, there is a near cancellation
between the positive and negative contributions to the A factor.
The interaction strength is therefore enhanced in the case
of asymmetric coupling to the two sublattices, just like in
Ref. [6]. The second part of the interaction potential includes
a sum over momenta that covers the reduced Brillouin zone of
the sublattices, apart from the point h = −k − k′. This term
displays similar behavior as the first term in the interaction
potential when 
 is varied. Importantly, the above expressions
are valid for both the Néel and stripe phase, meaning that the
previously reported enhancement of the critical temperature
when coupling asymmetrically to the two sublattices of the
AFMI should be expected also for the stripe phase.

Examining the first part of the interaction potential, where
the ↑-bosons carry zero momentum, we see that the proper-
ties of the ↑-bosons that condense have been absorbed into

214502-10



SCHWINGER BOSON STUDY OF SUPERCONDUCTIVITY … PHYSICAL REVIEW B 102, 214502 (2020)

the prefactor Q̃0. Comparing with the earlier obtained spin-
wave result, it is then clear that the magnon energies and
coherence factors from Ref. [6] have been replaced by the
energies and coherence factors of Schwinger bosons with spin
σ =↓. These ↓-bosons have been gapped by the easy-axis
anisotropy, ensuring ordering in the z direction. Taking the
limit of K → 0, the coherence factors in A(q,
) diverge,
producing a divergent interaction potential. This is consis-
tent with the Holstein-Primakoff result in the limit of zero
easy-axis anisotropy [6]. In order to treat the possibility of
superconductivity, at least within a weak-coupling framework,
one should then take finite easy-axis anisotropy. If both the
↑- and ↓-bosons had been gapped, as in a gapped spin liquid
state, there would be no condensate and the remaining con-
tributions to the interaction potential would be expected to
take on a form similar to the current second term involving
B(q, h,
). In that case, there could, however, also be extra
contributions arising from the z component of the interfacial
exchange coupling.

Making further comparisons with Ref. [6], the prefactor
V 2Q̃0 is the same as Eq. (5) in Ref. [6] except that the AFMI
spin quantum number S (representing the sublattice magneti-
zation) has been replaced by Q̃0 which is closely related to the
sublattice magnetization mA. As the sublattice magnetization,
and therefore Q̃0, is reduced by frustration, this replacement
represents a correction that can strongly influence how the su-
perconductivity depends on the introduction of frustration. In
addition, the Schwinger boson energies and coherence factors
also depend on mA (instead of S), which will depend on the
value of J2 in this treatment of the system.

VI. GAP EQUATION

Performing a standard weak-coupling treatment of the su-
perconducting instability [47], both terms in the interaction
potential are found to be attractive for Sz = 0 spin-triplet
pairing [6], with gap function,

�k = −
∑

k′
Vkk′,O(k)〈c−k′↑ck′↓ + c−k′↓ck′↑〉/2. (61)

Here Vkk′,O(k) = 1
2 (Vkk′ − V−k,k′ ) is the part of the effective

interaction potential that is odd in momentum. The ori-
gin of the spin-triplet pairing is the spin-flip nature of the
electron-boson scattering processes. When combining two
electron-boson scattering processes to an effective pairing
potential, the spin flips produce an operator ordering of the
type c†

↑c↓c†
↓c↑, instead of c†

↑c↑c†
↓c↓ which is the case for

conventional phonon-mediated singlet pairing. The exchange
of the spin indices of the destruction operators, combined with
the anticommutation relations of the electrons, introduce a rel-
ative minus sign compared with the case of phonon-mediated
singlet pairing, meaning that the spin-singlet channel is there-
fore no longer attractive.

The resulting gap equation takes the form [47],

�k = −
∑

k′
Vkk′,O(k)

�k′

2Ek′
tanh

(
Ek′

2kBT

)
, (62)

FIG. 10. Superconducting critical temperature Tc presented as a
function of the coupling asymmetry parameter 
 for J1 = 5 meV,
K = J1/4000, S = 1, t = 0.8 eV, μ = −3.5t , and J̄ = 13 meV. The
critical temperature has been normalized by its value for 
 = 0
for the Néel phase (J2 = 0.5J1) and the stripe phase (J2 = 0.6J1),
respectively.

where Ek =
√

ε2
k + |�k|2, kB is the Boltzmann constant, and

T is the temperature. In order to determine the critical temper-
ature, we consider the linearized gap equation and compute a
Fermi surface average,

λ�k = −D0〈Vkk′,O(k)�k′ 〉k′,FS. (63)

The critical temperature is then given by [47]

kBTc = 1.14 ωc e−1/λ, (64)

where D0 is the density of states at the Fermi level, ωc is
the boson spectrum cutoff, and the dimensionless coupling
constant λ is the largest eigenvalue of the eigenvalue problem
in Eq. (63).

The eigenvalue problem can be treated numerically by
picking discrete points on the Fermi surface and solving the
resulting matrix eigenvalue problem using a linear algebra
library [48,49]. The density of states at the Fermi level is
obtained from numerical evaluation of the elliptical integral
derived in Ref. [50]. The second part of the interaction poten-
tial, involving the B factor, is found to have little influence on
the dimensionless coupling constant and the critical tempera-
ture. Calculating this part of the potential is computationally
costly as an integral over the Brillouin zone then needs to
be computed for each independent set of momenta k, k′ in
Eq. (63). In order to increase the momentum-space resolution,
the following results are therefore obtained without the second
part of the interaction potential.

VII. RESULTS

The critical temperature as a function of the asymmetry
parameter 
 is presented in Fig. 10 for both the Néel and
stripe phase. As expected, based on the discussion in Sec. V,
the critical temperature rises up when 
 → 0 (uncompensated
interface), as the A factor grows larger. The displayed values
for each magnetic phase have been normalized by the critical
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temperature corresponding to the same magnetic phase and

 = 0.

The chemical potential is here tuned to produce a small
Fermi surface where the scattering processes close to the
Fermi surface involve small momentum transfers, taking ad-
vantage of the Schwinger boson coherence factors that grow
large for these processes. Increasing the chemical potential,
the typical scattering processes become more short wave-
length, and the effect of, e.g., the A factor in the interaction
potential becomes smaller. Although a larger chemical poten-
tial leads to a larger electronic density of states, the result
is still a decrease in the critical temperature. On the other
hand, while lowering the chemical potential could produce
a larger critical temperature, taking the chemical potential
too low would challenge the validity of the theory, which,
e.g., relies on the Fermi energy being significantly larger than
the cutoff on the boson spectrum. Based on the result that
an uncompensated interface provides an enhancement of the
critical temperature for both magnetic phases, we focus on the
case of 
 = 0 in the following.

Next, we investigate how the dimensionless coupling con-
stant and the critical temperature depend on the next-nearest
neighbor interaction J2 in the AFMI. These results are dis-
played in Fig. 11. For both magnetic phases, we find that
approaching the phase transition leads to a larger dimension-
less coupling constant and critical temperature. For the Néel
phase, the introduction of frustration gives rise to a smaller
cutoff on the boson spectrum (Fig. 3), and a smaller sublattice
magnetization which leads to a reduction of the prefactor Q̃0

(Fig. 8) in the interaction potential. On the other hand, the
frustration produces larger coherence factors (Fig. 4) and a
flatter boson dispersion relation, which enters in the denom-
inator of the interaction potential. The overall effect is that
the dimensionless coupling constant increases, which leads
to a rise in the critical temperature despite the reduction in
the boson spectrum cutoff. In the vicinity of the transition to
the stripe phase, the Tc curve becomes flatter as the factor Q̃0

drops more quickly. For smaller (larger) AFMI spin quantum
number S, Q̃0 will be reduced more (less) dramatically as one
approaches the transition point. For the spin S = 1/2 case,
where the long-range order can vanish for sufficiently strong
frustration, the critical temperature resulting from the above
calculation will dive down. However, for a three-dimensional
system, with stronger tendency of ordering, the magnetization
will generally be reduced less than for the two-dimensional
model system considered here. The typical result for an actual
three-dimensional AFMI with an uncompensated interface
(potentially excluding the case of spin-1/2 on a simple cubic
lattice [18]), is then expected to be similar to the above result
(Fig. 11) where the dimensionless coupling constant increases
as one approaches the stripe phase, leading to a higher critical
temperature.

For the stripe phase, approaching the transition to the Néel
phase, the cutoff on the boson spectrum (Fig. 6) and the factor
Q̃0 (Fig. 8) are once again reduced. In addition, the maximum
value of the coherence factors also decreases (Fig. 7), in
contrast to the Néel case. This could indicate that the induced
electron-electron interactions are becoming weaker, poten-
tially leading to a smaller λ and Tc. It is, however, the case
that the region in k space where the coherence factors take

FIG. 11. Dimensionless coupling constant λ (a) and supercon-
ducting critical temperature Tc (b) presented as a function of the
next-nearest neighbor exchange coupling J2 in the antiferromagnet
for J1 = 5 meV, K = J1/4000, S = 1, t = 0.8 eV, μ = −3.5t , J̄ =
13 meV, and 
 = 0.

on large values is stretched out in the direction of the stripes
(the ky direction), followed by a flattening of the dispersion
relation in this direction. In order to take advantage of favor-
able scattering processes in the ky direction, while keeping
the involved electrons on the Fermi surface, the magnitude
of the gap function is shifted towards the kx axis compared
to the standard p-wave gap function of the unfrustrated Néel
state [6]. More scattering processes with large and moderately
large contributions compensate for the reduction, instead of
increase, in the maximum value of the coherence factors. The
dimensionless coupling constant therefore still grows as one
approaches the phase transition. As the sublattice magnetiza-
tion is more robust for the stripe phase than the Néel phase
(Fig. 8), the maximum value of λ actually ends up being
slightly higher for the stripe phase due to a larger value for
Q̃0. As the critical temperature is very sensitive to λ, the
critical temperature rises up quite dramatically on the stripe
side of the transition in our calculation. The main conclusion
from the stripe phase is that increasing the fluctuations by
approaching the transition to the Néel phase can be favorable
for the superconductivity and that the more stable sublattice
magnetization of the stripe phase can be an advantage.
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VIII. SUMMARY

We have investigated superconductivity in a normal metal,
induced by an interfacial coupling to an antiferromagnetic
insulator. We have shown that next-nearest neighbor frus-
tration in a Néel antiferromagnet with an uncompensated
interface can lead to an enhancement of the superconducting
critical temperature. Moreover, coupling to an uncompensated
antiferromagnetic interface is found to be favorable for the
superconductivity regardless of whether the antiferromagnet
is in a Néel phase or a stripe phase. For the stripe phase,
arising from large next-nearest neighbor interaction in the
antiferromagnet, we find that amplifying the magnetic fluc-
tuations by approaching the transition to the Néel phase, once
again, can lead to a rise in the critical temperature.
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APPENDIX: DERIVATION OF THE EFFECTIVE
INTERACTION

In order to obtain an effective theory of interacting elec-
trons, we choose

ηS(A) = −2J̄ 


N

∑
q∈�

∑
kk′

∈ RBZ

[(
xα,↑↓

k,k′q uk↑uk′↓α
†
k↑αk′↓

+ yβ,↓↑
k,k′qvk↑vk′↓β

†
−k′↓β−k↑ − z−,↑↓

k,k′q uk↑vk′↓α
†
k↑β

†
−k′↓

− w
+,↓↑
k,k′q vk↑uk′↓αk′↓β−k↑

)
c†

q↓ck+q−k′↑

+ (
xα,↓↑

k,k′q uk↓uk′↑α
†
k↓αk′↑ + yβ,↑↓

k,k′qvk↓vk′↑β
†
−k′↑β−k↓

− z−,↓↑
k,k′q uk↓vk′↑α

†
k↓β

†
−k′↑

− w
+,↑↓
k,k′q vk↓uk′↑αk′↑β−k↓

)
c†

q↑ck+q−k′↓
]
,

(A1)

and

ηS(B) = 2J̄

N

∑
q∈�

∑
kk′

∈ RBZ

[(
yα,↑↓

k,k′qvk↓vk′↑α
†
−k′↑α−k↓

+ xβ,↓↑
k,k′q uk↓uk′↑β

†
k↓βk′↑ − z+,↓↑

k,k′q vk↓uk′↑α−k↓βk′↑

− w
−,↑↓
k,k′q uk↓vk′↑α

†
−k′↑β

†
k↓

)
c†

q↓ck+q−k′↑

+ (
yα,↓↑

k,k′qvk↑vk′↓α
†
−k′↓α−k↑ + xβ,↑↓

k,k′q uk↑uk′↓β
†
k↑βk′↓

− z+,↑↓
k,k′q vk↑uk′↓α−k↑βk′↓

− w
−,↓↑
k,k′q uk↑vk′↓α

†
−k′↓β

†
k↑

)
c†

q↑ck+q−k′↓
]
,

(A2)

where

xα,↑↓
k,k′q = 1

εk+q−k′ − εq + ωk′↓α − ωk↑α

, (A3a)

yβ,↓↑
k,k′q = 1

εk+q−k′ − εq + ωk↑β − ωk′↓β

, (A3b)

z−,↑↓
k,k′q = 1

εk+q−k′ − εq − ωk↑α − ωk′↓β

, (A3c)

w
+,↓↑
k,k′q = 1

εk+q−k′ − εq + ωk′↓α + ωk↑β

, (A3d)

and, e.g.,

z+,↑↓
k,k′q = 1

εk+q−k′ − εq + ωk↑α + ωk′↓β

, (A4a)

w
−,↓↑
k,k′q = 1

εk+q−k′ − εq − ωk′↓α − ωk↑β

. (A4b)

Prior to commencing a calculation of the commutators, it
turns out to be advantageous to further split up the terms in
the interaction Hamiltonian,

H (L)
int = H (L,+)

int + H (L,−)
int , (A5)

where

H (A,+)
int = −2J̄ 


N

∑
q∈�

∑
kk′

∈ RBZ

(
uk↑uk′↓α

†
k↑αk′↓

+ vk↑vk′↓β−k↑β
†
−k′↓ − uk↑vk′↓α

†
k↑β

†
−k′↓

− vk↑uk′↓β−k↑αk′↓
)
c†

q↓ck+q−k′↑,

(A6)

H (A,−)
int = −2J̄ 


N

∑
q∈�

∑
kk′

∈ RBZ

(
uk↓uk′↑α

†
k↓αk′↑

+ vk↓vk′↑β−k↓β
†
−k′↑ − uk↓vk′↑α

†
k↓β

†
−k′↑

− vk↓uk′↑β−k↓αk′↑
)
c†

q↑ck+q−k′↓,

(A7)

H (B,+)
int = 2J̄

N

∑
q∈�

∑
kk′

∈ RBZ

(
vk↓vk′↑α−k↓α

†
−k′↑

+ uk↓uk′↑β
†
k↓βk′↑ − vk↓uk′↑α−k↓βk′↑

− uk↓vk′↑β
†
k↓α

†
−k′↑

)
c†

q↓ck+q−k′↑,

(A8)

H (B,−)
int = 2J̄

N

∑
q∈�

∑
kk′

∈ RBZ

(
vk↑vk′↓α−k↑α

†
−k′↓

+ uk↑uk′↓β
†
k↑βk′↓ − vk↑uk′↓α−k↑βk′↓

− uk↑vk′↓β
†
k↑α

†
−k′↓

)
c†

q↑ck+q−k′↓.

(A9)

When calculating the boson commutators, leaving us with
four electron operators and two boson operators, and exchang-
ing the pair of remaining boson operators with its ground-state
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expectation value, we find that only processes where the two
incoming electrons have opposite spins give nonzero contri-
butions. These processes then conserve the electron spin and
are of the same type as the processes one obtains from a
Holstein-Primakoff treatment of the magnetic system [3,5,6].
The pairing Hamiltonian can then be written as

Hpair = 1

2

∑
LL′σ

[
H (L,σ )

int , ηS(L′,−σ )
]
, (A10)

where

ηS(A,+) = −2J̄ 


N

∑
q∈�

∑
kk′

∈ RBZ

(
xα,↑↓

k,k′q uk↑uk′↓α
†
k↑αk′↓

+ yβ,↓↑
k,k′qvk↑vk′↓β

†
−k′↓β−k↑ − z−,↑↓

k,k′q uk↑vk′↓α
†
k↑β

†
−k′↓

− w
+,↓↑
k,k′q vk↑uk′↓αk′↓β−k↑

)
c†

q↓ck+q−k′↑,

(A11)

ηS(A,−) = −2J̄ 


N

∑
q∈�

∑
kk′

∈ RBZ

(
xα,↓↑

k,k′q uk↓uk′↑α
†
k↓αk′↑

+ yβ,↑↓
k,k′qvk↓vk′↑β

†
−k′↑β−k↓ − z−,↓↑

k,k′q uk↓vk′↑α
†
k↓β

†
−k′↑

−w
+,↑↓
k,k′q vk↓uk′↑αk′↑β−k↓

)
c†

q↑ck+q−k′↓, (A12)

ηS(B,+) = 2J̄

N

∑
q∈�

∑
kk′

∈ RBZ

(
yα,↑↓

k,k′qvk↓vk′↑α
†
−k′↑α−k↓

+ xβ,↓↑
k,k′q uk↓uk′↑β

†
k↓βk′↑ − z+,↓↑

k,k′q vk↓uk′↑α−k↓βk′↑

− w
−,↑↓
k,k′q uk↓vk′↑α

†
−k′↑β

†
k↓

)
c†

q↓ck+q−k′↑,

(A13)

ηS(B,−) = 2J̄

N

∑
q∈�

∑
kk′

∈ RBZ

(
yα,↓↑

k,k′qvk↑vk′↓α
†
−k′↓α−k↑

+ xβ,↑↓
k,k′q uk↑uk′↓β

†
k↑βk′↓ − z+,↑↓

k,k′q vk↑uk′↓α−k↑βk′↓

− w
−,↓↑
k,k′q uk↑vk′↓α

†
−k′↓β

†
k↑

)
c†

q↑ck+q−k′↓.

(A14)
Computing the commutators, grouping together terms, and

exchanging the boson operator pairs by their ground-state
expectation value, we obtain

Hpair = HAA + HBB + HAB + HBA, (A15)

where

HAA = 
2 V 2

2N

∑
ql

∈ �

∑
kk′

∈ RBZ

{(
xα,↓↑

k′,k,l
− xα,↑↓

k,k′,q

)
u2

k↑u2
k′↓

×
(
〈α†

k↑αk↑〉−〈α†
k′↓αk′↓〉

)
+

(
yβ,↓↑

k,k′,q − yβ,↑↓
k′,k,l

)
v2

k↑v2
k′↓

×
(
〈β†

−k↑β−k↑〉−〈β†
−k′↓β−k′↓〉

)
+

(
z−,↑↓

k,k′,q − w
+,↑↓
k′,k,l

)
× u2

k↑v2
k′↓

(
〈α†

k↑αk↑〉 + 〈β†
−k′↓β−k′↓〉 + 1

)

+
(

z−,↓↑
k′,k,l

− w
+,↓↑
k,k′,q

)
v2

k↑u2
k′↓

(
〈β†

−k↑β−k↑〉

+ 〈α†
k′↓αk′↓〉 + 1

)}
c†

q↓ck+q−k′↑c†
l↑ck′+l−k↓, (A16)

HBB = V 2

2N

∑
ql

∈ �

∑
kk′

∈ RBZ

{(
yα,↓↑

k′,k,l
− yα,↑↓

k,k′,q

)
v2

k↓v2
k′↑

×
(
〈α†

−k′↑α−k′↑〉 − 〈α†
−k↓α−k↓〉

)
+

(
xβ,↓↑

k,k′,q − xβ,↑↓
k′,k,l

)
× u2

k↓u2
k′↑

(
〈β†

k′↑βk′↑〉 − 〈β†
k↓βk↓〉

)
+

(
w

−,↓↑
k′,k,l

− z+,↓↑
k,k′,q

)
× v2

k↓u2
k′↑

(
〈β†

k′↑βk′↑〉 + 〈α†
−k↓α−k↓〉 + 1

)
+

(
w

−,↑↓
k,k′,q − z+,↑↓

k′,k,l

)
u2

k↓v2
k′↑

(
〈α†

−k′↑α−k′↑〉

+ 〈β†
k↓βk↓〉 + 1

)}
c†

q↓ck+q−k′↑c†
l↑ck′+l−k↓, (A17)

HAB = − 

V 2

2N

∑
ql

∈ �

∑
kk′

∈ RBZ

{(
yα,↓↑
−k,−k′,l − yα,↑↓

−k′,−k,q

)
uk↑uk′↓

× vk↑vk′↓
(
〈α†

k↑αk↑〉−〈α†
k′↓αk′↓〉

)
+

(
xβ,↓↑
−k′,−k,q

− xβ,↑↓
−k,−k′,l

)
vk↑vk′↓uk↑uk′↓

(
〈β†

−k↑β−k↑〉−〈β†
−k′↓β−k′↓〉

)
+

(
w

−,↑↓
−k′,−k,q

− z+,↑↓
−k,−k′,l

)
uk↑vk′↓vk↑uk′↓

(
〈α†

k↑αk↑〉

+ 〈β†
−k′↓β−k′↓〉 + 1

)
+

(
w

−,↓↑
−k,−k′,l − z+,↓↑

−k′,−k,q

)
vk↑uk′↓

× uk↑vk′↓
(
〈β†

−k↑β−k↑〉 + 〈α†
k′↓αk′↓〉 + 1

)}

× c†
q↓ck+q−k′↑c†

l↑ck′+l−k↓, (A18)

HBA = − 

V 2

2N

∑
ql

∈ �

∑
kk′

∈ RBZ

{(
xα,↓↑
−k,−k′,l − xα,↑↓

−k′,−k,q

)
vk↓vk′↑

× uk↓uk′↑
(
〈α†

−k′↑α−k′↑〉 − 〈α†
−k↓α−k↓〉

)
+

(
yβ,↓↑
−k′,−k,q

− yβ,↑↓
−k,−k′,l

)
uk↓uk′↑vk↓vk′↑

(
〈β†

k′↑βk′↑〉 − 〈β†
k↓βk↓〉

)
+

(
z−,↓↑
−k,−k′,l − w

+,↓↑
−k′,−k,q

)
vk↓uk′↑uk↓vk′↑

(
〈β†

k′↑βk′↑〉

+ 〈α†
−k↓α−k↓〉 + 1

)
+

(
z−,↑↓
−k′,−k,q

− w
+,↑↓
−k,−k′,l

)
uk↓vk′↑

× vk↓uk′↑
(
〈α†

−k′↑α−k′↑〉 + 〈β†
k↓βk↓〉 + 1

)}

× c†
q↓ck+q−k′↑c†

l↑ck′+l−k↓. (A19)

Here, we have defined, V ≡ 2J̄/
√

N .
When considering the ground-state expectation value of the

boson operator pairs, we only get contributions from ↑-bosons
with momentum k = 0, as the ground state is a condensate of
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↑-bosons. Further, restricting to the BCS case of incoming, as
well as outgoing, particles with opposite momenta, the result
for the effective interaction is Hpair = H (1)

pair + H (2)
pair where

H (1)
pair = V 2

N

(
u2

0↑ + v2
0↑

)
n0↑

∑
q∈�

∑
k∈

RBZ

A(k,
)

× 2ωk↓
(εq+k − εq)2 − ω2

k↓
c†

q↓cq+k↑c†
−q↑c−q−k↓, (A20)

and

H (2)
pair = V 2

N

∑
q

∈ �

∑
kk′

∈ RBZ

B(k, k′,
)

× 2(ωk↑ + ωk′↓)

(εq+k−k′ − εq)2 − (ωk↑ + ωk′↓)2

× c†
q↓cq+k−k′↑c†

−q↑c−q+k′−k↓. (A21)

The functions A and B are defined in the main text. The
contributions to H (1)

pair come from the expectation value of the
↑-bosons with momentum k = 0, n0↑, while the contributions
to H (2)

pair originate with the terms without boson operators.

Moving the contributions from H (2)
pair where k = 0 over to H (1)

pair ,

and using u2
0↑, v2

0↑ � 1, we can rewrite H (1)
pair as

H (1)
pair =V 2Q̃0

∑
q∈�

∑
k∈

RBZ

A(k,
)

× 2ωk↓
(εq+k − εq)2 − ω2

k↓
c†

q↓cq+k↑c†
−q↑c−q−k↓, (A22)

where Q̃0 is a quantity of order unity, closely related to the
sublattice magnetization.
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