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Abstract

Interwell connectivity identification between infec-producer well pairs and hydrocarbon
production estimation are essential parametergservoir management, which can determine
unrecovered oil volume and reservoir continuitythaligh there are several published methods
for determination of interwell connectivity in wateil systems, there is no such comprehensive
study on gas flooded reservoirs. Due to the higlbilty of gas, interwell connectivity is a
critical criterion in channelized, faulted and MhetgEneous reservoirs for reservoir
characterization, production optimization, infililing and performance predication. There are
physical and statistical techniques to determineeniell connectivity mathematically and
identify reservoir flow dynamics without using amperational activities. All methods are
working with limited production data and unlike themerical simulators, they are simple and
do not require detailed data. In this paper, mediftapacitance-resistance model (or M-CRM as
a physical approach) and combination of least sysapport vector machine and multiple linear
regression (as a statistical approach) are appiietivo immiscible gas injection cases with
different assumptions, and the results are comparkd results show that both methods are

reliable in terms of validity, speed and flexikjlitThe physical approach (M-CRM) is more
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accurate for interwell connectivity prediction whithe statistical method is more precise for
producer total rate estimation.

Keywords: Capacitance-resistance model; Gas injection; Iretrgonnectivity; Least square

support vector machine

1. Introduction

Interwell connectivity between producer and injea® defined as the injection rate effect on
production rate of the surrounding producers. Tpaameter depends on well locations,
reservoir heterogeneity and geometry.

Interwell connectivity characterization and estimatof reservoir performance in water/gas
flooded reservoirs are important parameters inrvegemanagement and optimization. Accurate
determination of interwell connectivity affects Wwedlacement optimization, infill drilling,

reservoir sweep efficiency and identification oftnioil saturation zones.

There are several methods for interwell connegtiwélculation in the literature including direct

and indirect methods. Direct methods are pracaparoaches which are utilized in a field such
as 4D seismic [1-4], tracer test [1, 5-7], pulsst {8, 9] and interference well testing [10-12].

These methods monitor fluid flow in porous media ajive reliable results using accurate
interpretation. However, operational challengesst cand time-consuming aspects are their
disadvantages.

Indirect methods are categorized as physical atsstal methods. Physical methods consist of
streamline simulation [13, 14], pressure-based austh[15], multi-well productivity index
(MP1) [16, 17], network model [18, 19] and Capaciea-resistance model (CRM) [20-27].
Physical methods are based on mathematical denivati reservoir flow models. However,
statistical methods are data-driven models sucBpgmrman Rank Correlation (SRC) [28-30],
Artificial Neural Network (ANN) [31-34], Extended &man Filter [35] and Wavelet Analysis
[36, 37]. In these methods, signal processing tiecienis employed where injector and producer
rates are the signals. Data availability, simplieihd high speed are the main advantages of the
statistical methods.A brief description of all theethods studied in the literature is given in
Table 1:



Table 1 Description of all the methods in the bteire for interwell connectivity calculation

Category  Method Description
Direct 4D seismic Determining interaction between prodused injector pairs using water and gas
methods front movement and pressure changes in field-sbgleimaging the dynamic
variation in the reservoir scag, 3]
Tracer Tracer injection into a reservoir and its productamuld be interpreted to evaluate
testing well to well interaction in a reservoir, reservoicontinuity, sub-layer
communication and residual oil saturation detertimmng5-7]
Pulse  and dynamic methods in which a signal is generated fom® active well and its effect
interference is measured at an observation well. The analysstifies reservoir heterogeneity
well testing  and reservoir properties between two wglis10]
Indirect - Streamline  numerical simulation method which is faster than f8iite difference simulation.
physical simulation This technique uses implicit pressure explicit sgttan (IMPES) formulation and
calculates saturations explicitly along 1D streamdi. The weight allocation factor
between injector and producer pairs is an outpthisfmethod38, 39]
pressure- The basis 0 method is calculation of interwell aaetivity from producers and
based injectors BHP fluctuations using nonlinear regressi Dinh and Tiab[15]
method developed an analytical answer in a closed systemater flooding projects
MPI A semi-analytical approach for interwell contieity analysis which connectivity
parameters from MPI method are not affected by giman the operational
conditions, such as not using the existing welldrdling new wells[16, 17]
network In this method, two parameters (flow area and tifailight) are defined and by
model dividing the reservoir into some nodes, the diffitgiequation is solve@l8, 19]
CRM A method based on the dynamic material balawbere reservoir is considered as
a tank and rates of injectors and rates of produaes input and output signals. The
method was introduced by Yousef ef4l, 41]
Indirect - SRC Based on the conversion of rates to ranks apdrdls on summation of the square
statistical of the difference in the ranking84] which was introduced by Heffer et &3] for
injector and surrounding producers. Fedenczuk.€gP€] presented some plots to
visualize injector and producer communication. Rgfland Lake[30] utilized
SRC with a specific time-lag to consider medium distiance effects.
ANN A rapid tool for determination of interactionetoveen well pairs. The network

includes different layers of input, hidden and etitfrhe hidden layers convert the

input into output using weights and transformafiemctions[31, 32]
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Extended Liu and Mendel35] applied this method to multiple injectors and s&ngroducer

Kalman system to determine connectivity between a prodacdrthe surrounding injectors.
Filter
Wavelet Employed by Jansen and Kelk&6] to separate high frequency (details) from low

transformati  frequency (smoothed) components. Then, the higu&ecy section is used for
on characterizing connectivity. Lee et dB7] formulated a production rate as a
function of filtered injection rate and estimatederwell connectivity using Haar

Wavelet.

In this paper, a new statistical method using irgegn of least square support vector machine
(LSSVM) and multiple linear regression (MLR) is doyed to identify the interwell
connectivities for a gas flooded reservoir. Aldoe Modified CRM which has been recently
published [27] is used and the results of both rwdee compared. These models are applied to
two cases. Signal processing workflow of this stisdgemonstrated in Figure 1 which shows the

relationship between input, model and output.

Input Model Output

- N\ N )

Production Interwell connectivity

rate Average reservoir M.CRM estimation in History
pressure section
Injection rate + - -
LSSVM+MLE Producer well rate in

BHP prediction section

o AN J

Figure 1 A schematic structure of signal processimgkflow in this study

The main goals of this study are summarized asvist

* Introducing two different methods for calculatiorf mterwell connectivity in gas
flooding projects.

e Combination of LSSVM and MLR for determination ofellv production rate and
interwell connectivity as a statistical method.

» Comparison of the results of statistical and phgisinethods in gas flooded reservoirs,

assessing their validity, complexity and run-time.
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2. Model development

In this section, LSSVM-MLR as a statistical methaxld M-CRM as a physical method are
thoroughly described. The basic equations and mraheal derivation of the models are

presented and a literature review of previous stidnd application of the models are discussed.

2.1.1. LSSVM model

Machine learning and intelligent systems have aevégdplication in engineering problems for
optimization and prediction of parameters. In petrmm engineering, many optimization
problems such as well placement, rate allocatioth groduction optimization are solved by
intelligent methods and data-driven models. In ghediction phase, development of empirical
correlations for different parameters and proxy elatesign are some examples in the chemical

and petroleum engineering field.

One of the robust intelligent tools in statisticaéthods is Support Vector Machine (SVM)
developed by Vapnik [42, 43]. This method is used dlassification, regression analysis and

pattern recognition. Based on primary formulatiéi®@M, f(x) could be expressed as:

f(X)=w'@(x)+b 1)
w', ¢(x) and b refer to transposed output layer vector, the Kefoaction and the bias,
respectivelyx as an input, has a dimensionNofn, whereN andn stand for total data points and
the input variables, respectively. To obtainandb in this equation, Vapnik minimized the
function below:

.1 N .
Cost function- > w'+ & (£,-¢)) )
k=1
c is the tuning parameter in SVM§, and fl*( are slack variables. The detailed derivation of

equations and the constraints are discussed innElppé.

In this paper, the inputs are time, producer BHR$ iajector rates and the output is producer

rates. Finally, the objective function is:
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, g pred, j qobs j 3)
where,qpred,j" andqobsij" are predicted and observed rates.

There are different applications of LSSVM in therpkeum industry such as rock and fluid
properties estimation [44], estimation of coningndition [45] and liquid rate at wellhead [46],
etc. However, LSSVM has not been used for well patidn rate production in a reservoir scale.
One of the goals of this study is to evaluate LSS¥pplicability in rate prediction for two

different cases.

2.2. MLR

MLR is a statistical method which uses several pa&tars as input and one parameter as a
response or output. This simple method uses lindationship between inputs to predict the
output. In this study, inputs are time, well injeatrate (time-dependent) and producer bottom
hole pressure (time-dependent) and response isipeoavell rate. Using the same time interval
in the model, we can eliminate the explicit termn fone effect and remove it from input.
Therefore, producer rate at each time is a funabfooconstant term, injection rate and pressure
difference and the following equation can be asslime

Ninj

qj'(tk)zzaijii (tk)+13jAow,jk+yj 4)

where, g stands for interwell connectivity; is constant term andP,r ;. is the difference
between producer BHP and average reservoir preastiree k. This equation is similar to CRM
which is described in next section. Therefore, psy®f problem could be preserved by the
MLR method. Based on CRM formulation, the constant ;) is positive and less than, @;
should be negative and greater than/Al (these terms are introduced in Modified CRM

section) andy; should be lower than 1. The number of unknowms g (Ninj+2).

In this study, firstly producer well rate is pregid by LSSVM and then using Equation (4),
MLR is employed to estimate interwell connectivity.
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2.3.  Modified CRM

In the CRM, reservoir is acting as a tank for whiates of injectors and rates of producers are
considered as input and output, respectively. Com@BM requires injection/production rate,
producer’'s BHP to train the model. Interwell corthety (fj) and time constantgf are
considered as two unknown parameters in the CRMIwban be estimated using a nonlinear
regression algorithm. The common CRM was develdpeail-water systems and is based on
slightly compressible fluid flow and linear prodwitly index equation. Such assumptions are not
reasonable in the systems with gas flow and shioellchodified to obtain reliable results for gas-
oil systems. Table 2 summarizes different researabe the CRM, its developments and

modifications.

Table 2 Previous studies on the CRM development

Researcher Description

Yousef et al.[20, 40, Mathematical derivation of the CRM by combining greductivity index model and the

47] mass balance equation to develop a tool for theraéhation of flow barriers in the
reservoir

Sayarpour et al.[21, Development of three equations for different cdntt@umes in the reservoir based on

48] whole tank, one producer and injector-producer pair

Kaviani et al. [49] Introducing the new models by considering BHPsatam during the period and adding
or shutting in an active producer

Kaviani et al. [50] Comprehensive sensitivity analysis and presentidign@nsionless number and the range
of this number where the CRM can be applied

Mamghaderi and CRM development for multi-layer reservoirs assumirgssflow between different

Pourafshary [22], layers or interwell connectivity changes with time

Moreno [51]

Moreno and Lake Evaluation of signal noise on the CRM performaned #vestigation on uncertainty of

[52, 53] interwell connectivity estimations

Soroush et al[54] Studying the effect of variable production weBldn factor, adding or shutting in-active
wells

Cao et al.[23] Development of two-phase CRM using solution of dagations for total fluid and oil

simultaneously.

Tao and Bryant[24] The CRM application in gas storage problems ancerdehation of connectivity
between extractor and injector

Eshraghi et al.[55] The CRM application in C@miscible injection and optimizing GGnjection rate

Mirzayev and Improvement of the CRM for a low permeable resarwgth high well densities and

Jensen[56] stimulation operations

Zhang et al.[25] Applying ensemble Kalman filter for matching theraraeters in the developed
multilayer CRM

de Holanda et al. Derivation of matrix format of the CRM equations ¢igte-space model

[57]

Naudomsup and Extension of CRM to tracer flow for determining éegoir properties

Lake [58]

Wang et al.[59] Developing improved CRM considering the effect xieence of aquifer in the reservoir

Kim [60] Developing Stochastic CRM to mitigate lack of d#tgtations by combining bootstrap
with CRM.
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A modified CRM for gas-oil systems was developegr@vious studies [27, 61]. The new model
was developed considering density changes with spres (Equation 5) and non-linear
productivity equation (Equation 6).

V C (LT pg inj |() [po,_prod (t)+pg prod Clg(t)J (5)

9 o ¢}
a()= I(P - R (6)
where,V,: control volume pore volumeg;: total (rock and fluid) compressibilityTP: reservoir
pressuret: time, pging iNjected gas density, prod produced oil densitypg, prod produced gas
densityj : injection rate,q: total production rate, : productivity index andP,,: producer
pressure.

Based on this formulation, simple ordinary diffetehequation (ODE) of total rate with respect

to time can be shown as follows:

dCI(t) 1 _1pgmj dR
t i(t 2JB, —
q T790= g ®- p 7
where,
V. C
r=—rt_1 8
2JP ®

The new model considers thats time-dependant and varies with pressure. Agss, density

variation effect in the equations is taken intocact. The reliability of the model and impact of
the two modifications were discussed in previoupepa [27]. Although two variables (gas
density and reservoir pressure) are added to théeles input in the M-CRM, the model

accuracy is increased in comparison with the com@RM [27].

After deriving the analytical solution of Equatign) and converting the integral form to time
series, CRMP (CRM —Producer based) formulationragsgione producer with nearby injectors
in a control volume of producing welcan be obtained as follows:
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i=1 g
wherei , j andij denote injectors, producers and well pairs indrespectively, while k stands
for time index,. Alsofj is mathematically represented as follows:
. t Nprod
u:‘?'”_” fi=0 ) f <1 9)
i; (t) =1
More details about the M-CRM equation and the ¢fémew parameters on the accuracy of the

model and the number of unknowns have been disgis$62, 63].

3. Workflow

In this research, a synthetic model and a sectateimeith immiscible gas injection have been
selected and both LSSVM-MLR and M-CRM are appliedrivestigate their performance in
interwell connectivity and well rate calculationhd detailed procedure for this workflow has
been illustrated in Figure 2. First of all, inpuata are imported to the ECLIPSE FrontSim
numerical simulator (streamline simulation) to cédte the outputs (producer well rate and
interwell connectivities between injector and proelupairs). Validity and applicability of M-
CRM and LSSVM-MLR outputs are then evaluated andmared with results of the streamline
simulation. Next, required input data such as watks, BHP, gas density and average reservoir
pressure are used to build physical and statisticalels. 80% and 20% of data were selected for
training and testing sections, respectively. Bo#thads require history match (training) section.
In M-CRM equations, using Genetic Algorithm (GA)tiopizer, unknowns including;, z, J; and

Jo are determined and then producer well rate isnaséid. In statistical method, producer well
rate is determined by LSSVM and then using MLRerwell connectivities are optimized by
GA. Finally, the results are compared with streamlsimulation and the validity of these
methods can be determined.
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Figure 2 workflow procedure of this study
4. Results and Discussions

In this part, LSSVM-MLR and M-CRM are employed ina different cases. The first one is a
simple case with one flow barrier and one high maipility streak, and the second case is a real
sector model. Interwell connectivities and prodaosell rate for both cases are determined by

both methods and a comparative study between sétses performed.

4.1. Casel

An inverted five-spot model is considered for imaifide gas injection analysis. The reservoir is
heterogeneous with respect to porosity and perriigabnd one sealing fault and one high
permeability streak with permeability of 350 md &eated in the reservoir. All layers for one
injector and four producers are perforated and opeflow. The reservoir geometry with

permeability distribution is shown in Figure 3. @esl data and rock/fluid properties are

presented in Table 3.

In case 1, BHP is not constant; oil rate contral gooduction wells and gas rate control for

injection wells are selected. Minimum well pressigreontrolled above bubble point pressure.

10
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Therefore, gas production is only originated frdra injected gas. The number of data points is
210 and the time window for the analysis is thequeof 222-640 days after the simulation start.
In this period (168 initial points for train and 42xt points for test), all of the input data are
imported to the models. The well total (oil and)ga®duction rate in reservoir volume (bbl/day)
is illustrated in Figure 4.

Figure 5 shows producer total rate from LSSVM andCRIM vs. streamline simulation in the
test section (42 points) in the format of crosg.pBased on the results, LSSVM and M-CRM

predict the total rate accurately with a relativ®eof 3.05% and 3.13%, respectively.

Table 4 presents the results of interwell connéws/ estimated by the M-CRM and the
statistical method (LSSVM for rate prediction and.RAfor interwell connectivity estimation).
There are 16 unknowns (includifig 7;, J; anddg) in M-CRM and 12 unknownsz{, 5, y;) in
MLR for Case 1. Optimization of unknowns in the NRK and MLR with respect to objective
function and all constraints is accomplished by Ga\erall, both M-CRM and MLR can
accurately predict interwell parameters. Howevexsdd on lower relative error and higher
correlation coefficient, M-CRM results are moreable than MLR (2.47% vs. 13.11% relative
error). Moreover, last row in Table 4 shows thatl wetal rate has been predicted by LSSVM
and M-CRM with a similar range of accuracy. Resultsvell total production rate for both

methods are similar and have an acceptable rangecafacy (within 3% relative error).

WP3

1 88 175 263 350
Figure 3 3D geometry and horizontal permeabilityCafse 1

11
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Table 3 Rock and fluid properties of Case 1

Model dimension

31x31x5

Reservoir pressure at D.D

5200

Oil and irreducible

Reservoir area, Acre 108.1 Initial condition water
Datum depth (D.D), 1125( STOIIP, MMSTE 1.8¢
Mean porosity (%) 15 Saturation pressure, psi 4014
Mear horizontal ..
permeability (K), md 57 Initial GOR, scf/STB 1270
Thickness, ft 35 Mechanism Compressibility and

gas flooding

800
g
S 700 '
: Hl l’ ¥
S 600 I l ‘” I”
g \ ( r
4 | i |
/50500 ‘l 'illl’\ ’I‘ " H '
83 | )
2 < 400 l \l h
c
s T
< 300 ‘
8
o
3 200
= —=—WP1 ——WP2 —o—WP3 ——WP4
100
220 250 280 310 340 370 400 430 460 490 520 550 580 610
Time, days
Figure 4 well total production rates (bbl/d) forgucers of Case 1
Table 4 Interwell connectivity parameters of Cas&tteamline vs. M-CRM and LSSVM
M-CRM | Statistical M-CRM Statistical
Well pair Streamline
well factor well well MAPE cc” MAPE cc
Interwell factor factor | (%) (%)
COTEERLY P1 0.22¢ 0.23¢ | 0.17i
Pz 0.30: 0.291 0.31¢
11 Pz 0.16¢ 0.16¢ 0157 247 | 0.99 | 13.11 | 0.95
P4 0.30: 0.30¢ 0.351

| Total rateproductior (average for all produce

| 312 | 0.9¢ | 3.0 | 0.9¢ |

" Mean Absolute Percentage Error

™ Correlation coefficient

12

640



Well WP1

Well WP2
600 750
LSSVM +M-CRM LSSVM ¢ M-CRM
550 700
= = 650
2 500 2
- =600
3 450 32
o 8550
© ©
S 400 5
E E 500
350 450
300 400
300 350 400 450 500 550 602 400 450 500 550 600 650 700 750
Simulation data, bbl/d Simulation data, bbl/d
Well WP3 Well WP4
400 750
380 LSSVM ¢ M-CRM LSSVM ¢ M-CRM
360 700
o ©
= 10 2
<300 8_650
= 280 =
(&) [&]
< 260 S 600
= 240 =
% 520 % 550
200
180 500 <
180 200 220 240 260 280 300 320 340 360 380 400 500 550 600 650 700 750
Simulation data, bbl/d Simulation data, bbl/d
1 Figure 5 cross plot of well total production raties LLSVM and M-CRM vs. streamline in test sectidbase 1
2 4.2. Case 2 — sector model
3 This is a real model of an oil reservoir which @gdted in Iran. The lithology of reservoir is
4  carbonate rock; dolomite with local fractures angs: There is no evidence for gas cap, sealing
5 fault and aquifer in the reservoir. This sector taorts 6 producers and 2 injectors. 3D
6 configuration of the model and horizontal permeagbdistribution are illustrated in Figure 6 and
7 reservoir properties of the sector are reporteBaible 5. Immiscible gas injection by 2 injectors
8 has been simulated in the model. The reservoir cohtains oil and irreducible water at initial
9

10 control for producers and gas rate control forgtyes.

condition. Dynamic simulation data for producersl amectors are imported using the oil rate

11 This analysis is performed for data points betwé¢ee period 3600-9000 days after the
12 simulation start (181 data points) in which theiahil45 points for training and the remaining 36

13



points for the test have been used. All of the irgata in this period are imported to the models.

2 Figure 7 shows the well total (oil and gas) produrctate for six producers in Case 2.
3 The number of unknowns in this case in M-CRM andRvihethods are 30 and 24, respectively,
4 and GA is employed for both optimization probleragyure 8 illustrates the cross plot of total
5 rate of six production wells for LSSVM and M-CRM.\&reamline simulation points in the test
6 section (36 points). LSSVM results are in good agrent with streamline simulation (only 1%
7 relative error). Therefore, LSSVM is reliable ftwetprediction of well rate. The relative error of
8 5.20% for M-CRM shows the acceptable results, H@awvdower accuracy in comparison with
9 LSSVM.
O 169 254 338 -423
10 Figure 6 3D geometry and horizontal permeabilitgtdbution of the sector model
11 Table 5 Rock and fluid properties of the sector ehod
Model dimensio 35x44x1: Initial conditior Oil and irreducible wate
D.D, ft 8645 Total wells 6 (prodution wells) and
2 (injection wells)
Mear porosity (% 5.3t S 0.1Z
Mean horizonta
permeability (K), md 39.97 Sor 0.35
Average NTC 0.87 Active cells 1192¢
Initial pressure @ D.D, ¢ 490( STOIIP, MMSTE 679.9:
Rock compressibility, pi 3x10° Elglte pglsr;t pressur 3157

Compressibility and gas

Reservoir temperature, deg F 140 Mechanism .
flooding

12 " Net to Gross ratio

14
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Table 6 summarizes interwell connectivities anddpcer total rates which were calculated by
statistical and physical methods. Based on thesdtseof MAPE and correlation coeffieicent in
the last row in Table 6, LSSVM is more accuratenth&CRM in well total rate prediction
(1.19% vs. 5.20% relative error); however, M-CRMaignore reliable tool for prediction of
interwell connectivities compared to MLR (11.95%. \465.2% relative error). Therefore,
guantitative analysis of interwell connectivity siteh be performed by physical model and only
gualitative connectivity evaluation is recommendbgdstatistical method i.e. well connectivities
for I1 injector show that P3 and P6 have strongneativity, However, P4 and P5 have a weak
connection with the injector. Again for 12, P2 aRd connectivities are strong and P3 is weak.
Hence, it is possible to determine which well pairs connected together qualitatively based on
the results. However, the exact determination @érwell connectivity by LSSVM is not
possible due to its high relative error.

5000
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1 Figure 8 cross plot of well total production raties LLSVM and M-CRM vs. streamline in test sectiaector model
2
3 Table 6 Interwell connectivity calculation of CaseStreamline vs. M- CRM and LSSVM
i M-CRM | Statistical M-CRM Statistical
well pair Streamline i T
factor factor (%) (%)
> P1 0.141 0.12( 0.08¢
E P2 0.025 0.023 0.012
8 |, LPE 0.54¢ 0.55¢ 0.407
5 P4 0.011 0.009 0.007
° PE 0.00¢ 0.00(¢ 0
g pe] 0271 | 0278 | 048 | 4495|099 | 46.20 | 0.81
o) P1 0.11¢ 0.10¢ 0.08¢
= Pz 0.36: 0.35: 0.21¢
2 PZ 0.0(5 0.007 0.00¢
P4 0.201 0.17: 0.161
B€ 0.252 0.242 0.39¢
4 P€ 0.06¢ 0.07(¢ 0.13¢
Total rete production (average for all produc 520 [ 099 1.19 | 1.00
5
6 4.3. Analysis of the results
7 Overall, M-CRM and statistical methods have somegaathges and both of them are
applicable to different types of reservoirs. Instlsection, M-CRM and LSSVM-MLR
methods are compared in terms of input data, acgwad speed.
10 * Results of two different cases (see Table 4 andeT@pshow that for the calculation of
11 producer total rate, statistical method (LSSVM)egivmore accurate results than M-
12 CRM; however, the range of accuracy for M-CRM isegtable. Interwell connectivities
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determined by M-CRM are more reliable than resofitstatistical method (MLR), and it
is recommended to use the MLR method just as atgtiraé method.

M-CRM uses average reservoir pressure and gastgérsides well rates and producer
pressure which leads to more reliable results imisaible gas flooding projects
compared with common CRM. Therefore, in physicgrapches such as M-CRM, input
data are very important. However, the flexibilifyioput data in statistical approaches is
high i.e. the type and the number of input datalm@aichanged case by case based on the
learning algorithm results. It leads to find thestionportant input data for each case and
make it more flexible. However, it cannot be gefieed for all cases. In this paper, for
LSSVM, injector rates and producer BHPs are theitinphich give accurate results.
However, it may be needed to consider other paen&tr another case.

The order of speed in both M-CRM and statisticalthods is a couple of minutes.
However, in the streamline, it takes hours for dation. Training section which needs
optimization algorithm for determination of unknasyrdoes not take more than a few
minutes. Statistical method which is a combinatdh SSVM and MLR requires a two-
step procedure and may therefore require more thism, using GA in M-CRM may
need some time. Summing up, both methods run &hehspeed in comparison with

conventional numerical simulators

5. Conclusions

In this research, physical method (M-CRM) and stat@l method (LSSVM/MLR) were
employed to obtain interwell connectivities anddurcer well rate in immiscible gas flooding
projects. Both methods were examined in two differeases and the results were compared.
Streamline simulation was used as a reference ftowolalidation of the results. The main
advantages of these two methods over numericallaions are their simplicity, speed and the

limited number of input data. The following resulere concluded from this study:

M-CRM applies to immiscible gas flooding projecty lmporting average reservoir
pressure and gas density in the common CRM equatioterwell connectivities and
producer total rate as outputs of M-CRM were oflgdinvith an acceptable range of

accuracy.

18
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LSSVM was employed to predict producer total rate iwo cases using

injection/production data and BHP as inputs. Th&ulte show that this method gives
reliable estimations.

To obtain interwell connectivities, MLR was usedLm predictions are less precise
compared with M-CRM results; however, this methanild be used for qualitative

analysis.

A comparison of physical (M-CRM) and statisticaBEVN-MLR) models in terms of

validity, precision, data requirements and speedaled their advantages and limitations.
M-CRM is more precise than statistical model. Homrevstatistical model is more

flexible than M-CRM. Calculation speed for both treads is similar.
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6. Appendix A

LSSVM equations

The following constraints are applied to the cosiction:

Y -Wo(x)-bsedy, k=12.3,...N
WP(x)+b-y, <£+&,, k=123,...N (A1)
£u&, 20, k=1,2,3,...N

where x,, y,and & stand for K input, K" output and precision of the approximation,

respectively. For minimization purpose, the Lagran@f the problem is applied as:

L@ a1 2 (a-dda- K(x- 062 (a- Dy, (ad (A2)
k,I=1 k=1 k=1

g(ak‘a]lﬁo, ae a0[0.c] (A3)

k=1

K (x—x)=90(x) @(x) , k=1,2,....N (A4)

a, and g, are Lagrangian multipliers. Therefore, SVM becomes

(0 = 3 (a-a)K(x - x)+b (AS5)

k,1=1
Unknown parameters in Equation (A5) should be oleiby quadratic programming. This
method may result in computational problems. Tloeeef Suykens and Vandewalle [42, 43]
introduced Least Square SVM (LSSVM) to overcome pheblems. The following equation

shows the cost function of the proposed method:

N
Cost functiora;wTw +; y Y& (A6)

k=1
where, y and g, are the tuning and error parameters in the LSSk&8pectively. The constraint

for this function is as follows:
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Y, = W P(x)+ b+ g (A7)

Again, for minimization of the function, Lagrangimction is used:

1

N N
zyz & - 2 a(w'd(x)+brec-y,) (A8)

1
L(w,b, e 8= EWTW‘f
k=1 k=1

Therefore, to optimize the problem, the followingpeessions should be established:

oL N
7:0 =
aw =>w kZZlak(I?(xk)
oL N
%:0 32 ak—o
k=1 (A9)
oL
—=0 =a=ye,, k=12,....N
e,
oL
2 =0 :>WT¢(xk)+b+q<—yk=O k=12,...N
k

According to Equation (A9),K+2 unknowns andi+2 equations exist. Hence, all unknowns in
LSSVM could be obtained.
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7. Nomenclature

* Variables
ANN Artificial Neural Network
a Lagrangian multiplier
BHP Well bottom hole pressure
b bias
CRM Capacitance-Resistance Model
CRMP Capacitance-Resistance Model (Injector/Pradoased)
CC Correlation coefficient
G total compressibility
c tuning parameter of the SVM
D.D Datum depth
& error parameter in the LSSVM
f interwell connectivity between injector and produce
GA Genetic Algorithm
GOR gas-oil ration
IMPES implicit pressure explicit saturation
i injection rate
J productivity index
LSSVM least square support vector machine
M-CRM Modified Capacitance-Resistance Model
MAPE mean absolute percentage error
MLR multiple linear regression
MPI multi-well productivity index
Ninj total number of injection wells
Nproc total number of production wells
NTG Net to Gross
ODE Ordinary Differential Equation
P average reservoir pressure
Put flowing wellbore pressure
q Total (oil and gas) production rate
Jg rate of gas production
Jo rate of oil production
S saturation
SRC Spearman Rank Correlation
STOIIP Standard oil initially in-place
SVM Support Vector Machine
t time
V[,r Pore Volume
w transposed output layer vector

» Greek symbols
T time constant
p density

22



average density
Kernel function
slack variables

tuning parameter in the LSSVM
fixed precision of the function approximation

» Subscripts and superscripts

or
pred
wir

gas
injection well index

well pair (injector-producer) index
production well index

time index

oil

observed output

residual olil

predicted output

irreducible water

8. Unit conversion

Pressure
Volume
Volume
length
permeability
area

1 psi =6.895 E+3 Pa

1bbl = 1590E-1 m
1scf = 2.831E-2 st
1 ft = 3.048E-1 m

1md =09.869E-16
1 Acre =4.047E+3 mM
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Highlights

¢ Interwell connectivity in gas flooded reservoir was calculated by two methods.
e Statistical method of support vector machine was used for well rate prediction.
e The accuracy of support vector machine and linear regression was discussed.

e Statistical method was compared with modified capacitance resistance model.
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