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Abstract 13 

Interwell connectivity identification between injector-producer well pairs and hydrocarbon 14 

production estimation are essential parameters in reservoir management, which can determine 15 

unrecovered oil volume and reservoir continuity. Although there are several published methods 16 

for determination of interwell connectivity in water-oil systems, there is no such comprehensive 17 

study on gas flooded reservoirs. Due to the high mobility of gas, interwell connectivity is a 18 

critical criterion in channelized, faulted and heterogeneous reservoirs for reservoir 19 

characterization, production optimization, infill drilling and performance predication. There are 20 

physical and statistical techniques to determine interwell connectivity mathematically and 21 

identify reservoir flow dynamics without using any operational activities. All methods are 22 

working with limited production data and unlike the numerical simulators, they are simple and 23 

do not require detailed data. In this paper, modified capacitance-resistance model (or M-CRM as 24 

a physical approach) and combination of least square support vector machine and multiple linear 25 

regression (as a statistical approach) are applied to two immiscible gas injection cases with 26 

different assumptions, and the results are compared. The results show that both methods are 27 

reliable in terms of validity, speed and flexibility. The physical approach (M-CRM) is more 28 
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accurate for interwell connectivity prediction while the statistical method is more precise for 1 

producer total rate estimation.  2 

Keywords: Capacitance-resistance model; Gas injection; Interwell connectivity; Least square 3 

support vector machine 4 

1. Introduction 5 

Interwell connectivity between producer and injector is defined as the injection rate effect on 6 

production rate of the surrounding producers. This parameter depends on well locations, 7 

reservoir heterogeneity and geometry. 8 

Interwell connectivity characterization and estimation of reservoir performance in water/gas 9 

flooded reservoirs are important parameters in reservoir management and optimization. Accurate 10 

determination of interwell connectivity affects well placement optimization, infill drilling, 11 

reservoir sweep efficiency and identification of high oil saturation zones. 12 

There are several methods for interwell connectivity calculation in the literature including direct 13 

and indirect methods. Direct methods are practical approaches which are utilized in a field such 14 

as 4D seismic [1-4], tracer test [1, 5-7], pulse test [8, 9] and interference well testing [10-12]. 15 

These methods monitor fluid flow in porous media and give reliable results using accurate 16 

interpretation. However, operational challenges, cost and time-consuming aspects are their 17 

disadvantages.   18 

Indirect methods are categorized as physical and statistical methods. Physical methods consist of 19 

streamline simulation [13, 14], pressure-based methods [15], multi-well productivity index 20 

(MPI) [16, 17], network model [18, 19] and Capacitance-resistance model (CRM) [20-27]. 21 

Physical methods are based on mathematical derivation of reservoir flow models. However, 22 

statistical methods are data-driven models such as Spearman Rank Correlation (SRC) [28-30], 23 

Artificial Neural Network (ANN) [31-34], Extended Kalman Filter [35] and Wavelet Analysis 24 

[36, 37]. In these methods, signal processing technique is employed where injector and producer 25 

rates are the signals. Data availability, simplicity and high speed are the main advantages of the 26 

statistical methods.A brief description of all the methods studied in the literature is given in 27 

Table 1: 28 
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Table 1 Description of all the methods in the literature for interwell connectivity calculation 3 
Category Method Description 

Direct 

methods 

4D seismic Determining interaction between producer and injector pairs using water and gas 

front movement and pressure changes in field-scale by imaging the dynamic 

variation in the reservoir scale [2, 3] 

Tracer 

testing 

Tracer injection into a reservoir and its production could be interpreted to evaluate 

well to well interaction in a reservoir, reservoir continuity, sub-layer 

communication and residual oil saturation determination [5-7] 

Pulse and 

interference 

well testing 

dynamic methods in which a signal is generated from one active well and its effect 

is measured at an observation well. The analysis identifies reservoir heterogeneity 

and reservoir properties between two wells [9, 10] 

Indirect - 

physical 

Streamline 

simulation 

numerical simulation method which is faster than 3D finite difference simulation. 

This technique uses implicit pressure explicit saturation (IMPES) formulation and 

calculates saturations explicitly along 1D streamlines. The weight allocation factor 

between injector and producer pairs is an output of this method [38, 39] 

pressure-

based 

method 

The basis o method is calculation of interwell connectivity from producers and 

injectors BHP fluctuations using nonlinear regression. Dinh and Tiab [15] 

developed an analytical answer in a closed system of water flooding projects 

MPI A semi-analytical approach for interwell connectivity analysis which connectivity 

parameters from MPI method are not affected by changing the operational 

conditions, such as not using the existing wells or drilling new wells [16, 17] 

network 

model 

In this method, two parameters (flow area and time-of-flight) are defined and by 

dividing the reservoir into some nodes, the diffusivity equation is solved [18, 19] 

CRM A method based on the dynamic material balance, where reservoir is considered as 

a tank and rates of injectors and rates of producers are input and output signals. The 

method was introduced by Yousef et al [40, 41] 

Indirect - 

statistical 

SRC Based on the conversion of rates to ranks and depends on summation of the square 

of the difference in the rankings [34] which was introduced by Heffer et al. [28] for 

injector and surrounding producers. Fedenczuk et al. [29] presented some plots to 

visualize injector and producer communication. Refunjol and Lake [30] utilized 

SRC with a specific time-lag to consider medium and distance effects. 

ANN A rapid tool for determination of interaction between well pairs. The network 

includes different layers of input, hidden and output. The hidden layers convert the 

input into output using weights and transformation functions [31, 32]. 
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Extended 

Kalman 

Filter 

Liu and Mendel [35] applied this method to multiple injectors and single producer 

system to determine connectivity between a producer and the surrounding injectors. 

Wavelet 

transformati

on 

Employed by Jansen and Kelkar [36] to separate high frequency (details) from low 

frequency (smoothed) components. Then, the high-frequency section is used for 

characterizing connectivity. Lee et al. [37] formulated a production rate as a 

function of filtered injection rate and estimated interwell connectivity using Haar 

Wavelet. 

In this paper, a new statistical method using integration of least square support vector machine 1 

(LSSVM) and multiple linear regression (MLR) is employed to identify the interwell 2 

connectivities for a gas flooded reservoir. Also, the Modified CRM which has been recently 3 

published [27] is used and the results of both models are compared. These models are applied to 4 

two cases. Signal processing workflow of this study is demonstrated in Figure 1 which shows the 5 

relationship between input, model and output. 6 

 7 
Figure 1 A schematic structure of signal processing workflow in this study 8 

 9 

 The main goals of this study are summarized as follows: 10 

• Introducing two different methods for calculation of interwell connectivity in gas 11 

flooding projects. 12 

• Combination of LSSVM and MLR for determination of well production rate and 13 

interwell connectivity as a statistical method. 14 

• Comparison of the results of statistical and physical methods in gas flooded reservoirs, 15 

assessing their validity, complexity and run-time. 16 
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2. Model development 1 

In this section, LSSVM-MLR as a statistical method and M-CRM as a physical method are 2 

thoroughly described. The basic equations and mathematical derivation of the models are 3 

presented and a literature review of previous studies and application of the models are discussed. 4 

2.1.1. LSSVM model 5 

Machine learning and intelligent systems have a wide application in engineering problems for 6 

optimization and prediction of parameters. In petroleum engineering, many optimization 7 

problems such as well placement, rate allocation and production optimization are solved by 8 

intelligent methods and data-driven models. In the prediction phase, development of empirical 9 

correlations for different parameters and proxy model design are some examples in the chemical 10 

and petroleum engineering field.   11 

One of the robust intelligent tools in statistical methods is Support Vector Machine (SVM) 12 

developed by Vapnik [42, 43]. This method is used for classification, regression analysis and 13 

pattern recognition. Based on primary formulation of SVM, f(x) could be expressed as: 14 

( )( ) T xf x bw ϕ= +  (1) 

wT, φ(x) and b refer to transposed output layer vector, the Kernel function and the bias, 15 

respectively. x as an input, has a dimension of N×n, where N and n stand for total data points and 16 

the input variables, respectively. To obtain w and b in this equation, Vapnik minimized the 17 

function below: 18 

*

1

1
( )

2

N
T

k k
k

Cost function cw ξ ξ= +

=

 −∑  (2) 

c is the tuning parameter in SVM, 
kξ and *

kξ are slack variables. The detailed derivation of 19 

equations and the constraints are discussed in Appendix A. 20 

In this paper, the inputs are time, producer BHPs and injector rates and the output is producer 21 

rates. Finally, the objective function is: 22 
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2

1 1

min , ,( )
prodt

nn

k j

k k
z pred obs jj

q q
= =

= −∑∑  (3) 

where, qpred,j
k  and qobs,j

k are predicted and observed rates. 1 

There are different applications of LSSVM in the petroleum industry such as rock and fluid 2 

properties estimation [44], estimation of coning condition [45] and liquid rate at wellhead [46], 3 

etc. However, LSSVM has not been used for well production rate production in a reservoir scale. 4 

One of the goals of this study is to evaluate LSSVM applicability in rate prediction for two 5 

different cases. 6 

2.2. MLR 7 

MLR is a statistical method which uses several parameters as input and one parameter as a 8 

response or output. This simple method uses linear relationship between inputs to predict the 9 

output. In this study, inputs are time, well injection rate (time-dependent) and producer bottom 10 

hole pressure (time-dependent) and response is producer well rate. Using the same time interval 11 

in the model, we can eliminate the explicit term for time effect and remove it from input. 12 

Therefore, producer rate at each time is a function of constant term, injection rate and pressure 13 

difference and the following equation can be assumed:  14 

, ,
1

( ) ( )
injN

j k i j i k j wf j k j
i

q t i t Pα β γ
=

= + ∆ +∑  (4) 

where, αij stands for interwell connectivity, γj is constant term and ∆���,�,� is the difference 15 

between producer BHP and average reservoir pressure at time k. This equation is similar to CRM 16 

which is described in next section. Therefore, physics of problem could be preserved by the 17 

MLR method. Based on CRM formulation, the constant term (γj) is positive and less than q0, βj 18 

should be negative and greater than -Jjτj/∆t (these terms are introduced in Modified CRM 19 

section) and αij should be lower than 1. The number of unknowns is Nprod×(Ninj+2). 20 

In this study, firstly producer well rate is predicted by LSSVM and then using Equation (4), 21 

MLR is employed to estimate interwell connectivity. 22 
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2.3.  Modified CRM 1 

In the CRM, reservoir is acting as a tank for which rates of injectors and rates of producers are 2 

considered as input and output, respectively. Common CRM requires injection/production rate, 3 

producer’s BHP to train the model. Interwell connectivity (fij) and time constant (τj) are 4 

considered as two unknown parameters in the CRM which can be estimated using a nonlinear 5 

regression algorithm. The common CRM was developed for oil-water systems and is based on 6 

slightly compressible fluid flow and linear productivity index equation. Such assumptions are not 7 

reasonable in the systems with gas flow and should be modified to obtain reliable results for gas-8 

oil systems. Table 2 summarizes different researches on the CRM, its developments and 9 

modifications. 10 

Table 2  Previous studies on the CRM development 11 
Researcher Description 
Yousef et al. [20, 40, 
47] 

Mathematical derivation of the CRM by combining the productivity index model and the 
mass balance equation to develop a tool for the determination of flow barriers in the 
reservoir 

Sayarpour et al. [21, 
48] 

Development of three equations for different control volumes in the reservoir based on 
whole tank, one producer and injector-producer pair 

Kaviani et al. [49] Introducing the new models by considering BHPs variation during the period and adding 
or shutting in an active producer 

Kaviani et al. [50] Comprehensive sensitivity analysis and presenting a dimensionless number and the range 
of this number where the CRM can be applied 

Mamghaderi and 
Pourafshary [22], 
Moreno [51] 

CRM development for multi-layer reservoirs assuming crossflow between different 
layers or interwell connectivity changes with time 

Moreno and Lake 
[52, 53] 

Evaluation of signal noise on the CRM performance and investigation on uncertainty of 
interwell connectivity estimations 

Soroush et al. [54] Studying the effect of  variable production well’s skin factor, adding or shutting in-active 
wells 

Cao et al. [23] Development of two-phase CRM using solution of the equations for total fluid and oil 
simultaneously. 

Tao and Bryant [24] The CRM application in gas storage problems and determination of connectivity 
between extractor and injector 

Eshraghi et al. [55] The CRM application in CO2 miscible injection and optimizing CO2 injection rate 
Mirzayev and 
Jensen [56] 

Improvement of the CRM for a low permeable reservoir with high well densities and 
stimulation operations 

Zhang et al. [25] Applying ensemble Kalman filter for matching the parameters in the developed 
multilayer CRM  

de Holanda et al. 
[57] 

Derivation of matrix format of the CRM equations by state-space model 

Naudomsup and 
Lake [58] 

Extension of CRM to tracer flow for determining reservoir properties 

Wang et al. [59] Developing improved CRM considering the effect of existence of aquifer in the reservoir 
Kim [60] Developing Stochastic CRM to mitigate lack of data limitations by combining bootstrap 

with CRM. 

 12 
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A modified CRM for gas-oil systems was developed in previous studies [27, 61]. The new model 1 

was developed considering density changes with pressure (Equation 5) and non-linear 2 

productivity equation (Equation 6). 3 

, , ,( ) ( ) ( )g inj o prod g prod
p t o g

g o g

d P
V C i t q t q t

dt

ρ ρ ρ
ρ ρ ρ

 
= − + 

 
 

 (5) 

2 2( ) ( )wfq t J P P= −  (6) 

where, pV : control volume pore volume, tC : total (rock and fluid) compressibility, P: reservoir 4 

pressure, t : time, ρg,ing: injected gas density, ρo,prod: produced oil density, ρg, prod: produced gas 5 

density,i : injection rate, q: total production rate, J : productivity index and wfP : producer 6 

pressure. 7 

Based on this formulation, simple ordinary differential equation (ODE) of total rate with respect 8 

to time can be shown as follows: 9 

,( ) 1 1
( ) ( ) 2g inj wf

wf

g

dPdq t
q t i t JP

dt dt

ρ
τ τ ρ

+ = −  (7) 

where,  10 

2
p tV C

J P
τ =  (8) 

The new model considers that τ is time-dependant and varies with pressure. Also, gas density 11 

variation effect in the equations is taken into account. The reliability of the model and impact of 12 

the two modifications were discussed in previous papers [27]. Although two variables (gas 13 

density and reservoir pressure) are added to the model as input in the M-CRM, the model 14 

accuracy is increased in comparison with the common CRM [27]. 15 

After deriving the analytical solution of Equation (7) and converting the integral form to time 16 

series, CRMP (CRM –Producer based) formulation assuming one producer with nearby injectors 17 

in a control volume of producing well j can be obtained as follows: 18 
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, ,
1

1

( ) ( ) 1 ( ) 2
k k inj

j j

t t N
g inj wf j

j k j k ij i k j j wf
i kg

P
q t q t e e f i t J P

t
τ τ ρ

τ
ρ

−∆ −∆

−
=

     ∆
 = + − −  
  ∆     

∑  (8) 

where i , j and ij  denote injectors, producers and well pairs indices respectively, while k stands 1 

for time index,. Also, fij is mathematically represented as follows: 2 

1

( )
   0, 1

( )

prodN
ij

ij ij ij
ji

q t
f f f

i t =

= ≥ ≤∑  (9) 

More details about the M-CRM equation and the effect of new parameters on the accuracy of the 3 

model and the number of unknowns have been discussed in [62, 63]. 4 

3. Workflow 5 

In this research, a synthetic model and a sector model with immiscible gas injection have been 6 

selected and both LSSVM-MLR and M-CRM are applied to investigate their performance in 7 

interwell connectivity and well rate calculation. The detailed procedure for this workflow has 8 

been illustrated in Figure 2. First of all, input data are imported to the ECLIPSE FrontSim 9 

numerical simulator (streamline simulation) to calculate the outputs (producer well rate and 10 

interwell connectivities between injector and producer pairs). Validity and applicability of M-11 

CRM and LSSVM-MLR outputs are then evaluated and compared with results of the streamline 12 

simulation. Next, required input data such as well rates, BHP, gas density and average reservoir 13 

pressure are used to build physical and statistical models. 80% and 20% of data were selected for 14 

training and testing sections, respectively. Both methods require history match (training) section. 15 

In M-CRM equations, using Genetic Algorithm (GA) optimizer, unknowns including fij, τ, Jj and 16 

q0 are determined and then producer well rate is estimated. In statistical method, producer well 17 

rate is determined by LSSVM and then using MLR, interwell connectivities are optimized by 18 

GA. Finally, the results are compared with streamline simulation and the validity of these 19 

methods can be determined. 20 
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 1 
Figure 2 workflow procedure of this study 2 

4. Results and Discussions 3 

In this part, LSSVM-MLR and M-CRM are employed in two different cases. The first one is a 4 

simple case with one flow barrier and one high permeability streak, and the second case is a real 5 

sector model. Interwell connectivities and producers well rate for both cases are determined by 6 

both methods and a comparative study between the results is performed.  7 

4.1. Case 1 8 

An inverted five-spot model is considered for immiscible gas injection analysis. The reservoir is 9 

heterogeneous with respect to porosity and permeability and one sealing fault and one high 10 

permeability streak with permeability of 350 md are located in the reservoir. All layers for one 11 

injector and four producers are perforated and open to flow. The reservoir geometry with 12 

permeability distribution is shown in Figure 3. General data and rock/fluid properties are 13 

presented in Table 3.  14 

In case 1, BHP is not constant; oil rate control for production wells and gas rate control for 15 

injection wells are selected. Minimum well pressure is controlled above bubble point pressure. 16 
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Therefore, gas production is only originated from the injected gas. The number of data points is 1 

210 and the time window for the analysis is the period of 222-640 days after the simulation start. 2 

In this period (168 initial points for train and 42 next points for test), all of the input data are 3 

imported to the models. The well total (oil and gas) production rate in reservoir volume (bbl/day) 4 

is illustrated in Figure 4. 5 

Figure 5 shows producer total rate from LSSVM and M-CRM vs. streamline simulation in the 6 

test section (42 points) in the format of cross plot. Based on the results, LSSVM and M-CRM 7 

predict the total rate accurately with a relative error of 3.05% and 3.13%, respectively. 8 

Table 4 presents the results of interwell connectivities estimated by the M-CRM and the 9 

statistical method (LSSVM for rate prediction and MLR for interwell connectivity estimation). 10 

There are 16 unknowns (including fij, τj, Jj and q0j) in M-CRM and 12 unknowns (αi, βj, γj) in 11 

MLR for Case 1. Optimization of unknowns in the M-CRM and MLR with respect to objective 12 

function and all constraints is accomplished by GA. Overall, both M-CRM and MLR can 13 

accurately predict interwell parameters. However, based on lower relative error and higher 14 

correlation coefficient, M-CRM results are more reliable than MLR (2.47% vs. 13.11% relative 15 

error). Moreover, last row in Table 4 shows that well total rate has been predicted by LSSVM 16 

and M-CRM with a similar range of accuracy. Results of well total production rate for both 17 

methods are similar and have an acceptable range of accuracy (within 3% relative error). 18 

 

 
Figure 3 3D geometry and horizontal permeability of Case 1 19 
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Table 3 Rock and fluid properties of Case 1 1 
Model dimension 31×31×5 Reservoir pressure at D.D 5200 

Reservoir area, Acre 108.1 Initial condition 
Oil and irreducible 

water 
Datum depth (D.D), ft 11250 STOIIP, MMSTB 1.88 

Mean porosity (%) 15 Saturation pressure, psi 4014 
Mean horizontal 

permeability (Kh), md 
57 Initial GOR, scf/STB 1270 

Thickness, ft 35 Mechanism 
Compressibility and 

gas flooding 

 2 

 3 
Figure 4 well total production rates (bbl/d) for producers of Case 1 4 

Table 4 Interwell connectivity parameters of Case 1; Streamline vs. M-CRM and LSSVM 5 

Interwell 
connectivity 

Well pair 
Streamline  
well factor 

M-CRM Statistical M-CRM Statistical 

well 
factor  

well 
factor  

MAPE
* (%) 

CC**  
MAPE 

(%) 
CC  

I1 

P1 0.226 0.238 0.177 

2.47 0.99 13.11 0.95 
P2 0.302 0.291 0.319 
P3 0.169 0.168 0.154 
P4 0.302 0.303 0.351 

 6 
Total rate production (average for all producers) 3.13 0.98 3.05 0.95 

* Mean Absolute Percentage Error 7 
**  Correlation coefficient  8 
 9 
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Figure 5 cross plot of well total production rates for LLSVM and M-CRM vs. streamline in test section – Case 1 1 

4.2. Case 2 – sector model 2 

This is a real model of an oil reservoir which is located in Iran. The lithology of reservoir is 3 

carbonate rock; dolomite with local fractures and vugs. There is no evidence for gas cap, sealing 4 

fault and aquifer in the reservoir. This sector contains 6 producers and 2 injectors. 3D 5 

configuration of the model and horizontal permeability distribution are illustrated in Figure 6 and 6 

reservoir properties of the sector are reported in Table 5. Immiscible gas injection by 2 injectors 7 

has been simulated in the model. The reservoir only contains oil and irreducible water at initial 8 

condition. Dynamic simulation data for producers and injectors are imported using the oil rate 9 

control for producers and gas rate control for injectors.  10 

This analysis is performed for data points between the period 3600-9000 days after the 11 

simulation start (181 data points) in which the initial 145 points for training and the remaining 36 12 
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points for the test have been used. All of the input data in this period are imported to the models. 1 

Figure 7 shows the well total (oil and gas) production rate for six producers in Case 2. 2 

The number of unknowns in this case in M-CRM and MLR methods are 30 and 24, respectively, 3 

and GA is employed for both optimization problems. Figure 8 illustrates the cross plot of total 4 

rate of six production wells for LSSVM and M-CRM vs. streamline simulation points in the test 5 

section (36 points). LSSVM results are in good agreement with streamline simulation (only 1% 6 

relative error). Therefore, LSSVM is reliable for the prediction of well rate. The relative error of 7 

5.20% for M-CRM shows the acceptable results, However lower accuracy in comparison with 8 

LSSVM.   9 

 

 
Figure 6 3D geometry and horizontal permeability distribution of the sector model 10 

Table 5 Rock and fluid properties of the sector model 11 
Model dimension 35×44×11 Initial condition Oil and irreducible water  

D.D, ft 8645 Total wells 
6 (production wells) and 

2 (injection wells) 
Mean porosity (%) 5.35 Swir 0.12 
Mean horizontal 

permeability (Kh), md 
39.97 Sor 0.35 

Average NTG* 0.87 Active cells 11929 
Initial pressure @ D.D, psi 4900 STOIIP, MMSTB 679.93 

Rock compressibility, psi-1 3×10-6 
Bubble point pressure, 

psi 
3157 

Reservoir temperature, deg F 140 Mechanism 
Compressibility and gas 

flooding 
* Net to Gross ratio 12 
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Table 6 summarizes interwell connectivities and producer total rates which were calculated by 1 

statistical and physical methods. Based on these results of MAPE and correlation coeffieicent in 2 

the last row in Table 6, LSSVM is more accurate than M-CRM in well total rate prediction 3 

(1.19% vs. 5.20% relative error); however, M-CRM is a more reliable tool for prediction of 4 

interwell connectivities compared to MLR (11.95% vs. 46.2% relative error). Therefore, 5 

quantitative analysis of interwell connectivity should be performed by physical model and only 6 

qualitative connectivity evaluation is recommended by statistical method i.e. well connectivities 7 

for I1 injector show that P3 and P6 have strong connectivity, However, P4 and P5 have a weak 8 

connection with the injector. Again for I2, P2 and P4 connectivities are strong and P3 is weak. 9 

Hence, it is possible to determine which well pairs are connected together qualitatively based on 10 

the results. However, the exact determination of interwell connectivity by LSSVM is not 11 

possible due to its high relative error.  12 
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B - total production rates of wells P4, P5 and P6 

Figure 7 well total production rates (bbl/d) for producers of Case 2 1 
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Figure 8 cross plot of well total production rates for LLSVM and M-CRM vs. streamline in test section – sector model 1 

 2 
Table 6 Interwell connectivity calculation of Case 2; Streamline vs. M- CRM and LSSVM 3 
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Well pair 
Streamline 
well factors 

M-CRM Statistical M-CRM Statistical 

well 
factor 

well 
factor 

MAPE 
(%) 

CC 
MAPE 

(%) 
CC 

I1 

P1 0.141 0.120 0.086 

11.95 0.99 46.20 0.81 

P2 0.025 0.023 0.012 
P3 0.548 0.554 0.407 
P4 0.011 0.009 0.007 
P5 0.004 0.000 0 
P6 0.271 0.278 0.488 

I2 

P1 0.115 0.106 0.084 
P2 0.362 0.353 0.215 
P3 0.005 0.007 0.006 
P4 0.201 0.177 0.161 
P5 0.252 0.242 0.399 
P6 0.065 0.070 0.136 

 4 
Total rate production (average for all producers) 5.20 0.99 1.19 1.00 

 5 

4.3. Analysis of the results 6 

Overall, M-CRM and statistical methods have some advantages and both of them are 7 

applicable to different types of reservoirs. In this section, M-CRM and LSSVM-MLR 8 

methods are compared in terms of input data, accuracy and speed. 9 

• Results of two different cases (see Table 4 and Table 6) show that for the calculation of 10 

producer total rate, statistical method (LSSVM) gives more accurate results than M-11 

CRM; however, the range of accuracy for M-CRM is acceptable. Interwell connectivities 12 
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determined by M-CRM are more reliable than results of statistical method (MLR), and it 1 

is recommended to use the MLR method just as a qualitative method. 2 

• M-CRM uses average reservoir pressure and gas density besides well rates and producer 3 

pressure which leads to more reliable results in immiscible gas flooding projects 4 

compared with common CRM. Therefore, in physical approaches such as M-CRM, input 5 

data are very important. However, the flexibility of input data in statistical approaches is 6 

high i.e. the type and the number of input data can be changed case by case based on the 7 

learning algorithm results. It leads to find the most important input data for each case and 8 

make it more flexible. However, it cannot be generalized for all cases. In this paper, for 9 

LSSVM, injector rates and producer BHPs are the input which give accurate results. 10 

However, it may be needed to consider other parameters for another case.  11 

• The order of speed in both M-CRM and statistical methods is a couple of minutes. 12 

However, in the streamline, it takes hours for simulation. Training section which needs 13 

optimization algorithm for determination of unknowns, does not take more than a few 14 

minutes. Statistical method which is a combination of LSSVM and MLR requires a two-15 

step procedure and may therefore require more time. Also, using GA in M-CRM may 16 

need some time. Summing up, both methods run at a higher speed in comparison with 17 

conventional numerical simulators 18 

5. Conclusions 19 

In this research, physical method (M-CRM) and statistical method (LSSVM/MLR) were 20 

employed to obtain interwell connectivities and producer well rate in immiscible gas flooding 21 

projects. Both methods were examined in two different cases and the results were compared. 22 

Streamline simulation was used as a reference tool for validation of the results. The main 23 

advantages of these two methods over numerical simulators are their simplicity, speed and the 24 

limited number of input data. The following results were concluded from this study: 25 

• M-CRM applies to immiscible gas flooding projects by importing average reservoir 26 

pressure and gas density in the common CRM equations. Interwell connectivities and 27 

producer total rate as outputs of M-CRM were obtained with an acceptable range of 28 

accuracy. 29 
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• LSSVM was employed to predict producer total rate in two cases using 1 

injection/production data and BHP as inputs. The results show that this method gives 2 

reliable estimations. 3 

• To obtain interwell connectivities, MLR was used. MLR predictions are less precise 4 

compared with M-CRM results; however, this method could be used for qualitative 5 

analysis. 6 

•  A comparison of physical (M-CRM) and statistical (LSSVN-MLR) models in terms of 7 

validity, precision, data requirements and speed revealed their advantages and limitations. 8 

M-CRM is more precise than statistical model. However, statistical model is more 9 

flexible than M-CRM. Calculation speed for both methods is similar. 10 

11 
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6. Appendix A 1 

LSSVM equations 2 

The following constraints are applied to the cost function: 3 

*

*

( ) b , 1,2,3,....,

( ) b , 1,2,3,....,

, 0, 1,2,3,....,

T
kk

T
k kk

k k
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k Nyw x
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ϕ ε ξ
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− − + =

+ − + =  
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≤       

≤              

≥                              

 (A1) 

where kx , 
k

y and ε  stand for kth input, kth output and precision of the approximation, 4 

respectively. For minimization purpose, the Lagrangian of the problem is applied as: 5 

* * * * *
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( ) ( )( ) , 1,2,....,T
k lk l k Nx xx xK ϕ ϕ= =−  (A4) 

ka and *
ka  are Lagrangian multipliers. Therefore, SVM becomes: 6 

*

, 1

( ) ( ) b( )
N

k k k
k l

Kf x a a x x= − − +

=

∑  (A5) 

Unknown parameters in Equation (A5) should be obtained by quadratic programming. This 7 

method may result in computational problems. Therefore, Suykens and Vandewalle [42, 43] 8 

introduced Least Square SVM (LSSVM) to overcome the problems. The following equation 9 

shows the cost function of the proposed method: 10 

2

1

1 1
2 2

N
T

k
k

Cost function w w eγ= +

=

∑  (A6) 

where, γ  and ke  are the tuning and error parameters in the LSSVM, respectively. The constraint 11 

for this function is as follows: 12 
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( )T
k kk

y xw b eϕ= + +  (A7) 

Again, for minimization of the function, Lagrangian function is used: 1 

2

1 1

( )
1 1
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2 2

( )
N N

T T
k k k k k

k k
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Therefore, to optimize the problem, the following expressions should be established:  2 
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According to Equation (A9), 2N+2 unknowns and 2N+2 equations exist. Hence, all unknowns in 3 
LSSVM could be obtained. 4 

  5 
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7. Nomenclature 1 

• Variables 2 

ANN Artificial Neural Network 
ak Lagrangian multiplier 
BHP Well bottom hole pressure 
b bias 
CRM Capacitance-Resistance Model 
CRMP Capacitance-Resistance Model (Injector/Producer based) 
CC Correlation coefficient 
Ct total compressibility 
c tuning parameter of the SVM 
D.D Datum depth 
ek error parameter in the LSSVM 
f interwell connectivity between injector and producer 
GA Genetic Algorithm 
GOR gas-oil ration 
IMPES implicit pressure explicit saturation 
i injection rate  
J productivity index 
LSSVM least square support vector machine 
M-CRM Modified Capacitance-Resistance Model 
MAPE mean absolute percentage error 
MLR multiple linear regression 
MPI multi-well productivity index 
Ninj total number of injection wells 
Nprod total number of production wells 
NTG Net to Gross 
ODE Ordinary Differential Equation 
�� average reservoir pressure 
Pwf flowing wellbore pressure 
q Total (oil and gas) production rate 
qg rate of gas production 
qo rate of oil production 
S saturation 
SRC Spearman Rank Correlation 
STOIIP Standard oil initially in-place  
SVM Support Vector Machine 
t time 
Vp Pore Volume 
wT transposed output layer vector 

• Greek symbols 3 

τ time constant 
ρ density 
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	̅ average density 
φ(x) Kernel function 

kξ  slack variables 
γ  tuning parameter in the LSSVM 
ε  fixed precision of the function approximation 

• Subscripts and superscripts 1 
g gas 
i injection well index 
ij well pair (injector-producer) index 
j production well index 
k time index 
o oil 
obs observed output 
or residual oil 
pred predicted output 
wir irreducible water 

8. Unit conversion 2 

Pressure 1 psi = 6.895 E+3  Pa 
Volume 1 bbl = 1.590 E-1   m3 
Volume 1 scf = 2.831 E-2   sm3 
length 1 ft = 3.048 E-1   m 
permeability 1 md = 9.869 E-16 m2 
area 1 Acre = 4.047 E+3  m2 

  3 
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Highlights 

• Interwell connectivity in gas flooded reservoir was calculated by two methods. 

• Statistical method of support vector machine was used for well rate prediction. 

• The accuracy of support vector machine and linear regression was discussed. 

• Statistical method was compared with modified capacitance resistance model. 
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