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Motivated by recent progress on synthesizing two-dimensional magnetic van der Waals systems, we
propose a setup for detecting the topological Berezinskii-Kosterlitz-Thouless phase transition in spin-
transport experiments on such structures. We demonstrate that the spatial correlations of injected spin
currents into a pair of metallic leads can be used to measure the predicted universal jump of 2=π in the
ferromagnet spin stiffness as well as its predicted universal square root dependence on temperature as the
transition is approached from below. Our setup provides a simple route to measuring this topological phase
transition in two-dimensional magnetic systems, something which up to now has proven elusive. It is hoped
that this will encourage experimental efforts to investigate critical phenomena beyond the standard
Ginzburg-Landau paradigm in low-dimensional magnetic systems with no local order parameter.
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Introduction.—Phase transitions of matter are ubiqui-
tous and fascinating phenomena in nature. In particular,
transitions occurring in two dimensions (2D) have long
attracted great interest because of their intriguing physics.
Quantum or thermal fluctuations play a fundamental role
in the stability of phases. The special features of low
dimensional systems with continuous symmetries, are
rooted in the celebrated Hohenberg-Mermin-Wagner
theorem [1–3] stating that there can be no spontaneous
breaking of a continuous symmetry at any finite tempera-
ture in dimensions d ≤ 2. This prevents the existence of
long-range order at any temperature T > 0, resulting in
the absence of a local order parameter. Nonetheless, a low-
temperature phase free of topological defects can exist,
featuring quasi-long-range order characterized by alge-
braically decaying correlations.
Phase transitions may quite generally be thought of as

mediated by the proliferation of topological defects
with a concomitant loss of some generalized stiffness
[4]. Unfortunately, in most cases it is almost impossible
to make these notions precise and quantitative, at
least analytically. However, the precise mechanism by
which this happens in low-dimensional magnets, super-
fluids, and crystals has been elucidated in a series of
seminal works of Berezinskii, Kosterlitz, and Thouless
(BKT) [5–8], describing a topological phase transition
at the critical temperature Tc from tightly bound
pairs of vortices and antivortices to an unpaired
disordered phase.
A remarkable and unique prediction of this theory is a

specific feature characterizing the vanishing of topological
order, or stiffness, as the system approaches the critical
temperature from below [9]. This is expressed by the long-
wavelength relation

1

KRðTÞ
¼ 1

K
þ 4π2lim

q→0

hnqn−qi
q2

; ð1Þ

where K is the stiffness of system, e.g., superfluid density
or spin stiffness in easy-plane ferromagnets, KR is the
vortex-renormalized stiffness, and nq is the vorticity in
momentum space. When the system reaches the transition
temperature, the stiffness KR jumps discontinuously to
zero. The key feature of the transition is that this jump is
universal, KRðTcÞ=kBTc ¼ 2=π. This was first verified
experimentally in thin films of 4He [10] and later in other
systems such as superconductors [11–15], colloidal crystals
[16–18], Josephson-junction arrays [19,20], and ultracold
atomic Bose gases [21].
Despite its great interest and recent efforts [22], the

observation of BKT transitions has proven elusive in spin
systems, mainly due to the difficulty of manufacturing two-
dimensional magnets. The discovery of graphene in 2004
[23] was a turning point for significant experimental
progress in fabricating atomically thin magnetic films, also
known as 2D magnetic van der Waals (vdW) materials
[6,24–31].
In this Letter, we propose an experimental setup for the

observation of the BKT transition in 2D magnetic vdW
materials using standard methods in the study of spin
transport. It is based on electrical measurements of charge-
current cross-correlations in metal-magnet hybrid struc-
tures [32–35]. In this approach, distant metallic leads detect
spin currents flowing into and out of the magnetic material,
as displayed in Fig. 1. At the center of this proposal is the
phenomenon of spin and charge conversion, an inherent
property of materials having strong spin-orbit coupling
manifested in the spin-Hall effect [36]. The characteristic
spin dynamics in the magnetic insulator pump spin currents
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into the normal metal [37] resulting in a spin accumulation
that, in turn, induces charge currents by the inverse spin-
Hall effect. The electrical detection of spin-current signals,
and their correlations, will provide direct access to
thermally induced vortex proliferation and quasiordered-
disordered phase transition. This work constitutes a first
step to studying low-dimensional phenomena involving
notions relevant to phase transitions, 2D magnetic material
science, and spintronics.
Nonlocal spin-transport measurements in metal-magnet-

metal heterostructures have proven useful for studying
transport properties of pure spin currents [32], long-
distance spin-transport [33,34,38], magnon-polaron
transport [39], and viscosity in magnons systems [40].
Recently, Ref. [41] proposed a method of detecting the
degree of coherence of magnon states by measuring spin-
current correlations. This detection scheme is particularly
useful since the spin-current cross-correlation is related to
the power spectral density. Although the ideas developed
in Ref. [41] are general, the focus was on spatially
homogeneous magnetization dynamics, e.g., ferromagnetic
resonance and thermally induced magnons. In our
approach, we tailor the detection scheme to a system that
lacks long-range order. We show that spatially dependent
charge-current cross-correlations allow characterizations of
the BKT phase transition.
Our findings give direct access to track the evolution

from algebraic- to exponential-decaying spin-spin correla-
tions as the temperature increases. In particular, we provide
an accessible route to measuring the universal jump of the
spin stiffness in 2D magnets as the temperature approaches
the critical temperature. Taking advantage of the spin to
charge conversion, this enables a clear-cut experimental
demonstration in a magnetic system of one of the remark-
able predictions of the BKT theory.
Charge-current cross-correlation.—In the proposed

setup, we consider a two-dimensional magnet, with
dimensions Lx and Ly, coupled at its ends to a couple
of identical nonmagnetic metallic leads, see Fig. 1. Pure
spin currents into the left and right normal metals are
related to electric signals via the inverse spin Hall effect

[36,42]. We introduce the charge-current cross-correlation,
defined by Cð2ÞðτÞ≡ hILðr; tÞIRðr; tþ τÞi, where h; i
denotes a statistical average. Here, Il, with l ¼ L, R, is
the net charge current existing in the lmetallic lead. We are
interested in the static correlation and thus in the evaluation
of Cð2Þ ≡ Cð2Þð0Þ. In the following, we relate Cð2Þ to the
cross-correlation of the injected spin currents using spin
and charge conversion at the leads. This suffices to
establish the connection between the characteristic spin-
spin correlations and the universal behavior predicted in the
BKT theory.
Berezinskii-Kosterlitz-Thouless transition.—We con-

sider a ferromagnetic insulator with axially symmetric
exchange coupling around the ẑ direction. The nearest-
neighbor Hamiltonian is H ¼ P

hiji JαβSαiSβj, with i, j the
position of spins and α; β ¼ x, y, z labeling their
components. The ferromagnetic exchange coupling is
Jαβ ¼ −Jαδαβ, with Jx ¼ Jy ≡ J and Jz < J, favoring spin
ordering in the xy plane. Thus, we can express the
normalized spin variable in terms of an angle θi on each
lattice site i, as Si ¼ ðcos θi; sin θi; 0ÞT . The resulting
Hamiltonian, known as the classical XY model [43], is
given by

H ¼ −J
X

hiji
cos ðθi − θjÞ; ð2Þ

featuring a continuous SO(2) or U(1) symmetry. The XY
model (2) is also a useful model for superfluid helium
[10,44] and hexatic liquid crystals [45]. At low
temperatures, we take into account only small spin
fluctuations. Thus, in the continuum approximation,
smooth phase variations are described by the
Hamiltonian H ¼ J

R
drð∇θÞ2=2. In two dimensions in

the entire low-temperature phase, the spin-spin correlation
function, defined by the statistical average Gðr − r0Þ ¼
hSðrÞ · Sðr0Þi decays algebraically, 1=jr − r0jη, with
η ¼ kBT=2πJ, indicative of critical behavior. Here, the
critical exponent η is the anomalous scaling dimension of
the spin field. At long distances, the spin correlations
vanish, limjr−r0j→∞Gðr − r0Þ ¼ 0, corresponding to the
absence of long-range order in accordance with the
Mermin-Wagner theorem [1]. Thus, spin waves suffice
to destroy long-range order. The entire low-temperature
phase is critical with an infinite correlation length and
algebraic decay of spin-correlations.
In the high temperature phase, smooth spatial variations

in θðrÞ no longer suffice to accurately describe the
fluctuations. Fluctuations beyond spin waves are included
by separating the vector ∇θ ¼ ∇θL þ∇θT into a longi-
tudinal and a transverse part, the spin waves and non-
smooth variations respectively, defined by∇ · ∇θT ¼ 0 and
∇ ×∇θL ¼ 0. Thus, the model is generalized to
H ¼ ðJ=2Þ R dr½ð∇θLÞ2 þ ð∇θTÞ2�, with the first term
corresponding to the spin-wave part discussed above.
The nonsmooth variations in θ describe vortices,

FIG. 1. Schematic plot for the direct observation of BKT
transition. The setup consists of a 2D magnetic vdW material
attached at its ends to a couple of identical nonmagnetic metallic
leads. The detection is based on the measurement of charge-
current cross-correlations between the left and right lead of the
device geometry.
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topological defects associated with the first homotopy
group [46] π1½Uð1Þ� ¼ Z of the 2D XY model that have
circulation

H
d⃗l ·∇θT ¼ 2πn with “topological charge”

n ∈ Z. At high temperature, the topological defects
become important, and their statistical mechanics may
be mapped to that of a 2D Coulomb gas with overall
charge neutrality. The low-temperature phase where vorti-
ces and antivortices are tightly bound together is equivalent
to an insulating dielectric state while the high temperature
phase with dissociated pairs of vortex-antivortex pairs
corresponds to a metallic phase. This transition is a
topological phase transition. The temperature at which it
takes place is found by noting that the energy of a vortex-
antivortex pair separated by a distance r, is E ¼ πJ ln ðr=aÞ
and the entropy S ¼ 2 ln ðr=aÞ, where a is some short-
distance cutoff. A simple estimate for the Helmholtz free
energy yield F ¼ ðπJ − 2TÞ ln ðr=aÞ. It is clear that is
energetically favorable to have free vortices when
T > Tc ¼ πJ=2kB. This estimate of Tc ignores screening
of two test charges, and the description also ignores
coupling between vortices and spin waves. Taking such
effects onto account slightly reduces Tc without altering the
universality class of the transition, which may be viewed as
a special class of phase transition where the conformal
invariance of standard critical points is lost, a “conformality
lost” phase transition [47,48]. In modern terms, the precise
mechanism for this loss of conformality is the annihilation
of an ultraviolet and infrared fixed point as some marginal
operator of the system is varied [47,48].
In general, a phase transition may be viewed as a

proliferation of topological defects characterized by an
appropriate homotopy group with a concomitant loss of
an associated generalized stiffness. In the present context,
thermally induced spin fluctuations (angle fluctuations)
reduce and eventually destroy the existing topological order.
The generalized stiffness for our system, the spin stiffness
KRðTÞ, is a global order parameter for topological order.
We next provide the basics of how to measure KRðTÞ,

and thereby detect the universal jump and the associated
conformality lost transition in the recently discovered
2D vdW magnets, as the temperature is raised through
T > Tc. We evaluate the spin current–current correlation
function Cμν ¼ hjsμjsνi=J2, where the spin current is
jsμðrÞ ¼ −J∂μθðrÞ. The diagonal component, evaluated at
the boundary of the magnet, correspond to the correlations
between left and right spin currents (Cyy). In momentum
space, the spin current is decomposed into two parts, one
part originating with spin waves and another part with
vortices, as follows:

CμνðqÞ ¼
qμqν
q2

1

K
þ hSqμS−qνiv: ð3Þ

Here, K ¼ J=kBT and Sq ¼ F ½ð∇θÞv� is the Fourier
transform of the vortex contribution. The second term in

the right-hand side in Eq. (3) may be expressed in
terms of vortex correlators hSqμS−qνiv ¼ 4π2ðδμν − qμqν=
q2Þhnqn−qi=q2. Using this result in Eq. (3), we
obtain CμνðqÞ ¼ ðqμqν=q2Þ=KR. The quantity KR
represents the renormalized spin stiffness including
the effects of thermally induced vortices. Thus, KR
depends on temperature and obeys the relation given
in Eq. (2). In the long-wavelength limit, KRðTÞ ¼
K − 4π2K2limq→0ðhnqn−qi=q2Þ, corresponding to the
spin-wave and vortex part, respectively. Since, we are
interested in the long-distance behavior of KR, we need
to evaluate hnqn−qi when q → 0. We first note that
hnqn−qi ¼ C0 þ C2q2 þ � � �, where C0 vanishes by topo-
logical-charge neutrality. Thus, the only nonzero contribu-
tion in the long-wavelength limit is C2. The evaluation of
this coefficient is standard and can be found in Ref. [43].
Below, we will relate the spin-current correlation CμνðqÞ
with a measurable quantity, namely the charge-current
cross-correlation.
Spin-charge conversion.—We assume that normal

metals have a sufficiently strong spin-orbit coupling to
support a considerable spin-Hall effect. The spin and
charge transport in the bulk of metallic leads are captured
by [49]

jq ¼ σ

e
∇μq − σ0

2e
∇ × μs; ð4Þ

2e
ℏ
jsn ¼ −

σ

2e
∇ðn̂ · μsÞ −

σ0

e
ðn̂ ×∇Þμq; ð5Þ

where jq and jsn are the charge and spin current (polarized
in the n̂ direction), respectively. The electrical conductivity
is σ, while σ0 denotes the spin-Hall conductivity. The spin
and charge accumulation, μs and μq, respectively, are
described in the steady-state limit by the equations,
∇2μq ¼ 0 and ∇2μs ¼ μs=l2s , where ls is the spin-diffusion
length in the normal metal. At the metal-magnet interface,
the injected spin current (polarized along ẑ) is inhomo-
geneous since it originates from the spin’s vortex at the
magnet. As a result, a spin and charge accumulation,
μsðx; yÞ and μqðx; yÞ, are induced on the normal metal.
The bulk equations, Eqs. (4) and (5), are complemented by
the boundary conditions that enforce continuity for the spin
current, jsz;yðx; 0Þ ¼ jsL;zðxÞ and jsz;yðx;−lÞ ¼ 0, and
charge currents, jqyðx; 0Þ ¼ jqyðx;−lÞ ¼ 0, at the left lead
and where l is the width of the metal. Similar relations
hold for the right lead. By simplicity we assume a
spin-transparent interface, thus the injected spin current
is jsL;zðxÞ ¼ −J∂yθðx; yÞjy¼0. The formal solution for
the charge and spin accumulation are written as
μq;sðx; yÞ ¼

R
dx0Kq;sðx − x0; yÞjsL;zðx0Þ, with Kq and Ks

the kernels, whose evaluation is detailed in the
Supplemental Material [50].
We are interested on the induced charge current, aver-

aged over the width of the metal, along the x direction at
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each lead. We obtain j̄qL ¼ 2elsϑ
R Lx=2
−Lx=2

dxjsL;zðxÞ=lℏLx in
the limit l ≫ ls and small spin Hall angle defined by
ϑ ¼ tan−1 ½σ0=σ�. Note that the averaged charge current is
independent on the position and proportional to the
injected spin current averaged along the interface.
Assuming that metals and magnet are in thermal
equilibrium, the thermal average of charge current and
spin current are zero. Their correlations, however, which
are response functions of the system, will be nonzero
and related by hj̄qLj̄qRi ¼ ðξ=LxÞ

R Lx=2
−Lx=2

dxCyyðx; LyÞ, with

ξ ¼ πG0l2sϑ2J2γðTÞ=l2ℏ and G0 the quantum of conduct-
ance. The function γðTÞ is a numerical factor that varies in
the range ½4–3.5� when 0 < T < Tc.
Measurement of universal jump in spin stiffness.—In the

specific device geometry, the renormalized spin stiffness
can be obtained from the measurement of the charge-
current cross-correlation. Spin and charge conversion in the
metallic leads allow us to relate the spin- and charge-current
correlators, Cμν and Cð2Þ, respectively. The detection of the
spin stiffness can be realized by combined measurements of
current correlations, since Tr½CμνðqÞ� ¼ 1=KRðTÞ. The
evaluation of Eq. (3) is carried out in the long-wavelength
limit, thus we find that the temperature-dependent spin
stiffness satisfies 1=KRðTÞ ¼ 2

R
A drCyyðrÞ. Here, we have

considered axial symmetry and the integration is over the
entire area, A, of the magnet. Although in actual measure-
ments there is only access to the correlations at the
boundary of the magnetic sample, this will not restrict
the detection of KRðTÞ. In fact, its evaluation can be well
approximated by repeating N measurements of hj̄qLj̄qRi for
different lengths Ly. This series of measurements corre-
spond to discretize the integration along the y direction. To
make this approximation efficient, we employ the Gauss-
Legendre quadrature method and find

ξ

KRðTÞA
¼ Cð2Þ; ð6Þ

with Cð2Þ ¼ P
N
i¼1 cihj̄qLj̄qRii the total charge-current corre-

lator. The measurable correlations in a magnet with length
Li
y are denoted by hj̄qLj̄qRii and ci are the weights of the

approximation, see Supplemental Material [50] for details.
It is expected that only a few measurements will be needed,
due to the rapid convergence of this method. Note that to
obtain Eq. (6) we have made two main assumptions. First,
the flow of spin currents across the interface occurs with no
resistance, i.e., a large value for the spin mixing conduct-
ance. Second, the charge current noise present in metallic
leads is not considered. The observation of spin-current
fluctuations requires a clear mapping to measurable charge
currents, and hence the presence of current noise might
result in additional complications. In practice, these side
effects could lead to weaker signals, but we expect them to
be less relevant for the cross-correlations between the left
and right metal, and thus the sharp transition at the critical

temperature should not be altered. Details of metal-magnet
interface and a realistic treatment of noise are, however,
open issues for the future.
The correlation (6), which constitutes the central result of

this Letter, depends inversely on the renormalized spin
stiffness. Thus, we expect that measurements of resistance
fluctuations can display the temperature-dependent spin
stiffness and the phase transition to a disordered phase of
unbound vortices. In Fig. 2 we show the spin stiffness for
various systems characterized by having different transition
temperatures. In actual measurements, the universal behavior
of the spin stiffness at transition temperature will be revealed
as the jump occurs along a 2=π-slope straight line. For a
specific setup, the jump in the spin stiffness is proportional to
physical parameters related to the actual detector. It is
therefore, convenient to normalize the correlation in order
to isolate the intrinsic properties of the magnet.
Although the experimental realization of the device

(Fig. 1) might be challenging, we consider it as a simple
example to illustrate our proposal. A different option,
beyond the scope of the present work, would be to consider
the pair of metallic leads on top of the magnet. In this case, a
spin accumulation is induced along, and polarized parallel
to, the z direction. Accordingly, the observation of the spin
stiffness would require the detection of spin-accumulation
correlations, which could be done in a spin valve geometry.
The latter requires a metallic ferromagnet on top of the leads
for a voltage detection. The realizations of metal-magnet
hybrids might be configured on state-of-the-art 2D ferro-
magnetic materials. The recent observation of spin waves
[51] and spin valves [52] in CrI3-based heterostructures, the
in-plane ferromagnetism in CrCl3 [22], and the strong spin
galvanic effect in graphene-transition metal dichalcogenide
heterostructures [53,54], constitutes a real platform to guide
future experiments to study the BTK transition.

FIG. 2. Schematic plot of the (normalized) spin stiffness KR as
a function of temperature. The discontinuity at the transition
temperature Tc, represents the onset of a disordered phase of
dissociated vortices and antivortices pairs. Various curves are
plotted to make evident the universality in the jump of spin
stiffness when normalized with the factor kBTc. As T → T−

c ,
KR ¼ ð2=πÞkBTc þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc − T

p
, where c is a nonuniversal pos-

itive constant.
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Summary.—We have proposed a setup for measuring the
BKT transition in a 2D magnetic-metal hydrid system. In a
nonlocal geometry, measurements of voltage fluctuations
can give access to the temperature dependence of spin
stiffness. In particular, this approach provides direct
evidence of the universal jump in the spin stiffness of
the system, a global order parameter for topological order.
We hope our proposal will encourage experimental efforts
to detect this hallmark of the Berezinskii-Kosterlitz-
Thouless topological phase transition in low-dimensional
magnetic systems.
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