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Abstract

In this paper surge control in a compression system using a close-coupled valve (CCV) is proposed. The control
design is based on Lyapunov control theory in combination with neural networks (NNs) and focuses on minimiza-
tion of loss of energy in the compressor system. The approach allows for control design with guaranteed region of
attraction when considering saturated controls. The CCV modifies the characteristics of the compressor and thus
stabilizes the equilibrium beyond the original surge line at the expense of a pressure drop over the valve. Two
control laws for the compression system are proposed. The first control law provides a global asymptotically sta-
ble equilibrium. The second control law focuses on minimization of the pressure drop over the valve, and local
asymptotically stability is proven.

Keywords: Nonlinear process control, Industrial applications of process control.

1. Introduction

Compressor surge represents undesired oscillations in mass
flow and pressure, and can cause a reduction in performance
or even damage the compressor (Gravdahl and Egeland,
2012). Surge occurs if the system is operated below a cer-
tain mass flow limit, referred to as the surge line. If surge
occurs, the noise level will increase, and the piping around
the compressor can begin to vibrate. This will influence the
chemical process connected to the compression system as
both the mechanical and thermal load correlated with the
surge can damage the system. Since surge limits the range
of mass flow for which the compressor can be used, it is
preferred to implement an anti-surge controller in order to
stabilize the equilibrium beyond the original surge line.

One way to avoid surge is to add a close-coupled valve
(CCV) in combination with the compression system, which
was introduced by Simon and Valavani (1991). The CCV
modifies the characteristics of the compressor which results
in a stable equilibrium point beyond the original surge line.
A schematic representation of a compressor in combination

with a CCV can be seen in Figure 1. The pressure rise in
the system is the sum of the pressure rise over the com-
pressor and the pressure drop over the valve. As the term
close-coupled implies, there is no significant mass storage
between the compressor outlet and the valve as the distance
between them is too small.

Gravdahl and Egeland (1997) developed an anti-surge
controller using backstepping, which uses feedback from
the mass flow, to derive a control law for the CCV ensur-
ing global uniform asymptotic stability beyond the origi-
nal surge line. Liaw et al. (2002) investigate surge con-
trol in compression systems with uncertain characteristics.
System robustness is ensured with Lyapunov control the-
ory, and asymptotically stability of the equilibrium point is
proven. As feedback from real-time measurement of mass
flow can be dificult to realise, Backi et al. (2013) develop an
anti-surge controller based on Lyapunov control theory, and
provides a full state observer with local stability results for
the Moore-Greitzer compressor model, defined in equations
(1) and (2). Backi et al. (2016) propose an anti-surge con-
troller based on feedback linearization for a close-coupled
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Figure 1: Schematic representation of a compressor in com-
bination with a close-coupled valve, adopted
from Gravdahl and Egeland (1997). Ψc(Φ) and
Ψv(Φ) are the compressor pressure rise and valve
pressure drop, respectively, and Φ is the axial
mass flow coefficient.

valve in a compression system. In order to stabilize surge in
a compression system, the feedback linearization methodol-
ogy is implemented by showing that the system is feedback
linearizable, and then ensuring absolute stability by using
circle criterion analysis.

In this paper Lyapunov control theory is combined with
neural networks (NNs) in order to derive an anti-surge con-
troller for the Moore-Greitzer compressor in combination
with a CCV, defined in equations (1) and (2). By combin-
ing Lyapunov control theory with NNs, the paper focuses
on developing a method in order to minimize the loss of en-
ergy in the compressor system. The use of a NN Lyapunov
function for nonlinear systems was introduced by Richards
et al. (2018). Lyapunov control theory is useful in order
to determine and construct a safe region for closed-loop
dynamical systems (Khalil, 2015). While Traditional Lya-
punov function candidates do not readjust to the dynamics,
which can lead to a proposed safe level set much smaller
than the largest safe level set, NNs have shown to be great
nonlinear learners, and can be used to adapt the Lyapunov
function candidate to the shape of the largest possible safe
region in the state space. By adding the CCV to the system,
a pressure drop over the valve is introduced, represented by
a control variable u, and it is considered a loss of energy in
the compressor system. It is therefore beneficial to keep the
control variable as low as possible. Since the control vari-
able is constrained to be a particular value, it is possible to
minimize the pressure drop across the CCV, but as a conse-
quence, the system will only be locally asymptotically sta-
ble. In practise, the equilibrium does not necessarily need
to be globally asymptotically stable (GAS) as long as the
area in the compressor map for which the system is most

likely operated within is covered. With the approach pre-
sented in this paper, the control input can be minimized for
a locally asymptotic stable equilibrium, and thus, the loss
in the system will be reduced. More details can be found in
Neverlien (2019).

The paper is organized as follows. Section 2 describes
the Moore-Greitzer compressor system. Section 3 presents
the essentials of the NN Lyapunov function implemented
by Richards et al. (2018). The results of the NN Lyapunov
function candidate for the Moore-Greitzer compressor sys-
tem are presented in Section 4. Section 5 contains the dis-
cussion regarding the results, and Section 6 describes sug-
gestions for future work and concluding remarks.

2. MATHEMATICAL MODEL

The Moore-Greitzer compressor model in combination with
a CCV is given by the following equations:

ψ̇ =
1
B

(
φ −Φ(ψ)

)
(1)

φ̇ = B
(

Ψc(φ)−ψ

)
, (2)

where φ is the mass flow coefficient (annulus averaged, ax-
ial velocity divided by wheel speed (Moore and Greitzer,
1986)), ψ is the plenum pressure coefficient (pressure di-
vided by density and the square of wheel speed (Moore
and Greitzer, 1986)), Φ(ψ) is the throttle characteristics,
Ψc(φ) is the characteristics of the compressor and the con-
stant B > 0 is Greitzer’s B-parameter defined as

B =
U
2as

√
Vp

AcLc
. (3)

Here, U is the compressor blade tip speed, as is the speed of
sound, Ac is the flow area, Vp is the plenum volume and Lc
is the length of ducts and compressor. The characteristics
of the compressor can be modeled as

Ψc(φ) = ψc0 +H

[
1+

3
2
( φ

W
−1
)
− 1

2
( φ

W
−1
)3

]
. (4)

Here, the parameters H > 0 is the semi-height of cubic
axisymmetric characteristics, W > 0 is the semi-width of
cubic characteristics and ψc0 > 0 is the shut-off value of
axisymmetric characteristic (Moore and Greitzer, 1986).
The throttle characteristics and the CCV characteristics are
given by

Φ(ψ) = γ
√

ψ (5)

Ψv(φ) =
1
γ2

v
φ

2 (6)

where γ is the throttle gain and γv > 0 is proportional to
the valve opening. Without loss of generality, the system is
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transformed such that the equilibrium point is at the origin
and the control u is introduced:

˙̂ψ =
1
B

(
φ̂ − Φ̂(ψ̂)

)
(7)

˙̂
φ = B

(
Ψ̂c(φ̂)− ψ̂−u

)
, (8)

where

Φ̂(ψ̂) = γ
√

ψ̂ +ψ0− γ
√

ψ0 (9)

Ψ̂c(φ̂) =−k3φ̂
3− k2φ̂

2− k1φ̂ . (10)

Equation (10) represents the compressor characteristics in
transformed coordinates where k1 = 3Hφ0

2W 2 (
φ0
W − 2), k2 =

3H
2W 2 (

φ0
W − 1) and k3 = H

2W 3 are constants. u is the control
variable, and represents the pressure drop over the CCV.
The operation point of mass flow and plenum pressure are
φ0 and ψ0, respectively. By defining ψ̂ = x1, φ̂ = x2 and
ψ0 = x10 , the system given by eq. (7) and (8) can be written
as:

ẋ1 =
1
B
[x2− γ

(√
x1 + x10 −

√
x10

)
]

ẋ2 = B
(
− k3x3

2− k2x2
2− k1x2− x1−u

) (11)

where ẋ = f (x) represents the dynamical system. The state
equations in this new local coordinate system will be used
in the remainder of this paper.

In Figure 2 the compressor and throttle characteristics are
shown. Ψc(φ) and Ψv(φ) are the compressor pressure rise
and valve pressure drop, respectively. The equivalent com-
pressor characteristic is defined as

Ψe(φ) = Ψc(φ)−Ψv(φ). (12)

Without the CCV, the equilibrium of the system is at the in-
tersection between the compressor characteristic Ψc(φ) and
the throttle characteristic ΦT

−1(φ), and the intersection is at
a point of positive slope. Consequently, in a positive slope,
if the mass flow decreases, so will the pressure. When the
pressure upstream of the throttle falls below the compressor
delivery pressure, the mass flow will begin to increase and
result in a limit cycle (Gravdahl and Egeland (2012)). In
such case, the equilibrium is unstable. By introducing the
CCV, the throttle line Ψv(φ) crosses the equivalent char-
acteristic in an area of negative slope. In this case, if the
mass flow for some reason decreased, then the pressure will
rise, forcing the mass flow to increase again. The system
is self-compensating, and surge will be avoided. This new
equilibrium is stable.

2.1. Open-loop control

In an open-loop control system there is no feedback, and the
control action is independent from the output of the system.

Figure 2: Compressor and throttle characteristics.

In Table 1, the operating point for pressure ψ and mass flow
φ has two given values, with corresponding throttle gain γ .
For the first value of each parameter, the equilibrium point
for the linearized system in eq. (11) is asymptotically stable
since:

Aγ=0.768 =

[
−0.5905 1.2019
−0.8320 −0.8626

]
(13)

and the real part of the system’s eigenvalues are located in
the left half-plane (Khalil, 2015).The eigenvalues are λ1,2 =
−0.7265±0.9907i for the stable system. In comparison, if
considering the second value of each parameter, then the
system is unstable as:

Aγ=0.411 =

[
−0.3383 1.2019
−0.8320 0.8626

]
(14)

and the real part of the eigenvalues, γ1,2 = 0.262±0.7996i,
are located in the right half-plane. In an open-loop control
system, the equilibrium point will be stable for a throttle
gain γ greater than a critical value γc, and unstable for a
throttle gain γ less than the same critical value.

2.2. Closed-loop control

In a closed-loop control system, the feedback between the
outputs and inputs of the system can be used to stabilize an
unstable system. The equilibrium point will be stable for a
throttle gain γ greater than a critical value, and in such case,
there would be no need to create an anti-surge controller.
However, without feedback, the equilibrium point is unsta-
ble for a throttle gain γ less than the same critical value γc,
and an anti-surge controller can be implemented in order to
stabilize the equilibrium.
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3. LYAPUNOV NEURAL
NETWORK

In this Section the controller design based on the principle
of Lyapunov control theory combined with neural networks
will be presented. The Lyapunov neural network method-
ology was proposed by Richards et al. (2018), and only the
essentials of their paper will be presented here.

Consider now the discrete-time, time-invariant, deter-
ministic dynamical system of the form

xt+1 = f (xt ,ut) (15)

where
t is the time step index, t ∈ N;
xt is the state at time step t, xt ∈ χ ⊂ Rd

ut is the control input at time step t, ut ∈ U⊂ Rp

π is the feedback policy, π : χ → U

xt+1 = fπ(xt), fπ(x) = f (x,π(x))
fπ(x) is the resulting closed-loop dynamical system. It is

assumed that the policy π is given and that it is safe to use
within a subset Sπ of the state-space χ , where Sπ is defined
as the region of attraction (ROA) for fπ . In this particu-
lar case, every trajectory of fπ with initial condition x ∈ Sπ

remains in Sπ and will converge to the equilibrium point
xe ∈ Sπ , where fπ(xe) = xe, as time approaches infinity.
Without loss of generality, it is assumed that the equilibrium
point is at the origin, xe = 0. From now on, Sπ represents
the true largest ROA in χ under the policy π . The control
policy π determines, given the current state, the appropri-
ate control action that drives the system to some goal state,
which in this case is the equilibrium point.

3.1. Construction of Safe Level Sets

The Lyapunov direct method is used to determine and con-
struct a safe region S for the closed-loop dynamical sys-
tem xt+1 = fπ(xt). The Lyapunov direct method can de-
termine if an equilibrium point is asymptotically stable or
even GAS. In order to find a Lyapunov function V for fπ

and determine a decrease region DV for V, the Lyapunov
Stability Theorem (Khalil, 2015) is used.

If the Lyapunov function candidate V (x) fulfills the cri-
teria of a strict Lyapunov function, then the equilibrium
point xe = 0 is asymptotically stable. One of the crite-
ria for a strict Lyapunov function is that the derivative of
V (x) is negative definite, except at 0 where V̇ (x) = 0. This
is challenging to verify throughout entire trajectories. It
is easier to instead verify the one-step decrease condition
∆V (x) =V ( fπ(x))−V (x)< 0 for every state x in the level
set of the Lyapunov function candidate V. This is achieved
with:

Corollary 1 (Safe level sets (Kalman and Bertram,
1959)): Every level set V(c) := {x | V (x) ≤ c}, c ∈ R>0

contained within the decrease region DV is invariant un-
der fπ . That is, fπ(x) ∈ V(c), ∀x ∈ V(c). Furthermore,
limt→∞xt = 0 for every xt in these level sets, so each one is
a ROA for fπ and xe = 0.

3.2. Neural Network Lyapunov Function

There are several Lyapunov function candidates that can
be chosen in order to provide a stable equilibrium for the
Moore-Greitzer compressor model, such as the Lyapunov
quadratic function or the Lyapunov sum-of-squares func-
tion. The limitation of such traditional Lyapunov func-
tions is their restrictions on the dynamics, which can lead
to a mismatch between the proposed safe level set and the
largest safe level set, so the ROA could be much more ex-
tensive than what is included. The objective of using neu-
ral networks is to maximize the region of the state-space χ

where it is possible to apply a policy π without necessarily
knowing the true ROA beforehand.

In order to construct safe sets, the Lyapunov Stability
Theorem (Khalil, 2015), must be satisfied. It is also im-
portant to ensure that the NN Lyapunov function candidate
is positive definite and satisfies the Lipschitz continuity re-
quirements. This is achieved with Theorem 1.

Theorem 1 (Lyapunov neural network (Richards et al.,
2018)): Consider Vθ (x) = φθ (x)T φθ (x) as a Lyapunov
function candidate, where φθ is a feed-forward NN. Sup-
pose, for each layer ` in φθ , the activation function ϕ` and
weight matrix W` ∈ Rd`×d`−1 each have a trivial nullspace.
Then φθ has a trivial nullspace, and Vθ is positive-definite
with Vθ (0) = 0 and Vθ (x)> 0, ∀x ∈ χ \{0}. Furthermore,
if ϕ` is Lipschitz continuous for each layer `, then Vθ is lo-
cally Lipschitz continuous.

The last thing required in order for the NN Lyapunov
function candidate Vθ to be a Lyapunov function for the
closed-loop dynamical system fπ , is to implement a training
algorithm. The training algorithm will adapt the parameters
θ , so Vθ satisfies the one-step decrease condition for the
largest possible ROA of DVθ

.
Lyapunov stability theory is used in order to verify that

a level set Vθ (c) := {x | V (x) ≤ c}, c ∈ R>0 is safe, and
this is done by checking the tightened certificate ∆Vθ (x) <
−L∆Vθ

τ at a finite set of states that cover DV ⊆ χ . The Lip-
schitz constant L∆V ∈ R>0 of ∆V and τ ∈ R>0 is a measure
of the density of the states that cover DV . After a level set
Vθ (c) is established as safe, Vθ (c) is used to estimate labels
y from Sπ . As long as the dynamical system fπ is known,
the iterative Algorithm 1, which will iteratively ”grow” an
estimate of Sπ , can be implemented.

The first step is to choose some initialization of the pa-
rameters data θ and use the one-step decrease condition,
as it is positive definite, to verify the current safe level set
Vθ (c). After a level set Vθ (c) is verified as safe, Vθ (c) is
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used to estimate labels y from Sπ . The next step is to sample
states inside this set and slightly around it, and with the dy-
namical model, it is possible to forward-simulate the sam-
ples with some horizon. That is, at iteration k ∈ N≥0, there
will be a safe level set Vθ (ck) and an expanded level set
Vθ (αck) for some α ∈ R>1. The states Vθ (αck) \Vθ (ck)
are forward simulated with the system dynamics fπ for
T ∈ N≥1 time steps. Any states that are already inside the
safe level set Sπ or have mapped inside must lie within the
true ROA, and those outside do not. The estimates of the
true ROA, Sπ , are used to find the labels y, and then these
labels are used with the Lagrangian relaxation defined as

min
θ

Σ
x∈χb

`(y,x;θ) +λ (
y+1

2
) max(0,∆Vθ (x)) (16)

where the state-space χb = {xi}i is re-sampled after every
gradient step, and λ is the Lagrangian multiplier. Equation
(16) is combined with stochastic gradient descent(SGD), a
interative method in order to optimize the parameter data
θ . These steps are repeated and the safe level set Sπ grows
until some stopping criterion is satisfied. The method can
be seen in Algorithm 1.

Algorithm 1 ROA Classifier Training Richards et al. (2018)
1: Input: closed-loop dynamics fπ ; initialized parametric

Lyapunov function candidate Vθ : χ → R≤0; Lagrange
multiplier λ ∈R>0; level set ”expansion multiplier α ∈
R>1; forward-simulation horizon T ∈ N≥1.

2: c0← maxx∈χV (x), s.t. Vθ (c0)⊆Dvθ
B compute the

initial safe level set.
3: repeat
4: Sample a finite batch χb ⊂ Vθ (αck).
5: Sb ← {x ∈ χb | f (T )π (x) ∈ Vθ (ck)}. B forward-

simulate the batch with fπ over T steps.
6: Update θ with (16) via batch SGD on χb and labels
{yi}i for points in Sb.

7: ck+1← maxx∈χVθ (x), s.t. Vθ (ck+1)⊆DVθ
.

8: until convergence

4. Results

4.1. Globally Asymptotically Stable
Equilibrium Point

If a large upper limit, umax, and the control is allowed, the
equilibrium can be shown to be GAS, with saturation con-
straints for the state variables and control input defined as
follows:

ψ̂max = 0.3

φ̂max = 0.6
umax = 0.3,

(17)

where ψ̂ is the plenum pressure coefficient, φ̂ is the mass
flow coefficient and the control input u is the pressure drop
across the valve. The control u is given by u =−Kx, where
x = [ψ̂, φ̂ ]T and K is the LQR control gain. A discrete grid
on which to evaluate the Lyapunov function and thus the
safe level set Sπ is defined as:

Grid = 63001, (18)

where the number of states along each dimension in x are
251. The result can be seen in Figure 3 and Figure 4. With
a high-pressure drop across the CCV, achieved with a high
maximum value of the control input u, the equilibrium point
is globally asymptotically stable.

Figure 3: Safe region Sπ for a GAS equilibrium point.
All trajectories converge towards the equilibrium
point and Sπ covers the entire grid.

As one can see in Figure 3, the ROA Sπ for the closed-
loop system fπ given the fixed policy π covers the entire
grid, and, as can be seen from Figure 4(a) so does the NN
Lyapunov candidate. It can also be seen that all trajectories
converge towards the equilibrium point. This also illustrates
that no surge-cycle exists in this case, as surge is a nonlinear
limit cycle. In Figure 4(b), the NN fraction of Sπ , is 100%
of the ROA. It can be seen that the safe set size is already
100% at the first iteration, and stays that way for all of the
20 iterations.
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Figure 4: (a) Safe NN Lyapunov candidate level sets (b)
Training behaviour of the NN candidate. Maxi-
mum state variables and control input defined in
Equation (17). The NN Lyapunov candidate cov-
ers the entire grid. The training behaviour of the
neural network stays constant since the safe set
size is already 100% at the first iteration.

Figure 5 shows that the safe set size is 63001 in the initial
state, and hence, covers the entire grid, defined in eq. (18),
and that the NN Lyapunov function covers 100.00% of Sπ .
The current safe level ck is only 0.1569 initially, and, as
can be seen in Figure 4(b), ck remains constant for all of
the iterations and does not converge to the fixed boundary
cS = 1.

Figure 5: Initial safe level and safe set size for the GAS
equilibrium.

4.2. Locally Asymptotically Stable
Equilibrium Point

With a low-pressure drop across the CCV, achieved with a
low maximum value of u, the equilibrium point is locally
asymptotically stable. This is motivated by minimizing the
loss connected with the CCV pressure drop. For the AS
control law, the saturation constraints for the state variables
and control input are defined as follows:

ψ̂max = 0.46

φ̂max = 0.5
umax = 0.05

(19)

The result can be seen in Figure 6, where, in (a), the true
ROA Sπ is represented with the green color, the NN Lya-

punov function with orange and the LQR Lyapunov func-
tion with blue. The NN Lyapunov function Vθ performs
much better than the traditional Lyapunov approach and
covers approximately 81% of the true ROA at its best it-
eration. However, Figure 6(b) shows that the current safe
level ck of Vθ grows non-monotonically (where k is the iter-
ation k ∈ N≥0) and does not converge to the fixed bound-
ary cS = 1. The safe level set Vθ (ck) also grows non-
monotonically to cover a significant part of Sπ . For this
example, the safe set size is only 2.46% of the grid defined
in eq. (18), while in Figure 3, the safe set size is 100% of
the grid for the GAS equilibrium point. As such, minimiza-
tion of the pressure drop over the valve decreases the safe
set size for which the equilibrium is stable, which makes
sense; with little control authority it is more difficult to sta-
bilize the system. What can also be seen in Figure 6 is that
all trajectories starting outside the ROA are converging to
the surge limit cycle.

Figure 6: (a) Safe Lyapunov candidate level sets. (b)
Training behaviour of the NN candidate. Maxi-
mum state variables and control input defined in
Equation (19). The control law resulted in an
asymptotically stable equilibrium. The true ROA
Sπ is represented with the green color, the NN
Lyapunov function with orange and the LQR Lya-
punov function with blue. Both the current safe
level ck and the safe level set Vθ (ck) grow non-
monotonically.

In Figure 7 it is shown that the NN Lyapunov function
covers 26.16% of Sπ before the first iteration, and that the
safe set size is only 0.79% of the grid defined in Eq. (18).
The results from the twentieth iteration are shown in Figure
8, where the safe set size is 2.46% of the grid and the NN
Lyapunov function covers 81.77% of Sπ .
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Figure 7: Initial safe level and safe set size for AS equilib-
rium with maximum state variables and control
input defined in (19).

Figure 8: Safe level and safe set size for AS equilibrium
with maximum state variables and control input
defined in (19).

In Figure 9, 40 more iterations have been run, and by
comparing Figure 6(b) and Figure 9(b), several observa-
tions can be made. First of all, the safe level ck contin-
ues to grow, non-monotonically, towards the fixed bound-
ary cS = 1 and at iteration 60, ck = 0.876. Secondly, Vθ (ck)
continues to grow non-monotonically, but does not improve
much during the 40 new iterations, except that the differ-
ence between low and large values decreases.

Figure 9: (a) Safe Lyapunov candidate level sets. (b)
Training behaviour of the NN candidate. This is
the same control law as in Figure 6, only that 40
more iterations have been run.

5. Discussion

5.1. Globally Asymptotically Stable
Equilibrium Point

The first control law for the CCV resulted in a GAS equilib-
rium beyond the original surge line. This can be seen from
Figure 3, where the ROA Sπ for the closed-loop system fπ ,

given the fixed policy π , covers the entire grid. In Figure
4(a) it can be seen that the result of the NN Lyapunov func-
tion covers the entire grid, and in (b) the NN fraction of Sπ ,
is 100% of the ROA. It can also be seen that the safe set
size is already 100% at the first iteration. Since the pol-
icy is fixed to the LQR solution, and, with the given policy,
the system is globally asymptotically stable, the NN Lya-
punov candidate and the LQR Lyapunov candidate provide
the same result, and there is no need for the NN to explore
safe states. This confirms previous findings in the litera-
ture, where in Gravdahl and Egeland (1997), a control law
was derived for the CCV that resulted in a global uniform
asymptotic stable equilibrium point.

In the code that accompanies the NN Lyapunov function,
the maximum value of state and action have to be chosen.
Given these saturation constraints, the policy is fixed to the
LQR solution for the linearized, discretized system. For
the GAS control law, the maximum state variables and con-
trol input are defined in eq. (17). These values were cho-
sen given intersection point of the compressor and throttle
characteristics in Figure 2. With the chosen state and ac-
tion values, the throttle line crosses Ψe(φ̂) where the slope
is negative, and the equilibrium is stable.

5.2. Locally Asymptotically Stable
Equilibrium Point

The result of the second control law can be seen in Fig-
ure 6. For the locally asymptotically stable control law, the
maximum state variables and control input are defined in
eq. (19). These values were chosen with the objective to
see how low the control input could be and still provide
a stable equilibrium. With a low pressure drop across the
CCV, the loss in the system is reduced, and the equilibrium
point is locally asymptotically stable. The NN Lyapunov
function Vθ performs much better than the traditional Lya-
punov approach, and covers approximately 81% of the true
ROA. However, Figure 6 (b) shows that the safe level ck of
Vθ grows non-monotonically, and does not converge to the
fixed boundary cS = 1. The safe level set Vθ (ck) also grows
non-monotonically to cover a significant part of Sπ .

There are several factors with the code created
by Richards et al. (2018) that have to be taken into con-
sideration. First, it is not guaranteed that the safe level set
Vθ (c) will monotonically grow in volume, nor is the con-
vergence of Vθ (c) to Sπ . In Figure 9 it can be seen that
the safe level set Vθ (c) oscillates considerably for the com-
pressor system, but also that the fraction of the true ROA
Sπ does improve. Furthermore, the safe level ck is not guar-
anteed to go to the safe level cS. In Figure 9(b), it can be
seen that ck continues to grow, non-monotonically, towards
cS as the number of iterations increases, and at iteration 60,
ck = 0.876. In comparison, Figure 4(b) shows that ck re-
mains constant for all iterations. The reason for this can
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be that since the GAS control law initially covers the entire
grid, there is no need for the Algorithm 1 to iteratively adapt
safe level sets to the shape of Sπ .

6. Conclusion

These results indicate the feasibility of using the method
of combining traditional control theory with machine learn-
ing approaches for this particular nonlinear system. Simu-
lations providing evidence of differences between a tradi-
tional Lyapunov function and a Lyapunov function based
on NNs were presented. Although the model performances
were not ideal, as the safe level set Vθ (ck) grows non-
monotonically, it is believed that the results presented en-
courage further research. With the method presented only
knowledge of inputs and outputs of the dynamics is re-
quired, and the system does not need to have a specific
model structure. It allows for control design with only re-
strictions on the control variable.
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The system was implemented using simulation parameters
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Table 1: Simulation Parameters for the Moore-Greitzer
compressor system in combination with a close-
coupled valve, adopted from Backi et al. (2016).

Ac flow area 0.01m2

B B-Parameter 0.8319
H coefficient 0.18
Lc length of ducts and compressor 3m
U compressor blade tip speed 80ms−1

Vp plenum volume 1.5m3

W coefficient 0.25
as speed of sound 340ms−1

ψ0,x10 operating point for ψ , respective x1 0.611,0.533
φ0,x20 operating point for φ , respective x2 0.6,0.3

γ throttle gain 0.768,0.411

In the paper it is assumed that the parameters B and γ are
known exactly, which introduce some uncertainty to the pa-
rameters ki. The analysis of the compressor system can be
divided into two cases: open-loop and closed-loop control.

All the simulations were generated with the library Mat-
plotlib in Python.
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