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Abstract

We present a new and efficient implementation of the closed shell coupled cluster

singles and doubles with perturbative triples method (CC3) in the electronic structure

program eT .

Asymptotically, a ground state calculation has an iterative cost of 4n4Vn
3
O floating

point operations (FLOP), where nV and nO are the number of virtual and occupied

orbitals respectively. The Jacobian and transpose Jacobian transformations, required

to iteratively solve for excitation energies and transition moments, both require 8n4Vn
3
O

FLOP. We have also implemented equation of motion (EOM) transition moments for

CC3. The EOM transition densities require recalculation of triples amplitudes, as n3Vn
3
O

tensors are not stored in memory. This results in a noniterative computational cost of

10n4Vn
3
O FLOP for the ground state density and 26n4Vn

3
O FLOP per state for the transi-

tion densities. The code is compared to the CC3 implementations in Cfour, Dalton

and Psi4. We demonstrate the capabilities of our implementation by calculating valence

and core excited states of L-proline.
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Introduction

X-ray spectroscopies such as near edge X-ray absorption fine structure (NEXAFS) can pro-

vide a detailed insight into the electronic structure of molecules and their local environ-

ment.1,2 With the new facilities at the European XFEL and LCLS2 at SLAC the number

of high resolution spectroscopic experiments is increasing. Accurate modelling is a great

aid when interpreting the spectroscopic data, providing new insights into the underlying

chemistry. However, modelling the high energy excitations measured in X-ray spectroscopy

is challenging because they typically generate a core hole which in turn results in a large

contraction of the electron density. To accurately describe this contraction, one either has

to include triple excitations or explicit excited state orbital relaxation in the wavefunction

description.3–6

Coupled cluster theory is the preferred model for calculating spectroscopic properties

for molecules, combining high accuracy and correct scaling with system size in the coupled

cluster response theory (CCRT) formulation.7–9 Coupled cluster singles and doubles (CCSD)

is the most widely used variant of coupled cluster, due to its high accuracy and relatively

feasible computational scaling as O(n4
Vn

2
O), where nV is the number of virtual and nO is the

number of occupied orbitals. Nevertheless, for some properties like core excitation energies,

CCSD can deviate by several electron volts from experimental values. These deviations are

reduced by an order of magnitude if triples are included in the description of the wave func-

tion.4,10 However, coupled cluster singles, doubles and triples (CCSDT) is usually unfeasible

due to the n3
Vn

3
O memory requirement and O(n5

Vn
3
O) computational cost. Approximating

the triples amplitudes can reduce the computational cost to 4n4
Vn

3
O floating point operations

(FLOP) and the required memory to n2
Vn

2
O. Note that this is twice the scaling usually re-

ported in the literature because a matrix-matrix multiplication involves an addition and a

multiplication.

Approximate triples models are typically categorized as noniterative and iterative mod-

els. For the noniterative models, a triples energy correction is computed after solving the
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CCSD equations. The terms included in the energy correction are usually determined based

on a many-body perturbation theory (MBPT) like expansion of the energy.11–14 However,

CCSD(T), by far the most popular of these methods, does not follow a strict MBPT expan-

sion of the energy. For CCSD(T) the energy is expanded consistently to fourth order and one

additional fifth order term is added.15 It was later shown that CCSD(T) can be viewed as an

MBPT like expansion from the CCSD wave function.16 Similar approaches have also been

proposed for excitation energies.17,18 A related method is the ΛCCSD(T) method where

the parameters of the left wave function are included in the MBPT expansion.19,20 The

completely renormalized CCSD(T) method, intended for multireference states has also been

extended to excited states.21 Other models include CCSDR322 and EOM-CCSD∗,23,24 where

a triples correction is added to the CCSD excitation energies. The iterative methods are

generally more computationally expensive than the noniterative methods, but they are usu-

ally more accurate. The CCSDT-n models25 and CC326,27 are the most well known of these

methods. The two models have the same computational cost, but CC3 is more accurate

due to the full inclusion of single excitation amplitudes.28 Recently, CC3 ground and excited

states were combined with the pair natural orbital approximation in order to extend the

model to larger systems.29 For a more extensive discussion of approximate triples methods

and their accuracy, see Ref. 30–35.

Due to the high computational cost, an efficient CC3 implementation is required for larger

molecules.26,27 In this paper we present an implementation of CC3 ground and excited states,

as well as equation of motion (EOM)36 transition moments. Although the EOM formalism

has been shown to be less accurate than CCRT for transition moments,8 the differences

are believed to be small for high level methods like CC3.37,38 The current implementation

has an iterative cost of 4n4
Vn

3
O FLOP for the ground state and 8n4

Vn
3
O FLOP for excited

states. For comparison, the old CC3 excited states implementation in Dalton has an

iterative cost of 30n4
Vn

3
O FLOP and the new implementation in Dalton requires 10n4

Vn
3
O

FLOP per iteration.27 Note that it is erroneously stated in the literature that the minimal
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computational cost is 10n4
Vn

3
O FLOP per iteration.39 For core excited states, we use the core

valence separation (CVS) approximation.40–42 This reduces the iterative computational cost

to 8n4
Vn

2
O FLOP for excitation energies, however, the computational cost of the ground state

calculation remains unchanged.

Theory

In this section, we will derive the equations for closed shell CC3 within the EOM formalism.

Note that almost all the equations in this section are equally applicable in the open shell

case by changing the definitions of the Hamiltonian and the one-electron operator. Consider

the coupled cluster wave function,

|CC〉 = eT |φ0〉 T =
∑
µ

τµXµ. (1)

Here, |φ0〉 is a canonical reference Slater determinant, usually the Hartree-Fock wave

function, and T is the cluster operator with µ labeling unique excited determinants. The

excitation operator, Xµ, maps the reference, |φ0〉 into determinant |µ〉 and τµ is the corre-

sponding parameter, referred to as an amplitude. In the closed shell case, Xµ is defined as a

string of the standard singlet excitation operators, Eai, with a corresponding normalization

factor. For example, a double excitation operator is given by

Xab
ij = EaiEbj, (2)

and we use the standard notation, where the indices i, j, k . . . refer to occupied, a, b, c . . . to

virtual and p, q, r . . . to general orbitals. We will work in a biorthonormal basis and define

a contravariant excitation operator, X̃µ, so that the left space is spanned by determinants
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biorthonormal to the right.43

〈µ| = 〈φ0| X̃µ |ν〉 = Xν |φ0〉 〈µ|ν〉 = δµ,ν (3)

In order to obtain the ground state energy, we introduce a biorthonormal parametrization

for the left state,

〈C̃C| = 〈φ0| (1 + Λ)e−T Λ =
∑
µ 6=φ0

λµX̃µ. (4)

Inserting these expressions into the Schrödinger equation, we obtain the coupled cluster

Lagrangian,

LCC = 〈C̃C|Ĥ |CC〉 = 〈φ0| (1 + Λ)e−T ĤeT |φ0〉 , (5)

where Ĥ is the electronic Hamiltonian,43

Ĥ =
∑
pq

hpqEpq +
1

2

∑
pqrs

gpqrs(EpqErs − Epsδqr). (6)

The equations for full configuration interaction (FCI) are recovered from this Lagrangian if

the excitation space is not truncated. The biorthonormal left side is then equivalent to the

conjugate of the right side up to a normalization factor.

Determining the stationary points of LCC results in the equations for the parameters

τ and λ. The derivatives with respect to λ give the familiar coupled cluster projection

equations for the amplitudes and the derivatives with respect to τ give the equations for

λ. In practice, T and Λ are truncated at some excitation level with respect to the reference

determinant. For example, the CCSDT cluster operators are defined as the sum of the

singles, doubles, and triples cluster operators.

TCCSDT = T1 + T2 + T3 ΛCCSDT = Λ1 + Λ2 + Λ3 (7)

The exp(T1) operator can be viewed as a biorthogonal orbital transformation and we
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employ the T1-transformed Hamiltonian throughout,

H = e−T1ĤeT1 . (8)

Note that we do not use the standard notation to avoid over dressing of the operators. The

equations for CCSDT then become those of CCDT. Inserting these definitions into LCC, we

get the CCSDT Lagrangian,

LCCSDT = 〈φ0|H + [H,T2] |φ0〉

+
∑
µ1

λµ1 〈µ1|H + [H,T2] + [H,T3] |φ0〉

+
∑
µ2

λµ2 〈µ2|H + [H,T2] +
1

2
[[H,T2], T2] + [H,T3] |φ0〉

+
∑
µ3

λµ3 〈µ3| [H,T2] +
1

2
[[H,T2], T2] + [H,T3] + [[H,T2], T3] |φ0〉 .

(9)

The last two commutator terms of eq (9) make the cost of the full CCSDT model scale

as O(n5
Vn

3
O). To reduce the cost we use a perturbation scheme,26,27 where the transformed

Hamiltonian is divided into an effective one particle operator and a fluctuation potential,

similar to MBPT,11,12

H = F + U. (10)

The operators are assigned orders as summarized in Table 1.

LCC3 =
∑
µ1

λµ1 〈µ1|H + [H,T2] + [H,T3] |φ0〉

+
∑
µ2

λµ2 〈µ2|H + [H,T2] +
1

2
[[H,T2], T2] + [H,T3] |φ0〉

+
∑
µ3

λµ3 〈µ3| [H,T2] + [F, T3] |φ0〉

(11)

The CC3 Lagrangian, eq (11), is obtained by discarding terms from the CCSDT Lagrangian,

that are of fifth order in the perturbation and higher, assuming a canonical basis. The
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singles amplitudes, both in Λ1 and T1, are considered to be zeroth order in the perturbation

as they are viewed as approximate orbital transformation parameters.44,45 In contrast to

MBPT where the first contribution of the single excitations appears in second order.

Table 1: Perturbation orders for CC3. Foo and Fvv refer to the diagonal blocks of the Fock
matrix, while Fvo and Fov refer to the off diagonal blocks. T and Λ refer to ground state
parameters. r, l, L and R refer to EOM parameters.

Order 0 1 2

Hamiltonian Foo, Fvv Fvo, Fov, U
Ground state Λµ1 , Tµ1 Λµ2 , Tµ2 Λµ3 , Tµ3

EOM r, l, Lµ1 , Rµ1 Lµ2 , Rµ2 Lµ3 , Rµ3

In coupled cluster theory, excitation energies and other spectroscopic properties are usu-

ally computed using either CCRT or the EOM formalism. In CCRT, time dependent ex-

pectation values of molecular properties are expanded in orders of a frequency dependent

perturbation. The frequency dependent expansion terms are referred to as response functions

and excitation energies and transition moments are determined from the poles and residues

of the linear response function. In EOM theory, the starting point is a CI parametrization

for the excited states. The eigenvalue problem for the Hamiltonian in this basis gives excited

states and excitation energies. Coupled cluster response theory and EOM give the same

expressions for the excitation energies, however, the transition moments differ.

To solve the EOM equations, the similarity transformed Hamiltonian is projected onto

the reference and the truncated excitation space resulting in the Hamiltonian matrix,

H̄µν = 〈µ| e−T ĤeT |ν〉 . (12)

This matrix is not symmetric, hence, the left and right eigenvectors will not be Hermitian

conjugates, but they will be biorthonormal.

H̄Rm = EmRm LTmH̄ = EmL
T
m LTmRn = δm,n (13)
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We introduce the convenient notation

Rm =

 rm

R̄m

 Lm =

 lm

L̄m

 , (14)

where lm and rm refer to the first element of the vectors and L̄m and R̄m refer to the rest.

The vectors Lm and Rm correspond to the operators Lm and Rm, which have a similar form

as Λ and T , but also include reference contributions.

The EOM excited right states are written as

|m〉 = Rm |CC〉 = eTRm |φ0〉 , (15)

and the left states are written as

〈m| = 〈φ0|Lme−T . (16)

Because the τ amplitudes are solutions to the coupled cluster ground state equations, the

first column of H̄ is zero, except for the first element which equals the ground state energy,

E0, and the eigenvalues of H̄ correspond to the energies of the EOM states.

H̄ =

E0 ηT

0 M

 (17)

In the following, the index m will refer to states other than the ground state, which is

denoted by 0. From the structure of the Hamiltonian matrix, we see that the vector R0,

with the elements r0 = 1 and R̄0 = 0, corresponds to the ground state. For the right excited

states, R̄m must be an eigenvector of M with eigenvalue Em. Similarly, for the left excited

states lm = 0 and L̄m has to be a left eigenvector of M , due to the biorthonormality with

R0 and Rm. The left ground state, L0, has the component l0 = 1 and the vector L̄0 is
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obtained from the linear equation

ηT = L̄
T
0 (E0I −M), (18)

where I is the identity matrix. Finally, rm = −L̄T0 R̄m to ensure biorthogonality between

Rm and L0. The matrix J = (M − E0I) is the derivative of the Lagrangian with respect

to τ and λ,

Jµν =
∂2LCC

∂λµ∂τν
, (19)

and is called the Jacobian. As required, the equation for L0 is the same as for Λ. The

CCSDT Jacobian is given by

JCCSDT =
〈µ1| [H + [H,T2], Xν1 ] |φ0〉 〈µ1| [H,Xν2 ] |φ0〉 〈µ1| [H,Xν3 ] |φ0〉

〈µ2| [H + [H,T2+3], Xν1 ] |φ0〉 〈µ2| [H + [H,T2], Xν2 ] |φ0〉 〈µ2| [H,Xν3 ] |φ0〉

〈µ3| [H + [H,T2+3] +
1
2 [[H,T2], T2], Xν1 ] |φ0〉 〈µ3| [H + [H,T2+3], Xν2 ] |φ0〉 〈µ3| [H + [H,T2], Xν3 ] |φ0〉


(20)

and the CCSDT η vector is given as

ηTCCSDT =

(
〈φ0| [H,Xν1 ] |φ0〉 〈φ0| [H,Xν2 ] |φ0〉 0T

)
, (21)

where T2+3 is shorthand notation for T2 + T3. These expressions are written in commutator

form which requires that the projection equations for T are satisfied.

For EOM CC3 we introduce a perturbation expansion. Our starting point is the expres-

sion for the energy of the EOM states,

Em = LTmH̄Rm. (22)

We assign the same perturbation orders to L and R as to T and Λ, see Table 1. As CC3

does not satisfy the projection equations, the first column of H̄ will not be zero after the

first element. However, discarding the terms that are fifth order or higher, we are left with
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the expressions for the CC3 ground state residuals which are zero. In order to derive the

correct CC3 Jacobian, known from CCRT,46 we discard terms from the CCSDT Jacobian

in commutator form using perturbation theory, giving

JCC3 =
〈µ1| [H + [H,T2], Xν1 ] |φ0〉 〈µ1| [H,Xν2 ] |φ0〉 〈µ1| [H,Xν3 ] |φ0〉

〈µ2| [H + [H,T2+3], Xν1 ] |φ0〉 〈µ2| [H + [H,T2], Xν2 ] |φ0〉 〈µ2| [H,Xν3 ] |φ0〉

〈µ3| [H + [H,T2], Xν1 ] |φ0〉 〈µ3| [H,Xν2 ] |φ0〉 〈µ3| [F,Xν3 ] |φ0〉

 .
(23)

To obtain EOM biorthogonal expectation values, the biorthogonal states are inserted

into the expressions for the CI expectation values. For a given one-electron operator, A =∑
pq ApqEpq, the biorthogonal expectation values are expressed in terms of left and right

transition density matrices,47,48 D̃
n,m

and Dn,m:

〈C̃C|A |m〉 〈m|A |CC〉 =
(∑

pq

D̃0,m
pq Apq

)(∑
pq

Dm,0
pq Apq

)
. (24)

The elements of the right transition density are defined as:

Dm,0
pq = 〈m|Epq |CC〉 , (25)

while the elements of D̃
0,m

are given by

D̃0,m
pq = 〈C̃C|Epq |m〉

= 〈φ0| (1 + Λ)e−TEpqe
TRm |φ0〉

= 〈φ0| (1 + Λ)e−TEpqe
T R̄m |φ0〉

+ rm 〈φ0| (1 + Λ)e−TEpqe
T |φ0〉

= D̄0,m
pq + rmD

0,0
pq ,

(26)

where D0,0 is the ground state density.
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Implementation

The closed shell CC3 ground state, singlet excitation energies, and EOM transition moments

have been implemented in the eT program.49 The core part of the algorithms is a triple loop

over the occupied indices i ≥ j ≥ k as proposed for CCSD(T) by Rendell et al.50 and has

been used in several other implementations.27,51,52 Within the triple loop we first construct

the triples amplitudes for a given set of {i, j, k} and contract them with integrals to obtain

the contribution to the resulting vector. By restricting the loop indices and exploiting the

permutational symmetry,

τabcijk = τ bacjik = τ cbakji = τacbikj = τ cabkij = τ bcajki , (27)

the computational cost of constructing the triples amplitudes is reduced by a factor of six. An

outline of the algorithm to construct the triples contribution to the ground state residual, Ω,

is given in Algorithm1. Integrals in T1-transformed basis are denoted by gpqrs. The equation

for the triples amplitudes includes a permutation operator, defined by

P abc
ijk B

abc
ijk = Babc

ijk +Bbac
jik +Bcba

kji +Bacb
ikj +Bbca

jki +Bcab
kij (28)

and the orbital energy difference

εabcijk = εa + εb + εc − εi − εj − εk, (29)

where εp is the energy of orbital p. To recover all contributions to the Ω vector from the

restricted loops, all unique permutations of i, j, k have to be considered. This results in six

terms when all the occupied indices are unique and three terms in the case of two occupied

indices being equal. If all three occupied indices are identical, there is no contribution, as

this corresponds to a triple excitation from a single orbital. In order to avoid reading two-

electron integrals from file inside the loop, the program checks if all the integrals can be

11



kept in memory, otherwise they are read in batches of i, j, k in additional outer loops. To

minimize reordering inside the loop and ensure efficient matrix contractions, the integrals

are reordered and written to disk before entering the loop.

Asymptotically, reordering of the amplitudes or making linear combinations of them scale

as n3
Vn

3
O. However, these operations are typically memory bound. For example, reordering

the amplitudes from 123 to 312 ordering took 57 seconds while the fastest n4
Vn

3
O matrix

multiplication took 240 seconds for a system with 431 virtual and 29 occupied orbitals.

The calculation was run on a node with two Intel Xeon-Gold 6138 2.0 GHz CPUs with 20

cores each and 320 GB of memory. Reordering times are highly dependent on hardware and

compiler, but it is clear that they are significant and constructing linear combinations is even

more time consuming. By constructing contravariant triples amplitudes,

τ̃abcijk = 4τabcijk − 2τ bacjik − 2τ cbakji − 2τacbikj + τ cabkij + τ bcajki , (30)

no additional linear combinations are required to construct the contravariant residual Ω̃.

This residual can then be transformed back to the covariant residual outside the loop.

Ω̃a
i = Ωa

i (31)

Ω̃ab
ij = 2Ωab

ij − Ωba
ij , Ωab

ij =
1

3
(2Ω̃ab

ij + Ω̃ba
ij ), (32)

For systems with spatial symmetry, considerable savings could be achieved by taking

symmetry into account, both in computational cost and memory. However, this results in

greatly increased complexity of the code and spatial symmetry is most relevant for small

molecular systems. Consequently, it is not exploited in our implementation.

For excited state calculations, we may reduce the iterative cost from 10n4
Vn

3
O to 8n4

Vn
3
O

FLOP by constructing τ 3-dependent intermediates before entering the iterative loop. This

is carried out in a preparation routine outlined in Algorithm2. The same intermediates

12



Algorithm 1 Algorithm to construct the CC3 ground state equations.
while not converged do

for i = 1, nO do
for j = 1, i do

for k = 1, j do
τabcijk ← −(εabcijk)−1P abc

ijk

(∑
d τ

ad
ij gbdck −

∑
l τ

ab
il gljck

)
τ̃abcijk ← 4τabcijk − 2τacbijk − 2τ cbaijk − 2τ bacijk + τ bcaijk + τ cabijk

for Permutations of i, j, k do
Ω̃a
i +=

∑
bc τ̃

abc
ijk gjbkc

Ω̃ab
ij +=

∑
c τ̃

abc
ijk Fkc

Ω̃ab
il −=

∑
c τ̃

abc
ijk gjlkc

Ω̃ad
ij +=

∑
bc τ̃

abc
ijk gdbkc

end for
end for

end for
end for
Ωab
ij += 1

3
P ab
ij (2Ω̃ab

ij + Ω̃ba
ij )

end while

are used in the algorithms for both L and R. Nevertheless, we still have to construct

the τ 3 amplitudes in each iteration, see supporting information. In theory it would be

possible to construct an intermediate of size n3
Vn

3
O for this term as well, reducing the iterative

computational cost to 6n4
Vn

3
O FLOP. However, this intermediate would cost 2n4

Vn
4
O FLOP

to construct.

The algorithm for the Jacobian transformation of a trial vector, see supporting informa-

tion, resembles the algorithm for the ground state, but it is separated into two loops. In the

first, τ 3 is constructed and contracted with an R1-dependent intermediate. In the second

loop, the routine used to construct τ 3 is used again, but called twice with different input

tensors to construct R3. The excitation vector is then transformed to contravariant form

and contracted with the same integrals as the ground state to construct the excited state

residual vector.

The algorithm for the transpose Jacobian transformation, is similar to the right trans-
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Algorithm 2 Preparation for the CC3 Jacobian transformations.
for i = 1, nO do

for j = 1, i do
for k = 1, j do

τabcijk ← −(εabcijk)−1P abc
ijk

(∑
d τ

ad
ij gbdck −

∑
l τ

ab
il gljck

)
τ̃abcijk ← 4τabcijk − 2τacbijk − 2τ cbaijk − 2τ bacijk + τ bcaijk + τ cabijk

for Permutations of i, j, k do
Z̃v
abid −=

∑
c τ̃

abc
ijk gjdkc

Z̃o
ajil +=

∑
bc τ̃

abc
ijk glbkc

end for
end for

end for
end for

formation. First, the τ 3 amplitudes are computed and contracted in a separate loop over

i, j, k, before the main loop, where the contribution of the L3 amplitudes are calculated.

The contributions to the left Jacobian transform should be constructed from the contravari-

ant form of L3. However, constructing the contravariant form directly is complicated and

requires several expensive linear combinations. The covariant form, on the other hand, can

be constructed using contractions similar to those required for τ 3 and six outer products,

avoiding any linear combinations. The contravariant form is then obtained using eq (30). A

complication for the transpose transformation is that it requires the construction of interme-

diates inside the i, j, k loop. One of these intermediates requires n3
VnO memory and we have

to add batching functionality, writing and reading the intermediate from file for each batch.

To avoid construction of the full n4
V integrals, the intermediates are contracted directly with

Cholesky vectors outside the i, j, k loop. Asymptotically, the computational cost is 4n4
Vn

3
O

FLOP, the same as for the right transformation.

In Algorithm3, we show how to compute the L3 contributions to Dm,0, see eq (25). The

same algorithm can be used to compute the ground state density, D0,0, by inserting Λ3

instead of L3. For D̃
0,m

several intermediates from the ground state density, as well as the

ground state density itself, are reused, see the supporting information.
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Algorithm 3 Algorithm to compute the CC3 contribution to Dm,0.
for i = 1, nO do

for j = 1, i do
for k = 1, j do

τabcijk ← −(εabcijk)−1P abc
ijk

(∑
d τ

ad
ij gbdck −

∑
l τ

ab
il gljck

)
Labcijk ← (ω − εabcijk)−1P abc

ijk

(
Lai gjbkc + Labij Fkc +

∑
d L

ad
jkgibdc −

∑
l L

ab
lkgiljc

)
L̃abcijk ← 4Labcijk − 2Lacbijk − 2Lcbaijk − 2Lbacijk + Lbcaijk + Lcabijk
for Permutations of i, j, k do

Y o
clik +=

∑
ab L̃

abc
ijkτ

ab
lj

Dm,0
cd += 1

2

∑
ab L̃

abc
ijkτ

abd
ijk

end for
τ̃abcijk ← 4τabcijk − 2τacbijk − 2τ cbaijk − 2τ bacijk + τ bcaijk + τ cabijk

for Permutations of i, j, k do
Dm,0
kc +=

∑
ab L

ab
ij τ̃

abc
ijk

end for
end for

end for
end for

Dm,0
ld −=

∑
c
ik
Y o
clikτ

cd
ki

for a = 1, nV do
for b = 1, a do

for c = 1, b do
τabcijk ← −(εabcijk)−1P abc

ijk

(∑
d τ

ad
ij gbdck −

∑
l τ

ab
il gljck

)
Labcijk ← (ω − εabcijk)−1P abc

ijk

(
Lai gjbkc + Labij Fkc +

∑
d L

ad
jkgibdc −

∑
l L

ab
lkgiljc

)
L̃abcijk ← 4Labcijk − 2Lacbijk − 2Lcbaijk − 2Lbacijk + Lbcaijk + Lcabijk
for Permutations of a, b, c do

Dm,0
lk −= 1

2

∑
ij L̃

abc
ijkτ

abc
ijl

end for
end for

end for
end for

15



The main difference between Algorithm3 and the algorithm for the Jacobian transforma-

tions is the additional triple loop over the virtual indices. This loop is required due to the

occupied-occupied block of the density matrix that has contributions from two triples tensors

with different occupied indices. Therefore, it is not possible to use the previous scheme of

holding only triples amplitudes for a given i, j, k. In a CC3 calculation, the number of virtual

orbitals is much larger than the number of occupied orbitals when a reasonable basis set is

used. Therefore, the BLAS53,54 routines do not parallelize well, and the serial loop over the

virtual indices would be inefficient. To circumvent this, the loops over the virtual indices

were parallelized using OpenMP.55 The triples tensors have to be constructed once for fixed

occupied and once for fixed virtual indices and the computational cost of constructing the

CC3 transition densities increases to 13n4
Vn

3
O per state. Nevertheless, the construction of

the densities constitutes only a small fraction of the time compared to the iterative solution

of the excited state equations.

Applications

To demonstrate the performance of the code, we have calculated the two lowest CC3 singlet

valence excited states of acetamide using aug-cc-pVDZ56 with eT , Psi4,57 Cfour,46,58,59 and

the two implementations in Dalton.39,60,61 The timing data and the number of iterations

for converging the ground state and both excited states are summarized in Table 2. When

running Cfour, the oldest Dalton implementation and Psi4 the CS symmetry of acetamide

has been exploited. For comparison Cfour was also run without symmetry. The threshold

for the convergence of the ground state residual was 10−6, while we used a threshold of 10−4

for the excited states. With Psi4, both the ground and excited state residuals were converged

to 10−4, which is why only eight iterations were needed to converge Ω. The differences in the

convergence of the excited state equations are due to the different start guesses the programs

use. While Psi4 first converges the CCSD equations and restarts CC3 from CCSD, the other
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Table 2: Timings to compare Cfour, Dalton, eT and Psi4. The timings reported refer
to one iteration of the ground state equations, one iteration of the excited state equations
and the total execution time. For the ground state and the excited states nIter specifies the
number of iterations to converge the respective states. The calculations were performed on
one node with four Intel Xeon Gold 6130 CPU with 16 cores each using 40 cores and using
a total of 180 GB shared memory.

Ground state Excited states Total

wall time [s] nIter wall time [s] nIter wall time [min]

eT 16 13 28 65 34
Dalton new 47 13 97 62 129
Cfour symmetry 150 13 320 38 240
Cfour no symmetry 330 13 685 34 468
Dalton old 267 13 767 71 971
Psi4 404 8 1187 49 1040

programs use orbital energy differences as default start guesses. Note that all these programs

can restart from the CCSD solution, but it is the default behavior of Psi4. As the lowest

excited state is not dominated by the lowest orbital energy difference a specific start guess

had to be chosen to obtain the lowest root with Cfour. This start guess improved the

convergence behavior of Cfour significantly. To remove the dependence on the number of

iterations, we report timings per iteration which are dominated by the time spent computing

the CC3 contributions. However, Psi4 does not report timings per iteration to converge the

ground state equations and Cfour does not report timings per iteration for converging the

excited state equations. Therefore, the total time spent solving for the ground state and

the excited states, respectively, was divided by the number of iterations. Even though the

reported timings might not compare entirely identical steps in the codes, Table 2 clearly

shows the efficiency of the CC3 code in eT .

To demonstrate the capabilities of the code, we have calculated singlet valence and core

excitation energies and EOM oscillator strengths for the amino acid L-proline (C5H9NO2).62

One valence excitation energy was calculated at the CCSD/aug-cc-pVTZ and CC3/aug-cc-

pVTZ levels of theory using the frozen core (FC) approximation resulting in 23 occupied

and 544 virtual orbitals.56
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Table 3 shows the excitation energy and oscillator strength for the lowest valence excited

state at the CCSD and CC3 level. The excitation vector has 96% singles contribution and

the excitation energies differ by about 0.11 eV. In Table 4, we report the averaged time per

routine call as well as an estimate for the computational efficiency and the number of routine

calls. For the ground state, for example, ncalls specifies the number of times the ground state

residual vector is computed. The efficiency is defined as the observed FLOP per second

(FLOPS) divided by the theoretical maximum number of FLOPS. For the CPUs used for

this calculation, two Intel Xeon Gold 6152 processors, the theoretical maximum is given by63

2CPUs× 22cores/CPU× 2.1GHz× 32FLOP/cycle = 2956.8GFLOPS (33)

When calculating the number of FLOP, we only count the dominant matrix-matrix multi-

plications with a FLOP cost of 2n4
Vn

3
O. This will be an undercount of the total FLOP, but

should give a ballpark estimate. Note that the CPUs have turbo boost technology, giving

a maximum theoretical frequency of 3.7 GHz when one core is active and 2.8 GHz when 22

cores are active. For the highly efficient BLAS routines used for the matrix multiplications,

the actual frequency is likely to be close to the base frequency of 2.1 GHz, however.

Table 3: Proline excitation energy and oscillator strength for the lowest singlet valence
excitation at the CCSD and CC3 levels of theory.

CCSD CC3
ω [eV] f × 100 ω [eV] f × 100

5.830 0.08 5.718 0.07

From Table 4 we observe that one iteration of the multiplier equations is approximately

twice as expensive as one iteration for the ground state. The transpose Jacobian transfor-

mation, which is required for the multipliers, costs 8n4
Vn

3
O FLOP compared to 4n4

Vn
3
O FLOP

for the ground state. The timings to obtain left excited states are roughly the same as the

timings to solve for the multipliers because a trial vector is transformed by the transpose

of the Jacobian. Note that the timings in Table 4 were obtained with an older version of
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Table 4: Timings for the different parts of the calculation of one valence excited state with
oscillator strengths in L-proline at the CC3 level of theory. ncalls specifies the number of calls
to the subroutines constructing the respective quantity. Timings have been averaged over
the number of routine calls. The calculations were performed on one node with two Intel
Xeon Gold 6152 processors with 22 cores each and using a total of 700 GB shared memory.

Contributions wall time [min] efficiency [%] ncalls

Ground state 163 14.7 10
Prepare for multipliers 169 14.2 1
Multipliers 347 13.8 11
Prepare for Jacobian 147 16.3 1
Right excited states 281 17.1 26
Prepare for Jacobian 160 15.0 1
Left excited states 341 14.1 28
D0,0 379 15.8 1
Dm,0 382 15.7 1

D̃
0,m

530 15.9 1

the code that required the construction of the full n4
V integrals for the left vectors and did

not exploit the covariant-contravariant transformations. In the preparation routines the in-

termediates used in the Jacobian transformations are computed, as shown in Algorithm 2.

The preparation is as expensive as one iteration for the ground state, but we save 2n4
Vn

3
O

FLOP per Jacobian transformation. The ground state density andDm,0 are calculated using

the same routines and the computational cost is the same. The CC3 contribution to D̃
0,m

requires τ 3, λ3 and R3. In addition, R3 is approximately twice as expensive to compute as

τ 3, so D̃
0,m

is considerably more expensive than Dm,0.

We have also calculated six core excited states for each of the oxygen atoms, using core

valence separation (CVS). The aug-cc-pCVTZ basis set was used on the oxygen atom that

was excited and aug-cc-pVDZ for the rest of the molecule (31 occupied and 270 virtual

orbitals).56,64 In Table 5 we show the results for core excitations from the carbonyl oxygen

of L-proline. Due to the better description of relaxation effects by the inclusion of triple

excitations, the excitation energies obtained with CC3 are up to 3 eV lower than the cor-

responding CCSD excitation energies. The same trends are observed for core excitations

from the hydroxyl oxygen, as shown in Table 6. The CC3 oscillator strengths are between
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16% and 60% lower than the values obtained with CCSD. In Figure 1 we show NEXAFS

spectra computed with EOM-CCSD and EOM-CC3. Despite shifting the CCSD spectrum

by −1.9 eV, the two spectra show significant differences. From the CCSD spectrum one

would expect two peaks between 535 eV and 536 eV and the peak at 534 eV is not present

in the shifted CCSD plot. The calculated CC3 excitation energies are in good agreement

with experimental data reported by Plekan et al. in Ref. 65. The authors measured the

first excitation from the carbonyl oxygen at 532.2 eV and a broad peak from the hydroxyl

oxygen at 535.4 eV, consistent with the first two calculated CC3 excitation energies. Note

that taking relativistic effects into account will increase the excitation energies by about

0.38 eV, while increasing the basis set would lower them somewhat.10,66

Table 5: Proline excitation energies and oscillator strengths for core excitations from the
carbonyl oxygen at the CCSD and CC3 level of theory.

CCSD CC3
ω [eV] f × 100 ω [eV] f × 100

533.943 3.62 532.040 2.85
537.103 0.12 533.817 0.10
538.104 0.26 534.756 0.14
538.335 0.15 534.953 0.10
538.710 0.18 535.179 0.03
539.207 0.08 535.677 0.03

Table 6: Proline excitation energies and oscillator strengths for core excitations from the
hydroxyl oxygen at the CCSD and CC3 level of theory.

CCSD CC3
ω [eV] f × 100 ω [eV] f × 100

537.172 1.64 535.093 0.92
537.911 1.39 535.186 0.94
539.598 0.66 536.789 0.28
539.770 0.41 536.955 0.26
540.165 0.32 537.235 0.18
540.736 0.35 537.747 0.21

Timings for the calculations of the core excited states are reported in Table 7 for exci-
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Figure 1: Core excitation spectrum of the oxygen atoms of L-proline computed with CC3
(red) and CCSD (blue). The peaks were broadened using a Lorentzian line shape and a
width of 0.5 eV. The CCSD spectrum is shifted by -1.9 eV to match the first peak of the CC3
spectrum.

tations from the carbonyl oxygen. The timings for the core excitations from the hydroxyl

oxygen are not reported because they are almost identical. Compared to the valence excited

state calculation, the timings for the ground state and the multipliers are reduced due to

the use of smaller basis sets. The CVS approximation reduces the computational cost of

the Jacobian transformations from 8n4
Vn

3
O to 8n4

Vn
2
O FLOP.35,67 Therefore, one iteration is 6

times faster than a ground state iteration. These savings are achieved by cycling the triple

loop over the occupied indices when none of the indices correspond to the core orbitals of

interest. Similar savings can be achieved during the construction of the transition densities.

However, in the present implementation only the triple loop over the occupied indices can

be cycled but not the loops over the virtual indices. The efficiency is improved compared to

the valence excitation calculation as the contravariant code was used for this calculation.
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Table 7: Timings for the different parts of the calculation of 6 core excited states (located at
the carbonyl oxygen) with oscillator strengths for L-proline at the CC3 level of theory. ncalls

specifies the number of calls to the subroutines constructing the respective quantities. Tim-
ings have been averaged over the number of routine calls. The calculations were performed
on nodes with two Intel Xeon Gold 6138 processors with 20 cores each and using a total of
370 GB shared memory.

Contributions wall time [min] efficiency [%] ncalls

Ground state 19 22.2 12
Prepare for multipliers 17 24.8 1
Multipliers 31 26.4 14
Prepare for Jacobian 16 25.2 1
Right excited states 3 7.7 290
Left excited states 3 8.4 315
D0,0 50 10.2 1
Dm,0 23 8.8 6

D̃
0,m

45 6.9 6

In Table 8, we present timings from calculations on furan with aug-cc-pVDZ basis set,

using 1, 5, 10, 20 and 40 threads. We calculated the transition moments from the ground

state to the first excited state, which requires solving for τ , λ, R and L. We also report

speedups relative to the single thread calculation. Increasing the number of threads from 1 to

40 reduces the total wall time by approximately a factor of 15. Due to dynamic overclocking,

the theoretical maximum frequency for the single threaded case is 3.7 GHz while it is 2.7

GHz with 20 active cores per processor and the base frequency is 2.0 GHz.63

(a) D̃
0,2
CC3 (b) D̃

0,2
CC3 − D̃

0,2
CCSD

Figure 2: Transition densities of furan. (a) The second CC3 transition density (D̃CC3) with
contour value 0.006. (b) Difference from CCSD (D̃

0,2

CC3−D̃
0,2

CCSD) with contour value 0.0003.
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Table 8: Timings for calculating the EOM transition moment for the first excited state of
furan in seconds using 1, 5, 10, 20 and 40 threads. Total times as well as timings for solving
for τ , λ, R and L are reported. Numbers of iterations are given in parentheses. The speedup
compared to a single core is given next to the timing. The remaining time is primarily spent
constructing the density matrices. The calculations were performed on a node with two Intel
Xeon Gold 6138 2.0 GHz processors with 20 cores each and using a total of 150 GB shared
memory.

Threads total τ (13) λ (14) R (15) L (16)

1 35 197 - 4231 - 8403 - 9148 - 9605 -
5 8630 4.08 1067 3.96 2059 4.08 2259 4.05 2347 4.09

10 4612 7.63 572 7.40 1103 7.62 1199 7.63 1252 7.67
20 2841 12.39 353 11.98 691 12.16 743 12.32 763 12.58
40 2286 15.39 290 14.61 563 14.94 587 15.60 632 15.19

Finally, in Figure 2, we show the CC3 transition density, D̃
0,2

CC3, as well as the difference

between the CC3 and CCSD transition densities, D̃
0,2

CC3− D̃
0,2

CCSD, plotted using Chimera.68

While the difference between the densities is small (the contour value is only 0.0003), the

triples decrease the volume at the same contour value of the transition density, which goes

along with an increase in the double excitation character. This is reflected in a reduction of

the oscillator strength from 0.181 to 0.168 and an increase in the weight of the doubles in

the excitation vectors.

Conclusion

In this paper we have described an efficient implementation of the CC3 model including

ground state and excited state energies as well as EOM oscillator strengths. To the best of

our knowledge, the algorithm reported is the most efficient for canonical CC3 and the first

implementation of EOM-CC3 transition densities. The computational cost of excited states

is reduced to 8n4
Vn

3
O FLOP, due to the introduction of intermediates constructed outside the

iterative loop. The code is parallelized using OpenMP and the algorithm can be extended

to utilize MPI through coarrays which are included in the Fortran 2008 standard.

A possible modification of the code is to use triple loops over the virtual orbitals for the
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construction of the amplitudes. OpenMP parallelization will then happen at the level of

the triple loops, which is already implemented for parts of the density construction. Early

experimental code indicates that the efficiency of the matrix-matrix multiplications are then

somewhat reduced, but the overhead due to reordering almost vanishes. This is probably

related to the spatial locality of the arrays in memory. Another advantage of such a scheme

is that it can be adapted for graphical processing units.

Finally, the extension to the densities of excited states and the transition densities be-

tween excited states is straightforward and will be reported elsewhere.
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