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A B S T R A C T   

This paper presents a complete numerical framework for modelling open ocean aquaculture structures in waves 
and current using Computational Fluid Dynamics (CFD). A structural dynamics model is incorporated to account 
for the motions and deformations of the net. It is based on the lumped mass method, a non-linear material law 
and implicit time step advancing. The presence of the porous net is considered in the momentum equations of the 
fluid using a forcing term based on Lagrangian-Eulerian coupling and the acting forces on the net. The proposed 
framework is suitable for simulating the interaction of nets of arbitrary geometry and under large motion with 
fluids including complex free surfaces. This is in contrast to existing models which either neglect important non- 
linearities, the physical interaction with the fluid or are limited to certain net geometries. In addition, the fluid- 
structure interaction of floating objects with mooring lines, nets and fluid is accounted for in the model. A new 
floating algorithm is presented for the interaction of the fluid and the rigid structure. It is based on a continuous 
direct forcing immersed boundary method and a level set representation of the object in the Eulerian fluid 
domain. This effectively avoids computationally expensive reconstruction processes of existing approaches and 
enables the application to large three-dimensional structures. The complete numerical framework is first vali
dated against existing measurements for forces on rigid and flexible nets, net deformations and moored-floating 
structures with and without a net in waves. Then, a semi-submersible and a mobile floating open ocean aqua
culture structure are investigated, and the possibilities of the numerical approach are highlighted.   

1. Introduction 

The demand for aquatic food products is expected to increase by 
thirty million tonnes until 2050 (Ferreira et al., 2014), and aquaculture 
production has to play a significant role in satisfying the demand to 
avoid overfishing. In recent years, the traditional aquaculture industry 
has faced increasing criticism for the environmental impacts of their 
near-coast structures on the surrounding marine habitat (Grigorakis and 
Rigos, 2011). This raises the need for alternative concepts in the aqua
culture industry. One of the most promising and economically valuable 
ideas involves the increase of the dimensions of the structure in com
bination with the relocation of the structures offshore. However, this 
implies larger loads on the structure and higher risk of fish loss due to 
the influence of strong current and larger waves. Open ocean aquacul
ture (OOA) is concerned with the adaptation of fish cages and the risks 
during operations to an environment with significant exposure to wave 
action and severe sea conditions (Ferreira et al., 2014). As a 

consequence, alternative design choices adapted from offshore related 
fields of engineering arose during recent years (Chu et al., 2020). This 
includes semi-submerged and submerged fish cages (Xu et al., 2013) to 
reduce the loads as well as floating rigid structures with one or multiple 
nets attached. These new types of structures require more advanced 
tools in the design process to better understand the dominating factors 
for eventual structural failure and fish loss. Numerical modelling is a 
relatively inexpensive and flexible way of assessing these factors and 
reduce the risks if appropriate approaches are chosen during establish
ing the frameworks for OOA structures. 

Historically, computational methods developed for investigating 
aquaculture systems relied on linear potential theory for load calcula
tion and empirical formulae for estimating the velocity reduction 
through the net. The most comprehensive study applying these methods 
was performed by Kristiansen and Faltinsen (2015). They validated a 
lumped mass net model coupled to a dynamic beam equation for the 
floater, linear wave theory to approximate the excitation forces and the 
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formula of Løland (1991) to account for the shading effect of the net 
against experiments of a traditional aquaculture structure. A reasonable 
agreement could be achieved for small wave steepness and low current 
which is in accordance with linear theory. For the same type of structure, 
Shen et al. (2018) validated their numerical model, which is based on 
the same assumptions, against measurements in both regular and 
irregular waves. They concluded that in severe sea states, the defor
mation of the net is of a more limiting factor in the design choices than 
the stresses in the floater. First numerical investigations of OOA struc
tures were presented in Fredriksson et al. (2005, 2003) using a finite 
element method for the net and linear potential theory for the excitation 
forces due to current and waves. The considered structure was a spar 
buoy with an octagonal rim held together by tensioned stays woven into 
the net. No shading effect was taken into account. The authors stressed 
the importance of non-linear effects of extreme waves and 
fluid-structure interaction for the correct prediction of the structural 
dynamics. Xu et al. (2013) compared a numerical model based on po
tential theory and a rigid floater for submersible and moored floating net 
cages with physical model tests. The authors highlighted that the 
lowering of the structure resulted in smaller deformations of the net and 
reduced mooring line tension forces compared with the floating 
configuration. Also, varying wave steepness have minor effects on the 
structural loads in this condition. More recently, Li et al. (2018) pre
sented a numerical analysis of the concept of a vessel-shaped cage sys
tem using a panel method and linear wave theory as the basis. No 
validation against measurements was provided. However, it was 
concluded that a deformable net model is necessary and non-linear ef
fects have to be taken into account if offshore environmental conditions 
are to be investigated. These conditions are characterised by large loads 
on the structure and hence, strong non-linear fluid-structure interaction. 
Thus, the existing numerical tools cannot be regarded as appropriate for 
investigating OOA structures. In contrast, computational fluid dynamics 
(CFD) offers a two-way coupled numerical approach that can be applied 
to understand the environmental loading and structural response by 
modelling the hydrodynamic forces affecting the dynamics of the 
floating structure, the flexible net and mooring system, and their effect 
on the surrounding fluid. To the best of the authors’ knowledge, the only 
numerical approach so far was the two-dimensional model presented by 
Chen and Christensen (2018). They solved the incompressible 
Navier-Stokes equations in a two-dimensional numerical wave tank and 
coupled it to a lumped mass net model using a porous medium approach. 
They validated their model against experiments for a net attached to a 
moored-floating cylinder in waves and current and showed promising 
results. However, the approach was not tested for three-dimensional 
structures such as OOA structures. 

The complex problem of modelling the whole system can be split into 
the sub-problems of solving the interaction between the fluid and a rigid 
moored-floating structure and the flexible porous net, respectively. 
Several approaches exist to solve the fluid-structure interaction (FSI) 
involving rigid bodies only. Moving mesh methods fit a Eulerian grid to 
the body which is distorted by the changing position of the rigid body. 
Accurate results in the vicinity of the body can be achieved, but the 
method faces problems for large body motion and complicated struc
tures. The grid distortion can be avoided effectively by applying the 
concept of dynamic overset grids. Here, the grid around the body moves 
with the structure, and the fluid information is transferred to a fixed 
background grid at a certain distance from the body. Amongst others, 
Carrica et al. (2007) and Chen et al. (2019) successfully developed nu
merical towing and wave tanks using dynamic overset grids. The 
drawback of this method is the increase of computational costs due to 
the interpolations necessary in the overlapping region of the grid, the 
parallelisation of the complete solver, and eventual instabilities due to 
incomplete interpolation stencils. Alternative methods based on an im
plicit representation of the structure in the Eulerian fluid grid have been 
developed to provide the computational efficiency necessary for simu
lating large three-dimensional structures. The most important implicit 

methods are based on the immersed boundary method by Peskin (1977) 
for simulating elastic membranes in fluid. Later, Fadlun et al. (2000) 
introduced this idea to rigid bodies as the direct forcing method. Here, 
the boundary conditions between fluid and solid are respected by 
incorporating an additional source term in the momentum equations. 
The term is calculated on fluid grid points near the surface using a 
reconstructed solution from the fluid domain and the known velocity at 
the nearby solid surface. It was pointed out by Uhlmann (2005) that this 
reconstruction procedure can lead to spikes in the time series of the 
forces because the reconstruction stencil changes as the body moves. 
Yang and Stern (2015) presented a solution to this problem by including 
an overset grid so that the reconstruction stencils remain constant in 
time. This, however, brings along the aforementioned challenges of 
these type of grids. Therefore, Uhlmann (2005) proposed a continuous 
version of the direct forcing method by calculating the forcing term on 
Lagrangian markers which discretise the surface of the structure. The 
terms are then distributed on the Eulerian domain using the interpola
tion procedure of the original immersed boundary method (Peskin, 
1977). The introduced smearing effectively removes force spikes but still 
keeps the nominal order of accuracy for the FSI problem. Additional 
computational costs arise from the back- and forth-transformations be
tween the Eulerian grid and the Lagrangian markers. These costs can be 
avoided by using a completely Eulerian calculation as developed by e.g. 
Yang (2018). Here, the Eulerian grid is split into a fluid and solid 
domain. The momentum equation is solved in the whole domain 
including a forcing term. This additional term is calculated from the 
rigid body velocities at each grid point and smeared over the fluid-solid 
interface using a smoothed Heaviside step function. The author vali
dated the solver against two-dimensional benchmark cases and showed 
high stability and accuracy. Here, the author used markers moving with 
the body for reconstructing the Heaviside step function in each time 
step. In the present paper, the efficiency of this approach is further 
enhanced by utilising a ray-casting method and a level-set function to 
distinguish between fluid and solid. 

The second FSI problem is concerned with the interaction of the fluid 
and the net. The net is an elastic structure with non-linear material 
properties (Lader and Fredheim, 2006) undergoing potentially large 
motions and deformations. The lumped mass method was established as 
the most common solution for solving net dynamics. Originally pre
sented by Lader and Fredheim (2006), the lumped mass method dis
cretises the net into massless bars with mass knots in between. The 
dynamics of the knots are found by solving Newton’s second law and a 
Runge-Kutta time integration. In Bi et al. (2014a,b), the method was 
validated for flexible net sheets and cylinders in steady current flow. 
However, the explicit time integration and missing fulfilment of the 
constitutive equations within each time step lead to severe time step 
restrictions. Implicit methods are therefore more suitable for FSI prob
lems involving a coupled fluid solution. In Martin et al. (2018b), an 
implicit quasi-static net model was proposed where the force equilib
rium is solved for each knot with additional constraints on the connec
tivity of the bars. The missing time-stepping reduces the cost and 
simplifies the coupling to the fluid solver. However, the lack of dynamic 
effects prevents the application to large deformation problems including 
snap loads. A dynamic implicit net model based on the satisfaction of the 
kinematic relation between knot position and bar length was introduced 
in LeBris and Marichal (1998). The original approach assumed inelastic 
material which can lead to ill-posed problems due to high condition 
numbers. Marichal (2003) successfully overcame this drawback by 
including elastic material into the model. However, their derivation 
relied on a linear material assumption and linearised equations. This is a 
severe drawback considering the non-linearity of net material (Lader 
and Fredheim, 2006). Therefore, the authors of this paper included 
non-linear material properties which led a non-linear system of equa
tions for the unknown tension forces (Martin and Bihs, 2021). The 
method was successfully validated against model tests for top-fixed 
deforming net sheets and cages in waves and current. In the present 
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paper, this model is extended to dynamic problems involving moving 
mounting points. 

In contrast to conventional membranes, nets have high porosity and 
consist of multiple individual twines which are passed by the fluid. The 
length scale of the flow around each twine is significantly smaller than 
the length scale of the flow around the whole floating structure. This 
prevents the resolution of the net on the same numerical grid as the fluid 
domain, and an alternative representation of the FSI between net and 
fluid has to be introduced. One possible representation is the definition 
of a porous medium around the net. The fluid momentum equation is 
solved in the whole domain including an additional resistance coeffi
cient in the porous zone (see Bi et al., 2014a; Chen and Christensen, 
2016; Chen and Christensen, 2017; Patursson et al., 2010; Zhao et al., 
2014 for various definitions of the coefficient). As shown in Martin et al. 
(2020), this approach is not appropriate for complex shapes and de
formations and lacks a physical basis. The authors of this paper proposed 
an alternative method based on the same principles as the immersed 
boundary methods by Peskin (1977) and Uhlmann (2005). Here, a 
forcing term is calculated from the hydrodynamic loads on the net and 
distributed on the fluid domain using an interpolation kernel. This 
method was successfully validated for rigid (Martin et al., 2020) and 
deforming nets (Martin and Bihs, 2021) and will be utilised in the pre
sent paper. 

Based on the review of existing approaches, this paper presents itself 
as the first attempt to establish a numerical framework using CFD for 
OOA structures. All parts of the framework are chosen or newly devel
oped aiming to simulate large, three-dimensional structures including 
fluid-structure, fluid-net and net-structure interaction in an efficient 
manner. The paper is structured as follows: section 2 presents the 
different modules of the complete numerical framework. Several vali
dation cases are presented in section 3. The validated numerical model is 
then applied to two typical OOA structures in section 4. The paper 
concludes with final remarks in section 5. 

2. Numerical framework 

The different parts of the proposed numerical model are introduced 
in the following. The framework includes a two-phase numerical wave 
tank, a floating algorithm for modelling the interaction of rigid struc
tures and fluid and an implicit solver for the net dynamics. Details 
regarding the coupling of the net solver to the fluid solver and the rigid 
body solver are also given. A flowchart at the end of the section (Fig. 4) 
provides an overview of the complete framework. 

2.1. Fluid dynamics solver 

The dynamics of any incompressible fluid obeys the conservation of 
mass and momentum. These conservation laws are described by the 
three-dimensional Navier-Stokes equations and continuity equation 
which are written in the convective form as 

∇⋅u= 0, (1)  

∂u
∂t

+ u⋅∇u = −
1
ρ∇p +∇⋅

(
ν
[
∇u+∇uT])+ g. (2)  

Here, u is the velocity vector, ρ is the density, p is the pressure, ν rep
resents the kinematic and turbulent viscosity and g is the gravitational 
acceleration vector. The effect of turbulence is incorporated by adding 
turbulent viscosity to the diffusion term using the Boussinesq approxi
mation and a modified k − ω turbulence model (Bihs et al., 2016). 
Following a one-fluid approach, the two phases, air and water, are 
covered by a single set of equations but space and time dependent ma
terial distributions. The transition between the phases is implicitly 
represented by the zero level set of the smooth signed distance function 
Φ (Osher and Sethian, 1988). The linear advection equation 

∂Φ
∂t

+ u⋅∇Φ= 0, (3)  

is solved for propagating Φ in space and time. After each propagation, 
the reinitialisation equation of Sussman et al. (1994) is solved to keep 
the signed distance properties of Φ. The density and viscosity is then 
calculated using 

ρ = ρwH(Φ) + ρa(1 − H(Φ)), (4)  

ν = νwH(Φ) + νa(1 − H(Φ)), (5)  

with w indicating water and a air properties. Further, the smoothed 
Heaviside step function H is given by 

H(Φ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if Φ < − ϵ
1
2

(

1 +
Φ
ϵ
+

1
π sin

(πΦ
ϵ

))

if |Φ| ≤ ϵ

1 if Φ > ϵ,

(6)  

with ϵ = 2.1Δx and Δx the characteristic length of the discrete domain 
in the vicinity of each evaluation point. 

The set of equations (1) - (3) is solved on a staggered rectilinear grid 
using finite differences. Fifth-order accurate weighted essentially non- 
oscillatory (WENO) schemes (Jiang and Peng, 2000; Jiang and Shu, 
1996) adapted to non-uniform point distances are applied for convection 
terms, and diffusion terms are discretised with second-order accurate 
central differences. Convection and source terms are treated explicitly 
with the third-order accurate TVD Runge-Kutta scheme of Shu and 
Osher (1988), and an implicit Euler method is applied for the temporal 
discretisation of the viscous term. This effectively removes a quadratic 
reciprocal dependency on the cell size from the CFL condition (Bihs 
et al., 2016). An incremental pressure-correction algorithm (Timmer
mans et al., 1996) is used for solving system (1)-(2). In each k-th 
Runge-Kutta sub-step, a velocity field is predicted using the pressure 
gradients of the previous step: 

u(*) − αku(n)

αkΔt
=

βk

αk
u(k− 1) − u(k− 1)⋅∇u(k− 1) −

∇p(k− 1)

ρ

+∇⋅
(
ν
[
∇u +∇uT])(*) + g,

(7)  

with αk = 1.0, 1/4,2/3, βk = 0.0, 3/4,1/3 and k = 1, 2, 3. Afterwards, 
the Poisson equation 

∇⋅
(

1
ρ∇pcorr

)

=
1

αkΔt
∇⋅u(*), (8)  

is solved for the pressure correction term pcorr utilising a fully paral
lelized BiCGStab algorithm with geometric multigrid preconditioning 
from the HYPRE library (van der Vorst, 1992). An n-halo decomposition 
strategy and the message passing interface (MPI) handles inter-processor 
communication. The pressure and divergence free velocity fields are 
finally calculated from 

p(k) = p(k− 1) + pcorr − ρν ∇⋅u(*), (9)  

u(k) = u(*) −
αkΔt

ρ ∇p(k). (10)  

2.2. Including rigid body motion in the fluid solver 

A new continuous direct forcing approach is implemented to account 
for the presence of rigid floating objects in the fluid solver. The same 
level-set routines as for the free surface are utilised. Hence, high effi
ciency through parallelised routines is ensured and simulations of large 
three-dimensional structures are possible. This is in contrast to previous 
research on continuous methods which mostly concentrated on two- 
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dimensional benchmark cases. 
The floating object is transferred to the solver as an STL geometry 

consisting of multiple non-connected triangles. This information is suf
ficient to create a signed distance field Φs representing the geometry in 
the Eulerian fluid domain by applying a ray casting algorithm (Bihs 
et al., 2017) to receive inside-outside information near the body and the 
reinitialisation algorithm of Sussman et al. (1994). An example of a 
complex STL geometry and its level set representation is shown in Fig. 1. 
The generated level set function Φs is used for distinguishing between 
fluid and solid domain by extending (4) and (5): 

ρ = ρsH(Φs) + (1 − H(Φs))⋅(ρwH(Φ)+ ρa(1 − H(Φ))), (11)  

ν = (1 − H(Φs))⋅(νwH(Φ)+ νa(1 − H(Φ))), (12)  

with s indicating solid. 
Following the derivation of Yang (2018), the conservation laws 

∇⋅u = 0,
∂u
∂t

+ u⋅∇u = −
1
ρ∇p + g + f,

(13)  

with the forcing term 

f =
∂P(u)

∂t
+ P(u)⋅∇P(u) +

1
ρ∇p − g, (14)  

hold in the solid domain. Here, P(u) represents the operator for pro
jecting the velocity field into a divergence free rigid body velocity field. 
Comparing (13) with (1) and (2) reveals that the only difference be
tween these two sets of equations is the term f and the diffusion term, 
respectively. Therefore, a single set of equations can be solved in the 
whole domain using H(Φs) for representing the transition of fluid to 
solid and the additional term f for incorporating the correct boundary 
conditions at the interface. At a discrete level, f reads at the new time 
step n+ 1 

f(n+1) =H
(
Φ(n+1)

s

)
⋅
(

P(u(n+1))− P(u(n))

Δt
+P(u(n))⋅∇P(u(n))+

1
ρ∇p(n+1) − g

)

.

(15)  

The velocity at the new time step is unknown a priori. To overcome this 
issue and avoid expensive implicit calculations, the valid approximation 
P(u(n)) = u(n) is made and the pressure is taken from the previous time 
step as a good approximation. Then, 

f(n+1) = H
(
Φ(n+1)

s

)
⋅
(

P(u(n+1)) − u(n)

Δt
+u(n)⋅∇u(n) +

1
ρ∇p(n) − g

)

, (16)  

and by comparing with (7), it can be identified that 

f(n+1) = H
(
Φ(n+1)

s

)
⋅
(

P(u(n+1)) − u(*)

Δt

)

. (17)  

A good approximation of the updated velocity field is u(*) itself. There
fore, the predictor step (7) is first executed without the forcing term. 
Then, f(*) is calculated from 

f(*) = H
(
Φ(*)

s

)
⋅
(

P(u(*)) − u(*)

αkΔt

)

, (18)  

and added to the predicted velocity field before solving the Poisson 
equation (8). 

For the calculation of the rigid body velocity field, the translational 
motion of the rigid body is described by Newton’s second law, and the 
rotational motion is described in a body-fixed coordinate system using 
the Euler parameter e = (e0, e1, e2, e3)

T with the property e Te = 1. Their 
relation to Euler angles is provided in Appendix A. Following Shivarama 
and Fahrenthold (2004), a first-order Hamiltonian system can be 
derived. The translational equations are converted into a system of 
first-order differential equations as well. Hence, the rigid body system 
can be integrated with the same explicit Runge-Kutta method as the fluid 
solver. The body forces and momenta are calculated on the triangulated 
surface using a trilinear interpolation of the fluid properties and an 
integration over all N triangles: 

Fx =

∫

Ω
( − np + ρνnτ)dΩ(x) =

∑N

i=1
( − np + ρνnτ)i⋅ΔΩi,

Mx =

∫

Ω
r × ( − np + ρνnτ)dΩ(x) =

∑N

i=1
ri × ( − np + ρνnτ)i⋅ΔΩi.

(19)  

Here, n is the surface normal vector, τ is the viscous stress tensor and r 
represents the distance vector to the centre of gravity. The calculated 
moments are transferred into the body-fixed coordinate system before 
solving the system. Once the body velocities are calculated, the pro
jection can be calculated as 

P(u(*)) = ẋs + ωs × r. (20)  

with ẋs the translational and ωs the rotational rigid body velocity vector 
in the inertial reference frame. 

2.3. Modelling the net dynamics 

The main concept of the previously proposed net model (Martin and 
Bihs, 2021) is presented in the following. The net is discretised in a finite 
number of mass points (knots) connected by non-linear elastic bars. Due 

Fig. 1. Illustration of the representation of a complex object as a reconstructed signed distance function.  
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to reasons to be mentioned in the next section, a structural element is 
defined as the combination of four points and their four connecting bars 
and covers multiple physical meshes of the net (see Fig. 2). 

A system of equations is formulated for the dynamics of the knots by 
distributing the external forces Fex from each structural element to the 
attached knots. This leads to the dynamic equilibrium 

mi ẍi =
∑Ni

k=1
Tik + Fex,i, (21)  

for each knot xi and its Ni neighbouring knots. Here, dots indicate 
temporal derivatives and Tij represents the tension force vector of each 
bar: 

Tij = Tij bij = Tij⋅
(

xj − xi

|xj − xi|

)

, (22)  

with Tij the tension force magnitude and bij the unit vector of the bar. 
The mass matrix mi is calculated considering the surrounding NS,i 

structural elements using 

mi =
∑NS,i

s=1

⎛

⎝

mair + manx 0 0
0 mair + many 0
0 0 mair + manz

⎞

⎠

s

, (23)  

with mair,s the mass of the partial element, ns the unit normal vector of 
the element pointing in relative velocity direction and ma,s the added 
mass contribution. 

The external force vector consists of gravity and buoyancy forces as 
well as hydrodynamic forces. The latter consist of inertia forces I due to 
the fluid acceleration af ,

Ii =
∑NS,i

s=1

⎛

⎝

ma + manx 0 0
0 ma + many 0
0 0 ma + manz

⎞

⎠

s

⋅af ,s, (24)  

and velocity related forces D which are calculated using the screen force 
model of Kristiansen and Faltinsen (2012). In the inertia system of the 
fluid, D can be split into drag and lift force components in normal (nd) 
and tangential (nl) direction of the local relative velocity vector urel,s =

uf ,s − ẋs: 

Di =
∑NS,i

s=1

ρ
2

Asu2
rel,s(cdnd + clnl)s. (25)  

The coefficients cd and cl are calculated from a truncated Fourier series 
expanded for their dependency on the angle of attack α between fluid 
velocity vector and structural element vector: 

cd(α) = cd,0

∑∞

k=1
a2k− 1cos((2k − 1)α), (26)  

cl(α) = cl,π4

∑∞

k=1
b2kcos(2kα). (27)  

The definition of the constants cd,0 and cl,π4 
can be taken from Kristiansen 

and Faltinsen (2012). The determination of the Fourier coefficients is 
based on non-linear fitting to experimental data. This raises issues as 
most experimental data is normalised by the undisturbed inflow veloc
ity. However, the velocity at the location where the forces are evaluated 
in the numerical simulation is disturbed by the presence of the structure. 
In Martin et al. (2020), an equation is derived to approximate the inflow 
velocity without the structure. Based on momentum equilibria consid
erations, the undisturbed inflow velocity u∞ is approximated by solving 
the intrinsic equation 

u∞ =
cd(u∞)

− 1 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + cd(u∞)

√ ⋅
urel,s

2
. (28) 

An implicit solution for the structural dynamics problem is found by 
starting from the trivial relation between the position of the knots xi and 
xj and the length of the bar lij between them: 
(

x(n+1)
j − x(n+1)

i

)2
=
(

l(n+1)
ij

)2
. (29)  

According to Lader and Fredheim (2006), the material of nets follow the 
non-linear constitutive law 

Tij = C1ε + C2ε2 = C1

(
lij

l0,ij
− 1
)

+ C2

(
lij

l0,ij
− 1
)2

, (30)  

with l0,ij the unstretched bar length and (C1,C2) = (1160 N, 37300 N)

for squared meshes. Inserting (30) in the right-hand side of (29) yields 
(

x(n+1)
j − x(n+1)

i

)2
=

l2
0

4C2
2
⋅
(
− C1 + 2C2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C2
1 + 4C2T (n+1)

ij

√ )2

. (31)  

The left-hand side of (29) is replaced by the dynamic equilibrium (21). 
This is done by expressing the position vectors by its accelerations using 
high-order backward finite differences and replacing them with forces 
(see Appendix B for the derivation). Thus, a non-linear expression f is 
found for each bar bij:  

Fig. 2. Illustration of the definitions for the net model: structural elements 
consist of four knots (thick dots) connected with bars (thick black lines). Each 
element (hatched area) covers multiple physical meshes (thin grey lines). The 
contribution of the structural elements to each knot is shown in match
ing colours. 

fij
(
𝒯 (n+1)) =

(
∑Nj

k=1
m− 1

j T(n+1)
jk −

∑Ni

k=1
m− 1

i T(n+1)
ik + m− 1

j F(n)
ex,j − m− 1

i F(n)
ex,i + Vij + Xij

)2

−
c4

0 l2
0

4 C2
2
⋅
(
− C1 + 2C2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C2
1 + 4C2T(n+1)

ij

√ )2

= 0,

(32)   
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with 𝒯 the unknown global vector of tension force magnitudes. A system 
of equations can be formulated and solved using the improved Newton’s 
method (Chun, 2005) 

𝒯
(*)

= 𝒯
(n)

− [𝒥 (𝒯
(n)
)]

− 1
ℱ(𝒯

(n)
),

𝒯
(n+1)

= 𝒯
(*)

− [𝒥 (𝒯
(n)
)]

− 1
ℱ(𝒯

(*)
),

(33)  

with ℱ the vector of the expressions (32) and 𝒥 its Jacobian matrix (see 
Martin and Bihs, 2021 for the expression). In practice, (33) converges 
well if the initial condition is chosen properly. More details can be found 
in Martin and Bihs (2021). The converged result of (33) can then be used 
for calculating the acceleration, velocity and position of the knots in a 
straightforward manner. 

2.4. Coupling the net solver to the fluid solver 

The solidity Sn of a net is defined as the ratio of solid front area to the 
total area and is calculated as (Fredheim, 2005) 

Sn =
2dt

lt
−

(
dt

lt

)2

, (34)  

with dt the twine diameter and lt the twine length. Sn typically varies 
between 0.1 and 0.3 for aquaculture nets. The resulting difference be
tween the length scale of each mesh and the total structure prevents the 
resolution of the whole net in the discrete space. This raises the need for 
an alternative fulfilment of the boundary conditions at the fluid- 
structure interface because the physical fluid-structure interface is not 
present in the simulation. Following the Lagrangian approach developed 
in Martin et al. (2020), these boundary conditions are replaced by a 
source term S which expresses the physical loss of fluid momentum due 
to the presence of the net, which leads to a pressure jump. The term is 
determined from the known external forces on the net and is added to 
the Navier-Stokes equations before the pressure correction step. 

The momentum loss is assumed to be uniformly distributed over the 
net surface regardless of the difference between twines and voids. This 
implication requires uniformly distributed markers holding S and that 

Fig. 4. Flowchart of the numerical model.  

Fig. 3. Illustration of the discrete net structure for the fluid-structure interaction. Black lines represent structural elements of the net, blue lines show the triangulated 
surface and the Lagrangian points are marked in red. the background shows the Eulerian fluid grid as thin grey lines. 
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the area which is covered by each marker is nearly equal to the cell size 
of the encircling fluid domain. However, it is not practical to evaluate 
the structural dynamics on a scale where the knots fulfil these re
quirements. Therefore, additional Lagrangian markers are introduced to 
distribute S. They are defined by splitting the structural elements in 
triangles according to the Eulerian grid size in their vicinity. The 
Lagrangian markers are then defined in the geometrical centres of each 
triangle. An example of the distribution of the markers on the discrete 
net structure is shown in Fig. 3. 

The forces are distributed on the fluid grid points xe using the 
interpolation 

S(xe) =
∑Le

L=1

s(xL)

ΔxΔyΔz
D
(xe − xL

Δx

)
D
(

ye − yL

Δy

)

D
(

ze − zL

Δz

)

, (35)  

with Le the number of markers within a defined kernel around xe which 
is taken from Peskin (1977): 

D(r) =

⎧
⎪⎨

⎪⎩

1
4

(
1 + cos

(πr
2

))
if |r| < 2.0

0.0 else.
(36)  

The forces vectors s(xL) at the marker with position xL = (xL, yL, zL) are 
calculated by integrating the external forces in (21) over the triangle 
area AL: 

s(xL) =
[ρ
2

u2
rel⋅(cdnd + clnl) + ma

(
af + diag

(
nx, ny, nz

)
⋅
(
af − ẍ

))
+ G

]

L
⋅AL.

(37)  

2.5. Coupling net and rigid body dynamics 

Additional remarks are given regarding the coupling of the fluid-net 
and fluid-rigid structure solver. At first, it is decided to explicitly couple 
the net dynamic solver to the remaining algorithm due to the different 
time advancement procedures. Therefore, the fluid velocity field of the 
previous time step is chosen for calculating the loading on the nets. The 
field is interpolated to the points where the external forces are evaluated 
using the same kernel function as provided in section 2.4. After the 
external forces are evaluated, the new tension force distribution is 
calculated and used for updating the dynamic properties of the knots. 
Furthermore, the topmost knots are assigned to the rigid body motion to 
ensure a tight coupling. For this purpose, it is sufficient to replace the 
third or fourth term of the dynamic equilibria (32) with the known 

Fig. 6. Comparison of the numerical and experimental results for a rigid net sheet in steady current. Numbers in legend refer to the solidity of the net.  

Fig. 5. Computational domain for the simulation of a rigid net sheet in a 
steady current. 
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acceleration of the rigid body at these points. Two-way coupling is 
enabled by adding the tension forces acting on the top knots to the rigid 
body motion solver as external loading. It is also to be noticed that the 
later applied mooring system is incorporated in the same manner. It is 
referred to Martin et al. (2018a) for more details. 

3. Validation of the net model in current 

The structural net model and its coupling to the fluid solver are 
validated for steady current flows in the following. A validation 
involving wave loads can be found in Martin and Bihs (2021); Martin 
et al. (2020). At first, the forces on rigid net sheets, i.e. without 
considering net deformation, are investigated. Afterwards, the defor
mation of cylindrical cages and net sheets are compared to experiments 
in steady current flow. The main focus in these cases lies on the correct 
deformation and shading of and forces on nets with different geomet
rical properties. 

3.1. Drag and lift forces on a rigid net sheet 

Føre et al. (2020) investigated rigid net sheets of different solidity in 
a steady current flow. The sheets are fixed in a frame of 1.215 × 0.985 m 
and towed in a tank of 175.0 × 10.5 × 5.6 m with a distance of 
approximately 0.39 m between the upper part of the frame and free 
surface. As materials, knotless nets with the solidities Sn = 0.15,0.16,
0.23 and 0.32 are considered. The twine thickness decreases from 2.5 
mm for the lowest solidity to 1.3 mm for the highest. The length of the 
twines varies between 32.4 mm and 8.0 mm. The angle of attack be
tween net and current α is α = 0∘ and 45∘, and additionally 22.5∘ and 67.
5∘ for the second and third net. Different inflow velocities between 0.25 
m/s and 2.0 m/s are considered. For most configurations, the global 
drag and lift forces are calculated using (25), and the velocity in the 
wake of the sheet is measured 0.715 m behind the sheet and 0.9 m below 
the free surface. 

The numerical domain has the dimensions 12× 7 × 5.6 m and is 
shown in Fig. 5. The width and length of the tank are reduced due to 
efficiency reasons, but without affecting the results. The free surface is 
modelled as a symmetry plane. A uniform discretisation with Δx = 0.07 
m is used. Convergence studies are not presented as the coupling is 
insignificantly dependent on the fluid grid size and the flow is mostly 
uniform. 

Fig. 6 a presents the drag forces for perpendicular inflow, and Fig. 6b 
shows the drag force distribution for varying angles of attack for u∞ =

1.0 m/s. The forces increase with the net solidity and decreasing α due to 

an increasing area of attack, and they increase quadratically with the 
inflow velocity as expected. The maximum deviations between numerics 
and experiment are 20% for the smallest velocities and solidities. A 
better agreement is seen for the lift forces at α = 45∘ (Fig. 6c) with de
viations smaller than 10%. For Sn = 0.16, Føre et al. (2020) report 
inaccurate measurements because the expected lift forces should be 
larger than for Sn = 0.15. Therefore, the numerical model seems to 
predict a more accurate result here. The distributions of the lift forces 
generally follow the drag forces due to the same reasons. However, the 
lift forces reach a peak value at around 45∘ and decrease again for larger 
angles because the net acts as a closed surface with flow detachment 
rather than as a porous sheet in these cases. 

The flow decelerates through the net as indicated in Fig. 6d. The 
shading effect increases with the solidity of the net which is respected in 
the numerical model through the dependency on the drag forces. 
Further, the model predicts a lower influence of the inflow velocity on 
the relative velocity reduction for all solidities. The same effect is re
ported in the experiments, except for in the case of the largest solidity. 
Additional measurements should be conducted to clarify the eventual 
existence of changing shading effects for high solidity nets. Generally, 
the numerical model over-predicts the momentum loss but the de
viations stay within a 10% error bound. 

3.2. Forces on and deformation of a cylindrical net cage 

The complexity of the simulation is increased by considering the net 
deformation within the FSI solver. The physical model tests of Bi et al. 
(2014b) in which a top-fixed cylindrical net cage was investigated in 
steady current flow are considered for validation. The domain size is 5×

0.45× 0.4 m which is adopted from the experimental setup. It is dis
cretised using Δx = 0.01 m. The free surface is modelled as a symmetry 
plane for computational efficiency. Slices of the computational domain 
are shown in Fig. 7. The investigated cylinder has a diameter of 0.254 m, 
a height of 0.15 m and solidity of 0.12. The centre of the structure is 
placed at (x,y,z) = (2.5,0.225,0.325) m. The large physical mesh size of 
the cylinder enables the usage of the original number of meshes in the 
simulation. As the net is knotted, additional drag and inertia forces are 
added to the dynamic equilibria to account for the presence of spherical 
knots. Similarly, the effect of a bottom sinker is added to the lowest row 
of structural elements using Morison’s formula (Morison et al., 1950). 
Four different inflow velocities, u∞ = 0.069 m/s, 0.122 m/s, 0.178 m/s 
and 0.242 m/s are reported with a sinker weight of 8 g. Additionally, 
two heavier sinker weights are attached to the structure for u∞ = 0.242 
m/s to investigate their influence on the deformation of the net. 

Fig. 7. Slices through the computational domain for the simulation of a cylindrical net in steady current flow. Top: x − z centre plane; bottom: x − y plane at z =
0.325 m. The deformed structure is shown in yellow. The contours show the velocity in x-direction for the case with u∞ = 0.122 m/s and an 8 g sinker. 
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Fig. 8. Comparison of the numerical and experimental results for a flexible net cylinder with a 8 g sinker weight in different steady current flow.  
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The comparison of simulated and measured results for the sinker 
weight of 8 g is presented in Fig. 8. The drag forces qualitatively follow 
the theoretical distribution of forces on a cylinder for different inflow 
velocities. The velocity reduced by the presence of the net is well 
captured numerically as seen in Fig. 8b. Here, the model under-predicts 
the experimental data by up to 10%. Reported pictures from the ex
periments are used to compare the deformation of the cage though this 
implicates large uncertainties. The qualitative comparison of the rear 
vertical centreline is presented in Fig. 8c. As the velocity increases, 
larger hydrodynamic loads increase the deformation of the net structure. 
The numerical model presents a good approximation of the physical 
model test. 

Similar effects can be observed if the sinker weight is increased (see 
Fig. 9a). The additional gravity forces counteract the hydrodynamic 
forces and, hence, decrease the deformation of the net in the flow di
rection. In principle, the numerical model agrees well with the experi
ment. It is however noticed that two different deformation pictures are 
shown for the same setup of u∞ = 0.242 m/s and 8 g sinker weight in Bi 

et al. (2014b). A possible explanation is the strong vortex shedding for 
this configuration, leading to oscillatory motion of the structure. The 
pictures might be taken from two different time instances. This expla
nation is confirmed numerically because it is possible to find matching 
distributions for both pictures within the converged solution. In addi
tion, Fig. 9b presents the distribution of the x-velocity through the net. It 
clearly shows the momentum loss of the fluid through the front and back 
of the net. The simulation predicts similar velocity reduction for all 
weight configurations, whereas the experiments report an increasing 
reduction for more deformed nets with larger angles of attack between 
fluid and structure. This effect is a new observation presented by Bi et al. 
(2014b)but stays in contrast to previous measurements of, e.g. Paturs
son et al. (2010) which showed a minor dependency of the angle of 
attack on the velocity reduction. The latter could also be confirmed 
numerically by the present approach Martin et al. (2020). 

Fig. 9. Comparison of the numerical and experimental results for a flexible net cylinder with varying sinker weights in steady current flow of u∞ = 0.242 m/s.  

Fig. 10. Deformation of the net sheet with Sn = 0.16 in a steady current flow of u∞ = 0.3 m/s with different sinker weights attached. The weight decreases from the 
left to the right net in the picture. The colours indicate tension forces in the bars. 
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Fig. 11. Comparison of the numerical and experimental tension forces at the top of a net sheet in steady current flow. In Bardestani and Faltinsen (2013), the results 
are normalised by the tension forces without inflow T0. The shown data are obtained after multiplication with the numerically calculated T0. The numbers in the 
legend refer to the sinker weight in kilogram. 

Fig. 12. Two-dimensional domain for the simulation of a moored-floating cylinder in waves. The cylinder is shown in blue, the mooring lines in green and λ is 
the wavelength. 
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3.3. Tension forces in a deforming net sheet 

Bardestani and Faltinsen (2013) presented model test results for a 
deforming net sheet in steady current flow. In contrast to the previous 
case, tension forces acting at the top of the net were measured for 
different net geometries, sinker weights and inflow velocities. The 
proper determination of the structural forces is the result of accurate 
replication of the loads on and deformation of the structure itself. Hence, 
it is a reliable measure for validating numerical models for the inter
action of net and floating structures. In the experiment, a wave tank at 
the Department of Marine Technology at the Norwegian University of 
Science and Technology was used. The tank has the dimensions 13.67 ×
0.6× 1.3 m with 1 m water depth. The same tank size is used in the 
numerical simulations, and a cell size of 0.05 m is considered. All nets 
have the size 0.51× 0.76 m and are placed in the middle of the tank with 
the top of the net fixed close to the free surface, which is replaced by a 
symmetry plane in the simulation to save computational costs. The 
considered nets consist of square meshes modelled by 10 ×10 elements 
and have a solidity of 0.16,0.19 and 0.23 with a twine diameter of 2.5,
2.5 and 1.8 mm. The corresponding twine lengths are calculated from 
(34). A cylindrical sinker was attached to the bottom of the net. Its 
weight varies between 1.2, 1.4 and 1.6 kg. The simulations are executed 
until a steady state is reached and then compared to the experimental 
data. 

The resulting tension forces over changing inflow velocities in Fig. 11 
reveal three characteristics for the investigated setup. At first, a non- 
linear increase of the tension force can be observed for increasing ve
locities irrespective of the solidity or sinker weight. This is caused by the 
increase of hydrodynamic forces as shown above. Further, the tension 
increases with increasing sinker weight even though the deformation of 

the net decreases as indicated in Fig. 10. This shows that the increase of 
gravity forces exceeds the decrease in hydrodynamic forces. Hence, the 
sinker weight significantly influences the behaviour of the system. This 
is confirmed by the last observation that the tension forces increase with 
the net solidity, due to the increase of net area, but the effect is negligible 
here. Qualitatively, the numerical framework agrees with the experi
ments on these phenomena, and most predicted results are within a 10% 
error bound. The largest deviations are seen for the highest velocity and 
solidity with errors of up to 20%. A reasonable explanation for the de
viations is the fact that the flow around the sinker is not resolved in the 
simulation. Hence, the attachment between sinker and net is missing, 
and the important drag and inertia forces are approximated using 
Morison’s formula. 

3.4. Moored-floating cylinder in waves 

The presented floating algorithm in section 2.2 is validated against 
measurements of a moored-floating cylinder in waves. The setup repli
cates the experiments of Kristiansen (2010) which were performed in 
the same tank as described in section 3.3. A cylinder with diameter 0.1 
m, the same length as the width of the tank and a mass of 3.94 kg/m is 
placed in the tank. A mooring system, consisting of ropes and springs 
with stiffness 151.2 N/m2 and pre-tension 38.1 N/m, is attached to the 
cylinder. The other end of the lines is coupled to a pulley 2.43 m away 
from the cylinder at a height of 0.136 m above the free surface. A 
two-dimensional setup of the experiments is investigated in the nu
merical wave tank shown in Fig. 12. The waves are generated in a wave 
generation zone of one wavelength, and a numerical beach damps the 
waves at the end of the tank. A description of these methods can be 
found in Bihs et al. (2016). The mooring system is modelled as two 

Fig. 13. Comparison of the numerical and experimental results for the decay tests of a moored-floating cylinder.  
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springs mounted at the centre of the cylinder. 
First, a convergence study is conducted using decays test of the 

moored-floating cylinder (see Fig. 13). In the experiments, only a surge 
decay of the moored-floating cylinder is reported. The comparison of the 
time series using numerical grids with Δx = 0.01,0.0075 and 0.005 m is 
presented in the Figs. 13a and 13 b. For all chosen cell sizes, the nu
merical model captures the first peak well. Numerical damping results in 
under-prediction of the subsequent amplitude for coarser grids. Similar 
observations are indicated for the free heave test (Fig. 13c). Although 
the medium grid seems to accurately predict the amplitudes, further 
refinement is needed for a convergence of the phase. As a consequence, 
the finest cell size is chosen for further testing. 

Next, the motion responses in surge and heave in regular waves with 
a constant steepness of 1/14 are compared. The waves have periods of 

0.497,0.544,0.601,0.761 and 0.878 s and are modelled as 2nd-order 
Stokes waves in the numerical simulations. The comparison of the 
time series can be found in Fig. C.34–C.36 in Appendix C and indicate a 
proper working of the framework. A more robust indication of the ob
ject’s behaviour can be investigated through the amplitude responses 
over the wave periods as shown in Fig. 14. In general, the deviations are 
between 5% and 10%. 

In shorter waves, the surge motion oscillates with the encounter 
frequency plus a sub-harmonic component at half the frequency. This 
effect is captured well by the numerical model as seen in Fig. 15, which 
shows the power spectrum of the surge response for the shortest wave. 
Further, the model follows the linear relation between the wave period 
and surge amplitude response present for short waves. As shown in 
Fig. 16, the object thereby damps the waves almost completely as the 

Fig. 14. Comparison of the response amplitude operators (RAO) between the numerical model and the experiments for the moored-floating cylinder in regular 
waves. The linear solution is taken from Kristiansen (2010). 

Fig. 15. Numerically predicted power spectrum for the sub-harmonic surge motion in the wave with period T = 0.497 s.  
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Fig. 17. Fourier amplitudes of the first three harmonic components of the acceleration obtained from the numerical model for the moored-floating cylinder in regular 
waves. Experimental results are shown as black markers of corresponding shape. 

Fig. 16. Time instances of the simulation of a moored-floating cylinder in regular waves. The figures show the x-velocity profiles in waves with period 0.491 s (top) 
and 1.131 s (bottom). 

Fig. 18. Computational domain for the simulation of a moored-floating cylinder with net in waves. Mooring system and net are shown in green, the floater in yellow.  
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wave height in the wake is significantly reduced. The heave motion 
gradually increases as the waves increase in height. Here, linear theory 
significantly over-predicts the heave response, whereas the numerical 
solution agrees well with the experiment. In longer wave periods, the 
heave response amplitude reaches a value slightly above 1 as the cyl
inder follows the surface of the long waves. As indicated in Fig. 16, 
highly non-linear fluid-structure interaction occurs in these conditions. 
Around the surge resonance frequency, the numerical model predicts 
amplitudes close to the experiments, whereas theoretical formulae 
typically overestimate the response. 

Following the work of Kristiansen (2010), further analysis of the 
wave excitation forces can be conducted by comparing the significant 
amplitude components of the acceleration signal. This is caused by the 
direct link of acceleration and hydrodynamic load through Newton’s 
second law. The resulting linear, second and third harmonic components 
of the acceleration amplitudes are provided in Fig. 17 using discrete 
Fourier analyses. In surge direction, the excitation is mainly driven by 
the linear component. High-order components become more relevant for 
longer waves, in particular around the surge resonance. This increase 
might be caused by wave overtopping and viscous effects due to flow 
separation. For the vertical accelerations, second-order harmonics 
exceed the linear part for wave periods between 0.8 s and 1.0 s. It is 
noticed by Kristiansen (2010) that this effect occurs because the second 
component occurs at a frequency close to the natural heave frequency of 
the system. As a consequence, the disregard of these high-order com
ponents can lead to a significant under-estimation of the loads on the 

structure. 

3.5. Moored-floating cylinder with a net attached in waves 

As a final step of the validation process, the complete numerical 
framework is tested against measurements of a moored-floating cylinder 
with an attached net in waves (Bardestani and Faltinsen, 2013). The 
considered experiment is a combination of previous cases. The moored 
floater is the same as in section 3.4, and the attached net with solidity 
0.23 and sinker weight 1.64 kg is taken from section 3.3. Tension forces 
acting in the topmost twines are reported for regular waves with a wave 
steepness of 1/14 and wave periods between 0.4 s and 1.3 s. The di
mensions of the numerical wave tank are adapted from the previous 
section, but a third dimension is added due to the presence of the net. A 
grid size of 0.005 m is defined for the x- and z-direction and a coarser 
resolution of 0.08 m is chosen in y-direction because no 
three-dimensional effects are expected. The complete setup is shown in 
Fig. 18. 

Fig. 19 compares the predicted maximum tension forces with the 
experimental data. For small waves, the maximum tension forces are of 
similar magnitude as in a hydrostatic fluid due to the small motion of the 
cylinder in these waves. As the wave height increases and the wave 
period approaches the eigenperiod of the system, the maximum tension 
forces are approximately five times higher than in the hydrostatic con
dition and snap loads occur. These loads arise from the relative motion 
between the cylinder and sinker. Typically, when the cylinder is in a 

Fig. 20. Two typical situations during the simulation of a moored-floating cylinder with net in a regular wave with T = 0.761 s. Colours show velocity on free 
surface in x-direction. 

Fig. 19. Comparison of the numerical and experimental maximum tension forces in the topmost twines over the wave period Tw for the moored-floating cylinder 
with net in regular waves. 
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wave trough, the maximum elongation of the net reduces and the net 
becomes slack (see Fig. 20a). When the wave trough passes and the 
cylinder is accelerated upwards by the following wave crest, the net 
accelerates but its motion is restricted by the sinker mass. Thus, a large 
force is observed in the net which might lead to damage to the net in 
practice. The behaviour of the system changes for very long waves. Here, 
both the cylinder and the sinker follow the curvature of the waves, and 
the occurrence of snap loads becomes less likely. The numerical model 
quantitatively agrees very well with the experimental data in short and 
long waves. The snap loads tend to be over-predicted by up to 15%. 

Additionally, the change of the motion of the moored cylinder due to 

the net with sinker is presented in Fig. 21. It shows that the amplitude 
responses in both, heave and surge, reduce. For the surge motion, the 
qualitative behaviour of the system is less influenced but smaller am
plitudes can be expected. This might be caused by the inertia and drag of 
the net. In comparison, the characteristics of the system change signif
icantly in the heave direction. The reason is the relatively heavy sinker 
weight which requires large excitation forces to accelerate in the fluid. 
Hence, it constrains the cylinder motion for small and medium wave
lengths resulting in small amplitude responses. 

Fig. 21. Numerically calculated RAO for the moored-floating cylinder with net in regular waves. The results from section 3.4 are shown for comparison.  

Fig. 22. Numerical setup for the simulation of the semi-submersible OOA structure in waves. All measures are in metres.  
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4. Engineering applications 

The functionality of the proposed numerical framework is elaborated 
for two types of OOA structures in regular and irregular waves as well as 
current. 

4.1. Semi-submersible OOA structure 

Semi-submersible offshore fish cages are characterised by being 
attached to a pre-tensioned mooring system which holds the structure in 
place but also influences the seakeeping properties of the system. 
Therefore, the accurate prediction of the dynamic responses to varies sea 
states is of importance and exemplarily investigated for a structure in the 
style of Ocean Farm 1. The structure was originally developed by Sal
Mar, Norway and later replicated by Zhao et al. (2019) for model tests in 
a wave-current flume at the State Key Laboratory of Coastal and 
Offshore Engineering, Dalian University of Technology, China. The ex
periments were performed in a 1:120 model scale and included three 
different draughts. Unfortunately, the documentation of the experi
ments lacks key information, amongst others, about the exact geometry, 
centre of gravity, mass and moments of the object and exact location of 
the mooring system. Also, the chosen scaling factor is far smaller than 
typical scale factors used in the marine technology practice, where 
model tests are typically performed at 1:20-60 scale to minimize the 
scaling effects. Therefore, the experiments are not necessarily repre
sentative for the dynamics of Ocean Farm 1 and only taken as a rough 
reference for the setup of the simulations. 

The structure is assumed to be rigid and consists of 8 pontoons with 

straight columns attached. The columns are connected at three different 
heights via additional thinner columns so that a hexadecagon with a 
diameter of approximately 1 m is formed. An additional pontoon and 
column is placed in the middle of the structure slightly below the others 
and connected to the other columns with thin pipes. The complete 
structure is shown in Fig. 1. In comparison to the model of Zhao et al. 
(2019), the thinnest pipes are not considered because of their negligible 
contribution for the loading and minor influence on the fluid. The 
draught of the model is 0.28 m in the simulations and reached by 
adjusting the overall mass of the structure and a free heave decay test. 
Uniform mass distribution is then assumed to calculate the moments of 
inertia for the rotational motions of the structure. 

A characteristic of this semi-submersible OOA design is that the net is 
fastened more tightly to the structure than in traditional aquaculture 
cage systems (Chu et al., 2020). As a consequence, the deformation of 
the net can be neglected. In the numerical model, this assumption is 
incorporated by making the net as part of the rigid structure instead of 
calculating its dynamics separately. The external forces on the net are 
added to the rigid body solver and used for determining the shading 
effect as before. The net covers the complete structure and is assembled 
using a cylinder for the side walls and a cone for the bottom. Each part of 
the net consists of twines with a length of 8 mm and thickness of 0.6 mm 
resulting in a solidity of 0.145. A mooring system is attached to the 
structure for the simulations in waves. The experimental setup includes 
four mooring lines, each consisting of a rope with a linear spring at the 
end. The stiffness of the lines is calculated as 195 N/m based on the 
reported relation between force and line elongation. Further, the pre
tension is set as 1.91 N. The exact position of mounting points on the 

Fig. 24. Free surface contour showing x-velocities in a wave crest situation for the simulation of the semi-submersible OOA structure in a regular wave with height 
0.1 m and period 1.4 s. 

Fig. 23. Free decay tests for the semi-submersible OOA structure. The net but no mooring system is included in these test.  
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structure remains unclear. It is therefore decided to place it on the lower 
connection columns such that the virtual line extensions intersect in the 
geometrical centre of the structure. The moored-floating structure is 
placed in a numerical wave tank of the dimensions 10 m ×2 m ×1.8 m 
which is a shortened version of the physical wave tank (Fig. 22). The 
water depth is set to 1 m. The waves are generated at the inlet using the 
wave relaxation method, and a numerical beach reduces wave re
flections at the end of the tank. The simulations include regular waves 
with height H = 0.06 m, 0.1 m and period Tw = 1.0 s, 1.2 s,1.4 s, which 
are taken from the experiment. Additional simulations without the net 
are conducted to study the importance of the net for the motion of the 
structure. Further, the response of the structure in irregular waves is 
simulated to gain a deeper understanding of the structural response. 
Several JONSWAP spectra with a significant wave height of 0.1 m and 
peak periods between 0.5 s and 3.5 s are chosen for this purpose. The 
resulting power spectrum is shown in Fig. 25a. Each spectrum is 
generated by superposing multiple linear wave components as described 
in Aggarwal et al. (2019). Power and cross power spectra are calculated 
using an FFT analysis, and the linear transfer functions (RAO), as well as 
the coherences γ, are subsequently determined using 

RAOmotion =

̅̅̅̅̅̅̅̅̅̅̅̅
Smotion

Swave

√

, (38)  

γmotion =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

|Swave,motion|
2

SmotionSwave

√

, (39)  

with Smotion and Swave the power spectra from auto-correlation analyses 
and Swave,motion the cross-spectrum. 

At first, free heave and pitch decay tests are conducted to determine 
the mass of the structure and the necessary grid size. The net but no 
mooring lines are attached to the structure. Three different grids with a 
uniform cell size of 0.01 m, 0.008 m and 0.006 m in a box around the 
object are considered. The cells outside the inner box are stretched at a 
ratio of 1.02 towards the domain boundaries until the maximum cell size 
of 0.05 m is reached. The resulting grids have 9.5 M, 16 M and 33 M 

points. The time series of the decay tests are presented in Fig. 23. After 
the first peak, the motions are significantly damped due to the bottom 
net. The convergence of the results is observed. For the heave motion, 
the differences are generally small, whereas at least a certain grid res
olution is required to capture the pitch motion sufficiently. It is therefore 
decided to use Δx = 0.008 m for the simulations including waves. The 
results of these simulations are shown in Fig. 25and Fig. 26 as the power 
spectra and response amplitude operators of the structure and maximum 
front and aft mooring line forces. 

As shown in Fig. 26a, the heave amplitude increases with decreasing 
wave frequency and increasing wave amplitude. The maximum heave 
response is expected at f = 0.4 Hz. A second peak, which is indicated in 
the power spectrum in Fig. 25b, might occur at even lower frequencies. 
Further, the results indicate a highly damped system as the response to 
high-frequency excitations is small (Fredriksson et al., 2003). Similar 
observations can be stated for the surge motion in Fig. 26b. The surge 
motion increases non-linearly with decreasing wave frequency and ap
proaches values closer to one in very long waves with f < 0.6 Hz as the 
structure increasingly follows the wave envelope. Also, the regular wave 
tests reveal larger surge motion for steeper waves due to increased wave 
energy. Here, the net plays a minor role as the motion without the net 
shows similar amplitudes. However, the horizontal forces on the net 
account for about 30% of the total horizontal forces on the system. This 
indicates that the horizontal forces are generally small, amongst others 
caused by the low solidity of the net, and that the surge response of the 
system is mainly dominated by the mooring system. This possible 
explanation is substantiated by observing the free surface travelling 
through the structure in Fig. 24. The fluid is accelerated along and wakes 
are developed behind each member of the structure. In contrast, the 
damping effect of the net is not visible. 

For the rotational motion of the structure (Fig. 26a), a strong in
crease of the pitch amplitude indicates a possible resonance close to the 
lowest investigated wave frequencies. The response in pitch is relatively 
small for wave frequencies larger than 0.6 Hz compared to the trans
lational motions. This might be caused by a rather horizontally than 
vertically acting mooring system. The maximum tension forces in the 

Fig. 25. Power spectra of the semi-submersible OOA structure using irregular wave input.  
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front and aft mooring lines increase naturally with increased structural 
motion and reach local maxima close to the maxima of the heave and 
surge responses. This strengthens the argument that mooring reaction 
forces are the driving excitation forces for the dynamics of the OOA 
structure. Generally, the front line forces are larger than the forces in the 

aft due to the undisturbed impact of the wave loads. The difference 
between the front and aft forces tends to increase with larger encoun
tered wave periods, whereas the wave steepness mostly affects the aft 
mooring line as steeper waves travel less disturbed through the upper 
part of the structure. Further, the simulations without the net reveal that 

Fig. 26. RAO of the semi-submersible OOA structure using regular and irregular wave input. For comparison, the motions without considering the net are shown 
in red. 

Fig. 27. Coherence of the semi-submersible OOA structure using irregular wave input.  
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the aft forces tend to decrease if the net is present, as already observed 
experimentally. This might be caused by the shielding and damping 
effect of the net. Generally, it is noticed that the results from the regular 
wave tests mostly coincide with the irregular test results, which in
dicates that both wave inputs are valid approaches to determine the 
response of OOA structures. 

The obtained transfer functions are based on the assumption that the 
considered system is linear. The coherences for the motions and tension 
forces are presented in Fig. 27 to investigate the validity of this 
assumption. The shown distributions hint at a linear system for wave 
frequencies between 0.3 Hz and 0.8 Hz because γ is close to unity. The 
translational motions tend to become non-linear at smaller frequencies 
than the pitch motion which has a coherence close to one up to f = 1.1 
Hz. The strongest non-linear effects are expected for the tension forces 
which is caused by the coupling to the wave loads and all degrees of 
freedom. 

As a final remark, it is reported that the simulation of the fluid- 
structure interaction in irregular waves takes around 185 h for 300 s 
of simulation time on 64 cores (Intel Sandy Bridge) with 2.6 Ghz and 2 
GB memory per core. 

4.2. Mobile floating OOA structure 

The offshore aquaculture facility Havfarm 2 (Fig. 28) is developed by 
Nordlaks and NSK Ship Design Nordlaks. It can be considered as an 
example for a mobile floating OOA structure. The main structure is 
represented by a large, slender ship-shaped hull with several net cages 
attached. The design process faces challenges due to the complex 
interaction of multiple nets with the fluid and the resulting water quality 
change in the cages. The quality is expected to improve with increasing 
discharge through each net. For this purpose, Havfarm 2 is equipped 

with a dynamic positioning (DP) system which can change the heading 
angle between incident flow and structure. However, this increases the 
external loads which have to be withstood by all components involved. 
The DP system will be further applied to vary the location of the farm, 
dependent on the sea state and weather forecast. Hence, the manoeu
vrability of the farm and thus, the prediction of global forces is impor
tant for the operation of Havfarm 2. 

Model tests were performed in the ocean basin of SINTEF Ocean, 
Trondheim, Norway, in a 1 : 40 model scale to investigate the fluid- 
structure interaction experimentally. Amongst others, towing tests 
with different heading angles between the structure and towing direc
tion were conducted and are taken as a reference here. 

The prototype of Havfarm 2 consists of multiple rectangular beams 
forming four equally sized box-shaped spaces. In each of these, a cy
lindrical net with solidity 0.22 is tightly fastened to the rigid structure. 
They are simulated as non-deforming nets moving with the rigid struc
ture as explained above. Further, a flexible conical net with the same 
solidity is attached to the bottom of each cylinder, which requires dy
namic modelling. A sinker weight of 2 kg is pre-tensioning this part of 
the net during the towing tests. 

Prior to this, free decay tests in heave and pitch are conducted to 
choose the grid size for the subsequent simulations. Three different grids 
with uniform cell sizes of 0.07 m, 0.05 m and 0.03 m are considered. 
Fig. 29 shows the predicted time series in comparison to the experi
mental results. For the heave motion, the coarser grids tend to over- 
damp whereas the finest grid predicts most peaks and the period suffi
ciently. Also, the refinement of the grid results in increased pitch am
plitudes close to the experimental values. The period is captured well for 
the first two peaks and over-predicted for the remaining peaks. A further 
grid refinement could be necessary to improve the pitch motion and 
obtain a grid independent solution. It is further noticed that small 

Fig. 28. Geometry of the floating OOA structure. Rigid structure in model scale 1:40 is shown in yellow and nets in green. The design draft is indicated by the black 
line at the centre column. All measures are in metres. 

Fig. 29. Numerical and experimental results for the free decay tests of the floating OOA structure.  
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differences between the numerical and experimental geometry exist 
because of the neglect of very thin bracings. Their effect on the motion of 
the structure is, however, assumed to be of minor importance. 

Based on the obtained results, a cell size of 0.03 m is chosen for a box 
around the structure. The box is placed in the middle of a tank of the 
dimensions 30× 20× 10 m with a smooth growth of the cell size to
wards the boundaries. The water depth is chosen as 8.0 m to avoid 
interaction with the bottom of the domain. Constant inflows of 0.83 m/s 
and 1.0 m/s are predefined at the inlet and the flow freely leaves the 
tank at the outlet. The structure is rotated relative to the inlet with 
heading angles of 0∘,15∘ and 45∘. The structure can freely heave, roll and 
pitch during the simulations. However, the motions are not investigated 
further because the heave motion remains small and the rotational 
motions are below 1.0∘ for all cases. 

The mean velocities inside each net, 0.1 m below the free surface, are 
computed and compared to the experimental data in Fig. 30. The mea
surements showed large oscillations for which reason the variations are 
included in terms of one standard deviation. Additionally, slices of the x- 
y plane around the structure at this height are shown in Fig. 31 to reach a 
further understanding of the results. It is at first noticed that the 
computed x-velocities are mostly within the chosen interval of the 
experimental results. The values also coincide well with the theoretical 
formula for the velocity reduction through net panels by Løland (1991). 
This formula is however limited to the case of α = 0∘. For the front cage 
and small heading angles, the simulations predict an accelerated flow 
resulting in velocities higher than the inflow velocities. This is also 
visible in the Figs. 31a and 31b, where the two vertical beams in the 
front form a narrow channel passed by the flow. At these angles, the 
shading effects of the nets result in decreasing velocities in the cages 
behind. The flow separation at each beam becomes increasingly 
important for the flow field in each cage with increasing angles (see 
Fig. 31c). At large heading angles, the interaction between the cages 
becomes less significant. Thus, the differences between the predicted 
velocities in the different cages as well as the x-velocities itself become 

small as shown both experimentally and numerically. The mean y-ve
locities are generally smaller than the mean x-velocities, and the fluid 
oscillates more in this direction particularly for the front cage and large 
heading angles. A possible physical explanation is the development of an 
oscillating wake behind each beam. This causes the recirculation zones 
passing the probe points in the centre of each cage periodically. 

The analysis of the velocity inside the upper part of the cages reveals 
that the intended improvement of water quality through increased 
discharge cannot be achieved by increasing the heading angle. However, 
this changes for the lower, flexible part of the cage. Fig. 32 shows the 
velocity distribution in the centre x-z plane along the longitudinal axis of 
the structure for different angles of attack α. As expected, the shading 
effect of the nets causes the increasing deceleration of the flow along the 
structure for α = 0∘ (see Fig. 32a). Thus, a lower discharge and less 
deformation are predicted for the cages in the back. By increasing the 
heading angle (Figs. 32b and 32 c), the flow in front of each cage is less 
disturbed by the wake of cages placed in the front. As a result, similar 
deformation and discharge are predicted for all cages which conse
quentially indicates improved water quality in the back cages. 

The water quality control through the rotation of the structure has 
the drawback of increased loads. In order to quantify this, Fig. 33 pre
sents the loads on the net and the structure in x- and y-direction for the 
different cases. In general, the forces increase with increasing inflow 
velocity. Also, the loads on the nets are generally more crucial to 
consider in x- than in y-direction and are even dominant at small 
heading angles in x-direction. The increase of the loads on the nets is 
further less dependent on the heading angle than the rigid structure 
forces. This is caused by the symmetry of the cage geometry in com
parison to the changing structural area exposed to the undisturbed 
inflow. Thus, the structural forces become the dominant factor for large 
heading angles. The same conclusion can be drawn in y-direction 
(Fig. 33b). The increase for larger heading angles is caused by the 
increased area but might also be influenced by intensified vortex 
shedding. 

Fig. 30. Numerical and experimental results for the mean velocities inside the cages for different inflow velocities u∞ and angles of attack α = 0∘,15∘ and 45∘. Cage 1 
is in the front and cage 4 in the back. The bars indicate the variation of the measurements in terms of one standard deviation. Additionally, theoretical results for α 
= 0∘ using the formula of Løland (1991) are indicated in blue. 
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5. Conclusions 

A new numerical framework for modelling the motion of OOA 
structures in waves and current was proposed and applied in this paper. 
It enables the study of the effects of waves and current on the motion of 
the system taking into account the fluid-structure interaction around 
and inside the cages, the motion of the rigid structure as well as the 
deformation of the net. The interactions of floating structures, mooring, 
nets and fluid are incorporated as two-way coupling problems. Efficient 
numerical approaches were chosen and newly developed to solve the 
governing equations of fluid and structural dynamics. In particular, the 
coupled solution of the rigid structural motion and the fluid flow was a 
necessary step to meet the requirements arising from the transition from 
traditional fish cages towards structures suitable for offshore environ
ments. Several validation cases including rigid and deforming nets, 
moored-floating objects and a combination of these were presented. 
Reasonable agreements with available experimental data could be pre
sented for all considered tests and deviations were justified on a physical 
level. 

The response of a semi-submersible OOA structure in regular and 
irregular waves was investigated thoroughly. These structures typically 
contain rigid nets which implies no volume reduction of the net during 
operation. For the considered design concept, relatively small vertical 
motion and strong motion reduction for high-frequency excitation could 
be observed. This is a characteristic of offshore semi-submersible plat
forms due to their low centre of gravity, a relatively large mass and the 

mooring system. Further, the importance of incorporating the net into 
the investigation increases with the wave height and period due to the 
increased wave energy and the non-linear growth of the drag forces on 
the net. The shading effect of the net seems to play a minor role in wave- 
only cases. 

Another application concentrated on the flow around a mobile 
floating OOA structure in steady current flow. This type of structure can 
freely rotate and move to different sight locations, which are advantages 
over semi-submersible structures. The numerical study reveals that the 
considered structural design results in complex flow patterns with sep
aration and recirculation zones interacting with the upper part of the 
cages. This complicates the proper adjustment of the discharge through 
the cages by changing the heading angle. Further, the lower flexible 
parts of the cages show partly large deformations whose influence on the 
biomass in the cage has to be taken into account. 

It is finally noticed that the predicted small y-loads on the nets for the 
floating structure might be caused by neglecting the effect of them on 
the turbulence in the fluid. Both, the potential vortex shedding behind 
each twine and the change of the fluid vorticity while passing the net can 
eventually result in increased cross-flow and thus cross-flow forces. This 
might also change the importance of the net shading for the investigated 
wave only cases. The quantification of these effects and their inclusion in 
the numerical framework are left for further research. In future studies 
the presented framework will be applied to alternative OOA concepts 
with focus on structural responses under extreme loads. 

Fig. 31. Slices of the x-y plane at z = 7.9 m for the simulation of the floating OOA structure with different angles of attack α and u∞ = 0.83 m/s. The contours show 
the velocity in x-direction. 
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Fig. 32. Slices in the centre x-z plane along the longitudinal axis of the floating OOA structure for different angles of attack α and u∞ = 1.0 m/s. The contours show 
the velocity magnitudes. 

Fig. 33. Numerically predicted mean forces for the floating OOA structure. Values are normalised using the total forces in x-direction for u∞ = 0.83 m/s.  
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Appendix A. Transformations between Euler angles and Euler parameters 

The rigid body rotations are described by the quaternion e = (e0 e1 e2 e3)
T in the numerical model. To compare with physical model test results, e 

has to be transformed to e.g. the Tait-Bryan angles for roll Φ, pitch Θ and yaw Ψ using (Goldstein et al., 2001) 
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The back transformation is necessary to initialise e for given Euler angles: 

Ψ = arctan2(2⋅(e1⋅e2 + e3⋅e0), 1 − 2⋅(e2⋅e2 + e3⋅e3)), (A.5)  

Θ = arcsin(2⋅(e0⋅e2 − e1⋅e3)), (A.6)  

Φ = arctan2(2⋅(e2⋅e3 + e1⋅e0), 1 − 2⋅(e1⋅e1 + e2⋅e2)) (A.7)  

Appendix B. Derivation of the left hand side in (31) to the implicit system (32) 

The dynamic equilibria (21) have to be fulfilled at each knot x at any time. This can be ensured by replacing x(n+1) in (31) with its accelerations 
using high-order backward finite differences. The weights of each time instance included in the difference are found from Fornberg (1998) because of 
variable time steps in the coupled simulations. Thus, the velocity of the knot is expressed as 

dx(n+1)

dt
= ẋ(n+1) =

∑P

p=0
cpx(n+1− p), (B.1)  

with cp the weights of the P points of the interpolation. The unknown velocity vectors v(n+1) are approximated by repeating the derivation: 
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dt2 = ẍ(n+1) =
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p=0
cpẋ(n+1− p). (B.2)  

Inserting (B.2) in (B.1), the left hand side in (31) can be explicitly calculated as: 
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+ Ẋij + Xij

]2

,

(B.3) 

T. Martin et al.                                                                                                                                                                                                                                  

http://www.notur.no


Applied Ocean Research 106 (2021) 102410

25

with the definitions 

Xij = − c0
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, (B.4)  
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j − ẋ(n+1− p)

i

)
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After rearranging this result, the implicit function (32) arises in a straightforward manner. 

Appendix C. Time series comparison of the motion of the moored-floating cylinder in regular waves  

Fig. C.34. Comparison of the numerical and experimental time series of the surge (ξ) and heave (ζ) motion for the moored-floating cylinder in a regular waves.  
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Fig. C.35. Comparison of the numerical and experimental time series of the surge (ξ) and heave (ζ) motion for the moored-floating cylinder in a regular 
waves (continued). 
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