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Abstract: It is widely recognized that surface roughness plays an important role in ice adhesion
strength, although the correlation between the two is far from understood. In this paper, two
approaches, molecular dynamics (MD) simulations and machine learning (ML), were utilized to study
the nanoscale intrinsic ice adhesion strength on rough surfaces. A systematic algorithm for making
random rough surfaces was developed and the surfaces were tested for their ice adhesion strength,
with varying interatomic potentials. Using MD simulations, the intrinsic ice adhesion strength was
found to be significantly lower on rougher surfaces, which was attributed to the lubricating effect
of a thin quasi-liquid layer. An increase in the substrate–ice interatomic potential increased the
thickness of the quasi-liquid layer on rough surfaces. Two different ML algorithms, regression and
classification, were trained using the results from the MD simulations, with support vector machines
(SVM) emerging as the best for classifying. The ML approach showed an encouraging prediction
accuracy, and for the first time shed light on using ML for anti-icing surface design. The findings
provide a better understanding of the role of nanoscale roughness in intrinsic ice adhesion and
suggest that ML can be a powerful tool in finding materials with a low ice adhesion strength.

Keywords: anti-icing; icephobicity; low ice adhesion; molecular dynamics; machine learning

1. Introduction

Ice formation on various surfaces is known to represent a danger and can cause severe
damage [1]. In particular, the aviation industry has seen multiple disasters which can
be traced to unwanted ice accretion on the body of the plane [2,3]. Icing also causes a
significant decrease in efficiency and regular complete halts of wind turbines, and in the
rapid expansion of wind farms a means to reduce or altogether remove ice is a much-
desired technology [4–9]. Traditional anti-icing technologies all come with challenges. For
example, active heating is energy-consuming [10], mechanical de-icing is labor-intensive
and can damage the surface [7], and chemical treatments are potentially environmentally
hazardous [11]. There is a strong desire to find materials that display a passive anti-ice
property, naturally repelling surface ice.

Analogous to hydrophobicity, as a term relating to materials with a non-wetting
surface property, icephobicity relates to surfaces showing anti-icing behavior. Icephobicity
traditionally encompasses three different aspects which can work independently or in
tandem to reduce the presence of ice on a material [11,12]. First, the surface can repel
supercooled water and, as such, prevent ice formation [13]. Second, the surface can prevent
adjacent liquid water from nucleating and hence delay ice formation [14–17]. Third,
icephobicity can be defined as surfaces showing a low ice adhesion, reducing the necessary
force to detach the ice from the surface [18–20]. This last strategy for reducing the ice
adhesion strength, is the main focus of this work.

Ice adhesion strength is defined as the maximum force (F) per unit surface area (A)
needed to remove ice. Research today is mainly focused on finding materials with a super-
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low ice adhesion. Super-low ice adhesion has previously been defined as the automatic de-
icing stress by a gravity of 1 cubic meter of ice (<10 kPa) [21]. The macroscopic assumption
of ice adhesion in experiments is not necessarily valid at the nanoscale. Macroscopic ice
adhesion strength assumes that the force applied to the ice is evenly distributed across
the ice–surface interface, but it is well known that even seemingly flat surfaces exhibit a
roughness at the micro- or nanoscale [22], resulting in a different load distribution and
direction relative to the surface [1]. As experiments mainly focus on macroscopic apparent
ice adhesion, atomistic modeling and simulations concentrate on intrinsic ice adhesion
at the length scale of nanometer range [23–25]. Understanding nanoscale ice adhesion
is not only essential for deciphering macroscopic adhesion behavior but also critical for
achieving multiscale ice adhesion prediction in material surface design and optimization.
At the current stage, there is a lack of understanding of how the nanoscale roughness—as a
nanoscale crack initiator for de-icing [21]—of a substrate affects the adhesion strength of
the ice attached to it. The literature shows little agreement, ranging from conclusions that
a rough surface will increase the adhesion [6,11,26–31] to the conclusion that it decreases
adhesion [1,9,32,33], or no clear effect at all [34]. Many also find a dependence without
a known relationship [8,30,35,36]. Recently, the effect of rough surfaces on confining the
interfacial non-frozen water has also been discussed [9,37–39].

The Gibbs–Thomson equation represents a thermodynamic rationale for why water
cannot nucleate into ice in confined spaces [40–42]. It was shown that nucleation in water
trapped in a cylindrical pore at a temperature of 250 K can only happen if the radius of
the pore is large enough and reaches roughly the order of magnitude of 10 nm [9,43]. A
stable ice nucleus needs to be bigger than this size in order to overcome the energy barrier
associated with solidification. Although a rough surface may not consist of an array of
pores, the roughness can still form a series of confined spaces such that the water can in
its equilibrium position remain liquid, given that the roughness is in the nanoscale. The
existence of a liquid layer between the material surface and the ice has been shown to cause
a reduction in the ice adhesion strength, as the liquid behaves as a lubricant [8,9,27,32,33].
This layer, often termed the quasi-liquid layer, is a key factor in how a material can be
made intrinsically icephobic without having to replenish chemicals [9].

The most appropriate tool, atomistic modeling and molecular dynamics (MD) simula-
tions, has been utilized to gain further understanding of the nanoscale ice adhesion and
detachment mechanisms [23–25]. Phenomena such as the quasi-liquid layer, the lubricating
effects, and the role of surface topography can therefore be studied in detail, and the ice
adhesion strength can thus be predicted [23–25,44,45]. Such predictions are white-box
models, in that the approach applies carefully stated laws of physics and mathematical
time integration in order to reach a conclusive prediction. Although MD simulation is a
strong tool, it does have a set of limitations—simulations can only cover short timescales
(approximate <100 ns), in small scales, and apply Newtonian physics, meaning that neither
long-term nor large-scale phenomena can be detected. In accessing ice adhesion strength, a
particular limitation of MD simulations is the high loading rate used in mechanical testing,
which is generally many orders of magnitude higher than the loading rates performed
experimentally. This leads the adhesion strength predictions to be much higher than the
experimental values due to the high loading rate [23,46]. Thus, MD simulations for ice
adhesion provide qualitative results rather than the absolute magnitudes, meaning that a
relatively low adhesion observed in MD simulation should correspond to a low adhesion
outside simulations too.

Machine learning (ML), on the other hand, represents a black-box model. While MD
simulations give us opportunities to directly examine the physical properties of a surface
for understanding ice predictions, ML models will merely give a statistical prediction by
studying, given enough data, and find trends and patterns [47,48]. For ice adhesion, ML
can be a powerful tool, as there is not one single physical factor determining the adhesion
strength but a complex parameter set of a surface and its interactions with ice. As such,
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ML can create a model which allows the prediction of adhesion strength without having to
perform simulations or lab experiments.

Given the huge diversity of surface roughness landscapes at the nanoscale, there has
currently been no reported attempt to solve the relationship between nanoscale surface
roughness and intrinsic ice adhesion. This work takes the advantage of atomistic modeling
and MD simulations to examine the intrinsic ice adhesion strength and, for the first time,
steer ML to predict ice adhesion by utilizing the atomistic modeling data. The procedure
and results of this study thus can be used for speeding up anti-icing surface research and
can potentially be further developed to encompass larger surfaces and different ice types
or freezing conditions [49].

2. Methods

The modeling and simulation procedures for intrinsic ice adhesion are first outlined
here, followed by the details of ML and prediction.

2.1. Large-Scale Atomistic Modeling and MD Simulation of Nanoscale Ice Adhesion

The main aim of the modeling and simulation is to provide a sufficiently large amount
of ice adhesion data for successive ML training. Ice can exist in many different phases,
but this study will only focus on one phase, hexagonal ice (Ih), due to its ubiquity in the
biosphere. In order to generate a large dataset with limited computational resources, we
chose the well-calibrated coarse-grained water model mW for both liquid water and solid
ice [9,26,27,38,50]. This implies that the 3-atom water molecule is considered to be one
single particle with the purpose of increasing the computational efficiency while main-
taining all the important thermodynamic properties associated with water, such as the
angle-dependent hydrogen bonding between the particles. Molinero and Moore estimate
that the mW course graining is 180 times more computationally efficient compared to
SPCE [51], a different but widely used all-atom water model. The inter-particle inter-
actions in the mW water model are described by the many-body Stillinger–Weber (SW)
potential [52]. The substrate that the ice is adhered to is made from aluminum with an
Embedded Atom Model (EAM) interatomic potential for the sake of convenience [53].The
interaction between the water/ice and the substrate is treated by the Lennard–Jones (LJ)
potential, VLJ = 4ε

[
(σ/r)12 − (σ/r)6

]
, following former studies [9,50], where epsilon (ε)

is the energy depth of the LJ potential, σ is the LJ radius of the atoms, and r is the pairwise
distances between the atoms. For finding different strengths of attraction between the sub-
strate and the water/ice, the energy depth of the LJ potential (epsilon) varies in the range
of 0.05~0.2 eV. The higher the epsilon value, the stronger the attraction between the ice
and the substrate. It should be noted that by treating the water–substrate interaction with
LJ potential, details such as the adhering orientation of water molecules due to hydrogen
bonding or other surface polarity are not preserved.

All the substrates have the same surface area on the xy-coordinate plane of 10 × 10 nm2

in the simulation box with an associated roughness. In order to randomly generate rough
surfaces, an algorithm was put together taking inspiration from the Fourier series. The
Matlab code for the algorithm is provided in the Supplementary Materials. As shown
briefly in Figure 1, 5 sine waves with randomly generated amplitudes were added so as
to produce a random periodic wave. The algorithm put in place generated 10 random
amplitudes—5 for a planar sine wave in the x direction and 5 for the wave in the y direction.
The result is a plane which is periodic in both the x and y direction and which can be
uniquely described by those 10 parameters. The algorithm is made such that the plane will
be 100 × 100 Å2 in x,y and will have a span in z direction that can vary from 10 to 80 Å.
As shown in Figure 1b,c, the rough surfaces were carved by the random planes, with the
thickness (the z height) ensuring at least a 10 Å base of aluminum atoms and maximally
80 Å. In order to facilitate comparison, an atomistic flat surface was also created. All the
substrates are treated as rigid body in this study for the sake of simplicity. The effects of
substrate structural deviation or wear in ice adhesion will be subject to future study.
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Figure 1. Atomistic systems of ice adhesion on rough surfaces. (a) Five sine waves (light purple) with randomly generated
amplitudes are added to make a periodic wave (dark blue). (b) A random planar wave surface generated by adding sine
waves in both x and y directions. (c) Rough surface carved by using the periodic planar wave surface in (b), with local
thickness in the range of 10 to 80 Å. (d) Schematic illustration of the atomistic structures of ice adhesion on a rough surface.
There is an initial liquid water layer between the ice and the substrate, which can transform into ice or remain amorphous
after equilibration simulations depending on the surface.

Once the rough surface has been formed, the ice is placed on top, such that the entire
system (substrate + ice) forms a 100 × 100 × 100 Å3 cube. The 80 Å max height of the
substrate therefore guarantees at least a 20 Å height of ice, which is assumed to be sufficient
to maintain the ice crystal structure. Between the ice and substrate is a layer of amorphous
water with the purpose of catalyzing the crystallization process. A common practice in
literature to prepare ice on a substrate is to place supercooled liquid water with a solid ice
seed and let the seed nucleate to equilibrium [11,39,50]. For the sake of modeling efficiency,
the amorphous water layer was put in place before the whole system was equilibrated for
5 ns at 250 K. The dynamic evolution of the amorphous water layer in longer equilibration
is provided in the Supplementary Materials (Supplementary Figure S1). The simulation
systems were set in an NVT ensemble with the Nosé–Hoover coupling method to maintain
the simulation temperature [54,55]. A time step of 5 fs was used. Between the amorphous
water and the substrate, a small vacuum layer of 2 Å—i.e., sufficiently smaller than the
cutoff—was placed to avoid an initial atomic overlapping of water and the substrate.

All the MD simulations were performed using the simulation package LAMMPS [56].
A total of 800 different systems were equilibrated with three different epsilon values each
(0.05, 0.1, and 0.2 eV). Thus, in total 2400 systems (800 surfaces and 3 epsilon values) were
equilibrated and prepared for probing the ice adhesion strength. The equilibrated systems
were then subjected to testing for tensile ice adhesion—namely, by pulling the ice in the z
direction. A stationary harmonic spring with a force constant of 5 eV/Å was applied to
the center of mass of the top 10 Å layer of ice, while the substrate moved in the z direction
away from the ice with a speed of 2 nm/ns. The restraining force therefore increases until
the ice detaches from the surface. The ice adhesion strength is taken to be the maximum
measured force (Fmax) by the spring at the moment of ice–substrate detachment, divided by
the apparent contact area (Aapparent = 100 nm2). It worth noting here that the Fmax depends
on the moving speed of substrate, as ice adhesion testing results in one representative
rough surface, as shown in Figure S2 in the Supplementary Materials. In order to compare
all the ice adhesion strengths on different rough surfaces, all the substrates were moved at
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the same speed of 2 nm/ns in all the simulations. Ten independent runs were performed
for ice adhesion in each system (in total, 24,000 ice adhesion testing simulations). The ice
adhesion strength for a given system is taken to be the average of these 10 runs. It should
be noted that both the tensile strength and shearing at the atomistic level are relevant to
macroscopic ice adhesion. The atomic separation of ice from its substrate, feature tensile
separation, is an important event in de-icing experiments. Such a process is captured in
the simulations. More simulation resources are required for the accumulation of more ice
adhesion data, such as shearing, for improving the accuracy of ML in intrinsic ice adhesion.

2.2. ML on Nanoscale Ice Adhesion on Rough Surfaces

There are two main ways in which ML can predict ice adhesion: regression and
classification [57]. A regression will let the user give data about the substrate and in return
receive a quantitative prediction of the adhesion strength. This is useful, as it lets the user
bypass the timely simulation, but will inherently cause a bias towards the mean, and thus
could be particularly bad at predicting extreme cases, such as very strong adhesion or very
weak adhesion. A classification will rather let the user give data about the substrate and in
return the algorithm will attempt to place the substrate in one of N predefined classes based
on the adhesion. Although this does not quantitatively predict the ice adhesion strength,
the model can be used to tell if substrates are likely to show a particularly strong or weak
adhesion. Thus, both classification and regression are useful tools in their own ways.

All the ML experiments on the nanoscale ice adhesion strength data were carried
out using the Statistics and Machine Learning Toolbox in MATLAB [58]. For regression,
a Support Vector Machine (SVM) with a ten-fold cross validation was applied [59]. The
SVM received thirteen input parameters—namely, the 10 amplitudes of the planar sine
wave functions in creating the substrate, plus three additional parameters: the height
difference on the substrate, the maximum curvature, and the minimum curvature. These
latter three parameters do not hold any more information compared to the first ten, but
are direct consequences of the substrate roughness and can help the learning machine. Six
different SVM kernels were applied to predict the tensile ice adhesion strength—namely,
Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian, and Coarse Gaussian, as
details in Table 1. For the classification, the ice adhesion data were divided into tertiles
(three equally big sets) based on the ice adhesion strength. The rationale behind this is that,
as the roughness is randomly generated, the ice adhesion strengths are taken from a normal
distribution. Consequently, there are a lot more datasets with an average performance
(the center of the normal distribution) and an underrepresentation of surfaces with high
and low adhesion strengths. The point of the classification is to find the substrates that
are more likely to show a high or low adhesion strength. Dividing the data into three
classes—high, low, and average adhesion—should be a good option, because it maintains a
good representation of the data while still keeping a relatively high amount of training data.
This data pre-classification into tertiles is an initial random guess with a prediction accuracy
of 33.33% intrinsically, which will serve as a benchmark for the classification performance.

Table 1. Prediction performance of the SVM with various kernels on rough surfaces with different
epsilon values. The RMSE values have units of MPa. The smaller RMSE, the higher the prediction
accuracy. The R2 values are dimensionless. The higher the R2, the better the prediction.

Tensile Pulling-Regression

ε = 0.05 eV ε = 0.1 eV ε = 0.2 eV

Observations 752 752 634

Linear
RMSE: 17.08 RMSE: 16.29 RMSE: 16.43

R2: 0.33 R2: 0.29 R2: 0.20
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Table 1. Cont.

Tensile Pulling-Regression

ε = 0.05 eV ε = 0.1 eV ε = 0.2 eV

Quadratic
RMSE: 17.06 RMSE: 16.29 RMSE: 16.73

R2: 0.33 R2: 0.29 R2: 0.17

Cubic
RMSE: 17.35 RMSE: 17.00 RMSE: 17.16

R2: 0.31 R2: 0.23 R2: 0.12

Fine Gaussian
RMSE: 20.81 RMSE: 19.32 RMSE: 18.28

R2: 0.01 R2: 0 R2: 0

Medium Gaussian
RMSE: 16.86 RMSE: 16.72 RMSE: 16.64

R2: 0.35 R2: 0.25 R2: 0.18

Coarse Gaussian
RMSE: 17.01 RMSE: 16.22 RMSE: 16.37

R2: 0.34 R2: 0.30 R2: 0.20

3. Results and Discussion
3.1. Nanoscale Ice Adhesion on Rough Surfaces

Nanoscale surface roughness affects the ice/water structure adjacent to the sub-
strate [9,60] and thus strongly affects the local ice adhesion strength. In order to elucidate
the effect of nanoscale roughness on the ice adhesion, one extra flat and one representative
rough substrate directly contacting ice without an amorphous interfacial water layer were
prepared using various values of epsilon ranging from 0.05 to 0.2 eV. As shown in Figure 2,
the nanoscale ice adhesion strengths monitored on the flat substrate were higher than those
on the rough surfaces at different epsilon values. Interestingly, the ice adhesion strength
on the flat surface increased with the epsilon value up to stable range (Figure 2a). In con-
trast, the ice adhesion strength on the rough surface decreased with increasing epsilon
(Figure 2b). At the high epsilon value of 0.2 eV, the ice adhesion strength on the rough
surface was almost 50% lower than that on the flat surface.
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Figure 2. Ice adhesion strength on flat (a) and rough (b) surfaces with different epsilon values. The error bars show the
standard deviation of three independent simulations.

In order to understand the differences in ice adhesion strength between flat and rough
surfaces, the atomistic structure of the ice–substrate interfacial region in equilibrium was
further dissected and compared. As examples of substrates with the same epsilon value of
0.05 eV, shown in Figure 3, the interfacial regions are dramatically different between the
two substrates. Specifically, there were many more amorphous water molecules at the ice–
substrate interface after the equilibration simulation on the rough surface. The nanoscale
roughness served as concave pores, restricting the stable ice structure, which agreed with
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former results showing that a nanoscale confinement space (also roughness) melted ice
structures [9]. The high amount of interfacial amorphous water on the rough surface can
act as a lubricant, facilitating the easy sliding of the ice along the uphill slopes of the surface
under tension stress. The effect of the interfacial amorphous water is thus reminiscent
of the so-called interfacial slippage effect for the mobility of ice [44,61]. Surprisingly, the
amount of amorphous water increases with the ice–substrate LJ potential energy depth
epsilon, as observed on the rough surface systems and verified by the long equilibration
time shown in Figure S1. Individual water molecules close to the ice–substrate interface
can join into an ordered hydrogen bonding network or remain in an amorphous structure,
depending on the interplay between their interaction strength with the substrate and the
hydrogen bonding energy with other water molecules. A strong attraction between water
molecules and the substrate can result in high stress to destabilize the ordered hydrogen
bonding among the ice molecules close to the interface. The higher the epsilon value,
the more obvious the lubrication effect by the amorphous water layer, which resulted in
a decrease in the ice adhesion strength with an increase in the epsilon value on rough
surfaces. Such a phenomenon was not observed on the flat surface. Thus, the lubrication
effect of the amorphous water layer was an important disrupting factor for reducing the
ice adhesion strength, while a higher epsilon value enhanced the effect by increasing the
amorphous layer thickness, resulting in significantly lower ice adhesion compared to the
results obtained on the flat surface.
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Figure 3. Interfacial quasi-liquid water on flat and rough surfaces before and after ice detachment.
Each of the four snapshots are a two-times copy of the periodic simulation box where the left copy
has the ice removed for visualisation purposes. The water molecules in the quasi-liquid layer are
colored in dark red, while the ice is coloured cyan. All the snapshots are taken from surfaces with an
epsilon value of 0.05 eV. All the figures, including detemining water and ice molecules, were made
by the visualization software Ovito [62].

The nanoscale surface roughness also altered the rupture mode of ice adhesion [24] and
subsequently changed the ice adhesion strength. Compared to ice on the flat surface with
perfect contact, the ice adhered on the rough surfaces had an uneven distribution of local
interfacial structures owing to the corners and curvature of the roughness landscape [60].
The heterogenous local structure of the ice adhesion interface led to an uneven load
distribution when the ice was under external tensile stress, resulting in high degree of
stress concentration and fracture singularity points [23]. The surface roughness also altered
the surface de-icing process—namely ice was detached in a sudden concurrent manner
from the flat surfaces but was sequentially slipped/glided uphill along the steep parts
on the rough surface. The sequential rupture mode of de-icing on the rough surfaces is
effective in reducing atomistic ice adhesion strength, as was observed in former studies [24].
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The above results therefore present a rather counterintuitive conclusion: in order to
make enable low intrinsic ice adhesion, the pairwise attraction between the surface and
ice should be high, and the surface should be rough. It is important to note that all the
surfaces in this study are at the nanoscale (10 × 10 nm2) and the ice adhesion of focus is
intrinsic adhesion (Figure 1), which is different from the so-called macroscopic mechanical
locking that enhances ice adhesion in experiments [8,63]. For a higher roughness scale in
experiments, other strategies for the generation of lubrication are needed [44].

The complex parameters (10 sine wave functions) of each rough surface are difficult for
direct visualizing the ice adhesion strength on each surface. For illustrating the trend of ice
adhesion strength on the surfaces, the random roughness of the surfaces was summarized
by two key quantities—namely, the total height difference (highest point on the surface
minus the lowest point) and the highest curvature (the most negative second derivative of
the landscape) across each surface. As the ice adhesion strength on each surface was plotted
against these two quantities shown in Figure 4, there were clear correlations between the
ice adhesion strength and the surface roughness. The higher the surface curvature and
height difference, the lower the ice adhesion strength on the rough surfaces. However,
the large variation in the data indicates that other parameters also contribute to the ice
adhesion strength and still need to be explored by ML.
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obtained using a pulling rate of 2 m/s. Each datapoint is an average of 10 independent simulations.

3.2. ML Prediction of Nanoscale Ice Adhesion

As can be seen in Figure 4, there are visible differences in ice adhesion strengths
between surfaces with different values of epsilon, and as such the SVM was trained
individually for the three epsilon values. The SVMs were then used to predict and classify
the tensile ice adhesion strength on rough surfaces.

There were large deviations in the ice adhesion strength values observed on surfaces
with the three epsilon values. In order to evaluate the performance of the SVM regression,
the root mean square error (RMSE) [64] and the R2 (or R-squared) [65] values of the predic-
tions are presented in Table 1. Generally, the SVM did show mild but better predictions
than purely treating the ice adhesion as random numbers in a normal distribution (SVM
with Fine Gaussian kernel) around the mean value, judging by the RMSE values. Taking
surfaces with an epsilon value of 0.05 eV for example, the best performing SVM (with
Medium Gaussian) had an RMSE of 16.86 MPa, which featured an improvement from
Fine Gaussian (RMSE of 20.81 MPa). The same improvement was also observed in the ice
adhesion data from surfaces with the other two epsilon values. Thus, the SVM indeed had
a positive prediction power despite the large space of the 13 input parameters. The R2
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values also support such a conclusion. While the Fine Gaussian kernel yielded an R2 value
of 0 (or close to 0), other kernels had higher values (Table 1).

For illustrating the performance of the SVM, the ice adhesion results for surfaces with
three epsilon values were compared with the ML prediction purely based on the roughness
parameters. As shown in Figure 5, the prediction of ice adhesion strength on surfaces with
the three epsilon values (purple line in Figure 5) agreed with the mean values observed for
ice adhesion strength obtained in the MD simulations (green circles in Figure 5). Because
there are more data close to the mean values observed in the MD simulations, it is easy for
ML to accurately predict the average ice adhesion (also meaning the “average” performing
surface). However, there are substantial prediction errors in the data away from the
average, especially on the extremities of the observed data, given that these are represented
by fewer data points and are thus of a lower accuracy. Interestingly, the SVM predicted
better results on surfaces with an epsilon value of 0.05 eV than the other two counterpart
surfaces. Although the ice adhesion strength values obtained in the MD simulations were
similar in magnitude on surfaces with epsilon of 0.05 and 0.1 eV (Figure 4), prediction
on surfaces with epsilon of 0.01 eV showed significantly higher error. The predictions
on surfaces with epsilon of 0.2 eV were the worst. Considering the atomistic structure
of the ice-substrate interface (Figures 2 and 3), the performance of the SVM could have
been affected by the quasi-liquid layer of the interfacial water in the simulation systems.
Because the SVM only used the 13 surface roughness parameters and did not consider the
confounding factor of the quasi-liquid water on the surfaces, the prediction is thus missing
the interfacial lubricating effect discussed above. As surfaces with epsilon value of 0.2 eV
produce the thickest quasi-liquid layer, it is reasonable that the resulting prediction were
the worst of the three. Although the predictions are far from perfect, the SVM did have
the power of giving positive results, especially on rough surface with an epsilon value of
0.05 eV (meaning low surface energy). Furthermore, there is reasonable chance that the
performance increases with the amount of training data.

The SVM with Medium Gaussian Kernel performed best on predicting ice adhesion
on surfaces with an epsilon value of 0.05 eV (Table 1). In order to gain insight into the
prediction, a separate dataset of 5000 surfaces was generated using the same algorithm as
given in the methods section. The SVM was asked to predict the ice adhesion strength on
these new surfaces without carrying out any MD simulations. As shown in Figure 6, the
SVM identified the surfaces with the highest and the lowest ice adhesion, respectively, by
ML prediction without performing MD simulations. The predicted lowest surface had an
ice adhesion strength of 409 MPa, with a very distinct roughness only in one dimension
(Figure 6b), while the highest surface had an ice adhesion strength of 568 MPa, with both
roughness on two dimensions (Figure 6a). It should be noted that more training data and
verification by MD simulations are needed in the next step of this study.

Because of the high deviations in the ice adhesion strength data and the resulting high
errors in ML prediction, it is thus also meaningful to use ML to qualitatively classify rough
substrates with a high or weak ice adhesion. As given in the methods section, the data from
MD simulations were randomly discretized into three tiers, or tertiles, based on the ice
adhesion strength. Class 1 means the data were part of the 1/3 of data showing the lowest
ice adhesion strength, while Class 3 means it is the other 1/3 of data showing the highest
adhesion, and 2 then means it is in the middle. The reason for the data grouping is that
there are too many data points close to the mean value (Figures 4 and 5). It is challenging
for the SVM to only be trained by the data close to the mean value for the prediction of
high or low ice adhesion surfaces. By dividing the training data into the three groups, the
SVM was therefore trained to look for the features characterizing the more extreme cases
(high or low ice adhesion). It should be noted that the initial data discretization means that
an accuracy of at least 33.3% is to be expected, as a random guess would give this accuracy.
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Figure 6. Rough surfaces with the highest (a) and lowest (b) ice adhesion predicted by the regression
SVM. Both the surfaces have an epsilon value of 0.05 eV. The rough surface in (a) was predicted to
have an ice adhesion strength of 568 MPa, while the surface in (b) has a lower value of 409 MPa.

The SVM showed positive results in classifying surfaces by their ice adhesion strength.
As given in Table 2, the SVM with all the six kernels gave a classification accuracy higher
than just random guessing (33%). It is further interesting to see that the SVM was again
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more accurate on classifying rough surfaces with epsilon value of 0.05 eV. The interfacial
quasi-liquid water layer again could have affected the classification results.

Table 2. Classification performance of the SVM with various kernels. All the classifications have an
accuracy higher than a probability of 33.3%.

Tensile Pulling-Classifications

ε = 0.05 eV ε = 0.1 eV ε = 0.2 eV

Observations 752 752 634
Linear 52.2% 48.0% 44.3%

Quadratic 49.7% 46.1% 43.7%
Cubic 45.0% 41.9% 40.1%

Fine Gaussian 45.2% 39.0% 34.9%
Medium Gaussian 50.1% 49.7% 45.0%
Coarse Gaussian 51.1% 49.1% 43.4%

The classification power of the SVM can be illustrated by a color-coded confusion
matrix, as shown in Figure 7. The intensity of the color in the confusion matrix increases
with the prediction accuracy. Taking the classification of surfaces with an epsilon value
of 0.05 eV for example (Figure 7a), if a surface has a high ice adhesion strength (class
3) the SVM has a 64% certainty of correctly identifying it. The certainty is double the
chance of random guessing, which is highly desirable. For surfaces with an epsilon value
of 0.1 and 0.2 eV, the SVM gave a certainty of 58% for identifying high ice adhesion
surfaces, both of which were also better than random guessing. The SVM also had a high
classification certainty on surfaces with a low ice adhesion strength (class 1), showing
promising prediction results. For surfaces with an average performance (class 2), the SVM
did not show a prediction strength better than a random guess. Thus, the SVM is specialized
for predicting obvious good or bad icephobic surfaces. Its prediction performance is
expected to further improve with more training data in the future steps of this work.

The results from both the regression and classification indicated that there were
substantial potentials of machine learning applied in the anti-icing materials research field.
If not for the actual prediction of the adhesion strength, then as a preliminary test to assess
the performance of a substrate before being rigorously tested in a simulation environment
or indeed a lab environment, the ML prediction of intrinsic ice adhesion should have a great
impact on anti-icing surface research. With the accumulation of more data and examples of
ML, the prediction accuracy can be further improved and could serve as the initial step of
forming a multiscale prediction framework for ice adhesion on different surfaces.

It is worth noting that the random rough surfaces created by 10 sine wave functions
in this study were far from the real diversity in the roughness of any anti-icing surfaces in
the experiments. Nevertheless, the approach here—namely, combining atomistic modeling,
MD simulations, and ML—sheds light on the rational prediction of intrinsic ice adhesion.
With the correct nanoscale roughness parameters, the ML used in this work should be
able to suggest low or high ice adhesion surfaces, such as those given in Figure 6, or
classify the surfaces into groups with good or bad performances (Figure 7). There are
also many well-defined rough surfaces in nanomaterials nowadays, especially on different
nano-devices. The atomistic approach of this study is also appropriate for investigating the
ice adhesion on such surfaces. Specially, nanoscale roughness or confinement could allow
the existence of another ice form. The adhesion of different ice forms can be another factor
to consider in the relevant future studies. The purpose of the ML in this study still served
in a limited scope of a first attempt for surface icephobicity prediction only. Further efforts
are needed for a better ML-based prediction of ice adhesion on rough surfaces.
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three classes of surfaces, 1, 2, and 3, refer to low, medium, and high ice adhesion strengths. The
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4. Conclusions

A systematic study of nanoscale ice adhesion was performed with the purpose of
clarifying how the roughness of a surface determines the resulting adhesion. Using MD
simulation, a flat surface was compared to a rough surface and it was found that an
increase in the pairwise attraction between the surface and the ice yields a higher ice
adhesion strength for a flat surface, whilst for a rough surface the adhesion decreases due
to an increase in the quasi-liquid water layer. The large-scale MD simulation results were
subjected to ML for quantitatively and qualitatively analyzing the surface roughness effects
on ice adhesion and, for the first time, probing the possibility of predicting the surface
ice adhesion with ML. The SVM, by regression and classification, showed favorable and
encouraging prediction results, which can innovate subsequent steps in related icephobic
surface design studies. Designing better anti-icing surfaces is crucially important to many
aspects of society, which is filled with unanswered yet important questions today. This work
has suggested answers to many of these, especially relating to the nanoscale roughness,
the quasi-liquid layer, and to what extent a computer can learn about icephobicity. The
scope of atomistic modeling and ML is at the nanoscale for intrinsic ice adhesion, which is
an essential part of the multiscale ice adhesion prediction strategy. Due to the limitation
in the length of atomistic modeling, important surface properties such as contamination,
voids, and defects are not considered in this study, which should be included in the nest
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step of this work. Despite the many remaining questions, this work provides a roadmap
for training computers to predict icephobic materials.
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(loading rate), Matlab code for generating random surfaces.
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