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Abstract. The Iterative Closest Point (ICP) method is widely used for
fitting geometric models to sensor data. By formulating the problem as
a minimization of distances evaluated at observed surface points, the
method is computationally efficient and applicable to a rich variety of
model representations. However, when the scene surface is only partially
visible, the model can be ill-constrained by surface observations alone.
Existing methods that penalize free space violations may resolve this
issue, but require that the explicit model surface is available or can be
computed quickly, to remain efficient. We introduce an extension of ICP
that integrates free space constraints, while the number of distance com-
putations remains linear in the scene’s surface area. We support arbitrary
shape spaces, requiring only that the distance to the model surface can
be computed at a given point. We describe an implementation for range
images and validate our method on implicit model fitting problems that
benefit from the use of free space constraints.
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1 Introduction

Iterative Closest Point (ICP) [1] is commonly used for fitting geometric models
to sensor data. At its core is a local optimization, requiring only computation of
data-to-model distances at observed surface points. This makes ICP computa-
tionally efficient and applicable to any model representation where the distance
to the surface can be computed. However, when the scene surface is only partially
visible, the model’s shape and pose may be ill-constrained by surface observa-
tions alone. A common solution is to impose constraints or penalties on the
parameters [2], but this is a model-specific intervention. Alternatively, one can
integrate free space constraints (space observed to be empty) that vision systems
often provide, but which is not used by ICP. This introduces a new challenge
of managing computational complexity, as free space is inherently volumetric
[3]. While efficient methods have been proposed when the model surface (or a
bound) is available in explicit form [4–7], these are not applicable when the
explicit surface is unavailable or prohibitively expensive to compute.
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We propose an extension of ICP for implicit models that integrates free space
constraints, while retaining the computational complexity of the original method,
i.e. the number of distance computations scales linearly by the surface area of
the scene. Our method supports arbitrary shape spaces, requiring only that the
distance to the model surface can be computed at a given point. We demonstrate
on range data that our method is amenable to off-the-shelf optimizers, and can
resolve parameters which are ill-constrained by surface observations alone.

2 Related Work

Geometric model fitting has been extensively studied over several decades (see
[8] for a survey). Notably, we now have efficient methods that are highly robust
against outliers and provide strong optimality guarantees [9–11]. To achieve such
performance, state-of-the-art methods exploit the structure of the domain (e.g.
SE3) and/or rely on the ability to match invariant features between the model
and the data. These methods work very well for explicit representations, such
as static point sets obtained from laser scanners [9, 10] or deformable landmark
models [11, 12]. Unfortunately, they are incompatible with representations where
the domain does not allow for easily-exploited structure or invariant features that
can be detected and matched.

In this work, we focus on models represented as (parameterized) distance
functions. Distance functions have been derived exactly or approximately for
several primitives and implicit modeling operations, thereby enabling construc-
tive modeling of objects [13–15]. In robotics and computer vision, distance func-
tions are a natural representation for scene reconstruction and planning [16–18],
and have recently fueled research as a neural shape representation in machine
learning [19]. The ability to efficiently fit models, using only their distance func-
tion, to (incomplete) sensor data, would enrich each of these application areas.
We therefore review related work on implicit model fitting, where the explicit
surface is not directly maintained and where the implicit function itself may be
expensive to evaluate.

The Iterative Closest Point (ICP) method [1, 20–24] can be applied to any
model representation, requiring only that the distance to the model surface can
be computed at each point on the observed surface. This makes ICP efficient, as
the computational cost scales linearly by the observed surface area. However, the
model can be ill-constrained when the scene’s surface is only partially observed
(see Fig. 1), e.g. due to capturing data from predominantly one viewpoint or due
to noise and specular reflections. Regularization strategies [8], such as penalizing
description length [25, 26], minimizing volume or surface area [2, 27] or impos-
ing constraints on the model parameters [2] can alleviate this problem, but are
model-specific interventions that do not generalize.

Alternatively, the fitting method can use visibility information provided by
the vision system; e.g. a finite range value from a laser scanner indicates not
only that there is a surface at that distance from the sensor, but also that there
are no surfaces in-between. Visibility information plays a central role in 3D
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Fig. 1. Illustration of cases where a volume-aware method has advantages over Iterative
Closest Point (ICP). Given a model (a) represented by a distance function fx, we seek
to estimate the parameters x such that the resulting solid fits to a partially observed
scene. When using ICP, a subset of the parameters can be ill-constrained due to (b)
missing data (despite being wrong, the model fits all the observed points) and (c) poor
initialization (closest point association leads to uninformative gradients).

reconstruction [28], e.g. in space carving [16, 3], and has also been used in model
fitting, e.g. in volume matching [29–31], minimizing reprojection error [32–37]
and matching of occluding contours or silhouettes [38–41, 6, 7]. These methods
can be said to be volume-aware [42] and have the ability to resolve ill-constrained
models by requiring the model to be consistent with free space.

However, existing methods can be prohibitively expensive for implicit models
where the associated implicit function is expensive to evaluate. Volume matching
(e.g. of density, distance or binary occupancy) supports any implicit represen-
tation, but is based on densely sampling the volumetric domain. Computing re-
projection error or the model silhouette requires the extraction of visible points
on the surface. Extraction can be done using accelerated ray casting for distance
function models [13], but still requires multiple samples along rays. Extraction
can also be done using spatial subdivision schemes [43], but requires an initial
resolution that contains sampling points from every connected component of the
model’s interior and exterior. The availability of the explicit surface (or a close
bound) has been used to derive efficient volume-aware methods [4–7]. For im-
plicit models, the explicit surface must in general be recomputed each time the
model changes. For small deformations, a set of points can be made to track the
implicit surface as the model parameters are optimized [44]. However, efficiently
maintaining such an approximation for general domains is an open problem.

Following this line of work, we propose a novel volume-aware method that
integrates free space constraints. Similar to ICP, our method only requires the
ability to compute the distance to the model at a given point. Unlike previous
volume-aware methods, our method does not require the explicit surface or dense
volumetric sampling. Instead, our method retains the computational complexity
of ICP, in that the number of distance computations per iteration scales linearly
by the scene’s surface area.
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Fig. 2. Notation applied to an example scene containing a target object and outliers.

3 Theory & Method

This section describes our volume-aware extension of the ICP method. We first
formalize volume-aware model fitting based on volume- and surface-consistency
conditions. We then show how these conditions can be expressed in a constrained
optimization problem which retains the computational complexity of ICP.

3.1 Notation

Here we introduce notation used in the following sections (see also Fig. 2). A
scene, assumed to be some unknown solid S, is observed by a vision system, e.g.
a range sensor. We consider a domain of interest V that contains a subset of
S, e.g. a user-defined box region. The scene is assumed to be decomposed into
target and outlier solids, Si and So, with respective boundaries ∂Si and ∂So.

Free space Vfree is a closed subset of V, determined by the vision system,
which does not intersect the interior of S (i.e. Vfree ⊆ V and Vfree ∩ int S = ∅).
Occluded space is the complement of free space inside the domain of interest. The
free space boundary ∂Vfree is the boundary between free and occluded space. The
visible surface R is a subset of ∂Vfree, determined by the vision system, which
also belongs to the physical scene boundary ∂S. If the scene contains outliers,
we assume that the visible surface has been segmented into respective target
and outlier surfaces Ri ⊆ ∂Si and Ro ⊆ ∂So. The signed Euclidean distance to
a solid D is denoted dD(p) := ±minq∈∂D ||p− q||2, where the sign is negative for
p inside D and positive outside.

3.2 Problem Formulation and Volume-Aware Model Fitting

We assume a geometric model of the target object is given as a real-valued
function fx(p) : R3 × X → R defining the solid Mx = {p ∈ R3 : fx(p) ≤ 0}. We
assume that fx is the Euclidean distance function dMx

. The model parameters
x ∈ X may include the object’s pose (SE3 ⊆ X ), as in rigid registration, but here
we assume x can also include any real-valued, discrete or symbolic parameters
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that define the shape. Our goal is to estimate the parameters x such that the
resulting solid is consistent with the observed surface and free space, i.e.

fx(p) = 0,∀p ∈ Ri and (1)

fx(p) > 0,∀p ∈ int Vfree. (2)

The free space constraints (2) imply that the model cannot occupy free space, but
can occupy any subset of occluded space. When (2) is satisfied, we say thatMx

is volume-consistent with Vfree. When (1) is satisfied, we say thatMx is surface-
consistent with Ri. When both are satisfied, we say that Mx is consistent. For
brevity, we will say that a solid is volume- or surface-consistent and leave it
understood that volume consistency refers to Vfree and that surface consistency
refers to the visible surface Ri.

3.3 Distance Constraints for Volume- and Surface-Consistency

When fx is the Euclidean distance function, free space implies the existence of
a set of inequality constraints bounding the distance from below:

fx(p) ≥ min
q∈∂Vfree

||p− q||2,∀p ∈ Vfree. (3)

If the closest point q ∈ ∂Vfree in (3) also belongs to ∂S, the inequality is replaced
by an equality. In practice, we do not know ∂S and therefore cannot identify
everywhere that this holds. However, we do know the visible surface R ⊆ ∂S.
Hence, we can identify the subset of equality constraints:

fx(p) = min
q∈R∩∂Vfree

||p− q||2,∀p ∈ Vfree. (4)

If the scene contains outliers, R in (4) is replaced by the target surface Ri. The
constraints (3)-(4) are necessary and sufficient conditions for the solid Mx to
be volume- and surface-consistent. In the next sections, we address how to turn
these constraints into a tractable optimization problem.

Comparison with Implicit-to-Implicit Methods. Before continuing, it may
be helpful to compare the constraints (3)-(4) against the related class of implicit-
to-implicit methods [31]. These methods penalize the difference between the
distance function of the model and the scene, at each point in a volumetric
domain of interest V. Assume for simplicity that Si = S. An implicit-to-implicit
method can then be viewed as imposing the constraints

fx(p) = d̂S(p),∀p ∈ V, (5)

where d̂S is an estimate of the unknown true scene distance function dS . One
choice for d̂S is the distance transform of free space [31]. However, the result-
ing constraints either cannot guarantee volume-consistency or do not admit the
distance function to the true solid as a feasible solution.
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Fig. 3. Comparison between the set of feasible solids for different constraints: surface-
consistency (a), surface- and volume-consistency (b), Equation (5) with V as Vfree (c)
or truncated as described in the text (d). The shaded (resp. white) region in (a)-(d) is
the region of space that can (resp. must not) be occupied by a feasible solid (i.e. a solid
whose associated distance function satisfies the constraints). The thick lines indicate
where the solid is required to have a boundary according to the constraints. A feasible
set is consistent if it does not contain any solid that occupies free space. A feasible set
is unbiased if it contains the target solid (Si).

To see this, consider a point p ∈ Vfree and the boundary point q ∈ ∂Vfree
closest to p. At p, the distance transform dVfree(p) and the true distance function
dS(p) are equal if and only if q ∈ ∂Vfree ∩ ∂S. Where this is not the case, the
equality constraint may require the boundary of the model solid to erroneously
fit to a non-physical boundary, e.g. the boundary of the shadow behind the box
in Fig. 3. Therefore, depending on the domain V, the equality constraints (5)
may not all be correct. If V is truncated to exclude the subset of Vfree where
q /∈ ∂Vfree ∩ ∂S, the constraints (5) are all correct, but insufficient.

A comparison of the set of feasible solids for different constraints is illustrated
in Fig. 3. The surface-consistency constraints (1) alone do not prevent a solid
from occupying free space. We therefore say that the feasible set in Fig. 3 (a)
is inconsistent. However, because the true solid (Si) is contained by the feasible
set, we say that the feasible set is unbiased. If we include the volume-consistency
constraints (2), the feasible set (Fig. 3 (b)) is both consistent and unbiased.

In comparison, the equality constraints (5) cannot produce a feasible set that
is both consistent and unbiased. If V = Vfree, a feasible solid is required to have
a boundary where there may not be a physical scene boundary, as indicated by
the thick lines in Fig. 3 (c). If V is truncated as described above, the feasible set
(Fig. 3 (d)) is no longer biased, but has become inconsistent, as a feasible solid
may occupy regions of free space where there are no constraints.

3.4 Optimization Problem Formulation

To turn the constraints (3)-(4) into a tractable optimization problem, we will
use the geometric structure known as the medial axis transform of a solid, which
is the locus of centers of balls which are maximal within the solid, along with
their associated radii [45, 46]. These are also called medial balls. We will use the
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medial axis of free space, mat(Vfree), which is the set of points c ∈ Vfree that
are equally close to two or more points on the boundary ∂Vfree. We define B(p)
and rB(p) as the largest ball, and its radius, centered at p that contains no point
outside Vfree. A medial ball at c ∈ mat(Vfree) is then given by B(c). Note that
B(p) is tangent to one or more points on the boundary ∂Vfree. Note also that,
by this definition, rB(p) = dVfree(p).

It will also be helpful to define the medial ball as seen from the surface. Let
p be a point on ∂Vfree and let np be its associated surface normal. Assume that
∂Vfree is C2-continuous such that each surface point has a unique normal. We
then define cp as the point on the medial axis which also lies on the positive
extension of np. Note that the medial ball B(cp) is tangent to p and that rB(cp)
is the distance along np from p to cp, i.e. cp = p+ rB(cp)np.

The following results relate the medial axis to the constraints from the pre-
vious section.

Proposition 1. If fx(c) ≥ rB(c) for all c ∈ mat(Vfree) then Mx is volume-
consistent with Vfree.

Proposition 2. Let ∂Vfree be C2-continuous and let Mx be volume-consistent
with Vfree. If fx(p+ tpnp) = tp for all p ∈ Ri and some tp ∈ [0, rB(cp)), thenMx

is surface-consistent with Ri.

Intuitively, these results imply that volume-consistency can be determined
simply by comparing fx against the radii of the medial balls in free space, i.e.
without densely sampling the volume. Furthermore, given volume-consistency,
surface-consistency can be determined by sampling one or more points along each
surface normal. This suggests the following constrained optimization problem:

min
x

E(x) =
∑
p∈Ri

(fx(p+ tpnp)− tp)2 (6)

subject to fx(c) ≥ rB(c),∀c ∈ mat(Vfree) . (7)

Before we describe how this can be solved in practice, we want to highlight some
key properties.

Proposition 3. If x∗ is a feasible solution to (6)-(7) and E(x∗) = 0, thenMx∗

is volume-consistent with Vfree and surface-consistent with Ri.

Proposition 4. The number of distance computations per iteration scales lin-
early by the surface area of the scene.

The objective function and the constraints require evaluating fx only on the
visible surface Ri and the medial axis mat(Vfree). Since the medial axis is a
deformation retract of ∂Vfree when ∂Vfree is C2-continuous [47], the complexity
of the latter scales linearly by the surface area of ∂Vfree. The objective function
is the sum of squared data-to-model distances, but taken at different level sets
as determined by tp, and likewise scales linearly by the surface area of Ri. The
number of distance computations per iteration therefore scales linearly by the
surface area of the scene rather than the domain volume.
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(a) Free space boundary (b) All medial balls (c) Approximate cover

R
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∂Vfree c ∈ mat(Vfree)

Fig. 4. A 2D example of computing an approximate cover of free space. (a): Point
samples on free space boundary from a noisy range image; the “spike” represents miss-
ing range values that are treated as zero. (b): The centres of all medial balls. (c): The
centres of the medial balls remaining in the approximate cover.

Proposition 5. Volumetric data structures are not required.

Evaluating the objective function and constraints (6)-(7) requires the centers
and radii of the medial balls. It also requires that these can be parameterized by
a scalar (tp) associated with each point on the visible surface. Importantly, this
information can be stored without volumetric data structures, e.g. by associating
each point on the free space boundary with a single floating point number,
representing the distance to the medial axis along the normal.

Choosing tp Although tp can be non-zero, we will in the remainder assume
that tp = 0. Thus, (6) becomes

E(x) =
∑
p∈Ri

f2x(p) , (8)

which is recognized as the point-to-implicit ICP objective function [1, 21–23]. We
show experimentally that this is sufficient to resolve ill-constrained parameters.

3.5 Approximate Cover

While the described method avoids a dense volumetric sampling of free space,
the medial axis can still contain prohibitively many balls. We can greatly reduce
the computational cost if we only need to check if the model is consistent with
an approximation of free space—an approximate cover. To obtain this, we use
the heuristic of [48], and detect if a ball is redundant by checking if it can be
completely covered by slightly enlargening any of its neighboring balls by an
amount δ. We greedily build a simplified medial axis by iteratively selecting the
ball that covers the most uncovered balls when its radius is increased by δ. An
example approximate cover is shown in Fig. 4.
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Fig. 5. Range images and target objects (a)-(f) used in the experiments.

4 Experiments

We experimentally verify the following. First, that our volume-aware method
constrains more parameters in partially observed scenes than the original ICP
method (i.e. the optimization of (8) alone). Second, that our proposed optimiza-
tion problem can be solved using off-the-shelf solvers. Third, that the approxi-
mate cover reduces computational cost.

4.1 Datasets and Implementation Details

As input we consider single-view range images from real and synthetic datasets.
The scenes (Fig. 5) contain one or more target objects, labelled (a)-(f), which
have a corresponding distance function model. The model for (a) and (b) is
a cuboid with 9 parameters (pose and side lengths). The model for (c) is a
discretized distance field with 7 parameters (similarity transform). The model
for (d)-(f) is defined using constructive solid geometry and has 13 parameters.
Parameters were standardized such that a unit change in any single parameter
visually affected the shape with similar magnitude.

Our method requires the set of points on Ri and medial balls in Vfree. We
implemented a pre-processing pipeline to obtain these quantities from single-
view range images. For the former, backprojected range pixels provide a point
sampling of the visible surface R, from which we manually segment the subset of
target points Ri. Many methods have been proposed for estimating the medial
axis from various inputs [49]. A fast and precise method is the shrinking ball
method of Ma et al. [48], which operates on oriented point sets and computes the
distance to the medial axis along each point’s normal. To apply their method, we
need a sufficiently dense and oriented point sampling of the free space boundary.
We obtain this by connecting adjacent backprojected pixels into a piecewise
linear mesh. This is similar to [50], but we include triangles at jump edges, as
the shrinking ball method requires the surface to be a 2-manifold; otherwise balls
may protrude into occluded space. We sample evenly-distributed points from the
surface. We estimate their normals using [51] and impose a consistent orientation
using the viewing direction. We apply a bilateral filter and a median filter to
smoothen the range image and fill in small, isolated regions of missing values.
To prevent erroneous constraints, larger missing regions are conservatively set
to zero, which can cause “spikes” as seen in Fig. 6.
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(a) Scene (b) All medial balls (c) Approximate cover

Fig. 6. (a): Scene used for Fig. 5 (e,f) from [52]. (b,c): Free space boundary and medial
balls in original and approximate cover. The “spikes” are due to missing range values.

Table 1. Top row pair: Estimated number of constrained parameters (higher is better)
and sum of singular values in parenthesis (lower is better). Bottom four row pairs: Suc-
cess rate using standard deviation 0.1, 0.25, 0.5 and 1.0 (top to bottom) as initialization
uncertainty.

Box (a) Box (b) Head (c) Plug (d) Plug (e) Plug (f)

ICP 5/9 (4.4) 3/9 (9.9) 7/7 (0.0) 7/13 (7.1) 7/13 (14.4) 7/13 (12.7)
Our 9/9 (0.0) 8/9 (2.1) 7/7 (0.0) 9/13 (4.0) 9/13 (5.6) 9/13 (6.0)

ICP 100% 100% 100% 87% 98% 77%
Our 100% 100% 100% 100% 100% 100%

ICP 100% 100% 89% 54% 69% 55%
Our 100% 100% 98% 87% 90% 92%

ICP 86% 88% 48% 22% 26% 22%
Our 99% 100% 74% 39% 58% 42%

ICP 62% 47% 9% 3% 5% 1%
Our 100% 100% 26% 15% 16% 8%

4.2 Ability to Resolve Ill-Constrained Parameters

We quantify how constrained the model parameters are at the global solution.
We acquire an initial fit using a global search method. We then perform a random
walk of length k = 50, where at each step i = 1...k the current parameters are
perturbed by a uniformly drawn vector δ ∈ [−σ, σ]|X |, σ = 0.1, and re-optimized
from the perturbed position. We perform N = 100 random walks, which gives
a matrix of solutions X = [x1 · · ·xN ] from each random walk. As a measure
of the number of constrained parameters, we use the rank of X, estimated as
the number of singular values less than σ. If a parameter is well-constrained, it
should return to its original value after re-optimization. Hence, singular values
larger than σ indicates that one or more parameters are not constrained. The
results in Table 1 (top) show that our method constrained more parameters
(except for the Head model), thus indicating that it successfully utilizes free
space information to resolve ill-constrained parameters.
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Table 2. Number of surface points and number of medial balls, before and after com-
puting the approximate cover, for the scenes shown in Fig. 5.

(a,b) (c) (d) (e,f)

Surface points (|R|) 686 15 806 6 827 8 730

Medial balls (all) 48 386 32 019 42 013 40 193
Medial balls (approximate cover) 432 272 320 479

4.3 Ability to Use Off-the-Shelf Solvers

We compare the success rate of our method against ICP, using an off-the-shelf
solver. For both methods, we use Matlab’s Sequential Quadratic Programming
(SQP) implementation. As a proxy for success, we use the rotational param-
eters at the end of optimization compared with ground-truth, taking possible
symmetries into account. If the trace of the relative rotation matrix for a given
solution is higher than a threshold (2.99), it is considered successful. We count
successful runs among 100 independent trials, drawing initial parameters from a
uniform distribution around ground-truth parameters, repeated for four differ-
ent standard deviations. The results in Table 1 show that our method had equal
or higher success rate, indicating that our optimization problem is amenable to
off-the-shelf solvers.

4.4 Reduction of Computational Cost by the Approximate Cover

Table 2 shows the number of surface points |R| and the number of inequality
constraints, before and after computing the approximate cover. We set the ball
enlargement parameter δ equal to 10 times the shortest distance between any
pair of neighboring point samples of R. The approximate cover decreased the
number of inequality constraints (and thereby the number of evaluations of fx
per iteration) by 98.8%− 99.2%, or about two orders of magnitude. The results
in Table 1, which were obtained using the approximate cover, shows that the
simplified constraints were still sufficient to resolve ill-constrained parameters.

5 Conclusion

We have presented a method for efficiently incorporating free space constraints
in the classical Iterative Closest Point algorithm. It is able to resolve parameters
that are ill-constrained by partial surface observations and supports any implicit
model for which the distance to its surface can be computed.

Presently, our method only allows for outliers in the form of alternate struc-
tures or corrupt range values (which can be set to zero). Such outliers decrease
the extent of utilizable free space. How to handle incorrect free space observa-
tions, which introduces bias, is an important question for future work.



12 S. Haugo and A. Stahl

Acknowledgments. This work is partly supported by the Research Council
of Norway through the Centre of Excellence funding scheme, project number
223254, NTNU AMOS.

References

1. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 14 (1992) 239–256

2. Solina, F., Bajcsy, R.: Recovery of parametric models from range images: The
case for superquadrics with global deformations. IEEE Transactions on Pattern
Analysis and Machine Intelligence 12 (1990) 131–147

3. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. International
Journal of Computer Vision 38 (2000) 199–218

4. Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real-time human pose track-
ing from range data. In: European Conference on Computer Vision, Springer (2012)
738–751

5. Schmidt, T., Newcombe, R.A., Fox, D.: DART: dense articulated real-time track-
ing. In: Robotics: Science and Systems. (2014)
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