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Abstract. A general approach for fitting implicit models to sensor data
is to optimize an objective function measuring the quality of the fit. The
objective function often involves evaluating the model’s implicit function
at several points in space. When the model is expensive to evaluate, the
number of points can become a bottleneck, making the use of volumetric
information, such as free space constraints, challenging. When the model
is the Euclidean distance function to its surface, previous work has been
able to integrate free space constraints in the optimization problem, such
that the number of distance computations is linear in the scene’s surface
area. Here, we extend this work to only require the model’s implicit
function to be a bound of the Euclidean distance. We derive necessary
and sufficient conditions for the model to be consistent with free space.
We validate the correctness of the derived constraints on implicit model
fitting problems that benefit from the use of free space constraints.
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1 Introduction

Infinite resolution, trivial support for constructive modeling operations and the
existence of closed-form expressions for a rich variety of primitives, has sparked
interest in the use of implicit models as a representation of scenes and objects.
However, the lack of an explicit surface and the open-ended domain (which may
be non-rigid and even non-differentiable) poses major challenges for their use
in model fitting. A general approach, based on optimizing an objective function
measuring the quality of the fit, often involves evaluating the associated implicit
function at multiple points in space. When the implicit function is expensive to
evaluate, the number of evaluations can become a bottleneck, making the use of
volumetric free space constraints (space observed to be empty) [1] impractical.

When the model is the Euclidean distance function to its surface, recent
work has been able to integrate free space constraints while ensuring that the
number of function evaluations remains linear in the scene’s surface area [2].
Often, the Euclidean distance function is too expensive to compute efficiently,
and a distance bound is used instead [3].
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Contribution. We present an extension of [2] that only requires the model’s
implicit function to be a bound of the Euclidean distance to its surface. We derive
a minimal set of necessary and sufficient conditions for the model to be consistent
with free space. We validate the correctness of the derived constraints on implicit
model fitting problems that benefit from the use of free space information.

2 Related work

Distance Functions. Implicit models represent geometric objects indirectly
by a function f(p), which maps a given point p ∈ R3 to a scalar that, in the
simplest case, indicates whether p is inside or outside the object. These have
numerous applications in solid modeling [4–9], robotics [10, 11], graphics [3, 12],
reverse engineering [13, 14] and machine learning [15–17]. A special case is when
f(p) is equal to, or approximates, the (signed) Euclidean distance function d(p),
which is the distance from p to the closest point on the surface, with the sign
indicating whether p is inside or outside. Discretized distance functions stored
in volumetric grids are widely used in 3D reconstruction [1, 18] and can easily
be computed from explicit models using a distance transform [19]. Neurally-
defined distance functions have recently received interest in the machine learning
community as a compact and end-to-end learnable shape representation [20].
The Euclidean distance can be computed from an arbitrary implicit function
by solving a constrained optimization problem, although this requires an initial
estimate of the closest point on the surface to guarantee convergence [21].

A rich set of modeling operations and primitives have also been proposed
for constructively defining distance-like functions [3, 4]. Although the Euclidean
distance function is challenging to define constructively, a bounding function can
often be obtained instead [3]. In graphics, a desirable condition on the bounding
function is that it does not overestimate the true distance. When f is Lips-
chitz, this can be ensured by identifying a Lipschitz constant, λ > 0, such that
|f | ≤ λ|d|. The resulting “signed distance bound”, λ−1f , defines everywhere
an “unbounding sphere” which is guaranteed to be intersection-free. Lipschitz
functions and constants have been derived for various modeling operations and
primitives [22, 3]. Our work uses Lipschitz functions, but we identify the addi-
tional condition that λ−1|f | should be bounded from below by a non-decreasing
function of |d|. This lets us also avoid the error caused by underestimation of
the true distance, which we use together with the Lipschitz condition to derive
a minimal set of necessary and sufficient free space constraints.

Free Space Constraints. Besides points on the scene’s surface, vision systems
may also provide information about visibility. For example, a range measurement
from a laser scanner says that not only is there a surface that far from the
sensor, but also that there can be no surface in-between. The resulting “free
space constraints” play a central role in 3D reconstruction [1, 23–25], and are
used in articulated and non-rigid model fitting to resolve model parameters that
are ill-constrained from surface measurements alone [26–34].
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Several works have addressed the computational challenges involved in the
use of free space constraints for model fitting. When the model surface or a bound
is available in explicit form, previous works have formulated efficient silhouette-
based or symmetric objective functions [29, 31, 33, 34]. For implicit models, when
the model is equal to the Euclidean distance function to its surface, recent work
[2] has been able to integrate free space constraints, while keeping the number
of function evaluations linear in the scene’s surface area. We extend the previous
work [2] to only require a distance bound, thus enabling the use of more diverse
implicit models without the need to compute the exact Euclidean distance.

3 Theory and Method

Our work builds on results from [2]. We summarize their main findings in Sec. 3.1.
We present our extension in the subsequent sections.

3.1 Notation and Problem Formulation

Let S be a solid representing the scene and let V be a domain of interest. Free
space Vfree is a closed subset of V that is observed to be empty. The free space
boundary ∂Vfree is the boundary between free and unobserved space. The visible
surface R is the observed subset of the physical scene boundary ∂S. Points in R3

are denoted c, p and q. A ball with center c and radius r is denoted (c, r). The
signed Euclidean distance to a solid D is denoted dD(p) := ±minq∈∂D ||p− q||2,
where the sign is negative for p inside D and positive outside.

A geometric model is given as a function fx(p) : R3×X → R and we seek to
estimate the parameters x ∈ X such that the solid Mx = {p ∈ R3 : fx(p) ≤ 0}
is consistent with the visible surface and with free space. Formally:

fx(p) = 0, ∀p ∈ R, (1)

fx(p) > 0, ∀p ∈ int Vfree. (2)

These conditions can be turned into a constrained optimization problem [2]

min
x

E(x) =
∑
p∈R

fx(p)2 (3)

subject to fx(c) ≥ r(c), ∀c ∈ I, (4)

where I is a set of points in Vfree and r(c) is the radius of the largest ball at c
that is empty with respect to Vfree (i.e. its interior contains no point of ∂Vfree).
Thus, each constraint in (4) defines a ball (c, r(c)) whichMx must not intersect.
When fx = dMx

, previous work [2] has shown that the medial axis [35] of Vfree
provides a minimal set of necessary and sufficient constraints I to ensure that a
feasible solution of (3)-(4) is consistent with free space, i.e. satisfies (2).
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3.2 Free Space Constraints for Distance Bounds

When fx 6= dMx , the constraints (4) are neither sufficient nor necessary. To
resolve this, we will assume that fx satisfies upper and lower bounds of the form

g(dMx(c)) ≤ λ−1fx(c) ≤ dMx(c), ∀(c, x) ∈ (R3,X ) : fx(c) > 0, (5)

where λ is a Lipschitz constant of fx over the domain R3 ×X and g(d) : R→ R
is a non-decreasing function with g(d) > 0 for d > 0. We motivate the use and
existence of bounds of this form in Sec. 3.4. In this section, we derive a set of
necessary and sufficient free space constraints when the true distance dMx is
unavailable, but fx, g and λ are known. For simplicity in the derivation, we will
omit subscripts and write f = fx, d = dMx

and M =Mx.

Intuition. Consider the constraint λ−1f(c) ≥ r(c). Observe that its satisfaction
implies d(c) ≥ r(c). Hence, its satisfaction is a sufficient condition for M to not
intersect the ball (c, r(c)). However, as f may underestimate the true distance, its
violation does not imply d(c) < r(c). Its satisfaction is therefore not a necessary
condition. Suppose there exists a function g, such that g(d) ≤ λ−1f . Consider
the constraint λ−1f(c) ≥ g(r(c)), obtained by “shrinking” the ball according
to g. Observe that its satisfaction implies d(c) ≥ g(r(c)). Hence, the “shrunk”
ball (c, g(r(c))) is intersection-free. Observe also that violation of the constraint
implies g(d(c)) < g(r(c)) which, if g is non-decreasing, implies d(c) < r(c).
Hence, M intersects the “original” ball (c, r(c)).

Thus, if the constraint λ−1f(c) ≥ g(r(c)) is satisfied, the model is guaranteed
to be outside the shrunk ball (c, g(r(c))). If the constraint is violated, the model
intersects the original ball (c, r(c)), though not necessarily the shrunk ball. This
observation leads to Proposition 1.

Proposition 1. Let fx : R3×X → R be Lipschitz over the domain R3×X and
let λ > 0 be an associated Lipschitz constant. Let g : R→ R be a non-decreasing
function, with g(d) > 0 for d > 0, such that ∀(x, c) ∈ (X ,Vfree) : g(dMx

(c)) ≤
λ−1fx(c). Let r(c) be the radius of the largest ball at c ∈ Vfree that is empty with
respect to Vfree. Then

λ−1fx(c) ≥ g(r(c)), ∀c ∈ Vfree, (6)

are necessary and sufficient conditions for fx to satisfy the free space consistency
conditions (2).

3.3 Minimal Set of Necessary and Sufficient Constraints.

While the constraints (6) are necessary and sufficient, many of the associated
balls can be fully contained by a larger ball. The constraints are thereby highly
redundant. To obtain a minimal set of constraints, we consider each line segment
connecting a point p ∈ ∂Vfree with the point cp that lies on the intersection of
the boundary normal np and the medial axis of Vfree. We generate the shortest
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sequence of (shrunk) balls that cover the line segment without overlapping, by
letting cp,i = p+ tp,inp and solving

tp,i + g(r(cp,i)) = tp,i−1 − g(r(cp,i−1)), i = 1, 2, ..., (7)

successively for tp,i starting with tp,0 = r(cp). This equation requires ball i in
the sequence to be tangent to ball i − 1. Depending on g, this may produce an
infinite sequence of balls, which may be truncated in different ways. For example,
by stopping or setting tp,i to its limit value (0) once below a desired tolerance
tmin. If g(d) = d, the sequence has a length of one, as expected. When the
sequences for all points p ∈ ∂Vfree are combined, we obtain a minimal set of
necessary and sufficient constraints.

Comparison with Sphere Tracing. The reader may notice a resemblence
between the above and a technique used for rendering implicit surfaces known as
sphere tracing [3]. One difference is that sphere tracing generates sample points
based on evaluating the model, whereas the above generates sample points based
on the input data. When sphere tracing is used for model fitting, it produces
different sample points depending on the current model parameters. The above
sample points remain the same during the optimization process. This observation
enables further improvements, which we describe below (approximate cover).
Sphere tracing requires the upper bound λ−1f ≤ d, while we also require the
lower bound g(d) ≤ λ−1f . If g(d) = d, we only generate a single sample point,
while sphere tracing may still take multiple steps to converge.

Approximate Cover. The minimal set may still exhibit substantial overlap
between the constraints, which can lead to unnecessary computations. Because of
our formulation of the bounds (5), the free space constraints are fully determined
by the input data. Similar to [2], we can therefore pre-compute an “approximate
cover” of free space—a simplified set of constraints that check for consistency
with an approximation of free space. We may use the same heuristic as in [2]
and [36], in which redundant balls are identified by checking if a given ball can
be completely covered by slightly enlargening any of its neighboring balls. Like
[2], we can greedily build an approximate cover by iteratively selecting the ball
which covers the most uncovered balls, when its radius is increased by δ.

3.4 Upper and Lower Bounds for Some Implicit Models

The upper bound in (5) requires that f can be scaled to not overestimate the
true distance d. Such functions are called signed distance bounds [3], although we
only require the bound to hold when f > 0. When f is Lipschitz, dividing by a
Lipschitz constant provides a distance bound. Several primitives and constructive
modeling operations that yield functions satisfying this property, along with
associated Lipschitz constants, have been described in the literature, including
set operations, linear transformations, tapering and twisting [22, 3].
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Fig. 1. (a,b): Examples of the lower bound f ≥ g(d) for a max-based intersection and
a bounding volume. (c): Sequence of balls produced by (7) for an example bound g(d).

Below, we describe two general forms of the function g required for the lower
bound, based on a consideration of two common implicit modeling techniques:
set operations and bounding volume hierarchies.

Set Operations. In constructive geometry, solids can be defined by successive-
ly applying set operations (union, intersection, difference) to primitives. Given
the distance functions to two solids, a cheap distance-like function to their u-
nion, intersection or difference can be computed by the min and max operators
[37]. While these do not yield the Euclidean distance to the resulting solid ev-
erywhere, they are guaranteed to not overestimate it [3]. As an example, the
intersection between two planes is shown in Fig. 1 (a), along with isolines of
the Euclidean distance d and its max-based approximation f . Here, f and d are
equal everywhere except when the closest point on ∂M is at the corner. The
error between f and d grows proportionally to d, with largest growth on the
diagonal extending away from the corner, where d =

√
2f . This gives a lower

bound of the form

g(d) = αd (8)

with α = 1/
√

2.

Bounding Volume Hierarchies. Bounding volumes are often used to avoid
computation of geometric details when the evaluation point is sufficiently far
away from the surface [3]. Fig. 1 (b) shows a single-stage bounding volume hier-
archy, where the object M is bounded by a box. A bounding volume hierarchy
first computes the distance to the box. If the result is greater than a threshold
βo, it is returned, terminating the computation of f . Otherwise, computation
proceeds with the distance to M. The threshold βo is typically chosen by the
model designer to be at the point where the distance to the bounding volume
ceases to be a good approximation of the distance to the bounded object.

Consider a single-stage bounding volume hierarchy. Let d′ and d be the Eu-
clidean distance function to the bounding volume and the bounded object, re-



Minimal Free Space Constraints for Implicit Distance Bounds 7

spectively. Suppose f = d′ when d′ > βo and f = d otherwise. Then, the error
between f and d is either zero or bounded by the constant βe < βo, which is the
maximum difference between d and d′ at the level-set d′(p) = βo:

βe = max
p∈d′−1(βo)

d(p)− d′(p). (9)

A lower bound g is

g(d) =


d if d < βo,

βo if βo ≤ d < βo + βe,

d− βe otherwise,

(10)

where the constant value in the transition region βo ≤ d < βo + βe ensures that
g is non-decreasing.

Proportional or Constant Error. We observe that the error between f and d
grew proportionally in the case of a set operation and was bounded by a constant
in the case of a bounding volume hierarchy. This lead to two general forms of
the function g. These can naturally be combined. An example sequence of balls
produced by (7) for a function g that combines both of the above is shown in
Fig. 1 (c).

4 Experiments

We experimentally validate the proposed constraints. First, we show that the
solution obtained using the “uncorrected” free space constraints of [2] is incorrect
when fx 6= dMx

. Second, we show that the use of the proposed “corrected”
constraints (6) can resolve ill-constrained parameters when the bounds (5) are
available. Finally, we study the computational cost of the proposed minimal set
of constraints and the approximate cover.

Datasets and Pre-processing. We use the dataset in [2], comprised of single-
view range images of objects with corresponding Euclidean distance functions.
To obtain the necessary quantities (R and I) for the constrained optimization
problem (3)-(4), we use a pre-processing pipeline similar to [2]. For the corrected
constraints, I is generated as described in Sec. 3.3. All results use an approximate
cover for both methods. To solve the constrained optimization problem, we con-
sider Matlab’s implementation of Sequential Quadratic Programming (SQP). We
also consider a non-smooth exact penalty method that replaces the constrained
problem by the unconstrained problem

min
x

∑
p∈R

fx(p)2 + µ
∑

(c,r)∈I

(min(0, fx(c)− r))2 , (11)

which we solve using a derivative-free (DF) solver.
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(a) (b) (c) (d) (e) (f)

DF

DF

Exact

Uncorr.

SQP
Uncorr.
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Corr.

SQP
Corr.

Fig. 2. Effect of proportional error with α = 0.7. (DF Exact): Global solution for
the exact distance models using the derivative-free solver. (DF/SQP Uncorr./Corr.):
Global solution for the distance bound models with uncorrected or corrected free space
constraints. Points are on the visible surface R. Point color indicates distance to the
model, brighter being closer.

4.1 Effect of Error Between fx and dMx

Proportional Error. We study how a proportional error between fx and dMx

affects the global solution. We simulate a proportional error by replacing each
model’s distance function by f ′x(p) = αfx(p), for α < 1. We compare the global
solution of both solvers (DF and SQP) with and without corrected free space
constraints. To find the global solution, we initialize x at ground-truth with a
small random offset and run the given solver until convergence. We pick the
solution with the best objective function value over 100 trials.

Constant Error. We repeat the above experiment, adding instead a single-
stage bounding volume hierarchy such that f ′x(p) = fx,bound(p) if fx,bound(p) >
βo and f ′x(p) = fx(p) otherwise, where fx,bound is taken as the distance to a
constant offset surface: fx,bound = fx(p) − βe. Because the switch statement
makes the model non-differentiable, we only report results using the derivative-
free solver.
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(a) (b) (c) (d) (e) (f)
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Fig. 3. Effect of constant error with βo = 0.03 and βe = 0.01. (DF Exact): Global solu-
tion for the exact distance models using the derivative-free solver. (DF Uncorr./Corr.):
Global solution for the distance bound models with uncorrected or corrected free space
constraints. Points are on the visible surface R. Point color indicates distance to the
model, brighter being closer.

Table 1. Mean Euclidean distance from R to ∂M at the global solution obtained with
the derivative-free method. (Exact): Results for the exact distance models. (Bound, un-
corr./corr.): Results for the distance bound models described in Sec. 4.1: proportional
error (*) and constant error (**), with uncorrected or corrected constraints.

Box (a) Box (b) Head (c) Plug (d) Plug (e) Plug (f)

Exact 0.38 0.18 0.27 0.28 1.67 1.27

Bound*, uncorr. 17.79 18.29 10.44 11.38 16.37 17.24
Bound*, corr. 0.40 0.21 0.25 0.27 1.37 1.30

Bound**, uncorr. 2.33 3.09 2.29 2.35 2.78 3.12
Bound**, corr. 0.29 0.24 0.19 0.24 1.24 1.21

Results. The results in Fig. 2 and Fig. 3 show that when fx 6= dMx
, uncorrected

free space constraints lead to a global solution that is different from the true
solution obtained using the exact distance models (fx = dMx). They also show
that the correction with the distance bound models yields a global solution that
is visually similar to the true solution. Table 1 quantifies the difference using the
mean Euclidean distance from the visible surface to the model. It shows that the
mean distance is one or two orders of magnitude greater without the correction
and within 5-20 percent of true solution with the correction.

4.2 Ability to Resolve Ill-Constrained Parameters

We quantify how constrained the model parameters are at the global solution.
Initializing x to ground-truth, we perform a random walk of length k = 50, where
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Table 2. Estimated number of constrained parameters out of all parameters and sum of
singular values in parenthesis. (Exact): Results for the exact distance models. (Bound,
corr.): Results for the distance bound models with corrected constraints.

Box (a) Box (b) Head (c) Plug (d) Plug (e) Plug (f)

Exact 9/9 (0.0) 8/9 (2.1) 7/7 (0.0) 9/13 (4.0) 9/13 (5.6) 9/13 (6.0)
Bound, corr. 9/9 (0.0) 8/9 (2.2) 7/7 (0.0) 9/13 (3.6) 9/13 (5.9) 9/13 (5.8)

at each step i = 1...k the current parameters are perturbed by a uniformly drawn
vector δ ∈ [−σ, σ]|X |, σ = 0.1, and re-optimized (using the derivative-free solver)
from the perturbed position. We perform N = 100 random walks, which gives
a matrix of solutions X = [x1 · · ·xN ] from each random walk. As a measure
of the number of constrained parameters, we use the rank of X, estimated as
the number of singular values less than σ. If a parameter is well-constrained, it
should return to its original value after re-optimization. Singular values larger
than σ indicates that one or more parameters were not constrained.

Results. Table 2 shows that the number of constrained parameters at the global
solution for the distance bound models, with corrected constraints, is the same
as for the exact distance models. This supports the visual results in Fig. 2 and
Fig. 3 (bottom rows), where the solution is seen to acquire a fit that is only
possible by the use of free space constraints (e.g. the dimensions of the Box (a)
are correctly estimated, despite only two out the six faces being visible).

4.3 Computational Cost

Table 3 reports the number of free space constraints used by [2] and our method.
It can be seen that our extension yields an increase in the number of constraints.
The number of constraints produced by [2] scales linearly by the scene’s surface
area. A natural question is how our method scales as the scene volume grows.

To quantify this, we characterize the scale of the scene by the length r of the
longest line segment pcp between ∂Vfree and the medial axis (c.f. Sec. 3.3). The
algorithm described in Sec. 3.3 will generate the longest sequence along this line
segment. Hence, an upper bound of the number of constraints is the length of
the longest sequence multiplied by |∂Vfree|. Fig. 4 shows the sequence length as
a function of r, for the proportional lower bound (8) with different values of α.
We observe that the number of balls increases logarithmically as a function of r.

Therefore, our method does not scale linearly, since r may increase as the
scene increases in volume. However, if the increase in r can be bounded by an
appropriate factor, our method can achieve linear scaling. For example, when
α = 0.8, the number of balls along the longest line segment is constant within
approximately each 10-fold increase in r. Thus, if the scene growth is bounded
such that r grows by no more than a factor of 10, the number of constraints
produced by our method will be linear in the scene’s surface area.
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Table 3. Number of surface points and (un)corrected free space constraints for the
distance bound models described in Sec. 4.1: proportional error (*) and constant error
(**), with (approx.) and without (all) the approximate cover.

(a,b) (c) (d) (e,f)

Surface points |R|: 686 15 806 6 827 8 730

Constraints |I| (all), uncorr. 48 386 32 019 42 013 40 193
Constraints |I| (all), corr.* 118 950 93 826 98 768 99 116
Constraints |I| (all), corr.** 83 421 69 036 71 017 71 727

Constraints |I| (approx), uncorr 432 272 320 479
Constraints |I| (approx), corr* 2 722 1 046 1 776 2 646
Constraints |I| (approx), corr** 1 240 493 793 1 289

100 101 102 103 104 105 106

Distance to medial axis r
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20

Se
qu

en
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ng

th =0.3
=0.5
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Fig. 4. Number of balls produced by the sequence (7) along a single line segment, as
a function of the distance to the medial axis r = r(cp), for different α, using tmin = 1.

Analysis of the Lower Bound for Some Implicit Models. The number
of constraints added by our method depends on the lower bound g. Here, we
analyze g for the implicit models shown in Fig. 5. These models are defined
using min/max set operations on primitives with closed-form expressions for the
Euclidean distance function. Therefore, a suitable form of the lower bound g is
the form (8), parameterized by the constant α. Fig. 5 (bottom) shows, for each
model, the value of α and the cumulative histogram of local point-wise estimates
α̂(p) in a box region twice the size of the model. The histograms show that α is
approximately 0.45, 0.09, 0.71 and 0.71, for the respective models.

For example, in Model A, α̂(p) = 1/
√

2 on the corner diagonals and α̂(p) ≈
0.45 inside the subtracted disk. The value of α is the minimum of these. The
cumulative histogram for Model A shows that α̂ was less than 1/

√
2 for only

0.5% of the points, indicating that the subset of points affected by the error
between fx and dMx , caused by the disk subtraction, is very small. This is a
shortcoming of our formulation of the lower bound, as a local large error affects
the lower bound globally. This is also seen in Model B and Model C. These models
define identical solids, but Model B subtracts a closed primitive while Model C
subtracts an open primitive. In Model B, the subtracted primitive’s proximity
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Fig. 5. Analysis of the constant α in the lower bound (8) for four models A-D. Top:
Construction diagram of model. A dashed outline indicates that the shape is subtracted.
Middle: Cross section of the model solid and isolines of fx. Bottom: Cumulative
histogram of point-wise estimates α̂(p) = fx(p)/dMx(p) where p is taken over a region
twice the size of the model and fx(p) > 0. The dashed line indicates α = min α̂.

near the top of the cavity causes fx to be very small relative to dMx
, which in

turn causes a long tail in the histogram. This is improved by the subtraction in
Model C, which yields a smaller error between fx and dMx

.

5 Conclusion

We have presented a method for fitting implicit models subject to free space
constraints, requiring only that a bound of the distance to the model surface
can be computed at a given point. Our method supports arbitrary shape spaces
and provides a minimal set of sampling locations to ensure that the model is
consistent with surface- and free space measurements.

Although our method does not retain the linear complexity compared to
previous work [2], we do achieve linear complexity if the scene growth is bounded
in terms of the largest distance to the medial axis. A relevant direction for future
research is to investigate methods for further reducing the computational cost.
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