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Abstract. There is evidence that accessing online traffic data is a key factor to 
facilitate intelligent traffic management, especially at intersections. With the ad-
vent of autonomous vehicles (AVs), new options for collecting such data appear. 
To date, much research has been performed on machine learning to provide safe 
motion planning and to control modern vehicles such as AVs. However, few stud-
ies have considered using the sensing features of these types of vehicles to collect 
traffic information of the surrounding environment. In this study, we developed 
new algorithms to improve a traffic management system when the traffic is a 
mixture of human-driven vehicles (HDVs) and modern vehicles with different 
levels of autonomy. The goal is to utilize the sensing ability of modern vehicles 
to collect traffic data. As many modern vehicles are equipped with vehicle-
mounted sensors by default, they can use them to collect traffic data. Our algo-
rithms can detect vehicles, identify their type, determine the lane they are in, and 
count the number of detected vehicles per lane by considering multi-lane scenar-
ios. To evaluate our proposed approach, we used a vehicle-mounted monocular 
camera. The experimental work presented here provides one of the first investi-
gations to extract real traffic data from multiple lanes using a vehicle-mounted 
camera. The results indicate that the algorithms can identify the detected vehi-
cle’s type in the studied scenarios with an accuracy of 95.21%. The accuracy of 
identifying the lane the detected vehicle is in is determined by two proposed ap-
proaches, which have accuracies of 91.01% and 91.73%. 

Keywords: Lane Detection, Multiple Lanes, Vehicle Detection, Intelligent 
Traffic Management, Vehicle-Mounted Monocular Camera. 
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1 Introduction 

There is a growing body of literature that recognizes the importance of collecting traffic 
data in intelligent traffic management systems. Developments in machine learning tech-
niques and sensors’ capabilities have led to proposing various approaches for collecting 
different types of traffic data (e.g., [1]). These data can be used to manage traffic safely 
and efficiently, especially at intersections [2]. When focusing on intersection manage-
ment systems, detecting vehicles’ types [3], identifying the lanes they are in, and count-
ing the number of vehicles per lane are vital to provide a global view of the intersection 
to manage the traffic with high performance. 

Previous research on collecting traffic data has mostly used stationary sensors, which 
are affected by the brightness and weather condition, besides having high installation 
and maintenance costs. Moreover, equipping all streets with these types of sensors can 
be costly. The main contribution of our research is taking advantage of the sensing 
capabilities of modern vehicles, e.g., AVs, which are equipped with various types of 
sensors, to collect data of the surrounding vehicles to manage traffic. Moreover, this 
idea is reachable in pure AVs traffic and mixed traffic (a combination of HDVs and 
AVs), as managing mixed traffic is one of the most important issues for the near future, 
since changing all vehicles to autonomous versions will be a time-consuming process. 
Even after this period, traffic might include HDVs as well, because some people enjoy 
driving. Another contribution of this research is proposing an approach which is gen-
eralizable with various levels of vehicle autonomy. Therefore, we used a vehicle-
mounted monocular camera, which is one of the cheapest sensors, so there is a high 
probability that most modern vehicles will be equipped with one. Moreover, by using 
the camera vision, we are able to record video from multiple lanes. Therefore, we used 
the camera data to analyze the surrounding traffic. Our developed algorithms are able 
to detect and classify vehicles in multiple lanes, detect the lanes next to the equipped 
vehicle, determine the location of the detected vehicles, and count the number of vehi-
cles in each lane. By accessing this information and sharing it with traffic management 
systems, these systems would have a better global view of the environment and would 
be able to make better traffic management decisions, especially at intersections. 

Our proposed algorithms attempt to answer two research questions: 
§ RQ1. How can we enhance the accuracy of detected vehicles’ types based on 

existing object detection algorithms? 
§ RQ2. How can we identify the lane the detected vehicle is in on multi-lane 

streets to estimate the number of vehicles in each lane? 
The remainder of the paper proceeds as follows. The next section summarizes related 

works. Chapter 3 explains the research methodology used in this study. The implemen-
tation to answer the proposed RQs is described in chapter 4. Chapter 5 presents the 
experimental results on real traffic data. The last chapter discusses the findings and 
concludes. 
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2 State of the Art 

In the past few years, a considerable amount of literature has been published on vehicle 
detection, lane detection, lane-keeping, and tracking for driver assistant systems (e.g., 
[4]). 

Target detection algorithms can be classified into three categories [5]. The first cat-
egory is the digital image processing approach, such as the frame difference (FD) ap-
proach. The second one is a machine learning approach, which is usually based on an 
AdaBoost classifier or support vector machine (SVM). The last category is based on 
deep learning approaches. The proposed algorithms in this group are based on convo-
lution neural networks (CNN), Fast-RCNN, Faster-RCNN, YOLO (You Only Look 
Once), etc. [5]. 

To improve the object detection performance, Tian et al. [5] proposed a hybrid 
method, which combined the FD method and YOLO. The results show that this ap-
proach can improve the bounding boxes’ precision. Moreover, they introduced a model 
to estimate the distance and speed of the targets based on video from a stationary mo-
nocular camera in real time. To detect and track objects and estimate distance and mo-
tion in real time, Chen et al. [4] proposed an approach based on deep learning. First, 
they compared YOLOv3 with a single shot detector (SSD). Second, their object dis-
tance estimation was developed based on the Monodepth algorithm. Third, they pro-
posed a new method to analyze object behavior based on SSD. To validate the proposed 
methodology, they used real traffic from a city center and a railway. 

Moreover, different methodologies have been proposed for lane detection. Hillel et 
al. classified the purpose of lane understanding into lane departure warning, adaptive 
cruise control (ACC), lane keeping, lane centering, lane change assist, turn assist, fully 
autonomous driving for paved roads, and fully autonomous driving for cross-country 
trips [6]. Lane boundary tracking generally includes three major steps [7]. The first step 
is lane marking detection. In this step, various types of sensors, such as a camera (e.g., 
[8]), lidar (e.g., [9]), radar, GPS (e.g., [10]), and a line sensor camera (e.g., [11]), can 
be used. The second step is lane boundary estimation, which includes position, object 
type, lane information, and vehicle information. The last step is lane boundary tracking. 
In this step, different filtering approaches such as a Kalman filter, extended Kalman 
filter, unscented Kalman filter, and particle filter are used [7]. 

Jo et al. [12] proposed a new method to build an accurate lane-level road map based 
on a stereo camera, GPS, and in-vehicle sensors. The lane map generation process in-
cludes two main steps. The first step is pre-processing, which includes global optimi-
zation, ego-motion estimation, and lane detection. The second step includes coordina-
tion conversion, clustering, and polyline fitting. Jia et al. [13] proposed a sequential 
monocular road detection algorithm. The algorithm is classified into sequential road 
modeling, probabilistic segmentation, and boundary refinement. The current image, 
previous image, and previous road maps are the input to this process, and the current 
road map is its output. The multi-lane detection approach is proposed by Chao et al. 
based on the deep convolutional neural network. The full connected network (FCN) is 
applied to the captured image by the monocular camera to extract the lane boundary 
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feature. On the image, perspective transform, Hough transform, and the least square 
method are applied for the lane fitting [14]. 

Cao et al. [15] proposed a lane detection algorithm that considered dynamic envi-
ronments and complex road conditions. It is based on the superposition threshold algo-
rithm and the random sample consensus (RANSAC) algorithm. Another approach pro-
posed color-based segmentation for lane detection; it used global convolution networks 
(GCN), residual-based boundary refinement, and Adam optimization [16]. Yuan et al. 
introduced a new approach to segmentation and lane detection [17]. It was based on a 
normal map, an adaptive threshold segmentation method, denoising operations, Hough 
transform, and the vanishing point. 

3 Research Methodology 

3.1 Research strategy 

A case study approach was chosen to evaluate the effectiveness of the proposed algo-
rithms with real traffic in an urban area. A vehicle-mounted monocular camera was 
driven on a predefined path in Trondheim, Norway. For the purpose of data analysis, 
the recorded video was divided into smaller scenarios. Five scenarios were selected by 
considering the situation coverage and the research scope. The studied scenarios are 
presented in Table 1. 

Table 1. Scenarios. 

Scenarios Description Total frames 
S1 Includes streets with 4 lanes and 3 lanes (1 left and 2 right). 994 
S2 Includes streets with 4 lanes and 1 reserved lane in the center, 1 

four-way intersection with a red traffic light and 2 traffic lights 
at two-way intersections. 

533 

S3 Includes a 4-lane street, 1 red traffic light at a four-way inter-
section, 1 green traffic light at a four-way intersection, and 1 
red traffic light at a two-way intersection. 

2249 

S4 Includes a 4-lane street with a guardrail in the center, 1 green 
traffic light at a curved four-way intersection, 1 red traffic light 
at a curved intersection, and 1 red traffic light at a four-way in-
tersection. 

1819 

S5 Includes 4-lane and 2-lane streets and 1 red traffic light at a 
three-way intersection. 

2278 

3.2 Data collection 

To test our proposed algorithms with real traffic, we decided to record our own footage. 
Therefore, we equipped a vehicle with a front-facing GoPro Hero 7 camera [18]. The 
video resolution and frame rate were 1920 × 1080 and 30 frames per second (FPS), 
respectively. The GPS information includes latitude, longitude, altitude, speed, and a 
UTC stamp. 
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The equipped vehicle was driven along the predefined path in Trondheim, Norway, 
between 9 and 10 a.m. on a typical workday. In this experiment, we focused on city 
traffic with various numbers of lanes, intersections, and traffic lights. 

The recorded video was split into small scenarios to be analyzable, and one frame 
was analyzed in every 30. The experiments were run using a desktop computer with an 
Intel Core i7-4770k CPU 3.40 GHz × 8 and Intel Haswell Desktop graphics. 

The data telegram is defined as follows: 
§ Type of the detected vehicles 
§ Location of the detected vehicles on the multi-lane streets 
§ Number of vehicles in each lane 

4 Implementation 

By extending existing vehicle detection and lane detection algorithms, the proposed 
method is able to extract the information of the traffic surrounding the camera-mounted 
vehicle. Several existing algorithms and libraries have been widely applied for vehicle 
detection and classification, such as YOLO ([24, 25]), PyTorch [19], and OpenCV [20]. 
Since YOLO is able to run in real-time vehicle detection and classification based on the 
global context in the image and a single network evaluation [27], it has the potential to 
provide traffic information to help with real-time traffic management systems [5]. In 
order to detect lanes, the results of comparing three different edge detection algo-
rithms—Sobel edge detection, Canny edge detection, and Prewitt edge detection—
show that Canny edge detection is able to detect the required lanes with less noise than 
the other two [3]. Therefore, in this paper, we used Canny edge detection [21] and pro-
gressive probabilistic Hough transform [22, 23] to deal with lane detection. 

The major goal of this paper is to propose a method which can provide lane-based 
traffic information by extracting data from video via a vehicle-mounted monocular 
camera. In our last paper [3], we proved that a vehicle-mounted monocular camera can 
collect traffic data, such as the speed and distance of the detected vehicles. However, 
traffic management systems need more detailed information on each lane. In this paper, 
we focused on localizing the detected vehicles in each lane. 

4.1 RQ1. Vehicle type detection 

As we mentioned before, we used YOLO to do vehicle detection and classification. 
YOLO was originally trained on the COCO dataset, which includes 80 object catego-
ries, such as car, cat, umbrella, cell phone, etc. Therefore, the accuracy of the model is 
not good enough to extract real-world traffic data [3]. Since the traffic management 
only requires traffic objects, a pre-trained weight on the KITTI dataset was used to train 
YOLO to enhance its accuracy in classifying traffic objects. The KITTI dataset focuses 
on traffic objects and contains eight categories named car, van, truck, pedestrian, per-
son_sitting, cyclist, tram, and misc. [28]. The proposed system architecture is shown in 
Fig. 1. As shown in Fig. 1, the input of the system is the recorded videos from real-
world traffic, as described in section 3.2. The algorithm is based on YOLO trained on 
the KITTI dataset. Moreover, the output of the system is the processed videos. In these 
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videos, bounding boxes are drawn around the detected vehicles, and the types of de-
tected vehicles are identified. Moreover, lane markers are detected and highlighted. 
This information is recorded in JSON files for further analysis. 

 
Fig. 1. System architecture. 

4.2 RQ2. Extracting traffic data 

To answer this research question, we followed three steps, as shown in Fig. 2. The first 
step was to identify the nearby lanes on both sides of the equipped vehicle. To do this 
we converted the extracted frames to grayscale to reduce the processing time. To re-
move the noise, frames were blurred. After that, as we mentioned in section 4, we used 
Canny edge detection [21], and the regions of interest (RoI) [29] to reduce the compu-
tation time. Moreover, progressive probabilistic Hough transform [22, 23] is applied to 
detect lines. After that, lines were drawn on top of the frames, which are shown in green 
in Fig. 3 and Fig. 4. The parametrization for the detected lines is based on the starting 
point (x1, y1) and ending point (x2, y2) of the line in the defined RoI. 

The second step is detecting vehicles and dividing them into three groups. To do 
this, based on the distance between a central point on the bottom side of the bounding 
boxes around the detected vehicles and detected lanes, we classified vehicles into three 
groups, named left, middle, and right. To classify the vehicles, we followed these rules: 
If the vehicles were driven in the same lane as the equipped vehicle, we classified them 
as middle; if they were to the left side of that vehicle, we classified them as left; and 
others were classified as right. The conditions to make these decisions are shown in 
Table 2. This table includes three figures, in which green lines are the detected lanes on 
both sides of the equipped vehicle; they are named the left line (LL) and right line (RL). 
Bounding boxes around the detected vehicle are shown as a red rectangle. The central 
point on the bottom side of the bounding box is named “central point” (CP). Blue 
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arrows represent the conditions, which are called left of the left line (LoL), left of the 
right line (LoR), right of the left line (RoL), and right of the right line (RoR). 

 
Step 1 

 
Step 2 

 
Step 3 

 
Fig. 2. Lane detection, object detection, and location estimation. 

In the third step, we identify the location of each vehicle in multiple lanes. The idea is 
based on the assumption that vehicle size is less than the lane width. So, the vehicle 
location is identified based on the distance between the CP in the bounding box around 
the detected vehicle and the detected lane which that vehicle is in. The distance is meas-
ured by two proposed approaches as follows. 

Approach 1. 
In the first approach, we estimate the location of the detected vehicle based on the 

shortest path between the CP and the related lane. The shortest distance between a point 
and a line which is defined by two points, is presented in equation (1) [30]. The distance 
(Di) of the point CP on the bounding box around the vehicle i, which is expressed by 
(xvi,0	,	yvi,0) from the line which passes through two points, P1:=(x1,y1) and P2:=(x2,y2), is 
as follows: 

distance	 "(𝑃%, 𝑃'),	 )xvi,0	,	yvi,0*+=	
,(x2-x1))y1-yvi,0*-.x1-xvi,0/.y2-y1/,

0(x2-	x1)2+	.y2-y1/
2

                            (1) 

This approach is presented in Fig. 3. In this figure, similar to Table 2, green lines are 
the detected lanes on both sides of the equipped vehicle, called LL and RL. Red rectan-
gles are bounding boxes around the detected vehicle. CP represents the central point on 
the bottom side of the bounding box. Blue arrow which is called Di, shows the shortest 
distance between a CP on vehicle i and a related line. Wvi shows the width of the vehicle 
i. 

Approach 2. 
In this approach, we propose a solution to estimate the vehicle distance (di) to the 

related line in the horizontal direction, as shown in Fig. 4. Other variables are named as 
in Fig. 3. 

Extract 
video 

frames

Convert 
to 

grayscale

Remove 
noise by 
blurring

Apply 
Canny 
edge 

detection 

Crop 
region of 
interest

Apply progressive 
probabilistic 

Hough transform

Merge 
and draw 

lines

Apply YOLO Find CP Determine CP position 
based on the detected lanes

Determine the 
bounding box 

width

Estimate distance between CP 
and the detected line by 
applying approach 1 and 

approach 2

Determine the 
related lane to the 

vehicle
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Fig. 3. The first approach to estimating the lane the detected vehicle is in. 

 
 

Fig. 4. The second approach to estimating the lane the detected vehicle is in. 

Table 2. Dividing vehicles into three main groups, left, middle, and right. 

   
If the CP is located on the left 
side of the left line and on the 
left side of the right line, then 
the vehicle is on the left side. 

If the CP is located on the 
right side of the left line and 
on the left side of the right 
line, then the vehicle is in the 
middle. 

If the CP is located on the 
right side of the left line and 
on the right side of the right 
line, then the vehicle is on the 
right side. 
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To measure di, our proposed approach consists of the following steps. 
1- Measuring the slope of the related line (jL, j:=L or R), which passes through two 

points, P1 and P2 [31]. 

SlopejL= .y2- y1/
(x2- x1)

                                                  (2) 

2- Converting the line’s slope to an angle in degrees [31]. 

jLdegree= arctan )SlopejL*                                         (3) 

3- Estimating di by using triangulation formulas, as shown in Fig. 5. 
 
Based on Euclidean parallelism [26], 

L ∥ di      ⇒     β= ∝ =γ=Ndegree                                    (4) 

Di ⊥N    ⇒     λ=90°                                               (5) 

By considering the triangle rules [32], 

θ+ λ+ γ=180°  ⇒  θ=180°- 90°- γ     ⇒    θ=90°- Ndegree 	                (6) 

Based on the trigonometric ratios, the hypotenuse (di) is calculated by the following 
formula [33]: 

di= Di
cos(θ)

    ⇒    di= Di
cos.90°- Ndegree/

 		                                (7) 

 
Fig. 5. Identifying the vehicle’s lane by the second approach. 

Finally, as the last step, the location of the vehicle is estimated by considering the dis-
tance and vehicle size, as shown in Table 3, in which Distancei is the distance calculated 
for a vehicle i by following approach 1 and approach 2, and Svi is the size of vehicle i. 
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Table 3. Conditions for finding the detected vehicle’s location in multiple lanes. 

Condition Output 
0 < Distancei < Svi 1st lane on the left/right 
Svi < Distancei < 2×Svi 2nd lane on the left/right 
2×Svi <Distancei < 3×Svi 3rd lane on the left/right 
(n-1) ×Svi < Distancei < n×Svi nth lane on the left/right 

We ran our algorithms on predefined scenarios and extracted the frames. Out of every 
30 frames, we analyzed one frame manually as a ground truth. In this study, the scenar-
ios include 7873 frames in total, and we analyzed 262 frames. Then, the outputs of the 
algorithms were compared with the manually extracted data. 

5 Results 

The purpose of the first experiment was to determine the accuracy of the improved 
algorithms in identifying the type of the detected vehicles. Table 4 illustrates our re-
sults. It is apparent from this table that the accuracy of identifying the detected vehicles’ 
type is higher than 90.74% for all lanes in the studied scenarios. 

Table 4. Vehicle type detection in the predefined scenarios. 

Sc
en

ar
io

 1
 

 

 2nd lane on the left 1st lane on the left Middle Right Total 
Manual 5.00 19.00 22.00 2.00 48.00 
System 5.00 19.00 22.00 0.00 46.00 
Correct (%) 100.00 100.00 100.00 0.00 95.83 
Error (%) 0.00 0.00 0.00 100.00 4.17 

Sc
en

ar
io

 2
 Manual 0.00 12.00 9.00 0.00 21.00 

System 0.00 12.00 9.00 0.00 21.00 
Correct (%) 100.00 100.00 100.00 100.00 100.00 
Error (%) 0.00 0.00 0.00 0.00 0.00 

Sc
en

ar
io

 3
 Manual 0.00 70.00 24.00 1.00 95.00 

System 0.00 68.00 24.00 1.00 93.00 
Correct (%) 100.00 97.14 100.00 100.00 97.89 
Error (%) 0.00 2.86 0.00 0.00 2.11 

Sc
en

ar
io

 4
 Manual 1.00 2.00 44.00 7.00 54.00 

System 1.00 1.00 42.00 5.00 49.00 
Correct (%) 100.00 50.00 95.45 71.43 90.74 
Error (%) 0.00 50.00 4.55 28.57 9.26 

Sc
en

ar
io

 5
 Manual 10.00 11.00 5.00 48.00 74.00 

System 9.00 10.00 5.00 45.00 69.00 
Correct (%) 90.00 90.91 100.00 93.75 93.24 
Error (%) 10.00 9.09 0.00 6.25 6.76 
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In the second experiment, we analyzed the identified location of the detected vehicles 
in each lane. The results obtained from the selected scenarios are shown in Table 5. 
App 1 and App 2 indicate approach 1 and approach 2, respectively. The results obtained 
from the experiments show that the accuracy of vehicle location identification is be-
tween 71.43% and 90.54% with the first approach, and between 71.43% and 94.59% 
with the second approach, for all lanes. 

Table 5. Vehicle location detection in the predefined scenarios. 

Sc
en

ar
io

s 

Outputs 

2nd lane on 
the left 

1st lane on 
the left Middle Right Total 

App 1 App 2 App 1 App 2 App 1 App 2 App 1 App 2 App 1 App 2 

Sc
en

ar
io

 1
 Correct (%) 80.00 100.0 94.74 84.21 86.36 86.36 100.0 100.0 89.58 87.50 

Error (%) 20.00 0.00 5.26 15.79 13.64 13.64 0.00 0.00 10.42 12.50 

Sc
en

ar
io

 2
 

Correct (%) 100.0 100.0 75.00 75.00 66.67 66.67 100.0 100.0 71.43 71.43 

Error (%) 0.00 0.00 25.00 25.00 33.33 33.33 0.00 0.00 28.57 28.57 

Sc
en

ar
io

 3
 Correct (%) 100.0 100.0 80.00 80.00 95.83 95.83 100.0 100.0 84.21 84.21 

Error (%) 0.00 0.00 20.00 20.00 4.17 4.17 0.00 0.00 15.79 15.79 

Sc
en

ar
io

 4
 Correct (%) 100.0 100.0 100.0 100.0 90.91 90.91 71.43 71.43 88.89 88.89 

Error (%) 0.00 0.00 0.00 0.00 9.09 9.09 28.57 28.57 11.11 11.11 

Sc
en

ar
io

 5
 

Correct (%) 70.00 100.0 72.73 72.73 100.0 100.0 97.92 97.92 90.54 94.59 

Error (%) 30.00 0.00 27.27 27.27 0.00 0.00 2.08 2.08 9.46 5.41 

In total, the accuracy of the vehicle type detection and location identification for the 
vehicles with the correct type detection in all scenarios when considering all lanes is 
shown in Table 6. As this table shows, the accuracy of the second approach for estimat-
ing the lanes the detected vehicles are in is higher than that of the first approach. 

Table 6. Total accuracy for all scenarios. 

 Type identification Localization based on App 1 Localization based on App 2 
Correct (%) 95.21 91.01 91.73 

Error (%) 4.79 8.99 8.27 
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6 Discussion and Conclusion 

The main objective of this research was to study modern vehicles’ sensing abilities for 
collecting traffic data to improve traffic management systems. To achieve this objec-
tive, we have developed a system and done experiments with real traffic data. Some of 
the prior studies that have noted the importance of collecting traffic data used stationary 
sensors to achieve this goal (e.g., [5]). As using stationary sensors are costly to equip 
all streets, we have used a vehicle-mounted sensor, as modern vehicles are equipped 
with various types of sensors, which are powerful and free resources to use. 

As we have mentioned, modern vehicles are equipped with various types of sensors, 
but we decided to use a monocular camera to make our solution more feasible in the 
real world. Due to lidars are more expensive than cameras, the possibility of equipping 
all vehicles with a lidar is low, which will limit the generalizability of the proposed 
approach in reality. Therefore, we decided to use a monocular camera, which is cheap 
and likely to be mounted on most modern vehicles. Moreover, the camera’s field of 
view gives us the possibility to collect data from multiple lanes to provide a better un-
derstanding of the traffic situation. 

Our proposed algorithms are a combination of a deep learning algorithm called 
YOLO, which was trained on the KITTI dataset to detect vehicles and identify their 
type, and image processing approach to provide robust vehicle location estimation for 
multiple lanes. Although most of the existing papers in this scope have focused on lane 
detection (e.g., [15]) or object detection (e.g., [5]), we have combined both methodol-
ogies to extract more data types. In reviewing the literature, we found that more recent 
studies have been limited to lane detection and tracking for driver assistance systems 
(e.g., [17]). No approaches were found on the dependency between vehicle detection 
and the related lane, as it is vital for traffic management systems, especially at intersec-
tions, to access the traffic volume per lane. 

One of the most significant findings from our proposed algorithms is that a vehicle-
mounted monocular camera is able to extract traffic data, such as the detected vehicles’ 
type, what lanes they are in, and the number of detected vehicle in each lane. Our ex-
periments on real traffic data with five scenarios confirmed that our algorithms can 
identify the detected vehicles’ type with an accuracy higher than 90.74%. The accuracy 
of vehicle location identification for all lanes with the first and second approaches is 
between 71.43% and 90.54%, and between 71.43% and 94.59%, respectively. The ob-
served low accuracy of the second scenario can be explained by the fact that the lane 
marks on the right side almost vanished, which had a direct effect on the accuracy of 
the vehicle location detection. Moreover, the accuracy of identifying the lane the de-
tected vehicle with the correct determined type was in by considering the total lanes 
was 91.01% for the first approach, and 91.73% for the second approach. Although this 
study was limited by driving an equipped vehicle in the middle lane, the findings prove 
that this idea would be feasible in reality. However, further experimentation to consider 
various scenarios is recommended. Moreover, as our proposed algorithms are based on 
object detection and lane detection algorithms, therefore, by enhancing the accuracy of 
the object detection and lane detection algorithms, the performance of our proposed 
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algorithm would be enhanced. Our future work will improve the performance and ac-
curacy of our approach further. 
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