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TRANSLATIONAL RELEVANCE 

 

Here we present a novel methodology to detect cancer from surrounding healthy breast tissue. 

We employ an advanced diffusion-weighted magnetic resonance imaging (DW-MRI) model 

without the use of a contrast agent and find highly promising diagnostic properties of the 

derived parameter C1C2. The results indicate that C1C2 may serve as non-contrast alternative 

to standard-of-care dynamic contrast-enhanced MRI (DCE-MRI), which removes the need to 

administer Gadolinium contrast, decreasing costs and any accumulation of Gadolinium in the 

brain.  Further clinical utility of C1C2 is reflected by accounting for admixed fatty tissue in 

healthy breast tissue and obliviation of pre-defined lesions that conventional quantitative DW-

MRI metrics use. Thus, C1C2 may yield increased clinical utility and practicality in breast 

cancer evaluation, where lesions are not pre-defined. Furthermore, the diagnostic properties 

were generalized across sites, scanners, and acquisition protocols, which is important for 

feasibility of large-scale studies for validation in routine breast cancer detection.  
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ABSTRACT  

 

Purpose: Diffusion-weighted magnetic resonance imaging (DW-MRI) is a contrast-free 

modality that has demonstrated ability to discriminate between pre-defined benign and 

malignant breast lesions. However, how well DW-MRI discriminates cancer from all other 

breast tissue voxels in a clinical setting is unknown. Here we explore the voxel-wise ability to 

distinguish cancer from healthy breast tissue using signal contributions from the newly 

developed three-component multi-b-value DW-MRI model. 

Experimental design: Pathology-proven breast cancer patients from two datasets (n=81 and 

n=25) underwent multi-b-value DW-MRI. The three-component signal contributions C1 and 

C2 and their product, C1C2, and signal fractions F1, F2 and F1F2 were compared to the image 

defined on maximum b-value (DWImax), conventional apparent diffusion coefficient (ADC), 

and apparent diffusion kurtosis (Kapp). The ability to discriminate between cancer and healthy 

breast tissue was assessed by the false positive rate given a sensitivity of 80% (FPR80) and 

receiver operating characteristic (ROC) area under the curve (AUC).  

Results: Mean FPR80 for both datasets was 0.016 (95%CI=0.008-0.024) for C1C2, 0.136 

(95%CI=0.092-0.180) for C1, 0.068 (95%CI=0.049-0.087) for C2, 0.462 (95%CI=0.425-0.499) 

for F1F2, 0.832 (95%CI=0.797-0.868) for F1, 0.176 (95%CI=0.150-0.203) for F2, 0.159 

(95%CI=0.114-0.204) for DWImax, 0.731 (95%CI=0.692-0.770) for ADC and 0.684 

(95%CI=0.660-0.709) for Kapp. Mean ROC AUC for C1C2 was 0.984 (95%CI=0.977-0.991). 

Conclusions: The C1C2 parameter of the three-component model yields a clinically useful 

discrimination between cancer and healthy breast tissue, superior to other DW-MRI methods 

and obliviating pre-defining lesions. This novel DW-MRI method may serve as non-contrast 

alternative to standard-of-care dynamic contrast-enhanced MRI (DCE-MRI).  
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INTRODUCTION 

Numerous studies have indicated that early breast cancer detection, with dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI), has higher sensitivity than current 

screening programs (ultrasound and mammography) 1-5. However, DCE–MRI has a number of 

limitations such as conflicting results regarding specificity 2-6, dependency on expert 

radiologist readers, additional scan time and additional costs, and the use of Gadolinium-based 

contrast agents that are linked to deposition in the brain 7. In contrast, diffusion-weighted MRI 

(DW-MRI) does not require exogenous contrast and yields quantitative information of tissue 

microstructure by detecting diffusion of water molecules through application of varying degree 

of diffusion weighting. 

Various diffusion models have demonstrated comparable ability to DCE-MRI in 

discriminating between pre-defined benign and malignant lesions in small regions of interest 

(ROIs) in the breast 8-14. However, DW-MRI would increase its clinical utility and practicality 

in breast cancer screening, treatment evaluation, surgical planning, and surveillance if it could 

also discriminate cancer from all healthy breast tissue, not relying on lesions being pre-defined 

by radiologists. DW-MRI of healthy breast tissue is problematic because it consists of varying 

degree of admixtures of fatty and fibroglandular tissue 15 which creates an intravoxel fatty 

component on DW-MRI 16. Fatty tissue is primarily made up of adipocytes which contain a 

large lipid droplet that occupies > 90% of the cell volume, leaving only a small rim of water-

containing cytoplasm. Common fat suppression techniques are designed to suppress the lipid 

component 17, while studies have reported very restricted diffusion in fat-suppressed healthy 

breast tissue 18,19 which suggests that the water component in fatty tissue remains on 

conventional DW-MRI. The restricted water component in fatty tissue is especially 

problematic since it confounds the slow diffusion signal from intracellular cancer tissue. Thus, 

advanced imaging techniques are needed to discriminate cancer from all healthy breast tissue 

on a voxel-wise level including the restricted water component in the intravoxel fatty tissue.  
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Advanced, multi-component partial volume models that use extended ranges of b-

values (typically up to 2000-3000 s/mm2) may theoretically isolate the slowly diffusing water 

pool present in cancer tissue and have become an emerging standard in several imaging 

domains 20-26. Here, the DW-MRI signal is modeled as a combination of exponential decays 

with corresponding component apparent diffusion coefficients (ADCs), where the weighting 

of each component represents the attribution from a distinct pool of water from the total 

diffusion signal. Furthermore, selected multi-component partial volume models, such as 

restriction spectrum imaging (RSI) 24-26, uses tissue-specific, pre-determined component ADCs 

which ensures linearization of the model, comparability across patients and rapid fitting of 

diffusion signal which is essential for clinical application. This is fundamentally different from 

conventional approaches where ADCs are not fixed but are left free and determined for each 

voxel independently. However, these methods are not yet well-investigated in the breast.  

Initial results of multi-component partial volume models in the breast have been 

demonstrated by Vidić et al. 12, showing that the normalized magnitude of the slowest 

component in a two-component model was excellent (AUC = 0.99) in discriminating between 

pre-defined benign and malignant breast lesions. Building on these findings, the multi-

component model was optimized to fit the DW-MRI signal across all voxels in all breast tissue, 

including cancer and healthy breast tissue, resulting in a three-component model with empirical 

ADCs globally-determined across patients, scanners and sites 19. The three-component model 

was able to explain all voxels in all breast tissue, including the restricted water component in 

fatty tissue, rather than the averaged signal of an ROI 27-29. 

The main objective of the current study is to explore the ability of estimates derived 

from a three-component model to discriminate breast cancer from healthy breast tissue and to 

compare it to other DW-MRI methods.  

 

 



 6 

MATERIALS AND METHODS 

Patients 

In order to validate the discriminatory power of the three-component model across scanners 

and sites, two datasets of pathology-proven breast cancer patients from a United States (US) 

site (n = 81) and a European site (n = 25) were included (Table 1). Note that 49 cases from the 

US site and all cases from the European site were also used to determine the three-component 

model with fixed ADCs for breast tissue 19. In addition, cases from the European site have been 

previously used for DW-MRI modeling of previously defined benign and malignant lesions 

12,30-33, linking DW-MRI signal to histological specimen 34 and distortion correction techniques 

35. Written informed consent was obtained from patients at both sites and the studies were 

conducted in accordance with the Declaration of Helsinki.  

 

US dataset  

Ninety-five patients with pathology-proven breast cancer with no cytotoxic regimens, 

chemotherapy, or ipsilateral radiation therapy for this malignancy prior to MRI scanning were 

eligible for this prospective study. The study was approved by the Institutional Review Board 

of the US site. The recruitment of patients began in December 2015 and ended in June 

2019. Tumor categorization was done by histopathologic analysis of core needle and open 

incisional biopsies. In total, 14 patients were excluded from the study; nine patients had 

contralateral cancer or mastectomy, one patient had no visible cancer tissue on DW-MRI, and 

in four patients image quality was low (low signal-to-noise ratio (n = 2), poor fat saturation (n 

= 1), and severe image distortion (n = 1)), resulting in 81 patients.  

 

European dataset 

This prospective study was approved by the Regional Committees for Medical and Health 

Research Ethics (REC Central Norway, 2011/568). The recruitment of patients began in 
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August 2014 and ended in August 2016. Twenty-five pathology-proven breast cancer patients 

with inclusion criteria and tumor categorization similar to that of the US site were included; 

for more details, see inclusion of malignant lesions from Vidić et al. 12.  

 

MRI acquisition 

MRI data were acquired on a 3T GE scanner (MR750, DV25-26, GE Healthcare, Milwaukee, 

US) and an 8-channel breast array coil with a bilateral axial imaging plane for the US dataset, 

while patients from the European dataset were imaged with a 3T Siemens scanner (Skyra, 

VD13-E11, Siemens Healthcare, Erlangen, Germany) and a 16-channel breast array coil with 

a unilateral sagittal imaging plane. Differences in scanner and pulse sequence parameters 

across sites were used to determine that the discriminatory potential of the three-component 

model is robust for data collected in different scanners and pulse sequence parameters. In 

addition to Gadolinium DCE-MRI and T2 images, both datasets included high b-value DW-

MRI acquisition: 

 

US dataset protocol: Bilateral axial DW-MRI was performed using reduced field of view 

(FOV) echo-planar imaging (EPI) including the following parameters: spectral attenuated 

inversion recovery (SPAIR) fat suppression, TE = 82 ms, TR = 9000 ms, b-values (number of 

diffusion directions) = 0, 500  (6), 1500 (6), and 4000 (15) s/mm2, FOV = 160 x 320 mm2, 

acquisition matrix = 48 × 96, reconstruction matrix = 128 × 128, voxel size = 2.5 × 2.5 × 5.0 

mm3, phase-encoding (PE) direction A/P, and no parallel imaging.  

 

European dataset protocol: Unilateral sagittal DW-MRI was performed using Stejskal-Tanner 

spin-echo EPI including the following parameters: FatSat (n = 15) and SPAIR (n = 10) fat 

suppression, TE = 88 ms, TR = 10,600 ms (n = 15) and 11,800 ms (n = 10), b-values (number 

of diffusion directions) = 0, 200 (6), 600 (6), 1200 (6), 1800 (6), 2400 (6), and 3000 (6) s/mm2, 
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FOV = 180 × 180 mm2, acquisition matrix = 90 × 90, reconstruction matrix = 90 × 90, voxel 

size = 2.0 × 2.0 × 2.5 mm3,  PE direction A/P, generalized auto-calibrating partially parallel 

acquisition (GRAPPA)  with acceleration factor of 2 and 24 reference lines.  

 

Image processing and analysis 

Noise correction 36 was performed to account for decreasing signal to noise ratio with 

increasing b-value. The observed signal (Sobs) is the mean signal across diffusion directions 

from one individual b-value image. Background voxels were selected by manually placing an 

ROI in an area in the air outside the breast on the highest b-value image, yielding the mean 

background intensity (Sbkg). The corrected signal intensity (Scorr) calculated from Sobs and Sbkg 

is given as: 

𝑆!"## = #𝑆"$%& −	𝑆$'(&        (1) 

𝑆!"##(𝑆!"## < 0) = 0 

 

Furthermore, corrections for eddy current artifacts, motion 24 and geometric distortion 37 were 

applied for the European dataset.  

Full-volume cancer and control ROIs were manually defined on DW-MRI images, 

guided by all available data in the exam protocol (including DCE-MRI and anatomical T2 

images, Figure 1), under supervision of and validation by two breast radiologists: RRP (US 

dataset) and AØ (European dataset). Cancer ROIs were drawn for the lesions corresponding to 

pathology-proven cancer. Control ROIs were drawn for the entire contralateral breast (US 

dataset) and in a cancer-free region in the ipsilateral breast at least 10 mm away from the cancer 

ROI (European dataset), with the aim to include all representative healthy breast tissue, 

excluding the axillary region, large cysts (> 2.5 cm), and susceptibility artifacts. Cancer and 
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control ROIs were used to determine discriminatory performance between cancer and healthy 

breast tissue, respectively.  

For comparison with other DW-MRI methods, the non-noise-corrected image defined 

on maximum b-value (DWImax), conventional apparent diffusion coefficient (ADC), and 

apparent diffusion kurtosis (Kapp) were estimated. DWImax was acquired at b = 4000 s/mm2 for 

the US dataset and b = 3000 s/mm2 for the European dataset. The exponential decay formulas 

described by Jensen et al. 38 and the corresponding b-value limits, < 1000 s/mm2 and < 2000 

s/mm2, were used for computation of ADC and Kapp maps, respectively. Note that ADC and 

Kapp are calculated diffusion parameters where T2 and proton density dependence are 

eliminated 38.  

To ensure that regions outside of the breast were not included in analysis, control ROIs 

were masked using intensity thresholding and 3D connected components (US dataset) or 

manually delineated within the breast boundary (European dataset) and reviewed by RRP (US 

dataset) and AØ (European dataset) (Figure 1 and Figure 4). Additionally, all undefined values 

(zero and infinite) on the image defined on b = 0 s/mm2, ADC and Kapp were excluded.  

 

Three-component modeling of diffusion signal 

The corrected diffusion signal across all available b-values was fitted with a tri-exponential 

model, expressed as:  

		𝑆!"##(𝑏) = N	[𝐶) ⋅ 𝑒*$∙,-.! + 𝐶& ⋅ 𝑒*$∙,-." + 𝐶/ ⋅ 𝑒*$∙,-.#]              (2) 

 

where Scorr is the corrected diffusion signal in arbitrary units, b is the b-value in s/mm2, and Ci 

denotes the voxel-wise unit-less signal contribution of each component. Note that [C1+C2+C3] 

µ r×exp(-TE/T2eff), where r represents the proton density and T2eff the effective T2 relaxation 

time in a given voxel. This model has been shown to represent the best fit across all voxels 
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from both cancer and healthy breast tissue determined across patients, scanners and sites 19, 

and yielded the fixed component ADC values used in this analysis: ADC1  = 0 mm2/s, ADC2  = 

1.4 × 10-3 mm2/s, and ADC3 = 10.2 × 10-3 mm2/s. Fixing ADCs ensures linearization of the 

model and comparability of signal contributions across voxels and patients and avoids 

overfitting; the use of ADC1  = 0 mm2/s means this component behaves not as a distinct 

exponential as in other tissue 20,21,24,39  but as a constant offset. Hence, we use the term “three-

component” for the fitted model instead of “tri-exponential”. All voxels were normalized to 

the 98th percentile of intensity within the b = 0 s/mm2 image, indicated by the normalization 

factor (N). This was done to address different image intensity scaling while simultaneously 

preserving contribution of proton density and T2 to the DW-MRI signal.  

Alternatively, the equation can be written by normalizing to the signal at b = 0 s/mm2 

per voxel (S(0)), yielding signal fractions (F) rather than signal contributions (C).  Thus, F is 

related directly to diffusion and more clearly separated from proton density and T2 properties, 

given as;  

𝑆!"##(𝑏) = 𝑆(0)	[𝐹) ⋅ 𝑒*$∙,-.! + 𝐹& ⋅ 𝑒*$∙,-." + 𝐹/ ⋅ 𝑒*$∙,-.#]																				(3) 

 

where	F) +	F& + F/ = 1 and S(0) µ r×exp(-TE/T2eff). This means that the signal 

contributions include voxel-wise T2-weighting and proton density effects, while the signal 

fractions are only sensitive to diffusion component effects. For the remainder of this paper, the 

signal at b = 0 s/mm2 will be denoted S0.  

 The following parametric maps were estimated from Equation 2: C1C2, C1 and C2. The 

parameters C1 and C2 were estimated directly from the model, while C1C2 is the corresponding 

product. Similarly, F1F2, F1 and F2 were estimated from Equation 3. The parametric maps C3 

and F3 were not included due to the low cancer conspicuity of the third component 19. For 

completeness, the product of S0 and signal fractions, S0F1F2, S0F1 and S0F2, were estimated to 

investigate the relative importance of T2 and proton density effects.   
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Discriminating performance between cancer and healthy breast tissue 

Clinical utility of the three-component derived parametric maps was assessed by comparing 

the voxel-wise discriminatory performance between cancer (cancer ROIs) and healthy breast 

tissue (control ROIs) of C1C2, C1, C2, F1F2, F1, F2, S0F1F2, S0F1 and S0F2 to DWImax, ADC, and 

Kapp. Because there were ~52 times more healthy breast tissue voxels than cancer voxels, 

performance in discriminating between cancer and healthy breast tissue was examined for all 

voxels by the expected false positive rate given a sensitivity of 80% (FPR80). In addition, the 

conventional performance measures receiver operating characteristic (ROC) area under the 

curve (AUC), sensitivity, specificity, and accuracy were estimated. Sensitivity, specificity, and 

accuracy were calculated for the threshold value providing optimal accuracy, defined as the 

mean sensitivity and specificity, assuming equal prevalence of cancer and healthy breast tissue 

voxels. All three-component derived parametric maps, DWImax, and Kapp 29 were assumed to 

have higher intensity for cancer compared to healthy breast tissue, while the opposite was 

assumed for ADC 27,28. Average signal of the cancer and control ROIs were calculated, and 

differences were compared using a Mann-Whitney U test with a threshold significance level of 

0.05.  

 

RESULTS 

Sample  

The total number of voxels from cancer and healthy breast tissue from both datasets was 37,659 

and 1,946,186, respectively.  

 

Optimized three-component model parameters for discrimination  

Probability density colormaps for the three-component model given C1 and C2 including all 

voxels across patients and datasets are plotted for cancer (cancer ROIs, Figure 2A) and healthy 

breast tissue (control ROIs, Figure 2B). These maps display two distinct probability density 
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distributions for cancer and healthy breast tissue. The product C1C2 discriminates cancer from 

healthy breast tissue voxels, where voxels low on one or two dimensions corresponds to healthy 

breast tissue voxels, while cancer probability increases with increased magnitude on C1 and 

C2.  

The relationship between C1 and C2 demonstrates that voxels with high magnitude on 

both dimensions had the highest probability of cancer (Figure 1A); representative cases are 

given in Figure 1, and all cases are given in Supplementary Figure 1-106. Discrimination 

performance varied depending on composition of healthy breast tissue in relation to the 

magnitude of C1 and C2 in cancer. FPR80 was higher (indicating more false positive voxels) for 

C1 and DWImax in a case with abundant fat-suppressed fatty tissue and high C2-magnitude of 

corresponding cancer (Figure 1C), compared to abundant fibroglandular tissue and high C1-

magnitude of corresponding cancer (Figure 1B). The opposite was seen for C2, while C1C2 

suppressed both fibroglandular and fatty tissue. This shows that the C1C2 parameter derived 

from the three-component model provided the optimal discrimination performance between 

cancer and healthy breast tissue. 

All signal contributions (C1C2, C1, C2) performed better than signal fractions (F1F2, F1 

and F2), given in Figure 3. Signal fractions where S0 was included (S0F1F2, S0F1 and S0F2) 

performed nearly equal to corresponding signal contributions (C1C2, C1, C2), see 

Supplementary Table 1-2.  

 

Discriminatory performance of C1C2 compared to other DW-MRI methods 

Mean FPR80 for both datasets was 0.016 (95% CI = 0.008-0.024) for C1C2, 0.136 (95% CI = 

0.092-0.180) for C1, 0.068 (95 % CI = 0.049-0.087) for C2, 0.462 (95 % CI = 0.425-0.499) for 

F1F2, 0.832 (95 % CI = 0.797-0.868) for F1, 0.176 (95 % CI = 0.150-0.203) for F2, 0.159 (95 

% CI = 0.114-0.204) for DWImax, 0.731 (95 % CI = 0.692-0.770) for ADC and 0.684 (95 % CI 

= 0.660-0.709) for Kapp (Figure 3). C1C2 achieved the lowest FPR80 with a mean ROC AUC of 
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0.984 (95 % CI = 0.977-0.991) when compared to other DW-MRI methods. Discriminatory 

performance was similar across datasets; see Supplementary Table 1-2 for all conventional 

performance measures and FPR80 given for the two datasets separately. Average signal of the 

cancer and control ROIs are shown in Supplementary Table 3. All cancer and control ROIs 

were significantly different (p < 1 × 10-9). 

 C1C2 had excellent performance compared to ADC and Kapp in a wide range of 

representative cases (Figure 4). DWImax performs well in several cases (Figure 4A-B) but 

underperforms compared to C1C2, overall (Figure 3) and particularly in a case with abundant 

fatty tissue (Figure 4C). In addition, C1C2 visually improves poor DCE-MRI specificity in a 

case with marked background parenchymal enhancement (Figure 4D). However, C1C2 

underperforms in cases with sparse signal from cancer, such as case of non-mass enhancement 

(NME) ductal carcinoma in situ (DCIS) (Figure 4E). In this case, all DW-MRI derived maps 

failed to identify cancer compared to healthy breast tissue. Furthermore, there was high 

diffusion signal from some healthy breast tissue components such as proteinaceous cysts 

(Figure 5B), subareolar ducts (Figure 5A), and partial volume artifact from the interface of 

fibroglandular and fatty tissue (Figure 4D, Figure 5C). High diffusion signal from 

proteinaceous cysts and subareolar ducts may be defined as nonsuspicious with the assistance 

of T2 images (Figure 5A-B).  

 

DISCUSSION 

Our study shows that cancer can be noninvasively discriminated from healthy breast tissue 

using the derived parameter C1C2 based on a three-component DW-MRI model, with results 

comparable to cancer detection using DCE-MRI 2-6 (FPR80 mean = 0.016, 95 % CI = 0.008-

0.024 and ROC AUC mean = 0.984, 95 % CI = 0.977-0.991). This means that C1C2 achieved 

very low false positive rates while detecting 80% or more of the defined cancer voxels. The 

discriminatory power of C1C2 was superior to that of independent signal contributions and 
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signal fractions, conventional DW-MRI-estimates (ADC) and other methods, including 

diffusion kurtosis imaging (Kapp) and DWImax. The three-component model was performed 

across two different sites, scanners, and acquisition protocols, suggesting potential for real-

world applications. The development of this advanced DW-MRI method allows for improved 

conspicuity of cancer relative to background breast tissue. This lays the foundation for a 

quantitative framework specific to pathology which may serve as an alternative to DCE-MRI.  

The high discriminatory performance is due to the characteristics of the novel C1C2 

parameter. In addition to malignancy, individual signal contributions from the three-

component model were sensitive to the two primary components of healthy breast tissue: fatty 

(C1) and fibroglandular (C2) tissue. As the lipid component of fatty tissue signal is suppressed 

by application of fat suppression in this study (SPAIR and FatSat), we hypothesise that signal 

on C1 comes from the restricted water component within adipocytes in fatty tissue 18,19. 

Furthermore, neither component was sensitive to tissue with very fast diffusion properties, such 

as vessels, necrosis, or edema. By combining the signal contributions of the two slowest 

components C1 and C2, the majority of signal from fatty and fibroglandular tissue was 

suppressed so that the output image was predominantly sensitive to cancer compared to healthy 

breast tissue. This is particularly useful because of the varying degree of admixture of fatty and 

fibroglandular tissue in the breast. In fact, histological evaluation of healthy breast tissue 

specimen demonstrated on average 29.7 % fatty tissue component in dense breasts and 80.6 % 

in non-dense breasts 15. Thus, C1C2 may account for women with varying degree of admixed 

fatty tissue which is known to be an issue on conventional DW-MRI 16. While optimized for 

cancer discrimination, the detailed relationship between the three-component model and breast 

microstructure remains to be studied, as it has been for the two-component model 34,40.  

Another important aspect attributing to the high discriminatory performance is the 

retainment of T2 and proton density contribution to the DW-MRI signal. On conventional DW-
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MRI, T2 effects on DW-MRI signal is considered an inconvenience and is therefore eliminated 

41. In this study we present signal contributions that include contribution from voxel-wise 

proton density and T2, while the signal fractions are defined to only be sensitive to diffusion 

effects. Thus, the importance of T2 and proton density is clearly demonstrated by the signal 

contributions C1C2, C1 and C2 performing far better than their signal fraction counterparts F1F2, 

F1 and F2. We further see these effects by signal fractions performing nearly equal to 

corresponding signal contributions once the signal at b = 0 s/mm2, S0, was included, which 

demonstrates that Ci ≈ S0Fi. This has also been shown in separating benign and malignant breast 

lesions, where S0 (which has no diffusion weighting), yielded a relatively high AUC of 0.85 12.  

We hypothesize that contributing factors to the poor performance of ADC and Kapp 

include the restricted water component within adipocytes in fatty tissue not accounted for by 

fat suppression techniques and elimination of proton density and T2 effects that add to cancer 

discrimination. The FPR80 discriminatory performance of ADC and Kapp varied greatly across 

subjects; at best, performing around 0.2 in selected cases (Figure 4A), but overall do no better 

than chance. Previous studies have demonstrated significant differences between cancer and 

healthy breast tissue by ADC 27,28 and Kapp 29. However, these studies have been performed 

by signal averaged across ROIs and not voxel-wise, which does not reflect the heterogeneity 

of healthy breast tissue including admixture of fatty and fibroglandular tissue. Conversely, 

DWImax shares the same basic properties as C1C2 (diffusion-, T2-, and proton density-

weighting) and performs noticeably better than ADC and Kapp and have several cases with 

perfect performance (Figure 1A-B, Figure 4A-B). However, DWImax is also prone to influence 

from restricted water from fatty tissue and performs worse than C1C2 on average. C1C2 better 

accounts for all healthy breast tissue including the restricted water component from fatty tissue, 

conferring a major advantage over DWImax and the other DWI-estimates (Figure 4C), as 

fibroglandular tissue is admixed with fatty tissue, and approximately 50% of women have 

almost entirely fatty breast tissue or scattered fibroglandular tissue 42.  
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In order for C1C2 to be a noninvasive alternative to DCE-MRI for breast cancer 

detection, it must have comparable or better sensitivity and specificity. DW-MRI is known to 

improve detection specificity 8,43, which is beneficial as lesion-level DCE-MRI specificity have 

been reported to range from 72-97% 2-6. In our study, performance was assessed per voxel, and 

the patient cohort was heterogenous, consisting of a large range of tumor volumes (mean = 

10.6 cm3, range = 0.2-105.9 cm3), not reflecting the typical patient pool in the screening or 

surveillance setting which typically have smaller lesions. However, the high performance of 

discriminating cancer from all other breast tissue in comparison to other DW-MRI-based 

methods is highly promising and suggests clinical utility comparable to DCE-MRI. C1C2 may 

be particularly useful when DCE-MRI demonstrates false positive 44 (Figure 4D) and false 

negative 45 interpretations in patients with moderate and marked background parenchymal 

enhancement. Furthermore, false positive findings on C1C2 can be defined as nonsuspicious by 

a hyperintense signal on the T2 image correlated with clearly benign morphology (Figure 5A-

B). While proteinaceous cysts (Figure 5B) are well known false positives on DW-MRI 46, 

subareolar ducts (Figure 5A) are not commonly reported and may be due to T2 influence on 

C1C2. This indicates that C1C2 may assist in a non-contrast workflow with anatomical T1 and/or 

T2 sequences which can remove the need to administer Gadolinium contrast and any 

accumulation of Gadolinium in the brain 7.   

The three-component model lays the foundation for a computationally efficient and 

standardized framework for breast cancer detection generalizable across sites, scanners, and 

acquisition protocols. By using globally-determined, fixed component ADCs, the three-

component model allows for rapid fitting of diffusion signal suitable for application as a turn-

key processing stream on both GE and Siemens platforms. These factors are vital for 

implementation in standard-of care breast MRI. Furthermore, the three-component model is 

performed on data acquired on extended imaging protocols (b-values up to 3000-4000 s/mm2) 

and requires at least three separate non-zero b-values. Inclusion of higher b-values improves 
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discrimination by allowing better estimates of very slow diffusion characteristics of 

intracellular fluid within hypercellular tumors 9-12,20-26. However, high b-value acquisition also 

results in an increased scan time, where the protocol used for the European dataset in this study 

for (including seven b‐values up to 3000 s/mm2) had a scan time of  ~8 minutes compared to a 

standard DW-MRI protocol (including 2 b‐values) which are typically performed in 1-3 

minutes. We argue that the substantially increased discriminatory performance of the derived 

C1C2 parameter compared to conventional DW-MRI justifies the increase in scan time, which 

is also the same scan time as conventional DCE-MRI. This does, however, illustrate the need 

for optimized b-value protocols for improved scan time efficiency, which is an area of interest 

for future development.  

Several diffusion methods aim to isolate the signal from the slowly diffusing water 

component from cancer tissue by utilizing broad b-value ranges 9-12,20-26. Diffusion kurtosis 

imaging is based on a simple mathematical representation of diffusion data where the derived 

parameter Kapp has proven potential utility in the breast 9-11,29. More advanced, multi-

component partial volume models with fixed ADCs have been developed to further probe the 

microstructure in the brain and prostate: RSI 24-26 (on which the three-component model is 

based), the vascular, extracellular, and restricted diffusion for cytometry in tumors 

(VERDICT) model 21, and the hybrid multidimensional MRI model 22. A key difference 

between RSI/three-component model and the hybrid multidimensional MRI model is that the 

hybrid model does not use pre-determined, fixed component ADCs, making comparison of 

corresponding signal contributions across patients and voxels difficult. Nevertheless, the 

hybrid model does incorporate multi-echo information not available in our study. Moreover, 

the T2 and proton density effects seen in RSI/three-component model are removed from the 

two other models, potentially reducing cancer conspicuity. Although the other multi-

component partial volume models have shown promising results as cancer biomarkers in the 
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prostate, for example, these results may be limited in breast, where fatty tissue is an important 

component of healthy breast tissue.  

The three-component model may share biophysical similarities with the two-

component intra-voxel incoherent motion (IVIM) model 47 . The two fastest component ADCs 

from the three-component model, ADC2 = 1.4 × 10-3 mm2/s  and ADC3 = 10.2 × 10-3 mm2/s,  

are an order of magnitude apart and in the range of diffusion coefficients typically fitted for an 

IVIM model in breast tissue (“pure tissue diffusion coefficient” and “pseudodiffusion 

coefficient”) 48,49. Therefore, we interpret that ADC2 and the “pure tissue diffusion coefficient” 

from IVIM represent hindered diffusion of fibroglandular tissue, while ADC3 and the 

“pseudodiffusion coefficient” from IVIM represent the very fast diffusion properties from 

pseudodiffusion/perfusion. This means that the optimized three-component model by 

Rodríguez-Soto et al. 19 is similar to an IVIM model with an additional offset C1 with ADC1 = 

0 mm2/s  which manifests in the high b-value range and accounts for the restricted water 

component in fatty tissue. The IVIM model focuses on perfusion properties fit to mid b-value 

data (typically up to 800-1000 s/mm2) and are therefore not sensitized to these very restricted 

diffusion properties. Moreover, as previously discussed, signal contributions include voxel-

wise T2-weighting and proton density effects which is very important for discriminatory 

performance, while the signal fractions were only sensitive to diffusion component effects, and 

as such are more directly comparable to the signal fractions in an IVIM model.  

There were some limitations to our study. First, the three-component methodology did 

not correct for partial volume artifacts which occurred at the interface between fatty and 

fibroglandular tissue on C1C2 (Figure 4D, Figure 5C). Such artifacts have the potential to be 

corrected, which was not investigated in this study but is an area of interest for future 

improvement. Another limitation concerned the definition of control ROIs; although we 

ensured that all control ROIs were verified as cancer-free, based on MRI review by an expert 

breast radiologist (both datasets) and exclusion of cases with pathology-proven contralateral 
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cancer in the US dataset, we cannot know if occult cancer may have been included in the 

control ROIs. The unilateral European dataset may have been particularly prone to this, as the 

control ROIs were defined in the same breast as the cancer (this also made the size of control 

ROIs dependent on the extent of cancer and thus variable from case to case in that dataset). 

Lastly, detection performance is commonly evaluated at the lesion level. This study used a 

voxel-wise false positive rate, FPR80, as its performance measure, which does not give an 

absolute measure comparable to other literature. However, we argue that such a measure is 

useful from a radiologist’s perspective, because it mimics a breast cancer examination where 

all voxels in the entire image are used.  

In conclusion, our study is the first to demonstrate that the derived parameter C1C2, 

which is the product of the two slowest components of a three-component DW-MRI model, 

yields a clinically useful, noninvasive method for discrimination between cancer and healthy 

breast tissue. The model eliminates the need for pre-defined lesions that conventional 

quantitative DW-MRI metrics use and accounts for all healthy breast tissue, including the 

restricted water component from fatty tissue. Together with anatomical images, C1C2 has the 

potential to assist in a combined, non-contrast workflow which could serve as an alternative to 

DCE-MRI. The highly promising diagnostic properties were generalized across sites, scanners, 

and acquisition protocols, which is important for feasibility of large-scale studies for validation 

in routine breast cancer detection and follow-up in comparison to DCE-MRI. 
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Table 1. Table of patient characteristics. ER (estrogen receptor) and PR (progesterone 

receptor) status were assessed by immunohistochemistry (IHC) and was considered positive if 

≥1% stained nuclei was present in 10 high-power fields 50. Human epidermal growth factor 

receptor 2 (HER2) status was assessed by ICH and fluorescence in situ hybridization (FISH) 

according to ASCO/CAP guidelines 2013 51 or 2018 52 (depending on time of recruitment); 

positivity was defined as an IHC score of 3+, or 2+ with a gene to chromosome ratio ≥ 2.0 by 

FISH. NME, non-mass enhancement. 
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  US dataset European dataset 
No. of patients 81 25 
Median patient age, years (range) 51 (20 - 84) 53 (29 – 75) 
Mean tumor volume, cm3 (range) 13.1 (0.2 - 105.9) 2.5 (0.5 – 5.8) 

Histological type     
Invasive carcinoma of no special type 64 17 
Invasive lobular carcinoma 6 1 
Tubular carcinoma 0 1 
Mucinous carcinoma 0 1 
Carcinoma with medullary features 0 3 
Metaplastic carcinoma of no special type 4 0 
Invasive papillary carcinoma 0 1 
Mixed Invasive carcinoma of no special 
type and Invasive lobular carcinoma 

3 0 

Mixed Invasive carcinoma of no special 
type and mucinous carcinoma 

1 0 

Ductal carcinoma in situ 3 1 
Histological grade     
1  3 5 
2  28 9 
2/3  0 1 
3  47 8 
Not analyzed  3 2 
ER status     
Positive  53 23 
Negative  27 1 
Not analyzed  1 1 
PR status      
Positive  50 20 
Negative  30 4 
Not analyzed  1 1 
HER2 status     
Positive  14 7 
Negative  64 17 
Not analyzed  3 1 
Lesion type mass (mass vs. NME) 

  

Mass  67 25 
NME 13 0 
Mass and NME 1 0 
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FIGURES 

Figure 1. Parameter maps for DWImax, C1, C2, C1C2 with FPR80, T2 images with cancer (red) 

and control (green) ROI overlay and probability density colormaps for cancer and control given 

C1 and C2 for three representative cases from the US dataset. ROIs are here only displayed for 

one slice but are delineated for the full volume. FPR80 vary depending on the composition of 

healthy breast tissue in relation to the magnitude of C1 and C2 in cancer. (A.) Mixed tissue 

composition with cancer high on both dimensions. (B.) Abundant fibroglandular tissue and 

high C1-magnitude of cancer. (C.) Abundant fatty tissue and high C2-magnitude of cancer. 

DWImax and C1 performance is poorest in (C.), C2 in (B.) while C1C2 has perfect performance 

across cases. Colormaps are given on a logarithmic scale normalized to the maximum 

probability density value. Y- and x-axis are defined by the maximum value for each case. Grey 

level windows for all images are scaled to the maximum and minimum signal intensity of each 

case and given in arbitrary unites. Au, arbitrary unit; C, signal contribution; DWImax, image 

defined on maximum b-value; FPR80, false positive rate given sensitivity of 80%; ROI, region-

of-interest. 
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Figure 2. Probability density colormaps for the three-component model given C1 and C2 

including all voxels across patients and datasets are given for (A.) cancer (cancer ROIs) and 

(B.) healthy breast tissue (control ROIs). These maps display two distinct probability density 

distributions for cancer and healthy breast tissue. Cancer probability increases with increased 

magnitude on C1 and C2. Colormaps are given on a logarithmic scale normalized to the 

maximum probability density value. Au, arbitrary unit; C, signal contribution.  
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Figure 3. The FPR80 is the false positive rate given a sensitivity of 80% for discriminating 

cancer and healthy breast tissue for three-component model signal contributions (C1C2, C1, C2) 

and signal fractions (F1F2, F1, F2), DWImax, ADC and Kapp, given per patient across the US and 

European dataset. Median values indicated by lines; boxes show interquartile range, block bars 

show data range and red crosses show outliers. The worst FPR80 for all maps is 0.9934, which 

would be 9,934 false positive voxels of one breast (one control ROI) approximated to contain 

10,000 voxels (~30 cL). ADC; conventional apparent diffusion coefficient; C, signal 

contribution; DWImax, image defined on maximum b-value; F, signal fraction; Kapp, apparent 

diffusion kurtosis.  
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Figure 4. C1C2, DWImax, ADC and Kapp with FPR80 for discrimination between cancer (red 

arrowhead) and healthy breast tissue (entire cancer-free contralateral breast for the US dataset, 

cancer-free ipsilateral breast for the European dataset) for representative cases from the US 

(A.-E.) and European (F.) dataset. All cases demonstrate visual similarity between DCE-MRI 

and C1C2 maps with excellent performance compared to ADC and Kapp. (A.) Excellent 

performance by C1C2 and DWImax. (B.) Excellent performance by C1C2 and DWImax displaying 

full extent of cancer involving skin. (C.) Excellent performance by C1C2 and poor performance 

by DWImax, ADC and Kapp in a case with abundant fatty tissue. (D.) C1C2 improves poor DCE-

MRI specificity in a case with marked background parenchymal enhancement, but partial 

volume artifact from the interface of fibroglandular and fatty tissue in the contralateral breast 

results in a low discriminatory performance. (E.) A case with NME DCIS where all diffusion 

maps fail; C1C2 has reduced cancer signal relative to the high signal from ipsilateral subarealor 

ducts. (F.) Sagittal image plane illustrating same trends in the European dataset. The worst 

FPR80 for all maps is 0.9934, which would be 9,934 false positive voxels of one breast (one 

control ROI) approximated to contain 10,000 voxels (~30 cL). Grey level windows for all 

images are scaled to the maximum and minimum signal intensity of each case. ADC; 

conventional apparent diffusion coefficient; Au, arbitrary unit; DCE-MRI, dynamic-contrast 

enhanced magnetic resonance imaging; DCIS; ductal carcinoma in situ; DWImax, image defined 

on maximum b-value; FPR80, false positive rate given sensitivity of 80%; Kapp, apparent 

diffusion kurtosis; NME; non-mass enhancement.  
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Figure 5. DCE-MRI and T2 images with corresponding C1C2 images illustrating false positives 

on C1C2 (yellow arrow). (A.-B.) show that false positive lesions on C1C2 can be defined as non-

suspicious with the assistance of T2 images by a hyperintense signal on the T2 image correlated 

with clearly benign morphology. (A.) High signal involving subareolar ducts on T2 image and 

C1C2, not visible on DCE-MRI. (B.) Cyst visible on T2 image and C1C2, not visible on DCE-

MRI (C.) Demonstration of limitation of C1C2 where background parenchymal enhancement 

visible on DCE-MRI and T2 image creates a partial volume artifact corresponding to the 

interface between fatty and fibroglandular tissue on C1C2. Au, arbitrary unit; C, signal 

contribution; DCE-MRI, dynamic-contrast enhanced magnetic resonance imaging 

 


