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Summary

We present a solution to the problem of multiple vehicle cooperative path fol-
lowing (CPF) that takes explicitly into account vehicle input constraints, the
topology of the inter-vehicle communicationnetwork, and time-varying commu-
nication delays. The objective is to steer a group of vehicles along given spatial
paths, at speeds that may be path dependent, while holding a feasible geometric
formation. The solution involves decoupling the original CPF problem into two
sub-problems: i) single path following of input-constrained vehicles and ii) coor-
dination of an input-constrained multi-agent system (MAS). The �rst is solved
by adopting a sampled-data model predictive control (MPC) scheme, whereas
the latter is tackled using a novel distributed control law with an event triggered
communication (ETC) mechanism. The proposed strategy yields a closed-loop
CPF system that is input-to-state-stable (ISS) with respect to the system’s state
(consisting of the path following error of all vehicles and their coordination
errors) and the system’s input, which includes triggering thresholds for ETC
communications and communication delays. Furthermore, with the proposed
ETCmechanism, the number of communications among the vehicles are signi�-
cantly reduced. Simulation examples ofmultiple autonomous vehicles executing
CPF maneuvers in 2D under di�erent communication scenarios illustrate the
e�cacy of the CPF strategy proposed.
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1 INTRODUCTION

Cooperative path following, an important class of multiple vehicle formation control, is de�ned as the problem of steering
a group of vehicles along a set of spatial paths, at speeds that may be path dependent, while holding a feasible geometric
pattern. Among a myriad of applications related to CPF, we single out those involving unmanned aerial vehicles (UAVs)

0Abbreviations: MPC, model predictive control; MAS, multi agent system; ETC, event triggered communication; CPF, cooperative path following; ISS,
input-to-state-stable; UAV, unmanned aerial vehicles; AMV, autonomous marine vehicle
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for coastal monitoring,1,2 and autonomous marine vehicles (AMVs) for marine habitat mapping and geo-technical sur-
veying3.
From a control design and analysis standpoint, CPF may be viewed as exhibiting a two-layer control structure: the lower
layer, called path following, in charge of making a group of vehicles converge to a set of desired paths parametrized in an
appropriately normalized manner, while the upper layer, referred to as networked MAS coordination layer, has the goal
of synchronizing the path parameters and making them evolve at the same normalized desired speed pro�le along the
paths. Under these circumstances, proper path parametrization will ensure that the vehicles will reach a desired forma-
tion with the assigned individual speed pro�les compatible with the paths and the formation (see4,5 for an introduction
to these concepts). Using this set-up, di�erent approaches to the CPF problem have been proposed in the literature. A
simple categorization of the methods used is presented in Table 1.
Most approaches assume that the vehicles’ inputs (e.g. speed and heading rate) are unconstrained. This assumption allows
designers to use a wide range of classical nonlinear control methods such as Lyapunov based techniques to design con-
trollers for path following, while the coordination problem is tackled by resorting to tools from network control theory for
unconstrained MAS, see for example6 for a comprehensive introduction to consensus algorithms and its applications in
cooperative control. However, in practice the inputs of the vehicles are always saturated at certain levels due to intrinsically
physical limitations. As a consequence, controllers designed for unconstrained vehicles may fail to yield adequate perfor-
mance. Even worse, stability of the resulting closed loop systems may be seriously compromised if the vehicle constraints
are not taken directly into account during the design process.
Due to its ability to handle explicitly input constraints, Model Predictive Control has recently been proposed as a key

enabling tool for the solution of CPF problems, see for example7,8. In7, the authors propose an MPC scheme to solve the
path following problem, while the coordination problem is solved using a classical consensus law. However, the approach
in7 has two limitations. Firstly, the MPC scheme is designed based on a linearization of the path following error system,
which implies that stability of the resulting system is only guaranteed locally. In addition, with the consensus law used in7

there is no guarantee that the total speed assigned to each vehicle, which is the summation of the nominal desired speed
and the correction speed issued by the consensus law satisfy the vehicle’s speed constraint. In8, the authors address the
CPF problem using a distributed MPC framework. However, the methodology adopted requires that the speed of vehicles
be allowed to be negative, a constraint that is practically impossible to meet for some classes of autonomous vehicles such
as �xed-wing UAVs or AMVs.
Another factor that plays a key role in the design of CPF control systems stems from the limitations naturally imposed
by the requirement that the agents exchange data over a given communication network. From a purely theoretical stand-
point, it is common in the literature to assume that communications occur continuously in time. In this situation, each
vehicle has permanent access to the information provided by its neighbors to include it in some form of consensus law.
In practice, however this assumption is clearly violated, namely in applications where communication networks exhibit
low bandwidth and non-negligible transmission latency. To cope with this situation, it is crucial to explicitly incorporate
in the design process the fact that communications do not take place continuously. A possible solution is to consider peri-
odic communications, with the latter taking place at discrete instants of time only5. Recently, with the objective of further
reducing the rate of inter-agent communications in cooperativeMAS control, event-triggered communications have come
to the fore. Representative examples include the work in9 and10 on CPF that exploits the concept of logic-based commu-
nications advanced in11 and that in12 which builds upon an ETCmechanism introduced in13. Temporary communication
losses are taken into account in4,14 but only for the case when communications occur continuously.
An important issue in the design of CPF systems is the parametrization of the paths to be followed and the speci�ca-
tion of the desired, identical rate of evolution of the path parameters, which can be viewed as a desired normalized speed
pro�le for the agents involved to track. If the desired speed is constant, the coordination problem can be cast in the form
of a linear MAS consensus problem12 whereas if the speed is parameterized as a general function of the path parame-
ters (i.e. path dependent), the resulting coordination problem is equivalent to a consensus problem of nonlinear MAS4,10.
However, none of methods described in the literature addresses the problem of coordination of nonlinearMASwith input
constraints that arises naturally in the context of CPF.
Motivated by the above considerations, this paper proposes a CPF control strategy that takes explicitly into account real-
istic constraints on the vehicles’ inputs, the topology of the inter-vehicle communications network, and communication
delays. Speci�cally, the main contributions of this paper include the following:
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TABLE 1 CPF Categories

Categories Literature

Vehicle inputs
Unconstrained 12,5,9,4,2

Constrained 7,8

Communications
Continuous 4,15,16,14,2

Periodic 5

Event-based 12,9,10

Speed pro�le
Constant 12,2

Path dependent 4,10,2

(i) At the path following level, we develop an MPC scheme for path following that takes into account explicitly the fact
that in a large number of applications the vehicle’s linear speed is strictly positive. When compared with existing
MPC-basedmethods (see for example7,8), the proposedMPC scheme has the advantage of avoiding the construction
of a terminal set, thus yielding a global region of attraction for single vehicle path following.

(ii) At the coordination level, we propose a novel distributed control strategy for the coordination of nonlinearMASwhere
the agents’ input constraints are explicitly taken into account. We also propose an ETC mechanism that is not only
capable of reducing the frequency of communications among vehicles but is also robust with respect to time-varying
communication delays,making the scheme attractive for scalable networkswith limited communication bandwidth.
This result is not only applicable in the context of CPF for multiple autonomous vehicles, but also for many other
applications involving the coordination/synchronization/consensus of nonlinear MAS with input constraints.

The paper is organized as follow. Section II summarizes the basic notation and reviews key results of graph theory for
undirected and connected networks. The problem of interest is formulated formally in Section III. Section IV describes
the strategy proposed for CPF. Illustrative simulations are presented in Section 5, while Section 6 contains the main
conclusions. Finally, the proofs of the main results are given in the Appendices.

2 PRELIMINARIES

2.1 Notation
The symbols ‖⋅‖ and ‖⋅‖∞ denote the Euclidean norm and the in�nity norm of a vector, respectively. By min(⋅) and
max(⋅), we mean the minimum and maximum values, respectively of a scalar function de�ned over the real line,
whereas min{⋅} and max{⋅} denote min and max operators of a �nite set of real numbers. Given a map z ∶ x → z(x),
z′(x), z′′(x) represent the �rst order and the second order partial derivative of z with respect to x, respectively. Given
a vector x = [x1, x2, ..., xn]T ∈ ℝn, tanh(x) ∈ ℝn is the vector of tan hyperbolic functions de�ned by tanh(x) ∶=
[tanh(x1), tanh(x2), .., tanh(xn)]T. Given a �nite set S, |S| is the cardinality of S, that is, the number of elements of S.

2.2 Graph Theory
Let G(V, ℰ) (abbv. G) be an undirected graph induced by an inter vehicle communication network, where V denotes the
set of the vertices or nodes (each corresponds to a vehicle) and ℰ is the set of edges (each standing for a data link). G is said
to be connected if there exists a path connecting every two nodes in the graph. LetN[i] be the set of neighboring nodes of
node i with which this node communicates. The adjacency matrix of the graph, denoted A, is a square matrix with rows
and columns indexed by the nodes such that the i, j entry of A is 1 if j ∈ N[i] and zero otherwise. The degree matrix D of
a the graph is a diagonal matrix where the i, i-entry equals |N[i]|, the cardinality ofN[i]. The laplacian a of an undirected
graph is de�ned as L ∶= D−A. It is well known that if G is undirected, then L is symmetric and L1 = 0, where 1 ∶= [1]N×1
and 0 ∶= [0]N×1 withN is the total number of nodes. Further, if G is connected, then L has a simple eigenvalue at zerowith
an associated eigenvector 1 and the remaining eigenvalues are all positive. We refer to6 for a comprehensive introduction
to graph theory and its applications to the consensus problems.
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3 PROBLEM FORMULATION

For simplicity of exposition we consider motions in 2D. In what follows, {ℐ} = {xℐ , yℐ} denotes an inertial frame and
{ℬ}[i] = {x[i]ℬ , y

[i]
ℬ } denotes a body frame attached to vehicle i. We consider a set of N ≥ 2 vehicles and the corresponding

set of N spatial paths that they are required to follow, described by

{P[i] ∶ 
[i] → [p[i]d (

[i]);  [i]d (


[i])] ∈ ℝ3; i ∈ N}, (1)

where N ∶= {1, ..., N} denotes the set of vehicles, 
[i] is the variable parameterizing path i, p[i]d (

[i]) =

[x[i]d (

[i]), y[i]d (


[i])]T; i ∈ N is the position vector of a generic point on the path i expressed in the inertial frame, and
 [i]d (


[i]); i ∈ N is the angle that the tangent to path i at point p[i]d (

[i])makes with xℐ . Let p[i] = [x[i], y[i]]T; i ∈ N be the

position vector of the center of mass of vehicle i expressed in the inertial frame. Assuming that the vehicles have negligible
sway speed, their kinematic models are given by

ẋ[i] = u[i] cos  [i], ẏ[i] = u[i] sin  [i],  ̇[i] = r[i], (2)

where u[i],  [i], r[i]; i ∈ N denote the speed, yaw angle, and yaw rate of vehicle i, respectively. Due to physical limitations
of the vehicles, we consider that the speed and the heading rate are constrained, i.e. (u[i], r[i]) ∈ U[i], for all i ∈ N, where
U[i] is referred as an input constraint set for vehicle i, de�ned explicitly as

U[i] ∶= {(u[i], r[i]) ∶ u[i]min ≤ u[i] ≤ u[i]max , |r[i]| ≤ r[i]max}. (3)

Here, u[i]min > 0 and u[i]max are lower and upper bounds on the speed, respectively, and r[i]max is an upper bound on the head-
ing rate.
We note that the kinematics model (2) is adequate for a large class of vehicles that include mobile robots17, �xed-wing
UAVs undergoing planar motion7, and a wide class of under-actuated AMVs such as Medusa and Del�m18or Charlie19,
for which the sway speed is in practice so small that it can be neglected. A similar kinematic model with a drift term
can be found in20 for the case where the motion is disturbed by constant wind (for AUVs) or constant ocean current (for
AMVs). In addition, it is important to remark that in the present work we require the speeds of the vehicles to be non-
negative. This is due to the fact that for many autonomous vehicles such as marine robots and �xed-wing UAVs, it is very
di�cult or even impossible to control the vehicle moving backwards. This strict constraint makes the CPF problemmore
challenging when compared to the case where this type of constraint is not taken into account, as in8.
In cooperative path following, vehicle i is assigned path i to follow, see the illustration in Fig. 1. We consider a scenario

(synchronize the path parameters 
to reach formation)

FIGURE 1 Illustration of cooperative path following.

where the �eet of vehicles are not only required to follow their assigned paths but also to converge to and maintain a
desired geometric formation, while maneuvering with desired speed pro�les along the paths compatible with the forma-
tion. To solve the constrained CPF problem, the methodology used in this paper decouples the constrained CPF problem
into two sub-problems: path following of constrained vehicles to steer the vehicles to converge to their assigned paths and
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coordination of constrained MAS that requires the vehicles to exchange information regarding their progression along
the paths (as measured by their path parameters) and negotiate their speeds to reach the desired formation. Using this
set-up, we show that in order to control a �eet of vehicles with a desired formation, the vehicles need to exchange very
limited information; in this case, a simple scalar path-related parameter that is used for coordination. From a communica-
tion and practical implementation perspective, this is an advantageous feature of the proposed CPF when compared with
other formation approaches such as distributed MPC that normally requires more information to be exchanged among
the vehicles, see for example21,22.

3.1 Single path following of constrained vehicles
In this subsection, we formulate the problem of single vehicle constrained path following to make a vehicle converge to a
path, while ensuring that the speed of the corresponding path parameter tracks a desired speed pro�le. To this end, we
exploit the concept of “tracking a virtual reference" introduced in17. Because in this section we deal with a single vehicle,
for the sake of simplicity we drop the superscript [i] in the variables in equations (1)–(3). Later, in subsequent sections,
we will re-introduce the original notation when necessary.
Consider the path following problem for a single vehicle with the kinematics model given by (2), subject to the constraints
on the inputs given by (3), following a path parameterized by the variable 
 given by (1). Consider a Parallel Transport
frame {ℱ} = {xℱ , yℱ} with its origin at an arbitrary point S on the path and its axes de�ned as follows: xℱ is aligned
with the tangent to the path and points in the direction of increasing path length and yℱ is determined by rotating xℱ
90 degrees clock wise (see Fig. 2). In the set-up adopted for path-following, the Parallel Transport frame moves along the
path in a manner to be determined and plays the role of a “virtual reference" for the position and heading angle that the
vehicle must track to achieve good path following. Let e{ℐ} = p − pd(
) be position error vector expressed in the inertial

yF

ψd

xI

yI

xF

p

pd

e

S

ey

ex

yB

ψ
xB

P

v

FIGURE 2Vehicle and reference frames. Velocity vector in the body frame v = [u, 0]. P is the center ofmass of the vehicle
and S is the origin of the Parallel Transport Frame at a point on the path.

frame and e =  −  d(
) be the orientation error between the path and the vehicle. We de�ne Rℱℐ ∶  d → Rℱℐ ( d) ∶=
[cos( d), sin( d); − sin( d), cos( d)] as the rotation matrix from the inertial frame to the Parallel Transport frame. Let
e{ℱ} = [ex, ey]T be the position error expressed in the Parallel Transport frame, computed as e{ℱ} = Rℱℐ e{ℐ}. Collectively,
de�ning x = [ex, ey, e ]T ∈ ℝ3 as the path following error vector and using the methodology exposed in17 for wheeled
robots, the evolution of the path following error in the Parallel Transport frame is described by the dynamic equations

ẋ = f (x, u) =
⎡
⎢
⎢
⎣

−g(
)v(1 − �(
)ey) + u cos(e )
−�(
)g(
)vex + u sin(e )

r − �(
)g(
)v

⎤
⎥
⎥
⎦

, (4)

where g(
) ∶=
√
(x′d(
))2 + (y′d(
))2, �(
) =

(
x′d(
)y

′′
d (
) − x′′d (
)y

′
d(
)

)
∕g3(
), and v = 
̇ is the speed of the path param-

eter that gives an extra degree of freedom in the process of designing path following controllers; �(
), by de�nition, is the
curvature along the path and u ∶= [u, v, r]T is the input vector of the path following error system.
Notice that we have introduced a new input v to control the evolution of the path parameter 
. Later, for the purpose of
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designing an input constrained path following controller, v should lie in a constraint set Uv, de�ned explicitly as

Uv ∶= {v ∶ |v| ≤ vmax}, (5)

where vmax is a design parameter that will be speci�ed.
We are now in a position to formulate the following constrained path following problem.
Problem 1 - [Constrained Path Following].
Given a spatial path P parameterized by 
, a desired positive and bounded speed pro�le vd ∶ 
 → vd(
), and the constraint
sets for the vehicle’s inputs and the speed of the “virtual reference" given by (3) and (5) respectively, derive a feedback control
law for (u, r) ∈ U and v ∈ Uv to ful�ll the following tasks:

• Geometric task: drive the path following error x with the dynamics described in (4) to zero as t → ∞.

• Dynamic task: ensure also that v tracks the desired speed pro�le vd(
), that is, v(t) − vd(
(t)) → 0 as t → ∞.

Stated intuitively, a solution to the input-constrained path following problem consists of adjusting the speed v of the
“virtual reference", the speed u, and the heading rate r of the vehicle, subject to given vehicle constraints, to drive the
vehicle to the path and keep its velocity vector aligned with the tangent to the path while having the path parameter track
the desired speed pro�le.

Remark 1. If 
 is the arc length of the path, then g(
) ≡ 1. In this case, the path following error system (4) resembles the path
following error system developed in17. Notice that although parameterizing a path by its arc-length is convenient, the main
problem is that it is not always possible to �nd a closed form expression of the curvature as the function of the arc-length;
elliptical and sinusoid paths are examples. In our set-up, the path parameter 
 in (4) is not necessarily the arc length, thus
making the formulation applicable to any path.

Remark 2. Since the path parameter 
 is not necessarily the arc-length, in general v is not the speed of the “virtual reference"
in the inertial frame. In fact, the latter equals g(
)v. Obviously, if 
 is the arc-length of the path, then g(
) ≡ 1 and v is truly
the speed of the “virtual reference" in the inertial frame.

3.2 Cooperative path following
Before proceeding to the formulation of the multiple vehicle coordination problem, we made the following assumptions.

Assumption 1.

A1.1 Each vehicle is equipped with a path following controller (to be designed later using an MPC scheme) that solves
Problem 1, where the desired speed pro�le vd(⋅) along the paths is identical for all vehicles.

A1.2 The inter-vehicle network topology is time invariant.

In what follows, we assume that the paths that the vehicles must follow are appropriately parameterized to ensure that
a given formation is reached when the path parameters, also called coordination states, are equal. For example, to make
a number of vehicles follow an equal number of concentric circumferences and be aligned radially along their radii, it
su�ces to parametrize these paths in terms of their normalized lengths, that is, 
[i] = s[i]∕2�, where s[i] is the curvilinear
abscissa along path i. Clearly, the vehicles are coordinated andmaneuver with a desired normalized path dependent speed
vd(⋅) if 
[i](t) = 
[j](t) and 
̇[i](t) = 
̇[j](t) = vd(
[i]) for all i, j ∈ N. See4 for an introduction to these concepts.
The underlying idea to achieve the coordination is described as follows. Assume for the time being that the vehicles
maneuver independently and do not attempt to coordinate theirmotions. Assume that the path following controllermakes
the vehicle converge to the path asymptotically (x[i] = 0) and ensures also that the path parameter evolveswith the desired
speed pro�le (v[i] = vd(
[i])). Asymptotically, in this situation we have


̇[i] = v[i] = vd(
[i]); i ∈ N. (6)

Replacing v[i] = vd(
[i]) and x[i] = 0 in (4), and noticing that x[i] = 0 is the equilibrium point of the path following system
(4), the nominal speeds of the vehicles are given by

u[i] = g[i](
[i])vd(
[i]); i ∈ N. (7)
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Recall that the desired formation is only achieved when the path parameters reach consensus (or synchronized), that is,

[i] = 
[j] for all i, j ∈ N. This can be accomplished by adjusting the linear speeds of vehicles about the nominal speeds
in (7) so as to make all vehicles reach agreement in the coordination states (the path parameters) and maneuver with the
common normalized desired speed vd(⋅). Let g[i](
[i])v[i]c be the a correction term for the speed of vehicle i, where v[i]c is a
new input aimed at achieving coordination, to be explained later. The resulting speeds for the vehicles are given by

u[i] = g[i](
[i])(vd(
[i]) + v[i]c ); i ∈ N. (8)

Consequently, the dynamics of the path parameters in (6) are now extended as


̇[i] = vd(
[i]) + v[i]c ; i ∈ N. (9)

At this stage, it is clear that the coordination problem is reduced to �nding v[i]c ; i ∈ N such that the total speed of each
vehicle in (8) still satis�es (3), that is,

u[i]min ≤ g[i](
[i])(vd(
[i]) + v[i]c ) ≤ u[i]max ; i ∈ N, (10)

and the path parameters are synchronized and evolve with the common speed pro�le vd(⋅). To solve this consensus
problem, each vehicle needs to exchange the path parameters (coordination states) with other vehicles. In this work, we
consider that each vehicle is capable of communicating bidirectionally with a set of neighboring vehicles. Let G be the
bidirectional (undirected) graph induced by the interconnection network of the vehicles andN[i] the set of neighboring
vehicles of vehicle i. At the coordination layer, we consider each vehicle to be an agent whose dynamics are given by (9).
We are now in a position to formulate the coordination problem as follows.
Problem 2 - [Coordination of input-constrained MAS].
Given a MAS with the dynamics of each agent given by (9) and the network topology of the MAS modeled by the graph G sat-
isfying Assumption 1, derive a distributed control law for the input v[i]c (
[i], 
[j]); j ∈ N[i], subject to the input constraint (10),
such that (
[i](t) = 
[j](t)); ∀i, j ∈ N and (
̇[i](t) = vd(
[i](t))); ∀i ∈ N as t → ∞.
Note that since the function vd(⋅) is common for all agents, reaching consensus in the path parameters and their speeds
implies that v[i]c converges to zero for all i ∈ N. In next section, the process of designing controllers to solve the problems
de�ned above shall be illustrated.

4 CONTROLLER DESIGN ANDMAIN RESULTS

Based on the idea of decoupling the constrained CPF problem into the subproblem of path following andMAS coordina-
tion, we propose a distributed CPF control system that, for each vehicle, exhibits the architecture depicted in Fig. 3. The
objective of the Coordination block is to compute the correction speed v[i]c . An ETC mechanism is proposed to reduce
communications among vehicles so that they will only communicate with its neighbors when found necessary, according
to some speci�c criterion. Once the correction speed has been computed, the MPC controller is used to make the vehicle
converge to and follow its assigned path. In other words, the MPC controller is used to stabilize the path following error
between the vehicle and its assigned path.
To make the constrained CPF problem solvable, we assume that given the vehicles’ input constraints, the planed paths
given in (1) and the desired speed pro�le vd(⋅) are smooth and satisfy the following conditions.

Condition 1.

C1.1 vd(⋅) is bounded, i.e. 0 < vdmin ≤ vd(⋅) ≤ vdmax .

C1.2 Condition on the linear speeds:
There exists a constant cu > 0 such that u[i]min + cu ≤ g[i](
[i])vd(
[i]) ≤ u[i]max − cu for all 
[i] and i ∈ N.

C1.3 Condition on the turning rates:
There exists a constant cr such that |�[i](
[i])g[i](
[i])vd(
[i])| < r[i]max − cr for all 
[i] and i ∈ N.

Remark 3. The above conditions are necessary to ensure that the CPF problem is solvable. To see this, notice in C1.2 that
the term g[i](
[i])vd(
[i]) is the nominal desired linear speed, computed in the inertial frame, that vehicle i must track, see (7).
Therefore, cu gives room for the vehicles to adjust their linear speeds about the nominal ones in order to achieve coordination,
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MPC-PF
Controller

Coordination with ETC
 Mechanism

Vehicle

Path

FIGURE 3 CPF control system for vehicle ith with the ETC mechanism.

see (8). Similarly, in C1.3, the left hand side of the inequality is the nominal desired heading rate of vehicle i. Hence, cr gives
room for the vehicles to adjust their heading rates about the nominal ones in order to converge to and follow their assigned
paths.

Example 1. For paths consisting of straight lines and segments of circumferences, such as lawn mowing paths, the above
conditions can be signi�cantly simpli�ed. For example, for straight-line paths, if the paths are parameterized by their arc-
lengths, then g[i](
[i]) ≡ 1 for all i ∈ N. Hence, condition C1.3 can be relaxed and C1.2 is equivalent with u[i]min + cu ≤
vd(
[i]) ≤ u[i]max−cu for all i ∈ N. In this case cu can be simply speci�ed as cu = min{vdmin−u[i]min, u

[i]
max−vdmax} for all i ∈ N.

In the following subsection we shall propose distributed control laws with di�erent communication scenarios to update
the correction speed v[i]c , i ∈ N.

4.1 Distributed controllers with an ETCmechanism for the coordination problem
Before introducing distributed control laws to solve the coordination problem (Problem 2), we de�ne new variables given
by

z[i] ∶= ∫ 
[i]
0

1
vd(
)

d
, i ∈ N. (11)

Intuitively, z[i] measures the amount of time taken by agent i to travel from 0 to the state 
[i]. With the above de�nition,
and since vd(
) > 0 for all 
, it follows that the path parameters 
[i]; i ∈ N are synchronized (or reach consensus), i.e.

[i] = 
[j] for all i, j ∈ N i� the variables z[i]; i ∈ N are synchronized, i.e. z[i] = z[j] for all i, j ∈ N. For the sake of
convenience, let z = [z[1], z[2], ..., z[N]]T ∈ ℝN and z̄ = 1

N

∑N
i=1 z

[i] be the average of z. We de�ne the coordination error
vector

� = z − z̄1 = Wz, (12)
whereW = IN − 11T∕N. Clearly, if the variables z[i]; i ∈ N reach consensus, then z spans 1. Further, sinceW1 = 0, the
variables z[i]; i ∈ N reach consensus i� � = 0. Thus, the problem of driving the variables z[i]; i ∈ N to reach consensus
amounts to driving the coordination error vector � to the origin. For this reason, in what follows we propose distributed
control laws for v[i]c for all i ∈ N under di�erent communication scenarios to drive the error vector � to zero.

Remark 4. Notice that the matrixW is similar to the projection matrix Π� de�ed in2, which is popularly used for analyzing
consensus of multi agent systems on undirected graphs. The variable z[i] de�ned in (11) generalizes the coordination state �i
given in2, where the paths are parameterized by their arc-lengths.

4.1.1 Continuous communications
For clarity of presentation of the concepts involved, we start by assuming that communications take place instantaneously.
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Theorem 1 (Coordination with continuous communications). Consider Problem 2. Let Condition 1 hold for all i ∈ N
and let G be an undirected and connected graph. Then, the distributed control law for v[i]c ; i ∈ N given by

v[i]c = −k[i]c tanh(∑j∈N[i] z[i] − z[j]); i ∈ N, (13)

where z[i] is given by (11) and k[i]c are positive gains satisfying the conditions

0 < k[i]c ≤ cu∕g[i]max ; i ∈ N,
g[i]max = max(g[i](
[i]))

(14)

drives all the agents’ states (path parameters) to reach consensus asymptotically. In other words, the origin of the coordination
error vector � is globally asymptotically stable.

PROOF: See appendix C.1.
The next corollary applies to the special case where the desired speed pro�le vd(⋅) is constant.

Corollary 1. Consider Problem 2 and let the conditions stated in Theorem 1 hold. Further assume that the speed pro�le is
constant, i.e. vd(
[i]) ≡ c > 0 for all i ∈ N. Then, the distributed control law for v[i]c ; i ∈ N given by

v[i]c = −k[i]c tanh(∑j∈N[i] 
[i] − 
[j]); i ∈ N, (15)

where k[i]c satis�es (14) drives all the agents’ states (path parameters) to reach consensus asymptotically.

It is interesting to observe that in the case of a constant speed pro�le, the distributed control law does not depend on
the desired speed pro�les vd(⋅). Further, it follows from (15) that the computation of v[i]c is simpli�ed because there is no
need for a block of integrators to compute z[i].

4.1.2 ETCmechanism without communication delays
The distributed control law proposed in subsection 4.1.1 relies on continuous communications among the vehicles. How-
ever, this assumption is impossible to meet because practical communication systems require the exchange of data to take
place at discrete instants of time. Motivated by this observation, we propose an event triggered communication mech-
anism in which the vehicles only need to exchange data with their neighbors when necessary, in accordance with an
appropriately de�ned criterion.
In the ETC mechanism, instead of using the true neighboring states (
[j]; j ∈ N[i]), the control law (13) uses their esti-
mates. The underlying idea is that if any agent can produce "good" estimates of the neighboring states, then there is no
need to communicate continuously among the vehicles. Let 
̂[ij] be an estimate of 
[j] computed by agent i (the procedure
to compute this estimate will be explained later). The event triggered distributed control law that we propose is given by

v[i]c = −k[i]c tanh
(∑

j∈N[i](z[i] − ẑ[ij])
)
; i ∈ N, (16)

where
ẑ[ij] ∶= ∫ 
̂[ij]

0
1

vd(
)
d
, (17)

and k[i]c satis�es condition (14) for all i ∈ N.
The control law in (16) can be rewritten as

v[i]c = −k[i]c tanh
(∑

j∈N[i](z[i] − z[j] + e[j])
)
; i ∈ N, (18)

where,

e[j] = z[j] − ẑ[ij] = ∫ 
[j]

̂[ij]

1
vd(
)

d
; j ∈ N[i], i ∈ N. (19)

Notice that vd(
) is bounded below by vdmin, hence

|e[j](t)| ≤ |
[j](t) − 
̂[ij](t)|∕vdmin; j ∈ N[i], i ∈ N. (20)

It can be seen that compared with the control law for continuous communications in (13), v[i]c in (18) has the contribution
of the estimation error e[j]. The underlying idea in the proposed ETC mechanism is that if e[j]; j ∈ N[i], i ∈ N can be
enforced to be bounded then, as we will show later, the coordination error � will also be bounded. To bound e[j], we
de�ne for every agent the variable 
̂[j]; j ∈ N as a “replica" of 
̂[ij]; i ∈ N[j]. Thus, if we can enforce the estimation error
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̃[j] ∶= 
[j] − 
̂[j] = 
[j] − 
̂[ij] to be bounded, then from (20) e[j] will be bounded for all j ∈ N.
We now introduce a mechanism to synchronize 
̂[i] and 
̂[ji] for all i ∈ N and j ∈ N[i] (note that because the graph is
symmetric, this is similar to synchronize 
̂[j] and 
̂[ij] for all j ∈ N and i ∈ N[j]). Let {t[i]k }; k ∈ ℕ be the sequence of
time instants at which vehicle i sends its current value of 
[i](t[i]k ); k ∈ ℕ to its neighbors j; j ∈ N[i]. During the interval
T[i]
k ∶= [t[i]k , t

[i]
k+1) we propose the following estimator for 
̂[i]. For t ∈ T[i]

k :

̇̂
[i](t) = vd(
̂[i](t)), (21a)


̂[i](t[i]k ) = 
[i](t[i]k ); i ∈ N. (21b)

Equation (21b) implies that whenever agent i broadcasts 
[i] to its neighbors, the initial condition for 
̂[i] will be reset.
Similarly, let {t[ji]k }; k ∈ ℕ be the sequence of time instants at which agent j; j ∈ N[i] receives the state of agent i. The
estimator for 
̂[ji]; j ∈ N[i], i ∈ N in the interval T[ji]

k ∶= [t[ji]k , t[ji]k+1) is proposed as follows:
For t ∈ T[ji]

k :

̇̂
[ji](t) = vd(
̂[ji](t)), (22a)


̂[ji](t[ji]k ) = 
[i](t[i]k ); j ∈ N[i], i ∈ N. (22b)

Equation (22b) implies that whenever agent j receives the state of agent i, the initial condition for 
̂[ji] will be reset.

Remark 5. The dynamics of the estimators for 
̂[i] and 
̂[ji], given by (21a) and (22a), respectively, are motivated by the
observation that once coordination is achieved, 
[i] = 
[j] for all i, j ∈ N, v[i]c tends to zero for all i ∈ N, and all path
parameters evolve with the same speed pro�le vd(⋅). As a consequence, in this speci�c situation the estimators truly represent
the dynamics of the path parameters. See Fig. 4 for an illustration of the synchronization between 
̂[i] and 
̂[ji] for all i ∈ N
and j ∈ N[i].

FIGURE 4 The ETC mechanism for the case of negligible delays; 
̂[i] and 
̂[ji] are synchronized, i.e. 
̂[i](t) = 
̂[ji](t) for
all t and j ∈ N[i], i ∈ N.

To ensure that the estimation error 
̃[i]; i ∈ N bounded, we allow agent i to transmit 
[i] whenever 
̃[i] hits a designed
bounded threshold that, in general, can be parameterized by a function of time that we call �[i](t). Formally, we de�ne an
event-triggering function ℎ[i](t) for the communication as

ℎ[i](t) = |
̃[i](t)| − �[i](t), (23)

where �[i](t) belongs to a class of non-negative functions C de�ned by C ∶= {f ∶ R≥0 → R≥0|0 ≤ f(t) ≤ c̄} for all i ∈ N,
where c̄ is a uniform upper bound for the function. For example, �[i](t) = c1 + c2e−�t with a proper choice of c1, c2 and �
is a typical function belonging to C. With the above de�nition, agent i; i ∈ N will send its state to its neighbors whenever
ℎ[i](t) ≥ 0.
In summary, with the proposed ETC mechanism the following results hold.

Lemma 1. Suppose there are no communication delays. In this case, the ETC mechanism will ensure that for all t and
i ∈ N, j ∈ N[i]

i) 
̂[i](t) = 
̂[ji](t) and

ii) |
̃[i](t)| = |
[i](t) − 
̂[i](t)| = |
[i](t) − 
̂[ji](t)| ≤ �[i](t).
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PROOF. See appendix A.1
We show next that with the ETC mechanism proposed above, and in the absence of communication delays, the
coordination system satis�es an adequate ISS condition.

Theorem 2 (Coordination with ETC and without delays). Consider Problem 2 and let the conditions stated in Theorem
1 hold. Further, let the coordination system be driven by the proposed ETC mechanism and the distributed control law given
in (16). Then, the closed-loop coordination error system is (ISS) with respect to the state � and the input � ∶= [�[1], ..., �[N]]T.

PROOF: See appendix C.2.

Remark 6. Due to space limitations, we refer the reader to De�nition 4.7 in23 for the concept of ISS systems. In plain terms,
the result in Theorem 2 implies that: i) if the input � is bounded then the state � is bounded and ii) if �(t) → 0 as t → ∞ then
� (t) → 0 as t → ∞, see the convergent input-convergent state property of an ISS system in24.

Remark 7. The above ETC mechanism extends the event triggered mechanism for single integrator MAS described in25. It
also generalizes the triggering condition in26, where the threshold functions �[i] are constant for all i ∈ N. Compared to26, this
gives more �exibility to reduce the frequency of communications among the vehicles by customizing the triggering threshold
function �[i](t); i ∈ N.

Remark 8. Another concern with any event triggered control or communication mechanism is that if it can guarantee Zeno-
free behavior. With the proposed ETC mechanism in this paper, provided that the lower bound on the threshold function �[i]
is positive for all i ∈ N then it can be shown that the minimum-inter event time for every agents is strictly positive; which
implies that Zeno behavior can be excluded. Intuitively, this implies that if the lower bound of �[i] is positive then it always
takes a period of time for the estimation error |
̃[i]| to reach the triggering threshold �[i], which is the condition to generate a
new event for communication. The proof of this property is lengthy and involved. However, the proof can be done in a similar
to that in Theorem 1 of27.

Clearly, Theorem 1 is a special case of Theorem 2 when �[i](t) ≡ 0 for all i ∈ N. That is, �[i](t) ≡ 0 implies that the
triggering condition (23) is satis�ed at all times, making the vehicles communicate continuously. To reduce the frequency
of communications, the threshold functions �[i] can be designed such that they are not necessarily identically equal to zero
but �[i](t) → 0 as t → ∞; i ∈ N. Then, due to the ISS property, the coordination error � will converge to zero as t → ∞. In
this set-up, the triggering threshold �[i] plays the role of a tunning knob to trade o� performance of coordination against
the cost of communications.

4.1.3 ETCmechanism with communication delays
In this subsection we consider more realistic scenarios where the communication delays are time varying and non-
homogeneous. To handle communication delays, we modify slightly the proposed ETC mechanism as follows:
Consider a generic agent i with neighbors j; j ∈ N[i]. We recall that t[i]k is the time at which agent i broadcasts its state
(
[i](t[i]k )) to its neighbors and t

[ji]
k is the time at which agent j receives that information. Notice that without delay, agent

j would receive 
[i](t[i]k ) immediately, i.e. t[ji]k = t[i]k . We now consider the case when agent j can only receive the mes-
sage broadcast by agent i after a certain time delay denoted ∆[ji]k . This delay is not known in advance but we assume it
can be estimated by agent j. For example, if all agents are equipped with synchronized clocks and, instead of sending
only the coordination state 
[i](t[i]k ), agent i also sends the tagged time t[i]k , then the time delay can be easily computed as
∆[ji]k = t[ji]k − t[i]k . In general, we de�ne the time delay signal as a function of time, as follows:

∆[ji]k (t) = {
t − t[i]k , if t

[i]
k ≤ t ≤ t[ji]k ,

0, otherwise.
(24)

Notice how with this de�nition ∆[ji]k (t[ji]k ) = t[ji]k − t[i]k . We now modify the ETC mechanism proposed in previous section
to make it robust against communication delays. To this end, the estimator (22) is modi�ed as follows.
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For t ∈ T[ji]
k ,

̇̂
[ji](t) = vd(
̂[ji](t)), (25a)


̂[ji](t[ji]k ) = 
[i](t[i]k ) + ∫ t[ji]k

t[i]k
vd(
̂[ji](�))d�. (25b)

These equations show that when agent j; j ∈ N[i] receives 
[i](t[i]k ) from agent i, 
̂[ji] is reset to the initial value given by
(25b). Compared to (22b), the last term in (25b) acts as a “compensation" term for the estimate of 
̂[ji] in order to deal with
the time delay ∆[ji]k .
To see how the modi�ed ETC mechanism is robust against delays, similarly to the case without delays we examine the
estimation error 
[i] − 
̂[ji], which, as we will see later, contributes to the degradation in performance of the coordination
error system. To this end, we de�ne �̄[i](t) ∶= sup�∈[0,t] �[i](�) as the upper bound for �[i](�) up to time t and ∆̄[i](t) ∶=
sup�∈[0,t]{∆

[ji]
k (�); j ∈ N[i], t[i]k ∈ [0, t]} as the upper bound for the time delays associated with the messages sent by agent

i up to time t. We obtain the following result for the estimation error.

Lemma 2. Consider the modi�ed ETC mechanism with time-varying delays. Then, for all t ≥ 0 and i ∈ N, j ∈ N[i]

|
[i](t) − 
̂[ji](t)| ≤ �̄[i](t) + (vdmax − vdmin + kmax)∆̄[i](t), (26)

where kmax ∶= maxi∈N k[i]c .

PROOF: See appendix A.2.
Let �̄ =col(�̄[i]) ∈ ℝN and �̄ =col(∆̄[i]) ∈ ℝN and de�ne

� = �̄ + (vdmax − vdmin + kmax)�̄. (27)

We obtain the following result for coordination with communication delays.

Theorem 3 (ETCmechanism and communication delays). ConsiderProblem 2 and let the conditions stated in Theorem
1 hold. Let the coordination system be driven by the modi�ed ETC mechanism with the distributed control law given in (16).
Then, the closed-loop coordination error system is ISS with respect to the state � and the input �.

PROOF. See appendix C.3.
Clearly, the results stated in Theorem 3 generalize the results in Theorem 1 and Theorem 2. The result in Theorem 2 is a
special case of that of Theorem 3 when the communication delays are zero, that is, �̄(t) ≡ 0. In this case, the coordination
error system is ISS respect to the input �̄. Furthermore, if both �̄(t) ≡ 0 and �̄(t) ≡ 0, then � ≡ 0. In this case, we recover
the result of Theorem 1, that is, � = 0 is GAS.

Remark 9. It is remarked that having synchronized clocks on the vehicles to compute time delays is not a strong assumption.
It is relevant to point out that with current technology it is neither di�cult nor overly expensive to have synchronized clocks
(with a drift of less than 200 ns in 24 hours) on-board of all the vehicles that are part of a formation. This solution was recently
implemented and tested in the scope of the EUWiMUST project28.

4.2 MPC for constrained path following
Section 4.1 provided a solution to the computation of the correction speed v[i]c in order to achieve coordination. With the
correction speed, the total speeds assigned to the vehicles are given by

u[i] = (vd(
[i]) + v[i]c )g[i](
[i]); i ∈ N. (28)

As shown in the proof of Lemma 1, the reference speed for u[i], given by (28), satis�es the constraint u[i]min ≤ u[i] ≤ u[i]max for
all i ∈ N. Replacing the vehicle speed u in (4) by (28) for vehicle i, the resulting path following error system for vehicle i
is given by

ẋ[i] = f [i](x[i], u[i]) =
⎡
⎢
⎢
⎢
⎣

g[i](
[i])
(
−v[i](1 − �[i](
[i])e[i]y ) + (vd(
[i]) + v[i]c ) cos(e

[i]
 )

)

g[i](
[i])
(
−�[i](
[i])v[i]e[i]x + (v[i]d + v[i]c ) sin(e

[i]
 )

)

r[i] − �[i](
[i])g[i](
[i])v[i]

⎤
⎥
⎥
⎥
⎦

, (29)
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where u[i] = (v[i], r[i]). It follows from (3) and (5) that u[i] is constrained to the set

U[i]
pf ∶= {(v[i], r[i]) ∶ |v[i]| ≤ v[i]max and |r[i]| ≤ r[i]max}. (30)

We are now in a position to design an MPC scheme to drive the path following error system (29) to zero subject to the
input constraint set U[i]

pf de�ned by (30).
We de�ne a �nite horizon open loop optimal control problem (FOCP) OCP(t, x[i](t), 
[i](t), v[i]c (t), Tp) that the sampled-
data MPC must solve at every sampling time as follows:

De�nition 1. OCP(t, x[i](t), 
[i](t), v[i]c (t), Tp)

min
ū[i](⋅)

J[i]
(
x[i](t), 
[i](t), v[i]c (t), ū[i](⋅)

)
,

with
J[i] (⋅) ∶= ∫ t+Tp

t l[i]
(
x̄[i](�), 
[i](�), v[i]c (�), ū[i](�)

)
dτ

subject to

̇̄x[i](�) = f [i]
(
x̄[i](�), ū[i](�)

)
, � ∈

[
t, t + Tp

]
, (31a)

x̄[i](t) = x[i](t), (31b)

v̄[i]c (�) = −k[i]c tanh
(∑

j∈N[i] z̄[i](�) − ̄̂z[ij](�)
)
, (31c)

̇̄
[i](�) = v[i](�), � ∈
[
t, t + Tp

]
, 
̄[i](t) = 
[i](t), (31d)

̇̂̄
[ij](�) = vd(
̂[ij](�)), � ∈
[
t, t + Tp

]
, (31e)

̄̂
[ij](t) = 
̂[ij](t); j ∈ N[i], (31f)

ū[i](�) ∈ U[i]
pf , � ∈

[
t, t + Tp

]
, (31g)

)V
)x[i]

f [i](x[i](t), ū[i](t)) ≤ )V
)x[i]

f [i](x[i](t), un(x[i](t))). (31h)

In the constraint equations (31), the variables with bar denote predicted variables, to distinguish them from the real
variables without a bar. Speci�cally, x̄[i](�) is the predicted trajectory of the path following error which is computed using
the dynamic model (29) and the initial conditions (31b); 
̄[i](�) is the predicted value of the path parameter 
[i] driven by
the path following input ū[i](�); ̄̂
[ij] is the prediction of the state of neighboring agent j; j ∈ N[i] by using the estimator
(25) over the prediction horizon Tp; z̄[i] and ̄̂z[ij] are computed using (11), (17) with predicted 
̄[i] and ̄̂
[ij], respectively.
The constraint (31h) is referred as a stability constraint to guarantee stability. This constraint is constructed based on a
Lyapunov function V ∶ ℝ3 → ℝ≥0 and its associated stabilizing constrained control law un ∶ ℝ3 → U[i]

pf . This setup is
inspired by the result in29 to improve the performance of path following. Finally, l[i] ∶ ℝ3×ℝ×ℝ×ℝ2 → ℝ≥0 is the stage
cost of the �nal horizon cost J[i].
In state feedback sampled-data MPC, the optimal control problem OCP(⋅) is repeatedly solved at every discrete sampling
instant ti = i�, i ∈ ℕ+, where � is a sampling interval. Let ū[i]∗(�) be the optimal solution of the optimal control problem
OCP(⋅). The MPC control law u[i]mpc(⋅) is then de�ned as

u[i]mpc(t) = ū[i]∗(t) for t ∈ [ti, ti + �]. (32)

Before proceeding to the main result for the path following problem with the proposed MPC scheme, we make the
following assumptions.

Assumption 2.

A2.1 The stage cost l[i](⋅) is continuous, positive de�nite, and l[i](⋅) = 0 when x̄[i] = 0 and u[i]a ∶= [−v[i] + (vd(
[i]) +
v[i]c ) cos e

[i]
 , r

[i] − �[i](
[i])g[i](
[i])v[i]]T = 0.

A2.2 Given the path following error dynamics in (29), there exist a Lyapunov function V ∶ ℝ3 → ℝ≥0 such that V is
positive de�nite and V(x[i]) = 0 only for x[i] = 0, and an associated nonlinear feedback control law un ∶ ℝ3 → U[i]

pf
that satis�es )V

)x[i]
f (x[i], un(x[i])) ≤ 0 for all x[i]. Further, un(x[i]) globally stabilizes (29).

We now state an important result for the constrained path following problem using the proposed MPC scheme.
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Theorem 4 (Path following with MPC). Consider the path following error system (29) subject to the input constrained
set Upf given by (30), controlled by the proposed MPC scheme, and let Assumption 2 hold true. Then, the origin of the path
following error is globally asymptotically stable.

PROOF: See appendix C.4.
The most important requirement in the proposed MPC scheme is the existence of a stabilizing control law un(⋅) and an
associated Lyapunov function V(⋅) that satis�es Assumption 2. It can be shown that the control law in the following
lemma satis�es the assumption.

Lemma 3 (Global Constrained Nonlinear PF Controller). Consider the path following error system (29) and let vmax in
(30) be chosen such that

vdmax + kc < vmax < rmax∕max(|�(
)g(
)|). (33)

Then, the global Lyapunov based control law given by

un(x) = [vr] =
⎡
⎢
⎢
⎣

1
g(
)

(
u cos(e ) + k1 tanh(ex)

)

− k3eyu sin(e )
(1+e2x+e2y)e 

− k2 tanh(e ) + �(
)g(
)v

⎤
⎥
⎥
⎦

, (34)

where k1, k2, k3 ∈ ℝ>0 are tuning parameters that satisfy

0 < k1 ≤ vmaxmin(g(
)) − (vdmax + kc)gmax ,
0.5k3umax + k2 ≤ rmax −max(|�(
)g(
)|)vmax

(35)

renders the origin of the path following error systemGAS. Further, the Lyapunov function associated with the control law (34),
given by

V(x) = k3
2 ln(1 + e2x + e2y) +

1
2e

2
 , (36)

satis�es Assumption 2.

PROOF: See appendix A.3.

Remark 10. Notice that for the sake of simplicity we dropped the subscript [i] in equations (33) - (36).

Remark 11. The MPC scheme proposed above is but one possible solution to the problem of stabilizing the path following
error system. One can use for example the MPC proposed in30, where terminal constraints are imposed to guarantee recursive
feasibility and stability. However, due to the need of a terminal set, the region of attraction in30 is local, while the region of
attraction for the path following error in Theorem 4 is global. The choice of Lyapunov function in (36) is inspired by the work
of tracking mobile robot in31.

It is obvious that with the constraint (31h) theMPC scheme improves the performance of the closed-loop path following
error system compared to the nonlinear control law. A comparative study can be found in26,20.

5 OVERALL CLOSED-LOOP CPF SYSTEM

In the previous section, with a view to adopting a decoupling strategy for the design of a cooperative path following system,
we proposed a distributed CPF strategy to solve two key problems involved: i) multiple agent coordination with an ETC
mechanism and ii)MPC for input-constrained path following of each agent. The resulting distributed CPF strategy can be
implemented using Algorithm 1 described below. The algorithm embodies in its structure the decoupling methodology
adopted, that is, the CPF control system can be seen as a two-layer control structure. In this context, coordination and
communications together play the role of an upper layer whose objective is to coordinate the path parameters to reach
a desired formation, while the main objective of the path following layer is to steer the vehicles to their assigned paths.
In Theorem 3 and Theorem 4, we have shown that if the two layers are considered separately, the path following system
of each vehicle is GAS while the coordination error that involves the path parameters is ISS respect to the input � that
includes the trigger threshold � and the communication delays. In this section, we shall state results for the overall closed-
loop CPF system where the interaction of two layers is taken explicitly into account.
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Algorithm 1MPC-CPF with the ETC mechanism for vehicle i
1: At every sampled time t, vehicle i implements following procedures:
2: procedure coordination and communication
3: if ℎ[i](t) ≥ 0 then
4: Broadcast 
[i](t);
5: Reset 
̂[i] using (21b);
6: end if
7: if Receive a new message from vehicle j then
8: if j ∈ N[i] then
9: Reset 
̂[ij] using (25b);
10: end if
11: end if
12: Run the estimator (21);
13: Run the estimator (25);
14: Update the correction speed v[i]c (t) using (16);
15: return v[i]c (t)
16: end procedure
17: procedure path following
18: Update the path following error x[i](t);
19: Solve the OCP(⋅) problem to �nd ū[i](⋅);
20: Use the MPC control law (32) to update v[i](t), r[i](t);
21: Update the vehicle’s speed u[i](t) using (28);
22: return u[i](t), r[i](t), v[i](t)
23: end procedure

Theorem 5. Consider the complete closed-loop CPF system composed by

• A set ofN vehicles, whose motions are described by (2) subject to the input constraints given by (3).

• A set of paths given by (1) and the desired speed pro�les vd(
[i]) satisfying Condition 1, with all i ∈ N.

Let the vehicles be controlled by the proposed MPC-CPF and the ETC mechanism given by Algorithm 1. Then, the overall
closed-loop system is ISS respect to the state xcl ∶= [xTpf , �

T]T and the input �, where xpf is the state of the path following layer
de�ned as xpf ∶= col(x[i]).

PROOF. See appendix C.5.

6 SIMULATION EXAMPLES

We consider a �eet of �ve Medusa class of AMVs with the input constraints u[i] ∈ [0.2, 2]m s−1 and r[i] ∈ [-0.2, 0.2]rad s−1
for all i = N ∶= {1, ..., 5} (see3 for the details of the vehicles’ speci�cation). The vehicles are required to execute two types
of CPFmissions as described in Table 2, with the paths parameterized by their normalized arc-lengths. For triangular for-
mations, the vehicles are required to maneuver along parallel paths while adopting the shape of a triangle, see Fig. 6, left.
For circular formations, the vehicles are required to maneuver along nested circumferences and align themselves radi-
ally, see Fig.6, right. In Table 2, for triangular formations, d[i] and c[i] are parameters specifying the desired cross-track
and along-track distances between the vehicles, while for circular formations, a[i] are the radii of the circumferences. The
communication topology adopted is depicted in Fig. 5, which shows the indexes of the vehicles and the bidirectional com-
munication links between them (represented by arrows). In the proposedMPC scheme, the Lyapunov-based controller in
Lemma 3 is used to construct the constraint (31h). The tunning parameters for the Lyapunov-based controller, the coor-
dination controller, and the event triggering threshold functions are set in Table 3. Notice that the coordination gain k[i]c
is chosen to satisfy conditions (14), while the gains for the Lyapunov-based controller are chosen to satisfy conditions in
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FIGURE 5 Communication topology

TABLE 2 Planed Missions

Planned paths vd

Tr
ia
ng

ul
ar p[i]d (


[i]) = [a(
[i] − c[i]), d[i]]T,

a = 50m, c[1] = c[5] = 0, c[2] = c[4] = 0.1, c[3] = 0.2, 0.02

d[1] = -10m, d[2] = -5m, d[3] = 0m, d[4] = 5, d[5] = 10m

C
ir
cu
la
r p[i]d (


[i]) = [a[i] cos(
[i]), a[i] sin(
[i])]T,

a[1] = 30m, a[2] = 33m, a[3] = 36m, 0.02

a[4] = 39m, a[5] = 42m

TABLE 3 controllers setup

Controller Tunning parameters

Path Following

k[1]1 = 0.3, k[2]1 = 0.33, k[3]1 = 0.36,

k[4]1 = 0.39, k[5]1 = 0.42,

k[i]2 = 0.06, k[i]3 = 0.09, v[i]max = 0.05, ∀i = 1, ..., 5

Coordination

k[i]c = 0.008, i = 1, ..., 5

�[i](t) = c1e−�t + �, ∀i = 1, ..., 5

c1 = 0.1, � = 0.2, � = 5e-3

Lemma 3 for all vehicles. The stage cost for the MPC scheme is de�ned as the quadratic form

l[i] (⋅) = x̄[i](�)TQx̄[i](�) + u[i]a (�)
T
Ru[i]a (�),

where Q=diag(1, 1, 2) and R=diag(2, 20). The sampling interval is set to � = 0.2s and the prediction horizon is set to
Tp = 2s. To solve the �nite optimal control problem OCP(⋅), we used Casadi, an open source optimization tool described
in32. Communication delays are set ∆ = 2s for all transmitted messages and for both missions.
The trajectories of vehicles are shown in Fig.6. It is visible that the vehicles converge to the desired paths and reach

the desired formations in both missions. The performance of the proposed CPF strategy for the two missions is illustrated
in Fig. 7–Fig.9. It can be seen from Fig. 7 that the inputs of the vehicles produced by the proposed CPF strategy satisfy
their constraints. Notice also in Fig. 8 how the Lyapunov functions for path following of the vehicles are monotonically
decreasing to zero, corroborating the results that the path following errors are asymptotically stable.
Regarding coordination among the vehicles, Fig.9(a) shows that the coordination states (path parameters) reach consensus
asymptotically and evolve with the desired common speed pro�le vd. In terms of communications between the vehicles,
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FIGURE 6 Trajectories of the vehicles. Left (triangular formation), right (circular formation). Solid lines are the desired
paths, dash-dot lines are the trajectories of the vehicles.

0 20 40 60 80

Time[s]

0

1

2

Speed of the vehicles u[i][m/s]

0 20 40 60 80

Time[s]

-0.2

0

0.2

Heading rate of the vehicles r[i][rad/s]

0 50 100 150 200

Time[s]

0

1

2

Speed of the vehicles u[i][m/s]

0 50 100 150 200

Time[s]

-0.2

0

0.2

Heading rate of the vehicles r[i][rad/s]

FIGURE 7 Vehicles inputs. Black dash lines are bounds of the inputs.
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FIGURE 8 Path following performance: evolution of the Lyapunov function V for path following.

Fig.9(b) indicates that at beginning of the simulation, communications take place more frequently. In contrast, when the
vehicles reach to the desired formations, they no longer need to communicate. This can be explained with the help of
Fig.9(c) which shows the estimation errors and the triggering threshold functions. At the beginning of the missions, the
dynamics of the path parameters are disturbed by the path following system (because the vehicles are away from their
paths) and the correction speeds are updated from the coordination system. As a consequence, there are signi�cant errors
of the path parameters’ estimates. Hence, the estimation errors hit the threshold functions frequently which, in turn,
triggers communications more frequently.
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[i]

0 20 40 60 80

Time[s]
0 50 100 150 200

Time[s]

(b) Broadcast time instants

0 20 40 60 80

0

0.1

0 20 40 60 80

0

0.1

0 20 40 60 80

0

0.1

0 20 40 60 80

0

0.1

0 20 40 60 80

Time[s]

0

0.1

0 50 100 150 200

0

0.1

0 50 100 150 200

0

0.1

0 50 100 150 200

0

0.1

0 50 100 150 200

0

0.1

0 50 100 150 200

Time[s]

0

0.1

(c) Estimation errors 
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FIGURE 9 Performance of coordination and communications. Left (triangular formation), right (circular formation)

7 CONCLUSIONS

We proposed a solution to the constrained CPF problem that exploits the tools of Model Predictive Control, network
theory, and event triggered communications. The main contribution of this work lies in the fact the proposed strategy is
not only capable of explicitly handling practical constraints on vehicles’ inputs and on the topology of the communications
network, but also saves communication bandwidth. We have shown that the path following error of all vehicles error
is GAS, which is a strong result for an input-constrained system. Practically, this implies that regardless of the initial
positions and orientations, the vehicles always converge to and follow their assigned paths. At the coordination level, we
proposed a novel distributed control lawwith an ETCmechanism for the synchronization ofmulti agent nonlinear system
that takes into account the agent input constraints. Future work will aim at implementing the proposed control method
in the Medusa vehicles that are property of IST, and assess their performance at sea,3.
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APPENDIX

A PROOFS OF LEMMAS

A.1 Proof of Lemma 1
The �rst relation comes from the fact that without delays the estimators for 
̂[i] and 
̂[ji] in (21) and (22), respectively, are
always initialized at the same value. Furthermore, since vd(⋅) is identical to both estimators, 
̂[i](t) = 
̂[ji](t) for all t (see
Fig. 4 as an example). The second relation stems from the fact with the ETC mechanism 
̃[i] is always enforced to satisfy
|
̃[i](t)| ≤ �[i](t) and, since i) holds for all t then ii) holds for all t. ■

A.2 Proof of Lemma 2
LetTk ∶= [t[i]k , t

[ji]
k ) be the time interval between the instant t[i]k when agent i broadcasts amessage including (t[i]k , 


[i](t[i]k ))
and instant t[ji]k when agent j; j ∈ N[i] receives this message. It is important to note that the triggering condition for agent
i is independent of the communication delays. Therefore, it is possible that agent i may end up sending new messages to
agent j before the �rst message has been received by the latter agent. At the same time, from the point of view of agent j,
this agent might also receive di�erent messages from agent i in the intervalTk. These scenarios are illustrated in Fig. A1.
We now consider the estimation error 
[i] − 
̂[ji] in the intervalTk. Notice that in this interval 
̂[ji] may be discontinuous,
becausewhenever agent j receives a newmessage from agent i, 
̂[ji]will be reset according to (25b). Let t[ji]ℎ , t[ji]ℎ+1, ..., t

[ji]
ℎ+H ∈

Tk be a sequence of time instants at which agent j; j ∈ N[i] receives messages broadcast by agent i at the corresponding
times t[i]ℎ , t

[i]
ℎ+1, ..., t

[i]
ℎ+H . Without loss of generality, we assume that t[i]k ≤ t[ji]ℎ ≤ t[ji]ℎ+1 ≤ ... ≤ t[ji]ℎ+H ≤ t[ji]k .

We now consider the estimation error 
[i] − 
̂[ji] in each interval Tℎ ∶= [t[ji]ℎ , t[ji]ℎ+1) ⊆ Tk. To this end, we de�ne a new

t
[i]
h t

[i]
h+1 t

[i]
k t

[ji]
h t

[ji]
h+1

t
[i]
k+1 t

[ji]
k

t
[ji]
k+1

γ[i]

γ̂[ji]

γ̂[i]

Tk

γ̂
[ji]
h

γ̂
[ji]
h+1

Th

Time instant at which agent i sends (t
[i]
k , γ

[i](t
[i]
k ))

Time instant at which agent j receives (t
[i]
k , γ

[i](t
[i]
k ))

when agent j recieves, γ̂[ji] is reset

t

FIGURE A1 Illustration of the evolution of variables with communication delays. Solid black denotes the true trajectory
of 
[i]. Solid blue denotes the estimate of 
[i] at agent i. Solid red denotes the estimate of 
[i] at agent j, namely 
̂[ji], while
dot-brown denotes the auxiliary variable 
̂[ji]ℎ .

variable 
̂[ji]ℎ as follows

̂[ji]ℎ (t) = 
[i](t[i]ℎ ) + ∫ t

t[i]ℎ
vd(
̂

[ji]
ℎ (�))d� (A1)

From (25) and (A1), it can be observed that 
̂[ji](t) = 
̂[ji]ℎ (t) for all t ∈ Tℎ. This is also illustrated in Fig. A1. Therefore, in
the interval Tℎ, instead of examining the error between 
̂[ji] and 
[i], we examine the error between 
̂[ji]ℎ and 
[i]. When
t ∈ Tℎ, from (A1) we obtain


̂[ji]ℎ (t) = 
̂[ji]ℎ (t[ji]ℎ ) + ∫ t
t[ji]ℎ

vd(
̂
[ji]
ℎ (�))d�

= 
̂[ji]ℎ (t[i]ℎ+1) + ∫ t
t[i]ℎ+1

vd(
̂
[ji]
ℎ (�))d�.

(A2)
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From (9), it follows that

[i](t) = 
[i](t[ji]ℎ ) + ∫ t

t[ji]ℎ

(
vd(
[i](�)) + v[i]c (�)

)
d�

= 
[i](t[i]ℎ+1) + ∫ t
t[i]ℎ+1

(
vd(
[i](�)) + v[i]c (�)

)
d�.

(A3)

Subtracting both sides of (A2) from equation (A3) and taking absolute values, yields

|
[i](t) − 
̂[ji]ℎ (t)| ≤ |
[i](t[i]ℎ+1) − 
̂[ji]ℎ (t[i]ℎ+1)| + ∫ t
t[i]ℎ+1

|vd(
[i](�)) − vd(
̂
[ji]
ℎ (�))|d� + ∫ t

t[i]ℎ+1
|v[i]c (�)|d�

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=∶A

. (A4)

Notice that at the time t[i]ℎ+1 at which 

[i] is reset, |
[i](t[i]ℎ+1) − 
̂[ji]ℎ (t[i]ℎ+1)| ≤ �[i](t[i]ℎ+1) (see also Fig. A1). Since t[i]ℎ+1 ≤ t for

all t ∈ Tℎ, �[i](t[i]ℎ+1) ≤ �̄[i](t). Therefore, |
[i](t[i]ℎ+1) − 
̂[ji]ℎ (t[i]ℎ+1)| ≤ �̄[i](t). In addition, from (A4) we obtain

A ≤ (vdmax − vdmin + kmax)(t − t[i]ℎ+1) = (vdmax − vdmin + kmax)∆
[ji]
ℎ+1(t).

Since t[i]ℎ+1 ≤ t for all t ∈ Tℎ, ∆
[ji]
ℎ+1(t) ≤ ∆̄[i](t). We conclude that for all t ∈ Tℎ

|
[i](t) − 
̂[ji](t)| ≤ �̄[i](t) + (vdmax − vdmin + kmax)∆̄[i](t). (A5)

Using similar reasoning, it can be shown that in any time interval t ∈ [t[ji]ℎ+n, t
[ji]
ℎ+n+1) ⊆ Tk; n = 1, ..., H, inequality (A5)

also holds. Hence, we conclude that the inequality (A5) holds for all t ≥ 0. This completes the proof. ■

A.3 Proof of Lemma 3
The proof is done in two steps:
Feasibility. To show that the heading rate r is feasible, we compute

|r| =
|||||||
− k3eyu sin e 
(1+e2x+e2y)e 

− k2 tanh(e ) + �(
)g(
)v
|||||||

≤ 0.5k3umax + k2 +max(|�(
)g(
)|)vmax .

Clearly, by choosing k2, k3 positive such that (35) is satis�ed, it follows that |r| ≤ rmax . Next, it is easy to check v is feasible
by computing

|v| =
||||||
1

g(
)

(
u cos(e ) + k1 tanh(ex)

)|||||| ≤ (|u| + k1)∕g(
),

Notice that according to (28), |u| ≤ (vdmax + kc)max(g(
)). Hence, Choosing k1 such that (35) is satis�ed and using
condition (33), it follows that |v| ≤ vmax .
Global asymptotic stability. Replacing u in (29) with the control law (34) yields the closed-loop path following error system
described by

ẋ = f (x, u) =
⎡
⎢
⎢
⎢
⎣

u cos(e )ey + k1 tanh(ex)(1 − ey)
u
(
sin(e ) − ex cos(e )

)
− k1 tanh(ex)ex

− k3ey sin(e )
(1+e2x+e2y)e 

u − k2 tanh(e )

⎤
⎥
⎥
⎥
⎦

, (A6)

where u is given by (28). Notice that system (A6) is non-autonomous since u(t) is in general a function of time (as vc
depends on the the triggering functions that are time-dependent). To show that x = 0 is GAS we need to show that

i) x = 0 is stable and

ii) x = 0 is globally attractive, i.e. lim
t→∞

x(t) = 0 for any initial condition x(t0).

i). Stability.
Computing the time derivative of the Lyapunov function given in (36) along the trajectory of (A6) yields

V̇(x) = −k3k1ex tanh(ex)
1 + e2x + e2y

− k2e tanh(e ) ≤ 0 (A7)

for all x. Using the fact that V̇ is a negative semi-de�nite function and V is radially unbounded, it follows that x = 0 is
stable and x(t) is bounded given any initial condition x(t0) at an arbitrary initial time t0.
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ii). x = 0 is globally attractive.
From (A7), it can be seen that V̇ is negative everywhere except on the line Ω ∶= {x|ex = 0, e = 0} where V̇(x) = 0. For
the system to maintain the V̇(x) = 0 condition, the trajectory of the systemmust be con�ned to the lineΩ. Unless ey = 0,
this is impossible because from the third equation of (A6)

ė ≡ 0 ⇒ −
k3ey(t)

1 + e2x(t) + e2y(t)
u(t) ≡ 0. (A8)

Because u(t) ≠ 0 for all t, (A8) holds i� ey(t) ≡ 0. This implies that the system can maintain the V̇(x) = 0 condition only
at the origin x = 0. Therefore, V(x(t))must decrease toward to zero. As a consequence, x → 0 as t → ∞. This completes
the proof.
Regarding this proof, two interesting observations can be made. Firstly, no matter what u(t) is, as long as it does not go
through zero the path following error always converges to zero. This means that the update of correction speed from the
coordination layer does not a�ect stability of the path following error system. Hence, from a stability point of view, the
path following control layer is decoupled from the coordination layer. Secondly, the fact that convergence of x(t) to zero
is obtained if u(t) > 0 for all t is intuitive, in the sense that forward motion is required to ensure that, by rotating, the
vehicle will be able to track the "virtual reference" (the origin of the parallel transport attached to the path).

Remark 12. Recall that the reference speed u assigned for the vehicle, in general, is a function of time due to the ETC mech-
anism; and therefore the resulting path following error system is non-autonomous. This is the reason why we did not use
LaSalle’s invariance principle to conclude the stability in the proof. Note that this is di�erent from the single path following
studied in20 where the speed of the vehicle depends only on the path parameter, which makes the path following error system
autonomous; and therefore the proof of stability can be done using the invariance principle.

B SUPPLEMENTAL LEMMAS

The following lemmas will be used in the proof of some theorems and corollaries.

B.1 Lemma on connectivity of graph
Lemma 4. Let L be the Laplacian matrix of a graph G. Suppose G is undirected and connected. Then, for any vector x ∈ ℝN

and x ⟂ 1, the following inequalities hold:

�2‖x‖
2 ≤ xTLx ≤ �N‖x‖

2, (B9a)
�2‖x‖ ≤ ||Lx|| ≤ �N‖x‖, (B9b)

where �2 and �N ∈ ℝ>0 are the second smallest and the largest eigenvalues of L, respectively.

Proof. Let v1, v2, ..., vN ∈ ℝN be the eigenvectors of L associated with the eigenvalues �1, �2, ..., �N . Let �1 ≤ �2 ≤ ... ≤
�N . Since the graph is undirected and connected, it is well-know that �1 = 0 and v1 = 1, and �i > 0 for all 2 ≤ i ≤ N.
From the Courant-Fischer theorem in33 it follows that

�2 = min
x≠0 and x⟂1

xTLx
xTx , �N = max

x≠0

xTLx
xTx .

Therefore, the inequality (B9a) holds. Now we consider the matrix B = LL. It can be easily checked that B has an eigen-
value at 0 and with an associated eigenvector 1. Let �i(B) be the eigenvalues of B, we obtain �i(B) = �2i , i = 1, ..., N.
Applying again the Courant- Fischer theorem, it follows that for any x ∈ ℝN and x ⟂ 1, �2(B)‖x‖

2 = �22‖x‖
2 ≤ xTBx =

‖Lx‖2 ≤ �N(B)‖x‖
2 = �2N‖x‖

2. Therefore, the inequality (B9b) holds. ■

B.2 Lemma on tan hyperbolic function
Lemma 5. Let y ∈ ℝn and � ∈ (0, 1). Then, for all x ∈ ℝn such that ‖x‖∞ ≥ (2n−1)‖y‖∞∕� the following inequality holds

−xTtanh(x + y) ≤ −
‖x‖∞
2 tanh

(
(1 − �)‖x‖∞

)
.
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Proof. In the proof, we will use the following important facts:
Let a, b ∈ ℝ, � > 0. If |�a| ≥ |b| then

Fact 1: a tanh(�a + b) ≥ 0 and
Fact 2: a tanh(�a + b) ≥ |a| tanh(|�a| − |b|).

Fact 1 can be checked by noting that if |a| ≥ |b| then a and tanh(a + b) have the same sign. Fact 2 holds because tanh is
a monotonically increasing function of its argument.
The proof of the Lemma proceeds as follows:
Let x̄ ∶= ‖x‖∞, ȳ ∶= ‖y‖∞, andm ∶= (2n − 1)ȳ∕� and

S ∶= −xTtanh(x + y) = −∑n
i=1 xi tanh(xi + yi) (B10)

Recall from Fact 1 that xi tanh(xi + yi) ≥ 0 if |xi| ≥ |yi| and de�ne the two sets

S1 ∶= {xi ∶ |xi| ≥ ȳ} and S2 ∶= {xi ∶ |xi| < ȳ}.

With the above de�nition, equation (B10) can be rewritten as

S = −
∑

xi∈S1
xi tanh(xi + yi)

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
=∶C1

−
∑

xi∈S2
xi tanh(xi + yi)

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
=∶C2

(B11)

Using Fact 1, we conclude that all the products in the sum of C1 are negative. Later, we will show that C2 is bounded. We
will henceforth use the condition given in the Lemma that x̄ ≥ m. Note thatm > ȳ for all � ∈ (0, 1), and therefore x̄ > ȳ.
It follows that the set S1 has at least one element, that is, |S1| ≥ 1 and therefore |S2| ≤ n − 1. Let i∗ be the index such that
xi∗ ∈ S1 and |xi∗ | = x̄. Since xi tanh(xi + yi) ≥ 0 for all xi ∈ S1, it follows that

C1 ≤ −xi∗ tanh(xi∗ + yi∗)
= −xi∗ tanh((1 − �)xi∗ + �xi∗ + yi∗)

= −xi∗ tanh((1 − �)xi∗)
�⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

=∶D1

−xi∗ tanh(�xi∗ + yi∗)
�⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

=∶D2

,
(B12)

where � ∶= 1 + tanh((1 − �)xi∗) tanh(�xi∗ + yi∗). Because |�xi∗ | = �x̄ ≥ �m > ȳ ≥ yi∗ , using Fact 1 it follows that
0 ≤ tanh((1 − �)xi∗) tanh(�xi∗ + yi∗) ≤ 1. Therefore, 1 ≤ � ≤ 2. Recall that |xi∗ | = x̄ = ‖x‖∞ and 1 ≤ � ≤ 2 we can
conclude that

D1 ≤ −
‖x‖∞
2 tanh

(
(1 − �)‖x‖∞

)
. (B13)

Furthermore, since |�xi∗ | ≥ yi∗ , using Fact 2, it follows that

D2 ≤ −|xi∗ | tanh(|�xi∗ | − |yi∗ |)
2 ≤ −(2n − 1)

2� ȳ tanh((2n − 1)ȳ − ȳ) ≤ −(n − 1)ȳ tanh(2(n − 1)ȳ). (B14)

At this point, we observe that

• For n = 1, D2 ≤ 0. Notice also that C2 = 0 because |S2| = 0.

• For n ≥ 2, D2 ≤ −(n − 1)ȳ tanh(2ȳ). Also, since |xi| ≤ ȳ for all xi ∈ C2 and |S2| ≤ (n − 1), it follows that
C2 ≤ (n − 1)ȳ tanh(2ȳ).

We conclude that D2 +C2 ≤ 0 for all n ≥ 1. As consequence, S = D1 +D2 +C2 ≤ D1. Hence, from (B13) we conclude that

S = −xTtanh(x + y) ≤ −
‖x‖∞
2 tanh

(
(1 − �)‖x‖∞

)

for all � ∈ (0, 1) and ‖x‖∞ ≥ (2n − 1)‖y‖∞∕�. This concludes the proof. ■
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C PROOFS OF THEOREMS

C.1 Proof of Theorem 1
The proof of the theorem is done in two steps.
Step 1: Feasibility. Recall that u[i] = g[i](
[i])(vd(
[i]) + v[i]c ), Replacing v

[i]
c by (13) yields

u[i] = g[i](
[i])
(
vd(
[i]) − k[i]c tanh

(∑
j∈N[i] z[i] − z[j]

))
.

Since g[i](
[i]) and k[i]c are positive for all 
[i] and i ∈ N, it follows that

g[i](
[i])(vd(
[i]) − k[i]c ) ≤ u[i] ≤ g[i](
[i])(vd(
[i]) + k[i]c ).

Furthermore, because k[i]c ≤ cu∕g[i]max for all i ∈ N (see (14)), it follows from condition C1.2 that u[i] satis�es the inequality
u[i]min ≤ u[i] ≤ u[i]max for all i ∈ N, from which it can be concluded that the correction speed (13) satis�es the linear speed
constraint (10).
Step 2: Global Consensus. From (11), (9) and (13) we obtain

ż[i] = 1
vd(
[i])

(vd(
[i]) − k[i]c tanh
(∑

j∈N[i] z[i] − z[j]
)

= 1 − d[i] tanh
(∑

j∈N[i] z[i] − z[j]
)

where d[i] ∶= k[i]c ∕vd(
[i]) > 0 for all 
[i] and i ∈ N. As a consequence, the dynamics of z are described by

ż = 1 − Ktanh(Lz), (C15)

where K ∶= diag(d[1], d[2]..., d[N]) ∈ ℝN×N . We now consider the Lyapunov function candidate for the closed loop
coordination system, de�ned as

Vc(� ) =
1
2�

TL� . (C16)

Intuitively, Vc measures the disagreement between the agents’ states (path parameters). Notice that by the de�nition in
(12), � ⟂ 1. Using Lemma 4 we obtain Vc(� ) ≥ �2‖�‖

2∕2 ≥ 0 for all � and Vc(� ) = 0 i� � = 0. Therefore, Vc is a positive
de�nite function. Computing the time derivative of Vc and using (C15), we obtain

V̇c = �L�̇ = zTLż
= −zTLKtanh(Lz) = −qTKtanh(q) ≤ 0

(C17)

for all � , where q ∶= Lz = L� . Because K ≻ 0, V̇c = 0 i� q = 0. Furthermore, L1 = 0, this implies V̇c = 0 when either
� = 0 or � spans 1. However, by the de�nition in (12) � is always orthogonal to 1, hence V̇c = 0 i� � = 0. This implies
that Vc stops decreasing if and only if � = 0. Therefore, we conclude that � = 0 is GAS. This implies that z[i](t) = z[j](t)
or, equivalently, 
[i](t) = 
[j](t) for all i, j ∈ N as t → ∞. ■

C.2 Proof of Theorem 2
The proof is done in three steps:
Step 1: From Lemma 1, and (20) we conclude that |e[i](t)| ≤ �[i](t)∕vdmin for all t and all i ∈ N. Letting e =
[e[1], e[2], ..., e[N]]T, it follows that

‖e‖∞ ≤ ‖�‖∞∕vdmin ≤
√
N‖�‖∕vdmin. (C18)

Step 2: We show that the closed-loop coordination system is ISS respect to the state � and input �. With the control law
(18), the dynamics of z can be rewritten as

ż = 1 − Ktanh(Lz + Ae), (C19)

whereA is the adjacency matrix of the graph. Notice that compared with (C15), for the case continuous communications,
the term Ae can be viewed as an external disturbance. It follows from the above that the derivative of Lyapunov function
candidate Vc in (C16) is given by

V̇c = −zTLKtanh(Lz + Ae)
≤ −dminqTtanh(q + Ae),
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where dmin ∶= mini∈N d[i] = kmin∕vdmax and kmin ∶= mini∈N k[i]c . Now, using Lemma 5 (inAppendixA), for any � ∈ (0, 1)
it follows that

V̇c ≤ −dmin
‖q‖∞
2 tanh

(
(1 − �)‖q‖∞

)

for all ‖q‖∞ ≥ (2N − 1)‖Ae‖∞∕�. Recall that q = L� . Using Lemma 4, we obtain ‖q‖∞ = ‖L�‖∞ ≥ �2‖�‖∕
√
N.

Furthermore, from (C18), it follows that ‖Ae‖∞ ≤ ‖A‖∞‖e‖∞ ≤ ‖A‖∞
√
N‖�‖∕vdmin. As a consequence,

V̇c ≤ −dmin
�2‖�‖

2
√
N

tanh (
(1 − �)�2‖�‖√

N
) =∶ −W1(� ) (C20)

for all ‖�‖ ≥ N(2N−1)‖A‖∞
�2�vdmin

‖�‖ =∶ �(‖�‖).

It can bee seen thatW1 is positive de�nite and � is a classK function. Furthermore, Vc is bounded according to

�1(‖�‖) ≤ Vc ≤ �2(‖�‖), (C21)

where �1(‖�‖) ∶= �2‖�‖
2 and �2(‖�‖) ∶= �N‖�‖

2 are two K class functions. Therefore, using Theorem 4.19 in23 we
conclude that Vc is an ISS-Lyapunov function for the closed-loop coordination error system. Hence, the closed loop
coordination system is ISS respect to the state � and the input �. This concludes the proof. ■

C.3 Proof of Theorem 3
The proof is similar to that of Theorem 2. Using Lemma 2 and (20), it follows that

|e[i](t)| ≤
(
�̄[i](t) + (vdmax − vdmin + kmax)∆̄[i](t)

)
∕vdmin.

Hence, from (27),
‖e‖∞ ≤ ‖�‖∞∕vdmin ≤

√
N‖�‖∕vdmin. (C22)

Proceeding similarly to Step 2 in the proof of Theorem 2, we can show that the inequality (C20) holds for all ‖�‖ ≥ �(‖�‖).
Therefore, the closed loop coordination system is ISS respect to the state � and the input �. This concludes the proof. ■

C.4 Proof of Theorem 4
Recursive Feasibility. Clearly, un(x[i](t)) is one of the feasible solutions of ū[i](�), � ∈ [t, t + �] satisfying the constraints
(31g) and (31h), while the remaining ū[i](�), � ∈ [t + �, t + Tp] can be chosen freely in the input space U[i]

pf .
Stability. The proof of globally asymptotic stability relies on the contractive constraint (31h) which, together with
Assumption 2, implies that

V̇(t) = )V
)x[i]

f (x[i](t), u[i]mpc(t)) ≤
)V
)x[i]

f (x[i](t), un(x[i](t))) ≤ 0.

We consider two possible cases for u[i]mpc(t). In the �rst case, the MPC scheme �nds u[i]mpc(t) ≠ un(x[i](t)), yielding V̇(t) =
)V
)x[i]

f (x[i](t), u[i]mpc(t)) <
)V
)x[i]

f (x[i](t), un(x[i](t))) ≤ 0, that is,V strictly decreasing. In the second case, u[i]mpc(t) = un(x̄[i](t)).
Since un(x[i]) globally stabilizes (29), we can conclude that x[i] → 0 as t → ∞. Thus, u[i]mpc(t) globally stabilizes (29). ■

C.5 Proof of Theorem 5
The proof follows the results stated in Theorem 3 and Theorem 4. As stated in Theorem 4, the convergence of the path
following error of each vehicle to zero is independent of the correction speed computed by the coordination layer.Without
loss of generality, the dynamics of xpf can be written as

ẋpf = fpf (xpf , t). (C23)

From Theorem 4, xpf = 0 is GAS.We now consider the coordination error vector � for the overall closed-loop CPF system.
In Section 3.2, as an intermediate step in the design of a CPF control law, we assumed the vehicles were already on their
assigned paths. That is, x[i] was assumed to be zero for all i ∈ N. Therefore, we did not take into account the e�ect of the
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path following layer on the coordination layer. However, in the overall closed-loop CPF system the dynamics of the path
parameters in (9) can be rewritten as


̇[i] = vd(
[i]) + v[i]c + d[i]pf , i ∈ N, (C24)

where d[i]pf ∶ (

[i], x[i]) → d[i]pf (


[i], x[i]); i ∈ N can be viewed as an external disturbance introduced by the path following
system. Notice that d[i]pf is bounded for all i ∈ N because vd(⋅), v[i]c are bounded and 
̇[i] = v[i], where v[i] is always bounded
in the set U[i]

pf for all i ∈ N. In addition, it follows from Theorem 4 that x[i] → 0 as t → ∞ for all i ∈ N. This, together
with the �rst equation of (29) imply that as t → ∞, 
̇[i] → vd + v[i]c for all i ∈ N. From (C24), this means that d[i]pf → 0 as
t → ∞. With the disturbance from the path following layer, the dynamics of z in (C19) are rewritten as

ż = 1 − Ktanh(Lz + �) + dpf , (C25)

where dpf = [d[1]bf ∕vd(

[1]), ..., d[N]bf ∕vd(


[N])]T ∈ ℝN . As a consequence,

�̇ = Wż = −WKtanh(L� + �) +Wdpf =∶ fc(� , xpf ). (C26)

Since d[i]pf → 0 as t → ∞, dpf → 0 as t → ∞. Further, dpf is always bounded, hence the solution for � in (C26) is always
bounded. As a consequence, from34 we conclude that the cascaded system composed by (C23) and (C26) is ISS respect to
state � cl ∶= [xTpf , �

T] and the input �. This completes the proof. ■
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