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Abstract

Hyperspectral images obtained by imaging spectrometer contain a large data

amount that require techniques such as target detection for information extrac-

tion. The proposed multi-mode FPGA implementation combines matrix correla-

tion and inversion matrix computations by using the Sherman-Morrison method

to achieve real-time operation. The implementation supports Constrained En-

ergy Minimization (CEM), Adjusted Spectral Matched Filter (ASMF) and mod-

ified Adaptive Cosine Estimator (ACE) detectors. The detection performance

of the algorithms is evaluated using standard detection metrics. The proposed

implementation has been realized on Zynq family SoCs and verified against

the MATLAB reference software. The detection results for different fixed-point

data types and target detection algorithms are reported. Finally, the proposed

implementation is compared with the state-of-the-art designs in terms of both

throughput and resource utilization.
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1. Introduction

The hyperspectral imaging (HSI) combines remote sensing and spectrometry

by capturing hundreds of contiguous bands in a certain wavelength range of the

electromagnetic spectrum. In contrast to true color imaging which adjusted to

human eye’s spectral sensitivity, hyperspectral imaging includes abundance of5

wavelengths referred to as bands. Recent drone and satellite missions tend to

incorporate HSI sensors with increased spectral, spatial and temporal resolution

causing dramatic growth of hyperspectral data dimensionality and bringing in

new challenges in the data analysis and information extraction. In addition,

the available drone and satellite down-link bandwidths do not follow this trend10

[1]. This leads to incorporation of high-performance computing platforms such

as graphic processing units (GPUs) and field programmable gate arrays (FP-

GAs) [2] into on-board hyperspectral processing stages. Compared to GPUs,

FPGAs offer smaller size and weight, as well as substantially lower power con-

sumption. The flexibility of FPGA through reconfigurability offers on-the-fly15

upgrades which can extend the life span of remote sensing satellites. Over the

years, FPGAs have become one of the preferred choices for fast processing of

hyperspectral data, due to their reconfigurability, parallelization properties and

low power consumption.

The hyperspectral data processing chain consists usually of a number of20

stages such as binning, optics and sensor corrections, radiometric corrections,

geo-referencing and registration, motion blur correction, super-resolution, atmo-

spheric correction, dimensionality reduction, after which data analytic stages,

such as target detection or classification, are used to extract useful information.

The dimensionality reduction precedes usually the target detection stage and25

its effects on various target detection algorithms are surveyed in [3]. Finally,

the processed data are compressed for the downlink operation. The objective

of target detection is to find signatures of interest in the hyperspectral image

and algorithms are usually affiliated with spectral processing techniques where

each pixel corresponds to a ground-resolution cell containing a spectrum used30
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to determine specific materials [4]. Their performance in the context of various

application can be limited by factors such as:

• Spatial extent of the target in the hyperspectral image

• Number of spectral bands used for target detection

• Appropriate usage of radiance or reflectance domain in target detection35

• Estimation and modeling of the image background for optimal detection

• Selection of threshold for automated target detection

• Spectral variability of the target due to spectral mixing in a sub-pixel

target

A push-broom HSI camera captures a frame with one spatial and one spectral40

dimension by registering intensity at each wavelength channel within one line

in the targeted scene. Lines with new spatial information are captured as the

camera moves. The resulting image is represented as a three-dimensional data

cube (having two spatial and one spectral dimension) as shown in Fig. 1, where

a pixel is a set of samples extracted from a certain spatial location and can45

be plotted by the spectral reflectance curve as a function of wavelength. An

intensity image in one spectral channel after applying corrections for illumina-

tion spectrum represents the spatial distribution of reflectance. There are three

common scanning methods of hyperspectral image cubes: band interleaved by

pixel (BIP), band interleaved by line (BIL) and band sequential (BSQ). In BIP50

format, all spectral components of a pixel are scanned in subsequent locations,

followed by another pixel in a frame. In BIL format, data are stored band by

band for each frame. Finally, the image in BSQ format is created by storing

data cube band by band. Each of these scanning orders provide different com-

putational complexity for processing of hyperspectral data [5, 6], in particular55

when the data streaming order differs from the processing order. The proposed

work, built upon the hardware/software codesign presented in [7], introduces

design and integration of a fully FPGA-based solution through implementation
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Figure 1: Illustration of a hyperspectral data cube (in the center), along with spectra plot (on

the left) for a single pixel and a single spectral channel (band) intensities (on the right) [4].

of correlation matrix and inverse matrix computations. Accuracy and perfor-

mance analysis of the fixed-point implementation, performance and resource60

utilization analysis and comparison to state of the art implementations are also

presented.

The remainder of the paper is organized as follows. Section 2 describes

target detection algorithms and state-of-the-art target detection algorithm im-

plementations on FPGA platforms. Section 4.1 considers detection analysis on65

the available hyperspectral datasets. Section 3 describes the proposed hardware

implementation of a number of target detection algorithms. Section 4 discusses

the results of FPGA implementations with respect to hardware performance, re-

source utilization and detection performance. Finally, section 5 concludes with

guidelines for future development.70

2. Background

The observed spectra in remote sensing applications exhibits inherent vari-

ability due to illumination, atmospheric conditions, sensor noise, ground-cell

position, material mixing and spatial resolution. In addition, spectral mixing

occurs when spatial HSI resolution is lower than spatial variability of ground-cell75

materials. Such spectrum is regarded as a mixed pixel (sub-pixel), whereas a

pure pixel contains only one material, the endmember. The resulting reflectance

4



is therefore a combination of reflectances corresponding to the area each ma-

terial covers in the ground cell. Geometrical representation used for describing

spectral mixing, similarity and change transformation due to illumination and80

environmental conditions is not an adequate model the stochastic nature of

hyperspectral data. Instead, for describing hyperspectral images a statistical

approach using mean vector µ, covariance matrix Σ and correlation matrix R

is employed.

2.1. Target detection algorithms85

Many target detection algorithms are based on the estimation of image back-

ground in order to distinguish between target and non-target pixels. These al-

gorithms consist of a target detection algorithm where the input pixel vector x

is mapped onto a scalar detection statistic value y = D(x) and threshold selec-

tion system which constructs a background statistic model in order to produce90

a threshold value η. The value y = D(x) corresponds to the probability of the

input pixel to be a designated target and, when compared with the threshold

value η, it determines if a pixel under test contains a designated target. It is

the task of the threshold selection system to set the optimum threshold so that

present targets are detected and the false alarm rate is kept below a certain95

value.

The mathematical framework for development and analysis of target detec-

tion originates from binary hypothesis testing in statistical signal processing.

Hypothesis H0, also called null hypothesis, asserts that the pixel being tested

is not a target. An alternative hypothesis H1 asserts that the pixel under test100

contains the target. Each target detection algorithm is based on the different

models for both hypotheses.

2.1.1. Spectral Angle Mapper (SAM)

The detection problem is modelled as follows:

H0 : x = b,

H1 : x = αs + b,
(1)
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where b is a combination of background and inherent random noise, s is the

known spectral signature and α is a scaling factor of the intensity of the signal s.

For random, zero-mean and normally distributed background b with variance

σ, the SAM detector is defined as:

DSAM (x) =
(sTx)2

(sT s)(xTx)
. (2)

2.1.2. Constrained Energy Minimization (CEM)

This detector uses a finite impulse response (FIR) filter given as:

DCEM (x) = hTx, (3)

where h is a weight vector used to minimize the output power of a filter [8].

The detection statistic for CEM detector is given as:

DCEM (x) =
sTR−1x
sTR−1s

, (4)

where R is the sample correlation matrix computed as R = 1
N

∑N
i=1 xixT

i . The105

CEM algorithm is a small target detector, where low-probability distribution of

target pixels is assumed. The estimation of the sample correlation matrix can

be contaminated when the number of target pixels surpasses a certain limit.

2.1.3. Adaptive coherence/cosine estimator (ACE)

The formulation of the ACE algorithm is based on the following binary

hypotheses:

H0 : x = βb,

H1 : x = αs + βb,
(5)

where the noise scaling factor β is introduced. For zero-mean, white random

vector process b ∼ N(µ,Σ), the ACE algorithm is derived as:

DACE(x) =
(sTΣ−1x)2

(sTΣ−1s)(xTΣ−1x)
. (6)

The sample covariance matrix Σ is computed as Σ = 1
N

∑N
i=1(xi−µ)(xT

i −µ),

where µ = 1
N

∑N
i=1(xi) is the global sample mean vector. The ACE estimator
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does not meet real-time requirements since the covariance matrix is estimated

using de-meaned hyperspectral data. This requires acquisition of the entire

hyperspectral cube prior to processing. A modified ACE detector, ACE-R, is

adjusted to use the inverse of the correlation matrix R−1 as follows:

DACE−R(x) =
(sTR−1x)2

(sTR−1s)(xTR−1x)
. (7)

2.1.4. Adjusted Spectral Matched Filter (ASMF)110

This detector [9] is constructed by the use of the simplified Reed-Xiaoli (RX)

anomaly detector [10] in order to adjust the output of CEM detector and by

introducing a non-target pixel suppression factor A defined as:

A =
∣∣∣ xTR−1s
xTR−1x

∣∣∣. (8)

The factor A with the variable power n is which is then combined with CEM

detector as follows:

DASMF (x) =
sTR−1x
sTR−1s

·
∣∣∣ sTR−1x
xTR−1x

∣∣∣n, (9)

where variable power n amplifies or suppresses different spectral features and its

selection affecting detection performance depends on the scenes used for testing

and the designated targets and their properties.

2.2. State-of-the-art FPGA implementations of target detection algorithms

In recent period, there have been proposed a few FPGA implementations of115

hyperspectral target detection algorithms [11, 12, 13] with the goal to achieve

real-time operation. The real-time performance is usually limited by background

estimation techniques in global target detectors requiring collection of the en-

tire data set. The local CEM target detector in [11] uses streaming background

statistics (SBS) on a sliding window of pixels with fixed size and requires the120

inverse correlation matrix to compute detection statistic. Rather than invert-

ing the correlation matrix for each subset of pixels, the Sherman-Morrison for-

mula [14] is used to gradually update the inverse of the correlation matrix as
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the window slides through the image. The problems introduced by this ap-

proach are analyzed in [12]. Namely, the inverse of correlation matrix update125

phase is a computationally intensive task performed twice for the incoming

and outgoing pixel of the window. In addition, the updating step creates data

dependency since a new update cannot proceed until the previous update is

finished. This causes stalls in the processing pipeline and degrades consider-

ably the overall computational performance. In [12], a new optimization of SBS130

method, non-sliding window, has been proposed. The non-sliding window in-

troduces independent inverse matrix computations by adding incoming pixels

into the window and keeping outgoing pixels in background statistic estima-

tion. This leads to the substantial reduction in the number of computations

required to update the correlation matrix and a speed-up of the system, how-135

ever, new issues such as increased resource utilization and lowered data accu-

racy due to dynamic range of inverted correlation matrix are created. In [15],

QR-decomposition is implemented for the matrix inversion problem by using

Coordinate Rotation Digital Computer (CORDIC) [16]. The implementation

of an automatic target-generation process using an orthogonal projection op-140

erator (ATGP-OSP) [13] includes Gauss-Jordan elimination method for matrix

inversion for non real-time operations. The ATGP implementation using Gram-

Schmidt method for orthogonal projection is proposed in [17]. In [5], various

detection algorithms are analyzed for their real-time implementation depend-

ing on availability of data and data scanning formats. The use of the sample145

correlation matrix which does not require data mean removal and allows inter-

mediate data analysis instead of the sample covariance matrix is also discussed.

In addition, it is stated that the statistics with appropriately chosen percentage

of pixels does not affect the detection performance. An FPGA implementation

of Collaborative-Representation-based Detector (CRD) in [18] provides matrix150

inversion operation in real-time by using the Sherman-Morrison formula. The

detection performance results of the algorithm implementation are not com-

pared due to different selection of hyperspectral datasets used for evaluation.

Nevertheless, the algorithm shows promising results.
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2.3. Matrix inversion155

The inverse matrix computation is a computationally intensive task usually

performed directly or in an iterative manner. The choice of the method affects

the performance and precision of the solution. Direct methods for inverting

matrices, such as Gauss-Jordan elimination, LU decomposition, and Cholesky

decomposition requiring an a-priori created matrix ready for inversion are less

suited to operate with real-time constraints. In that case, the iterative methods

are preferred, such as the Sherman-Morrison formula:

(A + uvT )−1 = A−1 − A−1uvTA−1

1 + vTAu
. (10)

where u and v are two arbitrary column vectors and A is an invertible square

matrix. To invert the matrix A using Sherman-Morrison formula, the following

iteration scheme is used:

Xi = Xi−1 −
Xi−1(ai − ii)iTi Xi−1

1 + iTi Xi−1(ai − ii)
(11)

where X0 = I, ai is the i -th column of matrix A, and ii is the i -th column of

the identity matrix. The inverse Xn = A−1 is obtained after n iterations, where

n is the number of columns of matrix A.

For a system with no real-time constraint, a full data set is used to compute

the correlation matrix. For the correlation matrix computation of an image160

with N pixels and K spectral components, it is required to perform N · K2

multiplications. The inverse matrix is computed using a method with gen-

eral complexity of O(K3) multiplications. Using Sherman-Morrison formula,

N · (3K2 + K) multiplications are needed to obtain the final inverse matrix.

Moreover, Sherman-Morrison formula enables the system to estimate certain165

spectral features on-the-fly as pixels are being acquired. For Guass-Jordan elim-

ination method under real-time constraints, K2 and O(K3) multiplications are

required for R matrix updating and inverse matrix computations, respectively,

for each incoming pixel, in comparison to the Sherman-Morrison formula which

requires only 3K2 +K multiplications.170
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2.4. Adaptation of inverse matrix calculation for FPGA implementation

The FPGA-based ACE detection accelerator in [7] can be used for subse-

quent runs of the target detection algorithms in the scenes for which the correla-

tion matrix R is extensively trained. Otherwise, the correlation matrix needs to

be estimated by using the captured hyperspectral image. In order to eliminate

the constant N , the matrix S can be defined as S = N ·R. The matrix inverse

S−1
i for the pixel xi is updated by the use of S−1

i−1 as follows:

S−1
i = (Si−1 + xixT

i )−1 = S−1
i−1 −

S−1
i−1xixT

i S−1
i−1

1 + xT
i S−1

i−1xi

. (12)

The initial inverse matrix S−1
0 is either set to:

• an identity matrix I multiplied with a scaling factor β [11] or

• a (pseudo) inverse of correlation matrix for a certain percentage of pixels.

2.4.1. Sliding-window adaptation175

As described in [11], for a sliding window of P pixels surrounding a pixel

under test xi, the matrix Si is given as:

Si =

i+P/2∑
n=i−P/2

xnxT
n (13)

and the update step is performed as follows:

Si = Si−1 + (xi+P/2xT
i+P/2 − xi−P/2xT

i−P/2). (14)

The inverse of the matrix S−1
i is then obtained by the Sherman-Morrison formula

in two steps as follows:

T−1 = S−1
i−1 −

S−1
i−1xi+P/2xT

i+P/2S
−1
i−1

xT
i+P/2S

−1
i−1xi+P/2 + 1

(15)

S−1
i = T−1 −

T−1xi−P/2xT
i−P/2T

−1

xT
i−P/2T

−1xi−P/2 − 1
. (16)

This adaptation is feasible for real-time operation at the cost of increased com-

putational complexity due to the sliding-window.
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2.4.2. Running Sherman-Morrison update

For non-sliding window, the matrix Si is expressed as:

Si =
1

β
· I + x1xT

1 + x2xT
2 + · · ·+ xixT

i , (17)

and the inverse matrix S−1
i is computed as in Eq. 12. The adoption of this

method reduces the execution time, but the dynamic range of values of the180

matrix S−1
i is increased over the number of iterations causing the need for

increased utilization of the FPGA resources.

2.5. Detection Performance Metrics

Detection performance testing of target detection algorithms is performed

by using available hyperspectral scenes with ground truth and metrics for per-185

formance evaluation. The performance of a binary classifier is evaluated by a

confusion matrix. Due to the binary decision, there are four elements defined

in a confusion matrix: true positives tp, false positives fp, false negatives fn

and true negatives tn. True elements of the matrix are correctly classified pix-

els: true positives are present targets regarded as detected, while true negatives190

are confirmed background pixels. Undetected targets are false negatives, and

background pixels classified as targets are false positives.

Based on the confusion matrix elements, Matthews correlation coefficient

(MCC) metric is defined as:

MCC =
tp · tn− fp · fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
, (18)

where the MCC score is in the range from −1 to 1 and a successful detection

of targets without false positives or negatives is defined by MCC = 1.

Receiver operating characteristic (ROC) illustrates how often a detector cor-

rectly identifies target spectral signatures versus how often it produces false

alarms. To construct a ROC curve, true positive rate (TPR) is plotted against

the false positive rate (FPR), for an array of thresholds as follows:

TPR =
tp

tp+ fn
,

FPR =
fp

fp+ tn
.

(19)
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The visibility metric [19] is a measure of the algorithm’s ability to separate

background pixels and target pixels which evaluates the robustness of a detection

algorithm as:

V isibility =
| Tt − Tb |

Tmax − Tmin
(20)

where Tt is the average detection statistic for target pixels, Tb is the aver-195

age detection statistic for non-target pixels and factors Tmax and Tmin are the

maximum and minimum evaluated detection statistics in the scene for a given

algorithm, respectively.

3. Implementation

The proposed FPGA implementation combines correlation matrix and in-

version matrix computations by using Sherman-Morrison formula in order to

achieve real-time operation. The implementation supports ACE-R, CEM and

ASMF detectors, which are feasible for real-time processing due to the fact

that the correlation matrix is used to estimate the background statistics. In

the proposed implementation, these detectors are integrated with the Sherman-

Morrison inverse updating method, as follows:

DCEM−RT (xi) =
sTS−1

i+kxi

sTS−1
i+ks

, (21)

DACE−RT (xi) =
(sTS−1

i+kxi)
2

(sTS−1
i+ks)(xT

i S−1
i+kxi)

, (22)

DASMF−RT (xi) =
sTS−1

i+kxi

sTS−1
i+ks

·
∣∣∣ sTS−1

i+kxi

xT
i S−1

i+kxi

∣∣∣n, (23)

where the target detection results are delayed by k pixels, allowing the initial k200

updates of the inverse matrix S−1. The experimental results demonstrate that

the delay k can be set equal to the number of bands in a pixel K.

3.1. Input logic

The initialization of the target detection core is performed by enabling the

core and initializing the matrix S−1 and target spectrum s. For hyperspectral205

12



datasets with a large number of spectral bands, the dedicated BRAM blocks

are used. The matrix storage is organized such that the matrix row is written

in parallel in one clock cycle instead of writing each element sequentially.

3.2. Processing logic

The proposed implementation consistently uses Eq. 12 to update the pre-210

vious estimate of the inverse matrix S−1
i−1 (elements of the matrix are noted

as ri,j). The computation of the Sherman-Morrison inverse matrix update is

divided into three stages.

3.2.1. Stage 1

The first stage of Sherman-Morrison inverse matrix update produces a vec-215

tor S−1
i−1xi by using an array of dot product units as shown in Fig. 2, where

intermediate registers IP, IR and IM have sizes of the input sample width,

correlation data width and product data width.

Figure 2: RTL design of the Stage 1
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3.2.2. Stage 2

The block diagram of the second stage with data inputs S−1
i−1xi and xi is220

shown in Fig. 3. After computation of S−1
i−1xixT

i S−1
i−1 and d = 1 + xT

i S−1
i−1xi,

the inverse p = 1
d is obtained, where the division operation is implemented by

using available Xilinx AXI divider IP. The total execution time is K+D+delay

clock cycles, where K is the number of spectral bands, delay is pipeline latency

and D is divider latency. As stage 2 requires the result of stage 1 to commence

Figure 3: RTL design of the Stage 2

225

the operation, these stages are scheduled sequentially.

3.2.3. Stage 3

The final stage in the Sherman-Morrison updating procedure is shown in

Fig. 4. The output of the divider p is multiplied with each column in the

matrix S−1
i−1xixT

i S−1
i−1 by the use of a multiplier array. Simultaneously, the230

corresponding column of the matrix S−1
i−1 is subtracted from the product column.
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Figure 4: RTL design of the Stage 3

3.3. Resource sharing and target detection algorithms

Due to the data dependencies, idle states and decreased processing efficiency

can be provoked such as in the case of multiplier array in stage 1 and dot product

array in stage 2 and 3. These idle states are used for resource sharing between235

stages of the Sherman-Morrison inverse matrix update and the user-selected

target detection algorithm. The sharing of multi-cycle hardware blocks, such as

DSPs, results in significant resource savings at the cost of increase complexity

of operation scheduling. Fig. 5 shows the timeline of operations, where memory

and computation resources with identical tags are the same physical resources240

used at different time points. As such, one multiplier array is used in both

stages 2 and 3 of Sherman-Morrison updating. The dot product array is used in

stage 1 of Sherman-Morrison updating, and during stage 2 and 3 to obtain the

products required for target detection, S−1
i−1s and S−1

i−1xi−k, respectively. The

timing diagram in Fig. 6 shows initialization phase and processing of three pix-245

els by Sherman-Morrison inverse matrix updating. After system initialization,

pixels are read simultaneously during stage 3 of the Sherman-Morrison update

process. Additionally, the delayed pixel stream is input in target detection step

1. The detection statistics computation overlaps with Sherman-Morrison up-
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Figure 5: Timeline of operation stages in Sherman-Morrison updating and target detection.

dating. This leads to significant reduction of number of clock cycles required250

for processing of each pixel, where the number of required clock cycles per pixel

is 3K+D+3.

3.4. Controller design

The controller monitoring the inputs and outputs of processing blocks en-

ables resource sharing and its state machine is shown in Fig. 7. The initial-255

ization process consists of four control steps, Idle, Initialize, WaitForStart and

WriteVector. The initialization begins in state InitializeMatrix with parallel

transfer of K elements of the initial matrix S−1
0 to BRAM dedicated for storing

matrix S−1 and ends when K2 elements are stored in the initialization regis-

ter, after which the upload of target pixel s follows. After the initialization260

phase, the controller iterates through states Step1Fetch to Step3 for each in-

coming pixel, where each step in the state machine corresponds to the stages of

16



Figure 6: Timing diagram for Sherman-Morrison updating and target detection hardware.

Sherman-Morrison updating and target detection algorithms. As the last pixel

component is received and processed, the controller returns to Idle state. The

Fetch and Wait states are designed to accommodate latency of BRAM blocks265

and cores such as divider. For instance, in state Step2Wait, the controller waits

D clock cycles until the divider produces a valid result.

4. Results

4.1. Detection performance analysis

Four hyperspectral datasets with known ground truth, Salinas, Pavia, In-270

dian Pines [20] and HyMap Cooke City [21] are used for detection performance

analysis and functional verification. Endmembers for Salinas, Pavia and In-

dian Pines are extracted from the scene by averaging the ground truth pixels
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Figure 7: State machine for Sherman-Morrison updating and target detection hardware.
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containing a certain material [3], whereas for HyMap Cooke City date set a stan-

dard spectral library with the targets is provided. The performance metrics are275

computed for each endmember of the corresponding scene by iterating through

10000 threshold values ranging from the obtained minimum to the maximum

of the probability image. Final MCC values for each endmember are selected

as the highest MCC values obtained over threshold values. The plotted MCC

and visibility values are the average of all known signatures in the scene.280

The Salinas scene collected by AVIRIS is a near-homogeneous scene with

the width of 512 pixels, the height of 217 pixels, 224 spectral bands and 16

endmembers of which many are similar crops planted at a different time as

shown in Fig. 8(a). The performance of ACE, ACE-R, ASMF (n = 1 and

n = 2), CEM and SAM detectors is shown in Fig. 9(a). The ACE, ACE-R,285

ASMF and CEM detectors achieve a high MCC score, whereas the visibility

is drastically degraded for the CEM and SAM detectors. The adapted ACE-R

achieves the highest visibility score, whereas ASMF with n = 2 reaches the

highest average MCC score.

In Fig. 8(b), Indian Pines scene is a dataset dominated by agricultural areas290

and plants collected by the AVIRIS sensor. The ACE-R and ASMF detectors

achieve highest MCC and visibility score as shown in Fig. 9(b). The SAM

detector with the lowest MCC and visibility scores is unable to distinguish

between different endmembers and the background. The visibility of ASMF

decreases as n increases reducing the robustness of the algorithm for threshold295

selection.

Pavia University scene acquired by ROSIS sensor has 610× 340 pixels with

103 spectral bands.The scene is characterized by 9 distinct endmembers and

with non-classified area regarded as background. The detection performance

results for this scene are shown in Fig. 9(c). None of the endmembers can300

be considered small targets, which reduces the performance of algorithms with

background statistics estimation. Nevertheless, the ASMF and ACE-R achieve

the highest MCC and visibility values.

The HyMap Cooke City [22], specifically designed for testing target detection
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(a) Salinas scene (b) Indian Pines scene (c) Pavia scene

Figure 8: Ground truth map

algorithms, contains target ground truth locations, with a small number of305

target pixels compared to the image size. The data set includes atmospherically

compensated hyperspectral images with 800×180 pixels and 126 spectral bands.

There are four types of colored panels (Fig. 10) placed in the scene. The data

set includes the exact positions in the form of region of interest (RoI) files, as

well as standard spectral library files of the targets. The RoI of size 90 × 90310

is shown in Fig. 11(a) and the spectral signatures of the targets are plotted in

Fig. 11(b). Panel pixels in RoI are regarded as target pixels. The ground truth

is formed based on full-pixel and sub-pixel candidates. In this sense, panels

F1 and F2 can form near-full pixel targets due to their size and the ground

resolution, whereas F3 and F4 panels are sub-pixel targets. The performance315

estimation results for Cooke City scene are shown in Fig. 9(d). The ACE, ACE-

R and ASMF detectors achieve high MCC and visibility scores, whereas CEM

and SAM detectors are not able to distinguish many spectral features in the

scene.

4.2. Overall system with target detection module320

Based on the previous analysi, a multi-mode FPGA implementation of ACE-

R, ASMF and CEM target detectors is proposed, where each of these target

detection algorithms can be selected by the user. The detectors are highly

integrated with Sherman-Morrison updating to achieve high performance and

to lower resource utilization. The proposed FPGA solution is tested on Zed-325

Board SoC with ARM Cortex-A9 processor and programmable logic as shown

20



(a) Salinas scene (b) Indian Pines scene

(c) Pavia scene (d) Cooke City scene

Figure 9: MCC and visibility values
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(a) F1 (b) F2 (c) F3 (d) F4

Figure 10: Targets in Cooke City scene - F1, F2, F3 and F4

(a) RoI (b) Target signatures

Figure 11: Region of interest and target signatures in HyMap Cooke City scene

in Fig. 12, where the configuration parameters are uploaded through a dedi-

cated AXI-lite register file in the initialization module and the direct memory

access (DMA) module is used to stream the hyperspectral data to/from the

FPGA with minimal CPU intervention in BIP scanning order. The commu-330

nication with memory is tested by the use of AXI DMA [23] and CubeDMA

[24] cores, where the operating frequency of the proposed system is constrained

to 100 MHz due to limitations of DMA cores. The single stream coming from

memory via the DMA core is replicated into multiple outbound interfaces. The

first interface is connected directly to DMA, whereas the other receives pixels335

delayed by FIFO block. For the delay k = K, the FIFO requires depth of at

least K2 elements.
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Figure 12: Block design of the FPGA solution for target detection.

4.3. Fixed-point considerations

The optimal fixed-point data types are obtained for the generic inputs to the

VHDL design, enabling the design to adapt to various hyperspectral datasets340

with different degrees of precision. The fraction lengths based on simulation

results are proposed for the specified desired word length. The simulation uses

all the pixels in the scene obtaining maximum and minimum simulation values

for input, output and local variables of the function. The proposed fixed-point

data types for HyMap scene are presented in form of (total bits, integer part,345

fractional part) in Table 1. The 16-bit elements of input vector x have 1-bit in-

teger part and 15-bit fractional part. The 30, 35, 38, 42 and 52-bit word lengths

for intermediate results are chosen according to the number of DSP blocks. The

integer part does not change, whereas the fractional part is extended for longer

words. In this manner, the fractional part of S−1xxTS−1 can be extended by350

4− 7 bits without inferring additional DSP blocks. To prevent dramatic degra-

dation of target detection performance which can occur for smaller fractional

parts, the scaling factor β for computing initial inverse matrix S−1
0 is set to

1000.
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Table 1: Fixed-point data types for Sherman-Morrison implementation

Intermediate data
30-bit 35-bit 38-bit 42-bit 52-bit

word length word length word length word length word length

DSP blocks 4 4 5 5 9

x (16,1,15) (16,1,15) (16,1,15) (16,1,15) (16,1,15)

S−1 (30,11,19) (35,11,24) (38,11,27) (42,11,31) (52,11,41)

S−1x (30,11,19) (35,11,24) (38,11,27) (42,11,31) (52,13,41)

S−1xxTS−1 (30,22,8) (35,22,13) (38,22,16) (42,22,20) (52,22,30)

d=1 + xTS−1x (30,18,12) (35,18,17) (38,18,20) (42,18,24) (52,18,34)

p=1/d (30,5,25) (35,5,30) (38,5,33) (42,5,37) (52,5,47)

(S−1xxTS−1) · p (30,11,19) (35,11,24) (38,11,27) (42,11,31) (52,11,41)

4.4. Resource utilization355

The intermediate data precision and number of spectral bands impact re-

source utilization, in particular DSP blocks. Thus, post-synthesis resource uti-

lization for 32 spectral band after PCA-based dimensionality reduction with

32-bit intermediate data is presented in Table 2.

4.5. Detection performance analysis for different fixed-point data types360

The detection performance of the proposed FPGA implementation with

Sherman-Morrison inverse matrix updating is analysed by using Salinas and

HyMap scene and chosen spectral signatures as targets. The analysis has been

performed using MATLAB fixed-point tools, as well as the ZedBoard proto-

typing platform. The detection results for different fixed-point data types and365

target detection algorithms are reported in Table 3. Detection performance test

of adapted ACE-R is performed on Salinas scene and Lettuce romaine 4th week

endmember as a designated target. Fig. 13 shows the progress of the target de-

tection in real time on the scene with 111104 pixels reduced to 20 spectral bands

after PCA-based dimensionality reduction. The target is detected with high de-370

tection accuracy for 40-bits fixed-point word length. The results presented in

Table 3 show that the detection performance increases proportionally with word
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Table 2: Resource utilization report, 32 bands, 32-bit intermediate data, full FPGA solution

Module Slice LUTs Slice Reg DSP BRAM

PS-PL system 16018 20074 198 35

Input logic 2945 4080 0 2

AXI DMA 1669 2140 0 2

Init. module 1276 1940 0 0

Processing logic 9267 11048 198 32

Dot Product Array 2983 2950 64 0

DP controller 7 6 0 0

DP datapath 43 69 2 0

Multiplier Array 1567 580 128 0

Mult. controller 34 5 0 0

Mult. datapath 59 18 4 0

AXI Divider 2439 7133 0 0

Matrix storage 117 0 0 14.5/17.5

Controller 275 39 0 0

Output logic 79 297 0 0

length. For 32-bit intermediate data, the performance is significantly degraded

due to the high amount of underflows occurring during Sherman-Morrison up-

dating. The high dynamic range of data requires longer words for processing,375

however two solutions can be implemented to relieve the problem. First, a

change of fixed-point data type during execution allows the growth of the frac-

tional part, and thus, higher detection accuracy. Second, it is possible to use

a subset of pixels for the Sherman-Morrison method, thus additionally limiting

the dynamic range of intermediate data. In [5], it is claimed that if the sub-380

set is appropriately selected, the detection performance will remain unchanged.

In its favor, experiments have shown that when using 10% randomly selected

pixels from the image, the detection performance changes negligibly. The im-

provement when using two different fixed-point types is presented in Table 4 for

ACE-R detector. Firstly, the previously described fixed-point types are used385

(annotated in table as FP1), with extended fractional part for S−1xxTS−1. Af-

ter K pixels are processed, the hardware switches to new fixed-point types for
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intermediate data (annotated as FP2) which retain the word length, but with an

increased fractional part. The proposed implementation is also tested by using

(a) Processed 25% of

the image

(b) Processed 50% of

the image

(c) Processed 75% of

the image

(d) Processed 100%

of the image

Figure 13: Real-time detection results using Salinas scene and Lettuce romaine 4th week as

the target signature

target signatures F1 and F4 from HyMap Cooke City scene dataset. The scene390

is cropped to 90 by 90 pixel image area containing all implanted target pixels.

The detection results for implemented ACE, ASMF, ASMF-2 and CEM detec-

tors with 32- and 42-bit input data widths for Sherman-Morrison updating are

compared with their global detector counterparts which compute inverse matrix

R−1 on the complete cube and then perform target detection. The results are395

shown in Fig. 14 for target signature F4. Table 5 and Table 6 present MCC

and visibility scores for various data widths of Sherman-Morrison implementa-

tion intermediate data when detecting signatures F1 and F4, respectively. The

detectors maintain high detection performance also with the short word length

on small image sizes. In the majority of cases, the resulting scores are very400

close to those obtained using global floating-point detectors. Similarly, as with

Salinas scene, changing the fixed-point types in order to increase the fractional
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part, proportionally boosts the detection performance. This effect is shown in

Fig. 15.

Table 3: Comparison of detection performance scores using different fixed-point types for

Salinas scene

Algorithm
MCC score

32 36 40 Global

ACE-R 0.0154 0.6167 0.8284 0.8191

ASMF 0.0200 0.6167 0.8284 0.8191

CEM 0.2237 0.6312 0.6507 0.6811

Algorithm
Visibility

32 36 40 Global

ACE-R 4.14 · 10−5 0.7114 0.7052 0.7078

ASMF 5.72 · 10−5 0.3614 0.3619 0.4569

CEM 11.2 · 10−5 0.0487 0.0356 0.0268

Table 4: Comparison of detection performance scores using different fixed-point types for

Salinas scene

Algorithm
MCC score

32 36 40

ACE-R FP1 0.0154 0.6167 0.8284

ACE-R FP2 0.6063 0.8286 0.8328

Algorithm
Visibility

32 36 40

ACE-R FP1 4.14 · 10−5 0.7114 0.7052

ACE-R FP2 0.7083 0.7049 0.7285

Table 5: Comparison of detection performance scores using different fixed-point types for

detecting target signature F1 in HyMap Cooke City scene

Algorithm
MCC score Visibility

30 35 38 42 Global 30 35 38 42 Global

ACE-R 0.94 1 1 1 0.95 0.64 0.76 0.79 0.81 0.76

ASMF 0.94 1 1 1 0.95 0.61 0.68 0.71 0.71 0.67

ASMF-2 0.88 0.88 0.90 0.95 0.95 0.61 0.57 0.55 0.53 0.81

CEM 0.89 0.90 0.90 0.90 0.84 0.53 0.53 0.53 0.53 0.49
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(a) Global ACE-

R

(b) Global ASMF(c) Global

ASMF-2

(d) Global CEM (e) F4 ground truth

(f) ACE-RT 32

bit

(g) ASMF-RT 32

bit

(h) ASMF-2-RT

32 bit

(i) CEM-RT 32

bit

(j) F4 ground truth

(k) ACE-RT 42

bit

(l) ASMF-RT 42

bit

(m) ASMF-2-RT

42 bit

(n) CEM-RT 42

bit

(o) F4 ground truth

Figure 14: Detection results (probability images) for F4 target signature from HyMap Cooke

City scene obtained using the proposed FPGA implementation with Sherman-Morrison up-

dating.

Table 6: Comparison of detection performance scores using different fixed-point types for

detecting target signature F4 in HyMap Cooke City scene

Algorithm
MCC score Visibility

30 35 38 42 Global 30 35 38 42 Global

ACE-R 0.35 0.45 0.45 0.55 0.57 0.32 0.39 0.43 0.45 0.43

ASMF 0.35 0.45 0.45 0.55 0.58 0.30 0.34 0.38 0.39 0.39

ASMF-2 0.32 0.47 0.63 0.56 0.63 0.26 0.31 0.36 0.34 0.36

CEM 0.36 0.48 0.48 0.47 0.54 0.27 0.24 0.24 0.24 0.31
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Figure 15: Comparison of detection performance scores using different fixed-point types for

adapted ACE-R detector.

4.6. Real-time processing performance analysis and comparison with the state-405

of-the-art implementations

The performance of the proposed implementation is analyzed by using post-

synthesis results. The maximum operating frequency on ZedBoard SoC is

123MHz. The design requires 3K+D+3 clock cycles to process one pixel with

K spectral bands. Table 7 presents the comparison of incoming data rates from410

three hyperspectral sensors (HSI, HyMap and AVIRIS) and the processing data

rate of the FPGA implementation for the provided sensor parameters (number

of spectral bands, frame rate, frame size and data width). Since the achieved

throughput is significantly higher than throughput required by each sensor, the

proposed target detection implementation provides real-time processing capa-415

bility for sensors HSI, HyMap and AVIRIS. The maximum processing data rate

of the proposed system is theoretically limited to 66.67MB/s when clocked with

100MHz and 16-bit components.

The performance and resource utilization comparisons with the current state-

of-the-art SBS-CEM [11] and DPBS-CEM [12] implementations are also per-420
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Table 7: Sensors and FPGA processing data rate for the proposed FPGA solution

Sensor
Frame rate Spectral Frame size Data Sensor Achieved

fps bands ppf Width througput throughput

HSI 32 100 1216 16 7.78MB/s 49.63MB/s

HyMap [25] 16 126 512 16 1.97MB/s 49.96MB/s

AVIRIS [26] 100 224 512 16 22.93MB/s 57.80MB/s

formed. For fair comparison, the post synthesis of the implemented target

detection core is performed for a larger Zynq-7035 SoC with Kintex-7 FPGA

technology. Table 8 shows the number of clock cycles, operating frequencies and

processing times for SBS-CEM [11], DPBS-CEM [12], ACE-R codesign [7] and

the proposed implementation for processing the full HyMap image data set of425

224000 pixels. The DPBS-CEM implementation requires the lowest number of

clock cycles. However„ as presented in Table 9, the high resource utilization in

DPBS-CEM limits the choice of FPGA platforms which can accommodate the

algorithm implementation.

Table 8: Comparison of data processing speed for the FPGA implementations

Implementation Clock cycles
Freq. Proc.

Technology
[MHz] Time [s]

SBS-CEM [11] 229607996 200 1.148 Virtex-7

DPBS-CEM [12] 31360557 200 0.1568 Virtex-7

ACE-R Codesign [7] - 666 3.29 ARM Cortex A9

Proposed 100774324 200 0.5 Zynq-7035 (Kintex-7)

Table 9: Resource utilization comparison

Implementation Slice LUTs Slice Registers DSP BRAM

SBS-CEM 21730 28245 265 120

DPBS-CEM 111073 217958 1396 379

Proposed (32-bit) 36233 28719 762 135

Proposed (35-bit) 45900 31035 762 136

30



5. Conclusion430

This paper investigates target detection algorithms and feasibility of the

real-time FPGA implementation of detectors. In order to meet real time con-

straint, the proposed FPGA solution uses Sherman-Morrison method for target

detection algorithms in hyperspectral imagery. The work builds upon the hard-

ware/software codesign implementation of ACE-R target detection algorithm.435

The simplicity of the proposed FPGA solution is maintained in order to facili-

tate its integration in the on-board satellite processing systems while satisfying

all critical timing constraints. The flexibility introduced by the multi-mode de-

sign of target detection has negligible additional resource costs. However, there

is still room for potential parallelization and performance improvements. The440

end goal is integration of the developed FPGA solution with other modules

in the hyperspectral processing pipeline, for example, dimensionality reduction

techniques.
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