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Abstract—Research on autonomous management for large-
scale deployments of constrained devices is still a maturing field
in the Internet of Things (IoT). Although much research has
been conducted on how to achieve autonomous management
in specific cases, there is a need for literature investigating
which mechanisms can achieve such behavior in a generalized
way. In this review, we present a comprehensive and structured
study of the mechanisms for autonomous device management
of constrained IoT devices in the light of management tasks,
operational environment, network topology, resource constraints,
scalability and management categories. Data extracted from 32
relevant cases is first organized and analyzed according to a
synthesized taxonomy of observed adaptation mechanisms, and
then combined with state-of-the-art models of autonomous opera-
tions, identifying common patterns for autonomous management.
Based on our findings we substantiate best practices for designing
and implementing solutions around adaptation mechanisms.
We then present a generalized model for autonomous device
management that describes and explains the processes required
for autonomous operation, unifying the insights from previous
works as one cohesive archetype.

Index Terms—Autonomous device management, adaptive man-
agement, self-management, situation awareness, internet of
things, iot architecture, constrained devices, artificial intelligence,
cognitive computing, machine learning, adaptation mechanisms.

I. INTRODUCTION AND BACKGROUND

Large-scale deployments of IoT devices are held together
by device management platforms. These systems aggregate
data collected by the devices and also monitor and control
their operation. They are critical since insufficient device
management can increase the need for expensive manual
interventions and cause downtimes, waste system resources
or reduce the reliability and functionality of the system by not
appropriately detecting and reacting to problems [1].

Due to the scale, heterogeneity and constraints inherent to
IoT systems, the architecture of device management systems
is itself critical, and we observe an increasing interest in
the use of principles from autonomic computing for device
management over the last decade. Traditional management
theory defines autonomy as “the degree to which one may
make significant decisions without the consent of others” [2].
Applied to the IoT, this emphasizes the use of autonomously
acting devices. However, the actions of autonomous agents
are usually guided by a strategy or objective set by a manager.
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Autonomous IoT device management hence implies a division
of tasks, with a central manager controlling the strategic
direction and policies of the system, and the devices or agents
acting on their behalf, deciding how to reach their goals [3].
The autonomy of devices can help to overcome challenges
with the scale and heterogeneity of the systems. Autonomy
can also reduce the need for communication, which can make
the system more dependable in cases of intermittent communi-
cation. On the other hand, the support by a central management
can free resource-constrained devices from complex analysis
tasks, provide them with context and guide their operation.

Although an increasing amount of research has been con-
ducted on how to achieve autonomous management of IoT
devices, current research on the design and implementation
of these systems is chaotic and sporadic, and does not ac-
count for the variance in adaptation mechanisms found within
this domain. In addition, existing solutions are often highly
specialized toward solving one or two particular tasks within
a single use case. Conversely, these solutions often discuss
architectural challenges in general terms, and the proposed
management systems are only partially implemented. The
nature of the employed mechanisms that allow autonomous
behavior is rarely discussed, and alternative approaches are
seldom considered. In fact, we have not found any papers
that study the specific mechanisms that are used to achieve
this goal in a generalized way, a challenge also identified
in [4]. This shows that research on autonomous management
for constrained IoT devices is still a maturing field, and that
there is a need for a standardized, unified view or methodology
that can advance the goal of achieving management systems
for IoT that require a minimum of human intervention [5].

This is the first structured review on the topic of au-
tonomous IoT device management. Existing literature within
device management discusses only niche topics, lacking an
overarching perspective. Sinche et al. conducted a survey on
IoT management [6], where they identify key requirements
for IoT device management, and give an overview of manage-
ment frameworks and protocols. They stress that management
solutions must be able to control IoT devices efficiently
with regard to constraints and complexity. They also identify
that there is a strong need for a common IoT management
architecture. Chowdury et al. surveyed resource management
in IoT [7]. One of their contributions is the classification
of three different management activities found within this
domain, namely resource discovery, resource provisioning and
resource scheduling. Further, they state that ensuring automatic
management and handling different architectural requirements
are among the biggest challenges in distributed computing in
general and IoT in particular. However, neither of these studies
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look at the mechanisms that are needed for autonomous device
management. Colakovic et al. published a comprehensive re-
view on enabling technologies, challenges, and open research
issues within IoT [8]. Although their study is too broad to
investigate in detail the challenge of autonomous IoT device
management, they discuss aspects of management related to
monitoring, control and configuration. They found that due
to the inherent complexity of IoT, autonomous adaptation to
changes in the environment requires the presence of context-
aware management mechanisms.

The lack of a comprehensive review on autonomous man-
agement for constrained IoT devices means that there is a
need to identify 1) which problems within this domain are
addressed by the current state of the art; 2) which mechanisms
are most useful for solving these problems; 3) best practices to
use when designing and implementing solutions around these
mechanisms; and 4) a generalized model that describes and
explains the processes needed for autonomous operation. To
investigate the issues pertaining to autonomous IoT device
management, we chose to study models of architectures pre-
sented in previous research in the field of IoT management
with the goal of unifying used techniques and lay the foun-
dation for a structured methodology for handling autonomous
device management. In particular, our review contributes to
the research and development of device management for IoT
with the following:

• An overview of different aspects that must be considered
when designing IoT device management systems.

• A taxonomy of adaptation mechanisms that are used to
allow autonomous IoT device management.

• An overview of different patterns and models that are
used to achieve adaptive, autonomous management in the
reviewed cases and in general literature on autonomous
behavioral systems, respectively.

• The five best identified practices for designing and imple-
menting autonomous IoT device management systems.

• A generalized cognitive model for autonomous IoT de-
vice management that unifies the key requirements iden-
tified in literature with approaches found in general auto-
nomic computing, with an emphasis on adaptive control
loops.

The rest of the paper is structured as follows: In Sect. II
we describe the research methodology that we used for the
literature review. We continue with an overview of different
aspects to consider when designing and implementing IoT
device management in Sect. III. In Sect. IV we describe
different adaptation mechanisms that are used to solve specific
IoT management problems, before we take a closer look at pat-
terns and models used to achieve autonomous management in
Sect. V. Afterwards, we present the five best practices for de-
signing solutions for autonomous management for constrained
IoT devices that we identified through the review process
in Sect. VI. Finally, in Sect. VII we present a generalized
cognitive model for adaptive, autonomous management for
constrained IoT devices, based on the mechanisms, patterns
and models discussed earlier, followed by our conclusions.

TABLE I
SELECTION PROCESS OF PAPERS INCLUDED IN THE STUDY

Step Included Papers

Relevant papers from former research 123
Total papers after electronic search 2037
Inclusion after removing duplicates 1703
Inclusion based on title 322
Inclusion based on abstract 188
Inclusion based on skimming through text 111

Final inclusion, based on criteria 32

II. METHODOLOGY

This review generally followed the guidelines for perform-
ing systematic literature reviews in software engineering [9].
This process includes developing a review protocol, identify-
ing and selecting primary studies based on pre-defined inclu-
sion and exclusion criteria, and defining the data extraction
and data synthesis activities.

Our search process is shown in Table I. First, we identified
relevant papers (123) that were already in our possession
through previous research. We then conducted a search in the
digital libraries offered by IEEE Xplore, ACM Digital Library,
ScienceDirect, SpringerLink and Wiley Online. The search
was conducted by putting together phrases using the terms
in Table II. We used the same phrases for all 5 libraries. If a
search returned more than 100 papers, the result was sorted
by relevance and the first 100 papers were included for further
assessment. This initial search resulted in 1703 unique papers.
The third step was to read titles and exclude papers that were
irrelevant for the study. This left us with 322 papers, of which
we read abstracts to identify relevant papers. The resulting
188 papers were then browsed for relevance, which yielded
111 papers that we studied in detail using the inclusion and
exclusion criteria presented next. The whole process resulted
in 32 relevant papers, listed in Table III.

The review includes articles published between 2009 and
2019 on the topic of Autonomous or adaptive device man-
agement for constrained IoT devices. Articles with any of the
following traits were excluded:

• Articles that do not provide a detailed model describing
the components involved in device management.

• Articles that do not include an explicit description of
adaptation mechanisms.

• Articles where there is no communication between nodes
or between a sensor node and a central node.

• Articles with a dominating focus on security, robotics or
autonomous vehicles.

• Articles describing systems where human intervention is
a part of the device management process.

• Articles shorter than 5 pages or not subject to peer review.
If a topic was published in several journals or conferences by
the same authors, we selected the version that contained the
most detailed description of the underlying model.

All papers included after browsing through them were
subject to a data extraction process. From the 111 relevant
papers we first documented the main author, publisher, year
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TABLE II
TERMS USED IN SEARCH FOR RELEVANT PUBLICATIONS

Mechanisms Abstraction level Awareness level Subject

autonomous adaptive organizing energy harvesting architecture system self-aware internet of things / iot
dynamic machine-learning optimizing management framework wireless context aware constrained device
intelligent resource(-allocation) configuring smart platform situation aware constrained sensor
cognitive orchestration healing cyber physical environment aware constrained network

published and the search term that was used for identification.
We then carefully read each paper and recorded the main man-
agement problem being addressed; if the authors addressed
challenges related to resource constraints, scalability and
technical heterogeneity; a classification of the environment,
the network topology and the management task; and finally
a short description of the reasoning, learning and planning
mechanism employed to solve the problem. For the 32 papers
included in the review, we also classified the architectural
models according to their detail level. We synthesized the data
into Table III. This process was done incrementally, as some
patterns emerged during the extraction phase.

We identified one threat to construction validity. Initially,
we planned to conduct a snowball search strategy to identify
relevant publications that were not caught in the manual or
automated search. However, initial rounds using this strategy
failed to show any papers from the selected publishers that
were not already identified. Based on this we assumed that a
sufficient sample of papers was already available, and therefore
elected to cancel this strategy.

We did not identify any threats to internal or external
validity. Any causal relationships involved in the study are
discussed in an open-ended manner. We do emphasize though
that the study can only be generalized within the domain that
is defined through the inclusion criteria. For the assessment of
conclusion validity, the chosen methodology helps to ensure
that the collection procedure is repeatable. Regardless, there
is a risk that relevant papers were overlooked when browsing
through the titles or abstracts, since the selection is partly
based on subjective reading. That said, for both identified
threats we surmise that the sample of selected papers is large
enough to capture the main patterns within the studied domain.

III. OVERVIEW OF IOT DEVICE MANAGEMENT

Table III summarizes the reviewed use cases [10-41] and
lists the different aspects to contemplate when designing IoT
device management systems. We observe that autonomous
management of constrained IoT devices is a composite prob-
lem related to the context in which the devices operate, the de-
vice topology, available resources, the scale of the deployment
and the problem that the system solves, as stipulated in [32].
In the following, we will introduce and explain these aspects
in detail. The synthesized data will then aid our analysis and
guide the discussion.

A. Operational Context and Environment Type

All papers included in the final review cope with problems
related to management of devices operating in settings where

conditions change over time. Local conditions can vary con-
siderably between individual devices within the same network,
too. Device management therefore address operation in a con-
text that is dynamic in temporal and spatial dimensions [20].
This means that it becomes complicated to plan proper cor-
rective actions to a previously unseen event, since the same
corrective action applied to two different devices can have
different outcomes [42]. A high variance in environmental con-
ditions thus implies that it is necessary to individually manage
each device, to allow for operational adaptation in accordance
to the varying conditions that each device experiences. We
observed two types of dynamic temporal environments:

• Stationary: In a stationary environment, the variance is
within a known distribution, that is, the changes in varia-
tion can usually be predicted stochastically. An example
of device management in a stationary environment can be
seen in [14], where Sahni et al. demonstrate energy-aware
task allocation.

• Non-stationary: Non-stationary environments are char-
acterized by dynamic statistical properties, that is, unsta-
ble conditions and distributions that change over time.
An example of device management in a non-stationary
environment can be seen in [28], where Alam et al.
demonstrate adaptive computational offloading.

As we will show in Sect. VI, this difference plays a
significant role for the employed adaptation mechanism. We
therefore classified the reviewed cases according to the type
of environment in which they operate, as shown in column 1
of Table III.

B. System Topology

The system topology describes how the devices are con-
nected. This is a key design decision that influences the orga-
nization of the management processes, which are organized in
three different ways, as shown in column 2 of Table III.

• Fully distributed topology (D): In a distributed topol-
ogy, each device is responsible for all actions needed
to operate and adapt, including storing knowledge and
initiating learning processes. Even though a central node
is usually present, its only task is to collect data that is
sensed by the devices. This means it has no power to man-
age the operation of the device. In the reviewed papers,
we found only one case with a distributed topology [10].

• Clustered topology (C): In a clustered topology, two or
more parent nodes share the responsibility for storing data
and managing processes on behalf of separate subgroups
of devices. Each parent node sends instructions to the
devices belonging to designated subgroups. The devices



IEEE INTERNET OF THINGS JOURNAL 4

TABLE III
COMPARISON OF ADAPTIVE MANAGEMENT MECHANISMS FOR IOT DEVICE MANAGEMENT
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S D  # # Adaptive energy
management R model-driven

(linear prog.) — predictive controller
model high [10]

S C   # Energy-aware
network management N, R model-driven

(stoch. geometry) — policy-based
(obj. engine coord.) low [11]

S C    Adaptive comp.
offloading N, R semantic

(knowledge-graph) — dependency-tree
(directed graph) low [12]

S C    Context-aware
self-management A, R semantic

(rule-based) — policy-based
inference high [13]

S C    Energy-aware
task allocation R model-driven

(nonlinear algorithm) — model-driven
task allocation matrix low [14]

S S   # Adaptive config.
management N semantic

(rule-based algorithm) — inference-based
algorithm low [15]

S S G#   Adaptive access
control N semantic

(ontology-based)
semantic
(new rules)

event-based
inference engine high [16]

S S G# #  Dynamically change
exec. environment A semantic (ontology-

based context search)
semantic
(stored context info.)

query built
from context search low [17]

S S  G#  Context-aware
QoS-management A model-driven (stoch.

model checker)
semantic
(update context model

goal-directed
MAPE-K control loop high [18]

S S   # Autonomous policy
determination A, R data-driven

(ML classifier)
semantic & data-driven
(text-mining & SVM)

event-triggered
action plan high [19]

N C  G# # Dynamic energy
balancing R model- & data-driven

(game theory + RL)
data-driven
(RL)

reward-based
utility function high [20]

N C  G#  Context-aware
self-management N semantic

(ontology-based) — event-based
inference engine high [21]

N C    Network lifetime
optimization N, A semantic & data-driven

(CBR + RL)
data-driven
(RL)

goal-directed
action plan high [22]

N C    Context-aware
self-management N, R semantic

(ontology/context-based)
model-driven
(game theor. learning)

decision based
on game theory low [23]

N C    Adaptive device
orchestration N, R semantic

(ontology-based)
semantic
(learned facts)

goal-directed
action plan high [24]

N C    Context-aware
self-management N, R model-driven

(game theory)
model-driven
(weighted obs.+ univ. approx.)

maximized
utility function low [25]

N C  G#  Adapt to
recognized activity A model-driven

(fuzzy logic)
data-driven
(machine-learning)

goal-directed
action plan high [26]

N C  G# # Resource-aware
data collection A, R data-driven

(RL)
data-driven
(RL)

utility look-up
table high [27]

N C    Adaptive comp.
offloading R model-driven

(markov dec. proc.)
data-driven
(deep Q-learning) learned policy low [28]

N C  # # Energy-aware
self-management R model-driven

(modal logics) — goal-directed
action plan high [29]

N C   G# Energy-aware
QoS-management R semantic & data-driven

(dynamic prog. + SVM class.)
data-driven
(machine-learning)

QoS- and policy-based
service provisioning low [30]

N C G#   Context-aware
self-management R semantic

(rule-based inf. engine)
data-driven
(machine learning)

event-triggered
action plan high [31]

N S    Energy-aware
self-management A, R semantic

(rule-based inf. engine)
data-driven
(RFR)

policy-based
action plan high [32]

N S    Autonomous network
resource discovery N model-driven

(MAPE-K)
semantic
(stored context info.)

policy-based
MAPE-K control-loop high [33]

N S G#   Adaptive config.
management A, R semantic

(pattern recogn.)
data-driven
(machine-learning)

policy-based
action plan high [34]

N S G#   Adaptive config.
management A, R data-driven

(RL)
data-driven
(RL w/back-propg.)

goal-directed
control loop) high [35]

N S   # Adaptive appl.
management A, R semantic

(semantic modeling)
data-driven
(deep-learning+RL)

goal-directed
action plan high [36]

N S  # # Energy-aware
task allocation R model-driven

(smart persistence) — semantic task
allocation algorithm high [37]

N S  #  Autonomous service
discovery R model-driven

(prob. reasoning)
model-driven
(prob. distr. learning)

event-based
service provisioning high [38]

N S  # # Adaptive energy
management R data-driven

(RL)
data-driven
(RL w/back-propg.)

reward-based
utility function high [39]

N S   # Energy-aware
self-management R data-driven

(ML classifier)
data-driven
(RFR+ANN)

policy-based
utility function high [40]

N S G#   Context-aware
self-management R semantic

(context ontology)
semantic
(stored episodes)

goal-based
action plan high [41]

1) Environment: S. . . stationary, N. . . non-stationary
2) Topology: D. . . distributed, C. . . clustered, S. . . star
3) addresses the concern  . . . directly, G#. . . indirectly, #. . . not at all
4) Category: N. . . network A. . . application, R. . . resource

Abbreviations:
machine learning (ML), case-based reasoning (CBR),
reinforcement learning (RL), support vector machine (SVM),
random forrest regressor (RFR), artificial neural network (ANN)



IEEE INTERNET OF THINGS JOURNAL 5

may have some autonomous responsibilities, such as
basic reasoning, but learning is usually offloaded to the
parent node. Often, a parent node can share knowledge
with other parent nodes. Communication between devices
within each own subgroup is allowed, but uncommon. We
found this topology in 16 cases.

• Star topology (S): In a star topology, a single central
node stores all data and manages all processes for all
devices. The central node sends instructions to the man-
aged devices, which are responsible for receiving and
storing instructions, sensing and sending data, and exe-
cuting actions. There is usually no direct communication
between the managed devices. We found 15 cases with a
star topology.

C. Resource Constraints

Column 3 of Table III indicates if the cases address resource
constraints directly or indirectly. Despite advances in capabil-
ities of IoT devices, they are constrained in terms of available
energy, memory and processing capability. In addition, they
usually have limited access to contextual information. These
constraints make it hard for the devices to solve their own
problems, since they lack resources needed to analyze the
current situation and predict future events that might influence
their operation. To ensure that the devices are able to operate
at their optimum and plan corrective and adaptive actions, such
tasks are therefore often moved to nodes with better access to
resources [43]. The problem of resource constraints are thus
often tied to the system topology.

D. Scale and Technical Heterogeneity

Traditionally, device management for wireless IoT nodes
has been done manually, where the devices have been con-
figured and updated individually or in bulk, either on-site or
over a communication channel. However, this method does not
work well in large-scale deployments characterized by many
devices and high heterogeneity, which means that the devices
and the networks connecting them vary in form, function
and functionality [44]. Maintenance throughout the full device
lifecycle (planning, configuring, deploying, operating, repair-
ing, and recycling) is a major challenge. Any architecture or
framework that supports large-scale device management must
therefore be able to operate autonomously with a minimum
of human intervention [8]. We indicate to which degree the
papers address challenges related to resource constraints, scale
and heterogeneity in columns 3 to 5 of Table III.

E. Management Tasks

All the systems in the reviewed cases are directed toward
management of constrained IoT devices. Within this domain
we find a broad spectrum of operations. Usually, the main
problem that is addressed in an article maps to a specific
management task. We describe the main management task
performed by each reviewed system in column 6 of Table III.
Each of these specific tasks can be further mapped to three
distinct categories. We chose to categorize device management

in the reviewed cases as network, application or resource
management, or a combination of these. This categorization is
in contrast to Gurgen et al. [45], who divide management of
networked sensing devices in network-, system- and applica-
tion management. This is due to the fact that we did not find
any cases that focused on system management, while many
cases went beyond application management and focused on
how to manage the resources that are available for the devices
directly. The category that the main management task belongs
to is shown in column 7 of Table III.

• Network management is concerned with how to initiate,
monitor and maintain the infrastructure of a wireless
sensor network, to ensure that the devices are con-
nected and able to send the collected data. Some typical
management tasks include discovery, that is, registering
devices when connected to a wireless sensor network
for the first time [33], ensuring they maintain a stable
connection [46], and reconnecting them when they drop
out of the network or move between base stations [27]. In
many networks the connections between the devices, or
even the topology of the network itself, change over time.
Such networks can be regarded as a dynamic environment
with non-stationary properties. Research related to this
problem area is often referred to as Cognitive IoT (CIoT).
The main idea of CIoT is that interconnected devices are
able to analyze their context, learn from experience and
develop hypotheses based on their knowledge base with
a minimum of human intervention [36]. Typical manage-
ment tasks within CIoT are aimed at maximizing network
performance by analyzing current network conditions,
and then deciding and executing adaptive actions [47].

• Application management runs processes to configure,
monitor and maintain the applications that run on the
devices. These are typically extrovert processes, that is,
they focus on the purpose of the system that is managed.
The main input for application management is the sensor
data acquired by the IoT devices. Typical management
tasks are off-loading, distributed computing and data
collection, in addition to high-level tasks like processing
and analyzing environmental data sensed by the devices.
Two examples of application management processes are
activity adaptation [26] and action recommendation [19].

• Resource management, in contrast to application man-
agement is an introvert process, as it typically looks
at internal processes related to the maintenance and
optimization of the operation itself. The main input
for resource management is operational data about the
devices and their current status. The focus is typically on
low-level tasks like ensuring an acceptable quality of ser-
vice, managing the energy consumption and scheduling
sensing cycles. In a dynamic environment, resource man-
agement needs to be context-aware, to accommodate for
variations in the environment [48]. Examples of resource
management are resource-aware data collection [27] and
energy balancing [20].
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IV. ADAPTATION MECHANISMS

Autonomy is a complex behavior characterized by the ca-
pacity an agent has to achieve a goal while adapting to changes
in the environment without human intervention [49]. Further,
Sifakis et al. [49] list five complementary aspects required
to achieve full autonomy: 1) perception, or interpretation of
stimuli from the environment; 2) reflection, that is, building a
model of the environmental context; 3) goal management, i.e.,
choosing the best among possible goals given the environmen-
tal model; 4) planning, or deciding which actions to take to
achieve the chosen goal, and 5) self-adaptation, i.e., to adjust
the autonomous behavior through learning and reasoning.

Self-adaptation and self-management are core concepts in
autonomous systems [50]. According to Kephart et al., the
goal of self-management is to free system administrators from
the tasks of system operation and maintenance and provide
systems with the ability to configure, optimize, heal and
protect themselves [51]. However, for systems that operate
under conditions that vary over time, this means that the
devices have to adapt, i.e., adjust operation in accordance
with the current situation. Sheth et al. argue that adaptive
decision mechanisms under such conditions require situation
awareness, that is intelligent mechanisms that can convert raw
data into something that is contextual meaningful [52].

Vernon goes further in [53], discussing the concept of self-
awareness, i.e., the extent to which a system can reflect about
itself. He states that self-awareness can be seen as a device’s
ability to see itself in relation to its context, learn from
experience, predict the outcome of future events and act to
pursue goals. Preden et al. support this view in [26], claiming
that for devices operating in a dynamically changing envi-
ronment, self-awareness is needed for devices to understand
their own state in relation to the environmental conditions
that influence their operation. Thus, a device manager can
achieve autonomous self-management by combining situation-
awareness with adaptation mechanisms to dynamically select
its behavior, taking previous experience, contextual parame-
ters, internal status and designated policies into account, as
discussed by Foteinos et al. [34] and Sezer et al. [54].

A. A Taxonomy of Observed Adaptation Mechanisms

We see the considerations above confirmed in the reviewed
cases, and observe a general pattern with autonomous device
management based on adaptation mechanisms that analyze
input data, reason about the current situation and produce
some output data that result in a corrective action or plan,
when needed. Many models include learning mechanisms as
well, to expand the knowledge base of the system. These
mechanisms are often encapsulated in separate modules, to
reduce complexity and separate concerns. We will discuss this
aspect further in Sect. VI. In particular, we identified three
distinct types of adaptation mechanisms, indicated in columns
8, 9 and 10 of Table III:

• Reasoning mechanisms analyze sensed events and de-
vice states, reflect upon the current situation and control
the internal data flow of the manager node. They also
decide if a perceived situation requires adaptation.

6) Case based reasoning

3) Fuzzy logic

7) Machine learning (ML)

8) Reinforcement learning (RL) 4) Dynamic programming

1) Linear and nonlinear programming
2) Probabilistic analysis

5) Rule-based programming,

   ontologies and knowledge graphs

Model-driven 
mechanisms 

Semantic 
mechanisms

Data-driven 
mechanisms

Fig. 1. Reasoning and learning mechanisms used in device management

• Planning mechanisms produce corrective actions or ac-
tion plans, send instructions to the managed devices, and
make sure the manager and the devices are in sync.

• Learning mechanisms make sure that the knowledge
base is up to date, that it reflects the state of the devices
in the context of the environment in which they operate.

In the following, we will take a closer look at reason-
ing mechanisms, since these are paramount for autonomous
behavior. Perera et al. [55] classify reasoning mechanisms
into six categories: supervised learning, unsupervised learning,
rules, fuzzy logic, ontological reasoning and probabilistic
reasoning. However, this classification neither differs between
reasoning and learning mechanisms, nor covers all the different
adaptation mechanisms we found in the reviewed papers.
We therefore chose to categorize the different reasoning and
learning mechanisms according to the underlying principle that
the mechanisms use to infer an understanding of the situation,
as shown in Fig. 1.

• Model-driven mechanisms capture knowledge and de-
rive decisions through representation and rules that are
declared explicitly. This means they are based on logics
that are inherent to the model, which also implies that all
variables that are part of the reasoning must be declared
within the model itself. Thus, the output is a result of a
logical analysis of a context change. Linear and nonlinear
programming, probabilistic analysis and fuzzy logic can
usually be placed in this category.

• Semantic mechanisms analyze structures where meaning
is associated with the data. This allows data to be
interpreted in context, regardless of differences in syntax
or structure [52]. Knowledge is usually stored in a knowl-
edge base that holds facts about the world, often in the
form of ontologies, knowledge graphs or episodes. The
semantic reasoning mechanism is an inference engine that
applies logical rules to the knowledge base to deduce new
information. Its output is thus based on inferring a deeper
meaning or finding similarities to the input variable. Case-
based reasoning, ontology-based inferring and rule-based
programming are often placed in this category.

• Data-driven mechanisms are based on some statistical
analyses that attempt to identify patterns in the data. This
can be historical data collected by the devices themselves,
or it can be other relevant contextual data collected from
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external sources. The output is statistically inferred from
the data itself. Most machine-learning methods can be
placed in this category.

We will now take a closer look at the particular mechanisms
used in literature with examples for their usage.

1) Linear and Nonlinear Programming: Linear and non-
linear programming are mathematical models often used for
optimization purposes. The main difference is that in nonlinear
programming, a change in input is not necessarily proportional
to the change in output. Often, nonlinear problems are ap-
proximated using linear equations and algorithms to reduce
complexity. Linear and nonlinear programming rely on all de-
cisions being in place up front. As a consequence, this family
of mechanisms is rarely used to solve complex problems where
the answer is inferred from the data, like cluster analysis. A
typical example of linear programming is found in [10] where
Moser et al. use multiparametric programming for power
management of solar harvesting wireless sensor nodes. They
present a formal model for solving the optimization problem
offline in different environmental conditions and system states,
maximizing the utility in a long-term perspective.

2) Probabilistic analysis, Markov-modeling and Bayesian
inference: Applying probability theory is a common method
for quantitative modeling and analysis of large, stochastic data
sets. Probabilistic models use graphs to represent stochastic
variables, where edges represent assumptions that are condi-
tionally independent. This means they are well suited to solve
problems related to joint probability distributions. Bayesian
inference uses the Bayes’ theorem to update the probability
for a given result as more data becomes available. Thus,
by applying structural learning, knowledge can be retained
within the model itself. Probabilistic models of both types
are often used for dynamic analysis of sequences of data.
However, these mechanisms often come with a high com-
putational cost, especially in models with a large number of
parameters. Also, the process of choosing the prior distribution
is time-consuming and often requires in-depth expertise of
the problem to solve. This makes it difficult to apply such
methods on constrained devices or in domains characterized by
non-stationary properties. An example of a probability-based
reasoning mechanism can be seen in [28] where stochastic
randomness in available resources and numerous allocation
options, in conjunction with reinforcement learning, make a
Markov decision process a good fit to solve the problem of
computational offloading.

3) Fuzzy logic: Fuzzy logic is used to model logical
reasoning on sets that amount to degrees of membership, fuzzy
sets. It is based on the idea that a preposition can be partly
true and partly false at the same time, with a degree of truth
usually defined as a real number in the interval [0,1]. This
allows a continuous range of choices [56]. A central aspect
of fuzzy logic is the mapping to linguistic variables, like slow
or tall. In a fuzzy expert system, such linguistic variables are
used to produce fuzzy rules, which are used to infer a decision
from the model. New knowledge can be retained within the
model itself, by manipulating fuzzy sets, or by applying new
fuzzy rules semantically. Fuzzy logic is suitable for domains
where the input is imprecise and the outcome is uncertain.

However, fuzzy systems lack the capability of learning from
experience or recognizing patterns, and extensive testing is of-
ten needed for validation and verification of fuzzy knowledge-
based systems. In addition, the iterative process of defining
fuzzy rules and membership functions is time consuming and
requires expert knowledge [57]. Preden et al. [26] present an
example of fuzzy logic, where an application first associates
situation parameters like sleeping time, breathing patterns,
heart rate and movement with degrees of membership in fuzzy
sets before fuzzy rules estimate the quality of sleep.

4) Dynamic programming and recursive optimization: The
main principle of dynamic programming is to break a problem
down into smaller sub-problems, often to find an optimal score
using recursion. Each sub-problem is then solved sequentially,
and the result of each iteration is retained in a dynamic
programming matrix and used as input to the remaining sub-
problems. Finally, the algorithm does a traceback of the matrix
to recover the structure of the optimal solution. Although
dynamic programming shares properties with semantic and
model-driven mechanisms, it is not particularly suited for
solving causal inference since it might align unrelated se-
quences [58]. Thus, dynamic programming is often used as
part of, or as a complement to, other adaptation techniques.
An example of recurrent dynamic programming can be seen
in [30], where Samie et al. use it for energy-aware QoS
management of IoT devices under bandwidth, battery, and
processing constraints.

5) Rule-based inference, ontologies and knowledge graphs:
These methods are all based on semantics, associating meaning
to collected data. In systems that rely on semantic adaptation
mechanisms, knowledge is usually represented by defining a
set of concepts and the relationship between them [21]. In this
way data can be interpreted contextually, that is, detached from
the syntax or structure, by using annotation techniques to infer
knowledge from the interpreted data [52]. Reasoning typically
attempts to derive facts that are not explicitly expressed in the
ontology or knowledge graphs [59]. New knowledge obtained
this way can be retained and stored as a new rule, a new
ontology or as an expansion of the knowledge graph. However,
since the logic is based on semantics these methods are
not particularly suited to solve problems that are based on
quantifiable data. An example of ontology-based reasoning
can be seen in [41] where knowledge related to a situation
is represented in a semantic-based context mode that contains
definitions of basic concepts and relations. This provides a
common vocabulary that can be used to manage and share
context data among users, devices and services.

6) Case-based reasoning: The assumption behind case-
based reasoning is that similar problems have similar solu-
tions [60]. Knowledge is usually captured and retained as
episodic data in a case base. This means it can be categorized
as a hybrid mechanism, part semantic and part data-driven.
To solve a problem, a reasoning mechanism typically uses the
principle of analogy to retrieve and reuse episodes that match
the current situation. Since case-based reasoning considers
what happened rather than on how or why it happened, it
is well suited for domains where the context is not explicitly
defined [61]. This sets it apart from mechanisms based on
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semantics. We can see an example of case-based reasoning
in [22], where information stored in a knowledge base is used
as a case base to find an appropriate action to improve network
lifetime and quality of information.

7) Machine learning (ML): In machine learning, data is
analyzed statistically using analytical or mathematical models
that identify patterns in the data. The ML algorithms are
trained using sample data, and can then be used to make
predictions or decisions without explicit programming [42]. In
supervised learning the data is labeled and an output is mapped
to an input. Thus, it infers a function from labeled training
data. The output can be a continuous numerical variable found
through regression, or a discrete or categorical value found
through classification. In unsupervised learning the data is
unlabeled and the algorithms learn to find unknown patterns
or structures in the data. It is typically used for clustering, to
partition data sets into groups [54]. For both methods, learning
happens when previously unseen data is added to the training
data and the algorithm is retrained on the new data set. Some
limitations of ML origin in its reliance on statistical data.
One problem with ML is the need to train each model to
fit the particular application. Also, the relationship between
output and data is encoded as correlations, but causality or
relationships cannot be inferred. In IoT management we can
see examples of supervised learning in [19], where Megahead
et al. use a support vector machine classifier for autonomous
policy determination, and in [40], where Kraemer et al. use
random forest regressors and artificial neural networks for
energy-aware self-management of solar-powered IoT devices.
We did not see a clear example of clustering using unsuper-
vised learning in any of the reviewed cases.

8) Reinforcement learning: Reinforcement learning (RL)
is commonly used for control optimization problems with
many states and complex stochastic structures. It employs a
reward function and learns through interaction of an agent
with its environment, with no need for a complete control
model or explicit supervision [22]. An RL agent is trained to
improve a task by learning from experience, that is, interacting
with that particular task in context [62]. The algorithm is
trained with the goal to maximize the cumulative reward.
The agent thus learns the policy that produces the highest
reward while avoiding policies that produce low or negative
rewards. We categorize RL as a hybrid of data-driven and
model-driven mechanisms, since environments that provide
rewards are often based on a mixture of explicit models and
data. An example can be seen in [37], where Edalat et al.
use reinforcement learning for network lifetime optimization.
Challenges with RL are the design of the reward function, as
this requires an in-depth knowledge of the domain and the
system goals, as well as a potentially high training effort [62].

B. Handling Complexity by Combining Mechanisms

Table III shows that reasoning, learning and planning mech-
anisms often are combined to solve a particular problem.
We also see that some models employ a mix of different
categories of adaptation to achieve adaptation. A synthesis of
this observation is presented in Table IV. Here we indicate the

TABLE IV
OVERVIEW OF OBSERVED REASONING AND LEARNING MECHANISMS

Stationary environment Non-stationary environment
Reasoning Learning Reasoning Learning

Model-driven 4 0 7 3
Data-driven 1 0 4 13
Semantic 5 4 8 2
Mixed 0 1 3 0
Not included 0 5 0 4
Total 10 10 22 22

category of reasoning and learning mechanisms, grouped by
the type of operational environment, for each of the 32 cases
presented in Table III.

For systems operating in a stationary environment, we see
that only 1 system uses a data-driven mechanism, most likely
because behaviors can be adjusted in a deterministic manner.
Also, just 5 out of 10 cases include a learning mechanism,
4 of which are purely semantic and 1 has a strong semantic
component. For systems that are deployed in a non-stationary
environment, we see that there is more variation in which type
of reasoning mechanisms is used. Here, 7 cases used a model-
driven approach, 4 used data-driven, and 8 used semantics. In
addition, 3 cases used a mixed approach to reasoning, with
data-driven reasoning being a component in all of them. 18 of
22 systems incorporate learning mechanisms, 13 of which are
primarily data-driven.

V. PATTERNS AND MODELS FOR AUTONOMOUS
MANAGEMENT IN IOT

We now turn our attention to the combination of the various
adaptation mechanisms and how their interactions lead towards
a cognitive system. The 32 reviewed cases expose a wide
variety in description style and rigor. Most detail only some as-
pects while neglecting other components or processes that are
necessary to understand the bigger picture. 19 models mainly
focus on component composition and interactions, while the
other 13 models focus on a description of the process. This
variety makes it difficult to interpret the adaptation process
as a whole in each case. We therefore extract partial models
from the reviewed cases and expand them with more general
literature and cognitive models.

A. Patterns Observed in Literature

The 32 reviewed architectures typically divide reasoning,
learning and planning mechanisms into separate components.
The descriptions in 23 papers were so detailed that we could
extract the relation between these three mechanisms (marked
with high in column 11 of Table III). Our study reveals the
following patterns:

1) The managing process is centralized, that is, the network
is organized in either a star or a cluster topology, as for
instance in [26], [16], [35].

2) Sensed events are sent from the device to a reasoning
mechanism for analysis, for instance [22], [18], [36].
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3) Reasoning processes are initiated either from an ob-
served event, an internal process or a prediction, for
instance in [34], [32], [27].

4) Reasoning and learning mechanisms are distributed
throughout the architecture, for instance in [21], [19],
[29], [41].

5) Learning mechanisms are placed in conjunction with a
component responsible for assessing the situation, for
instance in [24], [38], [31].

6) There is a separation of concerns between two main
processes, namely understanding the current situation
and planning a corrective action, for instance in [20],
[13], [10].

7) Task allocation, goals and policies are managed by a
planning component, e.g., in [33], [37], [39], [40].

Combining multiple adaptation mechanisms is a common
strategy. A reason for this is that distributed processes often
complement each other, especially in systems that need to
solve tasks that require understanding on a higher cognitive
level, that is, self-, context- or situation-awareness [55]. In
these cases we see that the interaction between the com-
ponents, and the interplay between the different adaptation
mechanisms, define and produce the internal cognition.

B. The MAPE-K Autonomic Control Loop

A general autonomic system architecture is based on sensors
and actuators, controlled by a feedback loop [63]. A typical
feedback-control-loop involves four steps: 1) Collecting and
monitoring sensing and contextual data; 2) Processing and
analyzing the collected data, which may trigger a need for
adaptation; 3) Making a decision on what to change, based on
an adaptation goal; and 4) Executing adaptation through an
appropriate mechanism. The new, adapted state of the system
is then returned into the feedback loop by a self-reflective
mechanism that is used throughout the adaptation cycle. The
accumulated data is stored for future reference in a knowledge
base, and used to provide a more accurate model of past and
future states, in an attempt to identify symptoms and infer
trends that go into the decision planning [64].

Many autonomous and self-adaptive systems that make use
of sensory input are based on the MAPE-K (Monitor, Analyze,
Plan, Execute, Knowledge) autonomic feedback loop [65],
[66]. A model of this type of control loop is shown in
Fig. 2. This architecture allows a device to manage itself and
dynamically adapt to changes based on predefined policies and
objectives. Some learning is inherent in the model by retaining
sensed information and saving the effect of an executed action.
Few of the mechanisms identified in Sect. V-A directly refer to
MAPE-K, but we observe that the pattern of the four reasoning
processes, i.e., monitor, analyze, plan and execute, is present
in many of the reviewed papers. It is therefore natural to
incorporate this pattern in a generalized model, which in IoT
corresponds to a system where devices receive events through
sensors or internal processes, and respond to these events
through an analysis of the situation and planning of adaptive
actions.

Analyze

Monitor

Plan

ExecuteKnowledge

Sensed	
event

Adap,ve
ac,on

ActuatorSensor

autonomic	feedback	loop

Fig. 2. Basic model of a MAPE-K autonomic control loop. Adapted from [66].

Learn
(assimilate)

Percep0on Ac0on

Situa0on-aware	sub-system

Autonomic	sub-system

Predict
(an0cipate)

Plan
(adapt)Reason

Sensed	
event

Adap,ve
ac,on

autonomic	loop

adap,ve	loop

Fig. 3. A model of cognitive planning. Adapted from Vernon’s cognitive
cycle [53].

C. Cognitive Models

From Tables III and IV we observe that the adaptation
mechanisms found in purely autonomic systems tend to be
preconfigured, while situation-aware systems more often are
able to create their own rules through learning-by-experience.
Pramanik et al. redefine the concept of Cognitive IoT found in
network management as a process where a stateful and prob-
abilistic system adapt to dynamic changes through situation-
awareness and iterative self-learning [50]. This pattern closely
resembles Vernon’s cognitive cycle, which is based on two
independent cycles of (1) perception and action; and (2) anti-
cipation, assimilation and adaptation. In his model, planning is
implicit in the process and intelligent behavior thus emerges
through circular causality, where global system behavior in-
fluences local behavior of system components, while local
interactions between components in turn determine global
behavior [53]. In contrast to this model, all models in the
reviewed cases include planning as a separate component. To
reflect this, we created a pattern based on the cognitive cycle
that we named cognitive planning, shown in Fig. 3.

In the cognitive planning model, the planning process is
the central component. The functionality is divided in an
autonomic and a situation-aware subsystem, which are exe-
cuted through two separate control loops. The autonomic loop
registers an event and initiates a response in accordance to
its active policy. The adaptive loop analyzes the event and
changes the policy if the situation calls for adaptation. This
division has two implications: First, the autonomic subsystem
can operate without the need for learning, that is, as a
simple stimuli-reaction loop. Second, since the situation-aware
subsystem receives stimuli from the autonomic subsystem, it
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Knowledge
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autonomic	loop

learning	
loop
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Fig. 4. A standard model of human-like minds. Adapted from [67].

continuously learns from experience. We will later see that
this increases autonomy and robustness of the process.

The cognitive reasoning process is initiated either from an
observed event or from a prediction. Depending on stimuli
received, the reasoning processes can trigger the planning
process. This implies either initiating a learning process,
performing an adaptive action, or both. To reflect this, we
placed reasoning as a sub-process that precedes planning. This
pattern matches both the reviewed architectures that actively
use learning to adapt to changes in their context, and those
that do not include a separate learning process, i.e., purely
autonomic systems.

Cognitive architectures are often organized around a work-
ing memory that uses a cognitive cycle to collect sensory input,
retrieve appropriate declarative or procedural knowledge and
initiate adaptive actions. Laird et al. describe this architectural
style in a standard model [67], shown in Fig. 4. They state that
a key characteristic of intelligent behavior is that changes in a
working memory correspond to steps in an abstract reasoning
process or internal simulation of an external action. Thus,
adaptation emerges from a combination of the implemented
architecture, acquired knowledge and learned skills. Implicitly,
this corresponds to a system with three different types of
control loops. The autonomic and adaptive loops have the same
traits and behavior as in the cognitive planning model above.
However, in the cognitive architecture the learning processes
are outsourced to separate control loops that are responsible for
updating declarative and procedural knowledge that is stored
within the system, in accordance to dedicated learning policies.

Sifakis et al. concretize the idea of separating knowledge
in [49] with a computational model for agents. This model
includes declarative knowledge that represents facts about the
world, i.e., the entities found in a domain and the relations
between them. This knowledge can for instance be stored as
system properties, training data, logical formulas or patterns.
Procedural knowledge, on the other hand, is represented by ex-
ecutable methods like behavioral descriptions of components,
analytical algorithms or prediction techniques like machine
learning models.

VI. BEST PRACTICES FOR AUTONOMOUS IOT DEVICE
MANAGEMENT SYSTEMS

Our literature study shows that complexity is a challenge in
most large-scale deployments of autonomous IoT device man-
agement systems, due to scale, constraints and heterogeneity

within the system, and non-stationarity of the environments.
Based on our observations, we were able to identify five best
practices (BP) that can guide the design and implementation of
such systems. The first three BPs are a direct result from our
observations, and BP4 and BP5 are derived from an overall
analysis of the reviewed papers and the patterns observed in
them. In the following paragraphs, we will describe these
practices, and give recommendations for when and how to
apply them. For clarity, we use imperative language.

BP1: Employ adaptation mechanisms according to en-
vironmental stationarity. We observe that the selected adap-
tation mechanisms correlate with the type of environment: In
stationary environments, there is usually little need for explicit
learning, as the statistical properties of the environment are
constant. Adaptive actions can hence be pre-programmed and
automated, using semantic methods or purely model-driven
mechanisms. Learning processes in such systems are mainly
used to identify new rules or policies. In contrast, when op-
erating in non-stationary environments, environmental factors
often vary from device to device, and they need to adjust their
operation to unexpected events. This means that systems must
be able to retain and store knowledge of observed events, the
action that was taken, and the corresponding effect. They also
have to reason about the implication of said action, to make the
most suitable corrective action the next time the same situation
arise. In other words, they have to employ advanced adaptation
mechanisms grounded in previously collected data.

Therefore, assessing the environment of devices is critical:
For systems managing devices operating in a stationary en-
vironment, the often lower complexity of a purely autonomic
architecture may be sufficient. For systems operating in non-
stationary environments, one should consider adding a self-
aware subsystem to allow explicit learning, since this is often
a prerequisite for adaptation under such conditions.

BP2: Select topology according to the inherent systemic
constraints and requirements. System topology and locus
of computation are influenced by constraints inherent to IoT.
Constraints in connectivity favor computation on the device at
the edge of the system. We found only one distributed topology
[10], where Moser et al. use linear programming for adaptive
energy management directly on the IoT device.

The majority of the papers are concerned with constraints
inherent in the device rather than the network. This favors
cluster or star topologies, as they have the potential for better
access to memory, processing power, energy and contextual
information. The main argument for employing a star topology
is that a fully centralized management improves elasticity [68],
allowing easier access to resources-as-a-service, which can
add flexibility for systems where the management needs to
vary over time. Another argument is that since the managing
nodes also need to be managed autonomously, a star topology
reduces overall complexity. Regarding the cluster topology,
we see four benefits: 1) Clustering can help reducing latency,
since processes are placed closer to the sensor devices [69]. 2)
A topology that allows responsibility to be shared among the
managing nodes in the network can be more suited to handle
high variances in the network conditions or frequent changes
in application requirements [13]. 3) With cluster organization
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we can connect devices that share similar characteristics. This
adds flexibility, since it allows that management nodes can
use resources on the aspects of management that are most
relevant for that particular group [70], [71]. 4) Many IoT
systems operate under conditions that may cause instability in
the operation. A clustered topology can improve dependability
since it reduces the risk that the whole network is shut down
in case of internal or external events, like handling too many
active connections at once or a power break [25].

We conclude that a star topology fits systems that require
variable access to processing power, memory or storage. For
systems where low latency or high dependability are key
concerns, or where manager nodes are specialized for specific
management tasks, a clustered topology may be preferable.

BP3: Separate concerns and reduce complexity with
modularization. Modularization is a general mechanism to
handle system complexity that also applies for device man-
agement systems. Consequently, the majority of the reviewed
architectural models divide reasoning, learning and planning
mechanisms into separate components. Planning is often done
in a component with a central, coordinating role. Systems
operating in stationary environments often employ a ba-
sic architectural model made up of few components, while
higher environmental complexity is often handled by adding
more components and using distributed reasoning mecha-
nisms throughout the architecture to control the data flow
between components. Such modularization allows specialized
subcomponents for a particular task. This enables a better
understanding and control of the data flow and of the different
states of the system, making it easier to integrate mechanisms
into managers and to support black-box designs [72]. Another
benefit is that modularity ensures that parts of the system can
be replaced or extended independently if the requirements or
the understanding of the problem change, which can reduce
the risk of project failures due to high complexity.

BP4: Control parallelism and data flow with triggers.
Parallelism is a concern in architectures that manage many
devices simultaneously. Adaptation processes can be active in
several components at the same time. Models need hence to
include a detailed description of how these processes work in-
ternally, that is, how they are activated and which components
they activate in turn. However, few papers mention how and
when components are activated.

We suggest to explicitly present triggering mechanisms that
describe how knowledge is transferred from an originator
to a consumer and how adaptation processes are activated.
Such triggers should possess both push and pull directions,
so that both originator and consumer component can trigger
the knowledge flow. For instance, an observed event or a
predicted future state can trigger the creation of a new plan,
corresponding to an originator pushing knowledge towards a
consumer. Vice versa, a planning component as a consumer of
knowledge may trigger a specific procedure in pull direction if
it needs a specific prediction for a future state. This mechanism
also works for learning where, for example, a previously
unseen event can trigger a command to update the declarative
knowledge connected to that event.

BP5: Represent devices by digital twins. A challenge

in autonomous management of constrained IoT devices is
to keep track of the past, current and future state of each
device individually. For such tasks, the concept of digital
twins is used in industrialized IoT. A digital twin is a virtual
representation which reflects a specific physical device. Such
complete and holistic representation, as opposed to a more
fragmented organization, makes it easier to model the behavior
of the devices individually. A central manager can adjust the
operation of each device based on their actual experience. The
twin can then serve as a platform for simulating behavior and
recommend optimal actions in a given situation [73].

Though we have not seen this concept explicitly in IoT
device management, virtual representations of devices are
central in several of the reviewed cases to allow autonomous
self-management and context awareness [74]. One example
can be seen in [31], where virtual objects are used to rep-
resent both end devices and devices that are responsible for
adaptive management. This is challenging because it implies
that a device and its twin need to stay synchronized for the
representation and its result to be valid.

VII. A GENERALIZED COGNITIVE MODEL FOR
AUTONOMOUS IOT DEVICE MANAGEMENT

We synthesized a generalized cognitive model for au-
tonomous management of constrained IoT devices, shown in
Fig. 5, based on the observations in Table III, the MAPE-K
loop in Fig. 2, the adapted model of cognitive planning from
Fig. 3, and the standard model of a cognitive architecture in
Fig. 4. It provides a blueprint that describes the reasoning,
learning and planning processes for autonomous adaptation,
the interaction between these processes, and the declarative
and procedural knowledge involved in such a system.

A. Component Structure and Digital Twins
Apart from the physical device instances deployed in the

field, the model is structured by two types of managers that
serve a system and a device perspective:

• The System manager is responsible for assessing the
past, present and future states of the system as a whole.
It contains knowledge that explains the world, that is,
the nature of the environment in which the system is
placed, and how the environment influences the operation
of the devices. When new data is collected, the system
manager applies the necessary filters, before it separates
the data into declarative knowledge belonging to either
the world or a device, respectively. The main output from
the system manager are hence predictions of how external
conditions will influence each device in the future.

• The Device managers are responsible for assessing and
planning the operation of the devices themselves. Fol-
lowing the pattern of digital twins, there is one device
manager instance for each physical device. Their main
tasks are to monitor the knowledge related to each
device and produce plans that reflect the context and
environment in which each device is operating.

This separation between situation awareness and planning is
prominent in many of the reviewed architectures, for exam-
ple in [22], where Al-Turjman et al. use context awareness
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Fig. 5. A generalized cognitive model for autonomous management of constrained IoT devices.

to optimize network lifetime in a wireless sensor network.
Other examples are adaptive configuration management [34]
and energy-aware self-management [40]. This organization
facilitates sharing of information among devices, for instance
as value distributions that model the environment in a given
context or as generalized episodes that can be used to index
a structure for matching and retrieval of similar cases [60].
Sharing of data may also be beneficial for devices with
common properties [75], as for example solar energy intake
patterns of devices with similar location and orientation [32].

B. Separation of Declarative and Procedural Knowledge

Both top-level components contain subcomponents to han-
dle declarative and procedural knowledge separately. The
system manager contains a component to handle declarative
knowledge about the world, and the device managers one
to handle declarative knowledge about the device. The more
interpretive procedural knowledge is encapsulated in the re-
spective modules PK .

This separation is beneficial as these different types of
knowledge often use different implementations, as discussed
in Sect. IV. For machine learning, for instance, declarative
knowledge can be stored in the form of training data, and

procedural knowledge is represented by trained machine learn-
ing models. Many papers separate these types of knowledge,
too. An example can be seen in [13], where Minh et al.
separate policies from contextual knowledge. Other examples
are dividing knowledge in contextual models, adaptation op-
tions, adaptation goals and plans [18], and separating a context
repository from logical rules [21].

C. Control Loops for Adaptation

The model contains in total four control loops that handle
adaptive behavior in the system.

• L1 is the main control loop. It follows the MAPE-
K pattern from Fig. 2. However, since we have added
procedural knowledge components that contain prediction
models to the loop, it acts more like the adaptive loops
seen in Figs. 3 and 4. L1 can take two paths through the
model, depending on whether a change originated in the
environment or in a device. The monitor component in the
system manager will detect a change in the environment,
which will trigger an analysis of the contextual change.
Likewise, the monitor component in the device manager
will detect any change related to a single device. This
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triggers an analysis that evaluates to which degree the
change influences the operation of the device, taking
current and future environmental context into account.

• L2 and L3 are learning loops that control the incre-
mental learning processes of the system manager and
device manager, respectively. They follow the pattern of
the situation-aware subsystem (Fig. 3), as they act on
incoming events and decide if there is a change that
requires learning. Since declarative knowledge is added
continuously, the learning loops are only specified for the
procedural knowledge components in the model. This is
a distinction from Fig. 4.

• L4 represents the autonomic subsystem from Fig. 3. It
controls the device in a short-term perspective based on
the last plan sent from the device manager.

D. Explicit Triggers

In line with the best practice identified before, the model
identifies explicit triggers that guide the data flow to the cor-
rect component and control the behavior of the management
system in general, based on local decisions. The triggers are
shown as arrows pointing from the originator of knowledge to
its consumer, but they can be activated from both directions,
as described by BP4 in Sect. VI.

• A change in the general declarative knowledge base may
trigger T1, which in turn activates a model of the world
or a model of how the environment influences a device.

• After running a general procedural model, the system
manager analyzes the result and triggers T2 if there is
a change in the situation that can influence the operation
of a device. This analysis may need to pull specific device
data stored in the device manager, to run the analysis. The
prediction or result of the analyzed situation is then sent
to the device manager for further processing.

• Trigger T3 monitors device-specific declarative knowl-
edge to see if there is a need for activating a particular
behavioral model of that device. After running a device-
specific model or procedure, the device manager will
produce a plan based on the result from this process.
A policy-based planning procedure may for instance
analyze the goal of the device, and then select the policy
that addresses the present problem in the best way, taking
recent results and predictions into account.

• If this new plan deviates from the previous, trigger T4

informs devices that should adapt to this new plan, as we
will outline later.

• In each manager there is a special reasoning process that
triggers T5 resp. T6 if there is need for learning. Other
types of learning triggers are for instance previously
unseen data, or the discovery that an executed plan did
not have the anticipated effect.

We see examples of such distributed reasoning processes in
many of the reviewed cases. For instance, Shah et al. use this
pattern to select which task to execute [27]. Other examples are
matching similar situations based on previous experience [34],
selecting training data based on correlation [32] and context-
aware planning of corrective actions [41].

E. Adaptive Instructions vs. Actions

Trigger T4 is a special adaptation process that serves two
purposes: (1) It triggers the creation of an adaptation plan for a
device and (2) controls the transfer of that plan to the mirrored
device. The latter reflects the motor action commonly em-
ployed in cognitive architectures [67]. This combined mech-
anism effectively decouples the adaptive instruction, which is
managed by a manager node, from the adaptive action, which
is managed by the device. The purpose of this separation
is to ensure that the digital twin and the device always are
in sync. If they are not synchronized, the manager risks to
wrongly interpret the effect of a corrective action, which
again will cause it to make incorrect assumptions about the
device. In addition, the learning processes may suffer, since
unsynchronized states may cause noise or anomalies in the
training data. One way to mitigate this problem is to keep the
last instruction sent to the device in the working memory of
the device manager until it receives an acknowledgment that
the instruction was consumed by the device. Another argument
in favor of decoupling is that a device capable of some basic
reasoning might discover that it has a need for adaptation due
to a sudden external event. When this happens, the decoupling
allows a device to take an adaptive action on its own, and then
send an instruction to the manager that informs it about the
action that was made. Again, the device needs to keep a copy
of the instruction in its memory until the device manager has
acknowledged that the states are synchronized.

None of the reviewed cases explicitly address the difference
between an adaptive instruction and an adaptive action. How-
ever, Sifakis et al. mention the importance of synchronizing
agents and devices in [49].

F. Example Use Case: Solar-Powered IoT Devices

We illustrate the proposed model with a management system
for solar-powered air quality sensing devices. It provides
feedback to devices about their expected future solar energy
intake based on the weather forecast, so that they can adjust
their operation to the availability of solar energy and maintain
perpetual, energy-neutral operation.

Apart from air quality data, the system manager collects
data about the solar energy intake from the devices and the
weather forecasts for the devices’ locations. Data relevant to
the individual device is passed on to the respective device
managers. With this data, they can use a prediction model [76]
to estimate the energy intake for each device. This estimation
is used to plan how many measurements each device can
take, also considering the current state-of-charge of the device.
To speed up learning, the device manager may also employ
training data from other devices [32] provided via the system
manager. They may also employ a set of prediction models
from which the currently best one is selected [77].

The four control loops guide the information flow through
the system. The adaptive control loop L1 examines the weather
forecasts in respect to the device status, and instructs devices to
change their operation if the anticipated energy budget changes
significantly. L2 and L3 guide the learning process. Prediction
models for energy intake can for instance be retrained at
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midnight, or when the training data significantly changes.
The autonomic loop L4 follows the policy sent by the device
manager unless it detects a state-of-charge of the battery that
is lower than anticipated by the device management. If that
happens, it executes a local policy that restricts the amount of
energy that is consumed until it receives updated instructions
from the device manager.

VIII. DISCUSSION

We developed the proposed reference model bottom-up,
emerging from the systems found in literature. Still, there is
no guarantee that it fits every specific device management use
case perfectly. A challenge may hence be the application of
the model to specific use cases. However, as we managed to
unify the emerging model with the principles for autonomic
computing (Sect. V), we argue that the resulting model with
its loops, main components and responsibilities is likely to be
relevant for a wide range of device management tasks. Further,
the reference model should not be seen as a rigid design, but
rather a blueprint for an architecture that can be further refined
following the best practices listed in Sect. VI.

Our survey reveals the wide range of adaptation and learning
mechanisms, often more than one within a single system, see
Sect. IV. This diversity is good, but developers are often only
familiar with a subset of techniques, and not necessarily the
most suitable ones. Hence, while our model covers the overall
system, the initial selection, application and detailed design of
the specific learning and adaptation mechanisms can remain a
challenge. Here we expect a maturation of the field, where best
practices also regarding the detailed learning and adaptation
mechanisms become commonplace and ultimately off-the-
shelf components. The current rise in interest and competence
within machine learning among developers makes this a likely
scenario.

For further research and development, we see the mapping
of the reference model to standard components of commercial
device management platforms and platforms that automate
machine learning tasks. Alongside the expected maturing of
the field regarding the adaptation and learning mechanisms
for specific concerns, we expect this to be the main driver for
consolidation and further progress.

Even though handling security is out of scope for this
review, we stress the importance of considering this aspect
when designing device management systems. Security should
be handled as an integral part of an architecture. Apart from
integrating mechanisms like authentication, authorization and
certification, security functions are increasingly subject to
learning and adaptation, and hence drawing benefit from a
better management of them.

IX. CONCLUSION

We reviewed the state of the art for autonomous device
management in IoT. First, we conducted a comprehensive and
structured study on the aspects that need to be considered
when designing and implementing systems for autonomous
management of constrained IoT devices. We further synthe-
sized a taxonomy of the most commonly used adaptation

mechanisms in IoT device management and studied how and
when they are applied. We combined these findings with
general state-of-the-art models of autonomous systems to iden-
tify common patterns for autonomous management. From the
conducted work, we made two major contributions that help
advancing the field: first, we managed to summarize insights
of the literature by identifying five best practices for design
and implementation; second, we synthesized a generalized
cognitive model for autonomous management of constrained
IoT devices. This generalized model follows the identified
best practices, adheres to the general principles of autonomic
computing and connects them with the requirements for the
IoT domain. In this way, the proposed model contributes to
the vision of efficient and sustainable IoT systems that reduce
or prevent expensive downtime or human intervention.
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