
ISBN 978-82-326-5072-9  (printed ver.) 
ISBN 978-82-326-5073-6 (electronic ver.)

ISSN 2703-8084 (online)
ISSN 1503-8181 (printed ver.)

Doctoral theses at NTNU, 2020:363

Kurian J. Vachaparambil

Interface resolved simulations
of continuum scale
electrochemical hydrogen
evolution

D
oc

to
ra

l t
he

si
s

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e 
of

Ph
ilo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lty
 o

f N
at

ur
al

 S
ci

en
ce

s
D

ep
ar

tm
en

t o
f M

at
er

ia
ls

 S
ci

en
ce

 a
nd

 E
ng

in
ee

rin
gD

octoral theses at N
TN

U
, 2020:363

Kurian J. Vachaparam
bil



Thesis for the Degree of Philosophiae Doctor

Trondheim, December 2020

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Materials Science and Engineering

Kurian J. Vachaparambil

Interface resolved simulations
of continuum scale
electrochemical hydrogen
evolution



NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Natural Sciences
Department of Materials Science and Engineering

© Kurian J. Vachaparambil

ISBN 978-82-326-5072-9  (printed ver.)
ISBN 978-82-326-5073-6 (electronic ver.)
ISSN 2703-8084 (online)
ISSN 1503-8181 (printed ver.)

Doctoral theses at NTNU, 2020:363

Printed by NTNU Grafisk senter



1

"He has made everything fall into place in its time."





3

This thesis is submitted to the Norwegian University of Science and
Technology (NTNU) for partial fulfillment of the requirements for the
degree of philosophiae doctor. The doctoral work has been carried out
between September 2017 and August 2020 at the Department of Mate-
rials Science and Engineering, NTNU, Trondheim. The work has been
supervised by Associate Professor Kristian Etienne Einarsrud.

The research was funded by the Department of Materials Science and
Engineering, NTNU. The computational resources availed during the
work was provided by NTNU HPC and UNINETT Sigma2 through
grant NN9741K.

Kurian J. Vachaparambil
Trondheim, December 2020.





Abstract

An important aspect of improving the efficiency of water electrolysis is
to remove the electrochemically generated hydrogen and oxygen bub-
bles. The evolution of these gases, which are associated with increased
electrical resistance, are driven by electrochemical reactions causing
supersaturation of the electrolyte which leads to bubble nucleation,
growth, and eventual detachment from the electrode. Due to the dif-
ferent physics as well as the length and time scales associated with the
process, referred to as the multiscale and multiphysics nature, predict-
ing the bubble evolution using analytical models is challenging. As
numerical modelling approaches, like Computational Fluid Dynam-
ics (CFD), predicts the fluid flow based on the underlying governing
equations, it can be used to study electrochemical bubble evolution.

The work undertaken during the PhD is primarily to develop and
verify a multiphysics CFD framework based on the Volume of Fluid
(VOF) method available in OpenFOAM® for continuum scale hydro-
gen bubbles. In the context of this work, continuum scale bubbles
refers to bubble diameters which are larger than a few hundred mi-
crometers. The VOF method is customized by adding the physics
and numerical techniques relevant to treating electrochemical reac-
tions, dissolved gas transport, charge transport, interfacial mass trans-
fer and associated bubble growth (from a pre-existing submillimeter
bubble). The proposed framework is developed incrementally, with
each step corresponding to implementation and verification of a mul-
tiphysics module, eventually culminating in the fully coupled multi-
physics framework. This modularized approach allows for verifica-
tion of the implemented functionality with existing theoretical models
and/or computational benchmarks.

The thesis, in essence, provides context to the undertaken research,
review of the various modelling techniques used to treat the multi-
physics nature of electrochemical hydrogen evolution and details of
developed framework. In addition, the thesis also summarizes knowl-
edge gained during the PhD about the solution procedure used in
OpenFOAM® and the VOF method to enable knowledge dissemina-
tion for further research.
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Part I

Introduction





Chapter 1:
Hydrogen production via water elec-
trolysis

Background and general overview

With the push to reduce the dependence on fossil fuels, renewable
energy resources (like wind and solar) are increasingly being used
in power generation. Although technological advancements have im-
proved the efficiency and reduced the cost of power generated from
these renewable energy sources, they require storage solutions to mit-
igate the intermittencies in power generation [IRENA, 2017]. The var-
ious storage technologies used vary from chemical, electrochemical,
mechanical, electrical, to thermal storage methods, see the review by
Amrouche et al. [2016] for additional information.

Out of the proposed methods to store surplus renewable energy, the
electrolysis of water to get hydrogen opens up possibilities to use the
gas as an energy vector1. Due to the non-polluting nature of hydro- 1 Energy vector refers to the chemical

substance or physical process that allows
the transport of energy in order to enable
its use at a later time by a consumer lo-
cated away from the location of power
generation [Orecchini, 2006]. Some of
the most relevant present day examples
of energy vectors are fossil fuels (exam-
ple of chemical substance) and electricity
(example of physical process), see Orec-
chini 2006

gen combustion (which produces water), highest energy content (per
unit mass) compared to other fuels and compatibility with fuel cells,
hydrogen, if produced sustainably and economically, can replace fos-
sil fuels which would reduce the environmental impact of the society,
discussed in EU’s strategic plan to be carbon-neutral by 2050 [Euro-
pean Commission, 2020], and eventually create a ’Hydrogen economy’
[Scott, 2020].

In order to enable this transition, a decarbonized pathway to pro-
duce hydrogen is critical. Currently, the main methods, which ac-
counts for nearly 95% of commercially produced hydrogen [Chisholm
and Cronin, 2016], are based on steam-methane reforming2 and par- 2 Steam-methane reforming is an

endothermic process that combines
methane with steam to generate
hydrogen, carbon dioxide and car-
bon monoxide, see Office of Energy
Efficiency and Renewable Energy n.d..

tial oxidation reforming3, see Scott [2020]. An increasingly popular

3 Partial oxidation reforming is an
exothermic process that combines
methane with oxygen to produce
carbon monoxide, hydrogen and carbon
dioxide, see Office of Energy Efficiency
and Renewable Energy n.d..

alternate way to produce hydrogen is via water electrolysis, which cur-
rently accounts for 5% of the hydrogen produced industrially [Scott,
2020]. Although water electrolysis, which is the process of splitting
water into hydrogen and oxygen by supplying electrical energy, was
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discovered in late 1700s [de Levie, 1999], it was not popular due to the
high cost of electricity, which can account upto 75% of the cost of hy-
drogen generated [Scott, 2020]. With decreasing cost of electricity, es-
pecially generated from renewable energy, the sustainable production
of hydrogen via water electrolysis can compete with less eco-friendly
reforming methods used commercially today.

The water electrolysis is a process in which electrochemical reac-
tions (driven by supplied electrical energy) at electrodes splits water
into hydrogen and oxygen, which can be described as

H2O −→ H2 +
1
2

O2. (1.1)

A
no

de
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at
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Figure 1.1: Schematic of water electroly-
sis process in an alkaline electrolyzer.

A typical electrolyzer consists of electrodes, which are submerged
in an ionic solution (known as the electrolyte), and separated by a
membrane/diaphragm to prevent the explosive mixing of hydrogen
and oxygen. The electrodes are the anode, where oxidation reactions
occur, and the cathode, where reduction reactions occur, where oxy-
gen and hydrogen evolves respectively, see Table.1.1. A schematic of
the water electrolysis process is shown in Fig.1.1. Based on the type
of electrolyte used, the water electrolysis system can be divided into
alkaline (AEC), proton exchange membrane (PEMEC) and solid ox-
ide (SOEC) electrolyzer cells, see Table.1.1. This process of converting
water into hydrogen and oxygen has an efficiency of around 62-82%
for AEC and PEMEC, used in commercial applications [Chisholm and
Cronin, 2016].

AEC PEMEC SOEC

Anodic reaction 2OH− −→ H2O + 2e− + 1
2 O2 H2O −→ 2H+ + 2e− + 1

2 O2 O2− −→ 2e− + 1
2 O2

Cathodic reaction 2H2O + 2e− −→ 2OH− + H2 2H+ + 2e− −→ H2 H2O + 2e− −→ O2− + H2

Table 1.1: Comparison of half-cell re-
actions occuring at anode and cath-
ode in alkaline (AEC), proton exchange
membrane (PEMEC) and solid oxide
(SOEC) electrolyzer cells, adapted from
Chisholm and Cronin 2016, Schmidt
et al. 2017.

Ongoing fundamental research activities to further improve and
optimze electrolyzers can be broadly divided based on the domain
of investigation into electrochemical and bubble hydrodynamics. The
electrochemical aspect delves predominantly into the development of
durable [Siracusano et al., 2017] and cheap catalysts [Zhang et al., 2019,
Khan et al., 2018] as well as understanding the reaction mechanism and
kinetics [Shinagawa et al., 2015, Hu et al., 2019]. On the other hand, the
research on bubble hydrodynamics focuses more on the physics and
influence of bubble evolution (includes nucleation, growth and detach-
ment) [Zhang and Zeng, 2012, Sakuma et al., 2014, Fernández et al.,
2014, Baczyzmalski et al., 2017, Bashkatov et al., 2019]. Understanding
the underlying physics provides invaluable knowledge which can be
leveraged to enhance bubble detachment during water electrolysis, see
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Darband et al. [2019]. Knowledge from both these research areas are
crucial in developing strategies/materials to improve the efficiency of
water electrolysis and improve the durability of the electrode materials
[Brussieux et al., 2011, Kadyk et al., 2016].

Due to the ubiquitous nature of gas evolution during water electrol-
ysis, fundamental understanding of the dynamic behaviour of these
bubbles, especially the detachment, is critical in developing strategies
to efficiently remove them and improve the performance of the water
electrolyzer.

Impact of electrochemical bubble evolution

In this section, a brief overview of the impact of bubble evolution in
electrochemical systems is discussed. For a comprehensive description
of the impact, including catalyst degradation and efficiency loss, inter-
ested readers may refer to works like Leistra and Sides [1987] or recent
review works like Zhao et al. [2019b] and Angulo et al. [2020].

The losses introduced by electrochemical gas evolution during wa-
ter electrolysis process can be quantified based on its effect on over-
potential. The overpotential (η), which is the difference between the
potential applied (E) and the reversible potential (Erev)4, can be de- 4 Erev is the theoretical minimum poten-

tial that must be applied to start the elec-
trochemical reaction, whose calculation
is discussed further in Chapter 4.

scribed as

η = E − Erev = |ηohm|+ |ηs|+ |ηC|, (1.2)

where ηohm, ηs and ηC are the overpotentials associated with ohmic
resistances in the system, electrochemical reactions and mass transfer
at both the electrodes5 [Leistra and Sides, 1987, Zeng and Zhang, 2010, 5 It should be pointed out that, in elec-

trochemistry, the cathodic and anodic
overpotentials are by convention repre-
sented by negative and positive values.
In this thesis, to simplify the representa-
tion, the absolute value of these overpo-
tentials are considered.

Burheim, 2017]. As electrochemical systems can be run under potentio-
static (constant potential difference) or galvanostatic (constant current)
conditions, bubble evolution would lead to fluctuations in current and
overpotential respectively [Fernández et al., 2014, Yang et al., 2015].

Reference Correlation for effective conductivity (Γe,b) Application

Maxwell 1873 2(1 − f )Γe/(2 + f ) For low void fraction and single size bubbles
Bruggeman 1935 Γe(1 − f )1.5 For polydispersed bubbles
Meredith and Tobias 1961 8(2 − f )(1 − f )Γe/((4 + f )(4 − f )) For two sizes of bubbles

Table 1.2: Models for effective conduc-
tivity in heterogeneous media, see Zhao
et al. 2019b. f is the void fraction of
the bubbles (calculated as Vb/(Vb + Ve),
where Vb and Ve are the total volumes
occupied by bubble and electrolyte re-
spectively) and Γe is the conductivity of
the pure electrolyte.

The ohmic overpotential (ηohm) associated with bubble evolution are
associated with adhered bubbles to the electrode surface and detached
bubbles present in the bulk, as shown in Fig.1.2. When bubbles are
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in the bulk of the electrolyte, the effective conductivity of the hetero-
geneous bubble-electrolyte medium (Γe,b) can be estimated based on
theoretical models, see Table.1.2.
Typically the detached bubbles from a vertical electrode tend to form
curtains (see Fig.1.2) which causes an increase in resistance (∆R) that
is calculated as

∆R

Re
=

H
Y

( Γe

Γe,b
− 1
)

, (1.3)

where H, Y and Re are the bubble curtain thickness, inter-electrode
distance and resistance introduced by the pure electrolyte respectively
[Vogt and Kleinschrodt, 2003]. In Eq.1.3, when the inter-electrode dis-
tance (Y) is small or when bubble curtain thickness is comparable to
Y, the increase in resistance due to bubble curtain becomes more dom-
inant.

Figure 1.2: Schematic of the non-
uniform distribution of bubbles in the
vicinity of a vertical electrode. de-
notes the distance from the electrode
where bubbles remain attached, is
the region when detached bubbles tends
to form curtain, and represents the
bulk region.

When bubbles are attached to the electrode they increase the ohmic
resistance (ηohm) due to reduction of effective conductivity of the elec-
trolyte as well as decrease in the electrode surface area in contact with
the electrolyte [Sides and Tobias, 1980, Dukovic and Tobias, 1987, Yang
et al., 2015]. The work by Sides and Tobias [1980] reported the ohmic
resistance contribution from attached bubbles, whose diameters are
a tenth of the inter-electrode gap and placed three bubble diameters
apart from others, results in an increase in resistance by 1%. As the
spacing between these attached bubbles decrease, the resistance be-
comes larger [Sides and Tobias, 1980, Dukovic and Tobias, 1987].

The surface overpotential (ηs) is associated with the electrochemical
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reaction at the electrode in contact with the electrolyte [Leistra and
Sides, 1987], which can be described as6 6 Eq.1.4 is commonly referred to as the

Tafel equation which is widely used in
electrochemical studies, see Shinagawa
et al. 2015, Anantharaj et al. 2018 for
more information.

|ηs| =
∣∣∣∣∣
RT
βF

lni0 −
RT
βF

ln
( I

A

)∣∣∣∣∣, (1.4)

where I is the current in the system, A is the electrode-electrolyte
area7, i0 is the exchange current density which is unique to the catalyst 7 The area of the electrode exposed to

electrolyte is equal to total area of elec-
trode (A) only when bubbles are absent.
In the presence of the bubbles, the elec-
trode in contact with electrolyte reduces
to A(1 − Θ), where Θ indicates the bub-
ble coverage, see Leistra and Sides 1987.

used at the electrode, β is transfer coefficient of the reaction (usually
set to 0.5) and RT/(βF), known as Tafel slope8, provides insight into

8 The negative and the positive sign of
the Tafel slope is omitted for simpler
representation. Please refer to Shina-
gawa et al. 2015, Anantharaj et al. 2018

for details of the Tafel slopes for anodic
and cathodic reactions.

the mechanism of the electrochemical reactions [Shinagawa et al., 2015,
Anantharaj et al., 2018].

The Nernst equation relates the change in potential as a result of the variation
of temperature and concentration. For example, the potential of cathode for
HER during acidic water electrolysis is

Ec = E0
c −

RT
nF

ln

(
a(H2)

a(H+)2

)
, (1.5a)

where n is equal to 2 for HER, E0
c is the reversible potential of the H+ reduction

reaction at cathode whereas a(H2) and a(H+) are the activities of H2 and H+

[Coutanceau et al., 2018]. Activities of a dissolved species x, a(x), can be written
as γxC∗

x where C∗
x is the dimensionless molar concentration of x (normalized

using concentration value measured at standard conditions like 1 atm) and γx
is the corresponding activity coefficient [Kolasinski, 2016, Burheim, 2017]. As
the activity coefficient is equal to unity for ideal solutions [Kolasinski, 2016,
Burheim, 2017], a(H+) is assumed to be constant between the supersaturated
and saturated cases, a(H2)/a(H2|sat) can be written as C/Csat and the change
in Ec due to supersaturation of H2 can be calculated (assuming a reference state
as the saturation condition which occurs away from the electrode) as

|ηC | =
∣∣∣Ec − Ec|sat

∣∣∣

=
RT
nF

∣∣∣∣∣ln
(

a(H2)

a(H2|sat)

)∣∣∣∣∣ =
RT
nF

∣∣∣∣∣ln
(

C
Csat

)∣∣∣∣∣.
(1.5b)

Due to the supersaturation9 of the electrolyte near the electrode 9 The supersaturation of electrolyte with
hydrogen due to electrochemical reac-
tions as reported in literature are: 8-24

[Westerheide and Westwater, 1961], 1.5-
19.9 [Glas and Westwater, 1964], and in
the order of 100 [Shibata, 1963]. The
difference in supersaturation reported
in these studies have been attributed
to the estimation based on measure-
ments of bubble growth [Westerheide
and Westwater, 1961, Glas and Westwa-
ter, 1964] and concentration overpoten-
tial [Shibata, 1963] which accounts for
the dissolved gas away and at the elec-
trode surface respectively [Vogt, 1980].
In comparison, more recent studies us-
ing smaller (micro/nano sized) cathodes
during water electrolysis have reported
supersaturation in the range of 300-400

[Yang et al., 2015, Chen and Luo, 2018].

with dissolved gas produced from the electrochemical reactions, the
associated concentration overpotential (|ηC|) can be calculated based
on Eq.1.5b, see Leistra and Sides [1987]. When bubbles are present
at cathode, the interfacial mass transfer driven bubble growth would
reduce the local supersaturation which has been observed to reduce ηC

which subsequently lowers η [Dukovic and Tobias, 1987, Zhao et al.,
2019a,b].

Apart from the impact on overpotential, electrochemical gas evolu-
tion also influences the mass transfer mechanisms due to the enhanced
convection [Zhao et al., 2019b]. In the presence of static bubble, the
dissolved gas has a developed concentration boundary layer at the in-
terface due to the interfacial mass transfer but the radial growth of
bubble and its detachment causes convection which results in the re-
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distribution of the dissolved gas, see [Zhao et al., 2019b]. These modes
of convection due to electrochemical gas evolution is further discussed
in Chapter 4.

As the overall overpotential is a complex function of the fraction
of the electrode covered by bubbles, size of the bubble as well as the
distribution of the dissolved gas, see Eq.1.2, which varies as bubbles
evolves, η and the overall resistance of the system also has temporal
fluctuations. In experimental studies, the detachment of bubble from
the electrode surface is observed to reduce the resistance of the system
which results in increased current under potentiostatic conditions, see
Yang et al. [2015], and decrease in overpotential under galvanostatic
conditions, see Fernández et al. [2014]. As a result, the quick bubble
detachment is critical for increasing the efficiency of water electrolysis,
see Darband et al. 2019.

Broader context for the need to improve the efficiency
of water electrolysis

In order to make hydrogen produced from water electrolysis a vi-
able and green energy vector, it has to be cheaper than the hydro-
gen generated commonly from natural gas and partial oxidation re-
forming, which costs around 1.5e/kg of hydrogen [European Com-
mission, 2020]. With sharply reducing costs of generating electricity
from renewable energy sources, especially wind and solar [IRENA,
2020], along with reducing cost of electrolyzers, see European Com-
mission [2020], sustainably generated hydrogen currently costs around
2.5-5e/kg of hydrogen [European Commission, 2020]. The main

Units AEC PEMEC SOEC

Current density A/cm2
0.1−0.4 0.6−2.0 0.3−2.0

Cell voltage V 1.8−2.4 1.8−2.2 0.7−1.5
Operating pressure bar <30 <200 <25

Operating temperature ◦C 60−80 50−80 650−1000

Production rate m3/h † <760 <40 <40

System energy consumption kWh/m3 ♦
4.5-6.6 4.2-6.6 >4.7

Capital system cost e/kW ‡
1000–1200 1860–2320 >2000

Maturity (scale) - Commercial (large) Commercial (small) Demonstration (lab)
†m3/h represents the volume of hydrogen gas produced per hour.
♦ kWh/m3 represents the electrical energy consumed to produce a cubic meter of hydrogen gas.
‡e/kW represents cost of constructing the system (in Euros) for unit kilo-watt (kW) of electrical energy consumed.

Table 1.3: Comparison of alkaline (AEC),
polymer electrolyte membrane (PEMEC)
and solid oxide (SOEC) electrolyzer cells
characteristics, adapted from Zeng and
Zhang 2010, Chisholm and Cronin 2016,
Schmidt et al. 2017.

performance characteristics of the electrolyzers available today, i.e.
AEC, PEMEC and SOEC, are summarized in Table. 1.3. For hydrogen
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generated by water electrolysis (using energy from renewable energy
sources) to replace or atleast reduce the dependence on fossil fuels,
its price should reduce to around 1.1-2.4e/kg, see European Commis-
sion [2020]. In order to achieve this objective by 2030 as well as cut
green house gas emissions by 50-55%, European Commission [2020]
discusses a strategic roadmap of actions over the years to transition
to a more hydrogen dependent economy and decarbonise different
industries. The roadmap discusses the importance of "upscaling to
larger size, more efficient and cost-effective electrolysers in the range
of gigawatts that, together with mass manufacturing capabilities and
new materials, supply hydrogen to large consumers".

As bubble evolution is one of the source of losses in water elec-
trolyzers, its quick detachment can yield an energy saving of around
10-25% [Darband et al., 2019]. This energy saving can be understood
in terms of voltage efficiency, which is calculated based on Eq.1.2, as

% (Voltage efficiency) =
Erev

E
× 100 =

(
1 − η

E

)
× 100, (1.6)

see Zeng and Zhang [2010]. The voltage efficiency of the industri-
ally used electrolyzers (AEC and PEMEC) is around 60-82% [Schmidt
et al., 2017]. As the presence of bubbles increases η, its removal would
result in reduction of the overpotential and increase the voltage effi-
ciency of the system, based on Eq.1.6. Some of the practically used
strategies to enhance the detachment of the bubbles in electrochemical
systems are based on imposing ultrasonic, super gravity and external
magnetic fields as well as developing superaerophobic surfaces, which
has been reviewed in the recent work by Darband et al. [2019]. So un-
derstanding the underlying physics that govern the bubble evolution
is beneficial in developing newer and optimizing existing strategies to
efficiently remove bubbles during water electrolysis.





Chapter 2:
Modelling electrochemical gas evolu-
tion

In the previous chapter, the importance of understanding the bub-
ble evolution, especially detachment, in improving the efficiency of
water electrolysis is discussed. To create strategies to mitigate the
losses introduced by bubble evolution, a fundamental understanding
of bubble-electrode-electrolyte interface behaviour, which governs the
detachment process, is critical.

Electrode surface

2H+

2H+ H2(d)

Current distribution

Interfacial mass transfer (MS/CS)

H2(g)Electrochemical reactions (AS)

Ion transport (MS)

Bubble nucleation (AS)

Bubble growth (MS/CS)

Bubble detachment (CS)

Convective patterns (CS)

Figure 2.1: Schematic of the multiscale
nature and corresponding physics of
electrochemical gas evolution. The ab-
breviations AS, MS and CS denotes the
atomistic, meso and continuum scale
physics with length and temporal scales
ranging between 1 nm-1 m and 10

−15 s-1
s respectively [Taqieddin et al., 2018].

Although experimental studies on bubble evolution, like Yang et al.
[2018], Fernández et al. [2014], Yang et al. [2015], has shed light onto
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the existence of various hydrodynamic features in electrochemical sys-
tems and physics of phenomena, detailed visualization/measurement
of the local flow parameters (and it temporal variations) can some-
times be difficult to obtain. For example, Particle Tracking Velocimetry
(PTV) has been used to showcase the existence of Marangoni convec-
tion near electrochemical evolution of a single hydrogen bubble [Yang
et al., 2018] but the tracer used in PTV method must be chosen such
that these particles do not contaminate the flow or get absorbed at the
liquid-gas interface [Ziegenhein et al., 2016] additionally this method
is limited in its application to flows with large velocity gradients and
high concentration of tracking particles [Cierpka et al., 2013, Cheminet
et al., 2018]. On the other hand, numerical modelling of the phenom-
ena can provide detailed information of spatial and temporal variation
of the flow parameters that can provide insights into the dynamic na-
ture of the bubble evolution which is invaluable in developing strate-
gies to efficiently detach and remove these bubbles.

Due to the multiscale nature of electrochemical gas evolution, re-
viewed in Taqieddin et al. [2018] and illustrated in Fig.2.1, the spa-
tial and temporal scales that are investigated determine the numer-
ical approach used. For example, atomistic scale processes are typ-
ically investigated with molecular dynamics [Hofbauer and Frank,
2012] and density functional theory [Skúlason et al., 2010] simulations,
whereas continuum scale processes like bubble evolution and inter-
facial mass transfer are usually studied using Computational Fluid
Dynamics (CFD) [Catañeda et al., 2019]. To model mesoscale pro-
cesses, like transport of ions, computational approaches based on Lat-
tice Boltzmann Methods, which are applicable for atomistic to con-
tinuum scales, have been used in works like Gong and Cheng [2013],
He and Li [2000]. As bubble growth and detachment, relevant in wa-
ter electrolysis, are continuum scale phenomena, CFD can be used to
study this process [Taqieddin et al., 2018].

The continuum scale CFD simulations that simulate electrochemi-
cal gas evolution must account for its multiphysics nature: the mo-
mentum transfer caused by the interaction between the phases (mul-
tiphase modelling), interfacial mass transfer along with the associated
bubble growth, charge transport, electrochemical reactions and trans-
port of dissolved gas. The complex and coupled interactions between
the modules is summarized in Fig.2.2. The multiphase modelling ap-
proaches used to treat the interaction between the bubbles and liquid
can be broadly categorized as dispersed phase and interface resolving
methods. The dispersed phase modelling approaches require closure
models to describe the momentum transfer between the phases be-
cause the dispersed phase [Sommerfeld, 2017], i.e. the bubbles, are
not resolved as they are below the mesh resolution, see Fig.2.3. Addi-
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tionally, these closure models typically rely on knowledge of the size
of bubble at detachment as input, see Hreiz et al. [2015b]. On the other
hand, interface resolving (IR) methods, like the Volume of Fluid (VOF)
method, resolves the dynamic behaviour of the interface without any
need to use approximations to describe the momentum transfer [Som-
merfeld, 2017]. As a result IR approach, like the VOF method, can
simulate bubble coalescence, detachement and deformation without
the need for any approximations whereas dispersed modelling tech-
niques requires models, like Fu and Ishii [2003], to account for the
dynamic nature of bubble evolution. In multiphase simulations, dis-
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Flow fields

Bubble-Liquid dynamics Charge transport
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Figure 2.2: Illustration of the multi-
physics nature of electrochemical gas
evolution.

persed phase modelling approaches are typically used to study indus-
trial scale systems where the larger flow patterns are more important
and IR methods are used to study the behaviour of a few bubbles/the
dynamic behaviour of interface in detail [Sommerfeld, 2017]. A few

(a) Dispersed phase modelling approach (b) Interface resolving approach

Figure 2.3: Illustration of the multiphase
modelling approaches where repre-
sents the interface between the gas and
liquid.

examples of the application of IR based approaches are microfluidics
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[Hoang et al., 2013], rising bubbles [Hysing, 2006, Klostermann et al.,
2013], phase change processes [Samkhaniani and Ansari, 2016, Maes
and Soulaine, 2020], as well as the growth and detachment process
of bubbles in submerged orifice [Gerlach et al., 2006, Albadawi et al.,
2013] and in multiphysics process like boiling [Georgoulas et al., 2017].

Although majority of works employ dispersed phase modelling to
model electrochemical gas evolution, see Hreiz et al. [2015b], there has
only been a limited application of IR approach to simulate this process.
These IR approach based works vary in complexity with respect to the
treated multiscale-multiphysics nature of the electrochemcial gas evo-
lution: Wang et al. [2011], Lafmejani et al. [2017], Zhang et al. [2020] ac-
counted for just the multiphase modelling, Liu et al. [2016] simulated
the interfacial mass transfer and bubble growth, and Einarsrud and
Johansen [2012], Einarsrud et al. [2017], Sun et al. [2018] proposed a
multiscale simulation framework but assumed that the larger bubbles
(captured by interface resolved method) grow only via coalescence. In
spite of the advances made by these studies, a full understanding of
electrochemical gas evolution requires accounting for the coupled mul-
tiphysics and multiscale nature of the process which so far has received
less attention, as noted in the recent review by Taqieddin et al. [2018].
Additionally, the CFD modelling of coalescence and detachment pro-
cess during electrochemical bubble evolution has also not been well
investigated, as discussed in the review by Taqieddin et al. [2017].



Chapter 3:
Goals, outline and contributions

Research objectives and scope

The main objective of this PhD is to develop a interface resolved frame-
work, based on the Volume of Fluid (VOF) method, to treat the multi-
physics nature of submillimeter sized hydrogen bubbles during water
electrolysis. As the detailed understanding of the dynamics of inter-
face is critical to elucidate the physics underlying the bubble growth
and detachment, the proposed CFD framework would treat the inter-
face dynamics, charge transport, electrochemical reactions, transport
of dissolved gas as well as interfacial mass transfer and associated
bubble growth. Continuum scale bubbles, in the context of this thesis,
refers to bubbles with diameter in the order of a few hundred microm-
eters or larger which have been observed in experimental works like
Brussieux et al. [2011], Baczyzmalski et al. [2017], Yang et al. [2018],
Bashkatov et al. [2019]. In order to develop the coupled multiphysics
framework, based on the VOF approach, it is necessary to address the
following questions:

• Is it possible to simulate submillimeter sized bubbles with the VOF
method?

• How to simulate the transport of dissolved gas, interfacial mass
transfer and associated bubble growth in VOF method?

• What are the physics relevant to developing a fully coupled frame-
work for continuum scale electrochemical gas evolution?

The proposed framework is developed based on the assumption
that the liquid and gas phases have constant density1 and viscosity to 1 For continuum scale bubbles treated in

this thesis, the Laplace pressure in these
spherical hydrogen bubbles, which can
be calculated as 2σ/R where σ is the sur-
face tension (equal to 0.07 N/m) and R is
the bubble radius, are typically around
140 Pa when R = 1000 µm and 700 Pa
when R = 200 µm. The corresponding
change in density, calculated based on
the ideal gas law, is very small i.e. less
than 1%.

simplify the simulations. The developed approach neglects the effect
of temperature, like ohmic heating, and Marangoni [Yang et al., 2018]
as well as natural [Babu and Das, 2019] convection.

Apart from the main objective stated earlier, the thesis also aims to
present an overview of the physics relevant in electrochemical gas evo-
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lution and review relevant modelling approaches. In order to enable
knowledge transfer and further advancements, the interface resolv-
ing approach employed in the proposed framework is also discussed.
The multiphysics framework developed during the PhD is released to-
gether with this thesis (after the relevant papers are published) [Vacha-
parambil, n.d.].

Outline of the thesis

This thesis comprises of five parts, with each part subdivided into
multiple chapters. An outline of the parts of the thesis are provided
below:

Part I: Introduction

This part introduces the readers to the thesis topic, i.e. hydrogen
production via water electrolysis, then describes the impact the bub-
bles have on the efficiency of the process as well as the importance
of modelling the process. The objective and scope of the thesis is
then stated.

Part II: Multiphysics modelling of electrochemical hydrogen evolution

This part of the thesis provides the readers with an overview of the
relevant physics that underlie the evolution of hydrogen bubbles
from the electrode surface during water electrolysis along with the
numerical approaches required to tackle the multiphysics nature of
the process. Although the goal of the thesis is to model hydro-
gen bubble evolution, modelling techniques reported in literature
to simulate other processes, like gas evolution during aluminium
reduction and pore-scale phenomena, has been included as they
provide invaluable knowledge to achieve the project objectives.

Part III: Introduction to the numerical framework

This part of the thesis, the open source framework, i.e. OpenFOAM®,
and the interface resolving method, i.e. interFoam, used to develop
the proposed framework to simulate hydrogen bubble evolution are
introduced. The thought behind adding this part was to summarize
knowledge gain during the PhD about the implementation of in-
terFoam, which is rather scattered in literature. This knowledge is
relevant when customizing interFoam by adding new functionali-
ties.

Part IV: Contributions

This part starts by highlighting the necessary tasks that must be ad-
dressed to develop the proposed framework by customizing inter-
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Foam. Subsequently, the journal publications and conference pro-
ceedings submitted/published during the PhD duration are sum-
marized to showcase the advances made towards developing the
proposed framework during the PhD research.

Part V: Final thoughts

The final part of the thesis provides conclusions and highlights the
possibilities for future work.

Following these parts of the thesis, appendices and bibliography along
with the appended papers are provided.

List of publications

The thesis is written based on a collection of articles which has been
submitted/published during the PhD. In addition to the journal pub-
lications and conference proceedings, conferences attended during the
PhD have also been mentioned. In these works, Kurian J. Vachaparam-
bil developed the solver, performed the simulations, evaluated and
analyzed the results as well as wrote and submitted the manuscripts.
The co-author in all these works, Kristian Etienne Einarsrud, has con-
tributed by supervising, reviewing of the results, revising manuscripts
and providing suggestions to increase the scientific level of the works.

Primary works

Paper A: K.J. Vachaparambil & K.E. Einarsrud, Comparison of Surface
Tension Models for the Volume of Fluid Method, Processes, 2019, 7,
542.2 2 Vachaparambil and Einarsrud 2019

Paper B: K.J. Vachaparambil & K.E. Einarsrud, On sharp surface force
model: effect of sharpening coefficient, Published in Experimental
and Computational Multiphase Flow, 2020.3 3 Vachaparambil and Einarsrud 2020b

Paper C: K.J. Vachaparambil & K.E. Einarsrud, Numerical simulation
of bubble growth in a supersaturated solution, Applied Mathematical
Modelling, 2020, 81, 690-710.4 4 Vachaparambil and Einarsrud 2020a

Paper D: K.J. Vachaparambil & K.E. Einarsrud, Modeling interfacial
mass transfer driven bubble growth in supersaturated solutions,
AIP Advances, 2020, 10, 105024.5 5 Vachaparambil and Einarsrud 2020c

Paper E: K.J. Vachaparambil & K.E. Einarsrud, On modelling electro-
chemical gas evolution using the Volume of Fluid method, Under
peer-review in 14th International Conference on CFD in Oil & Gas,
Metallurgical and Process Industries.
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Paper F: K.J. Vachaparambil & K.E. Einarsrud, Numerical simulation
of continuum scale electrochemical hydrogen bubble evolution, Sub-
mitted to Applied Mathematical Modelling.

Secondary works

• K.J. Vachaparambil & K.E. Einarsrud, Hydrodynamics of electro-
chemical gas evolution. Presented at NTNU Team Hydrogen Annual
Workshop, Trondheim, 2-3 December 2019.

• K.J. Vachaparambil & K.E. Einarsrud, Spurious velocities in the Vol-
ume of Fluid method: modeling a sub-millimeter bubble, Presented
(poster) at 17th Multiphase Flow Conference and Short Course: Simula-
tion, Experiment and Application, Dresden, 11-15 November 2019.

• K.J. Vachaparambil & K.E. Einarsrud, Explanation of Bubble Nu-
cleation Mechanisms: A Gradient Theory Approach, Journal of The
Electrochemical Society, 2018, 165, E504.66 Vachaparambil and Einarsrud 2018b

• K.J. Vachaparambil & K.E. Einarsrud, Analysis of Bubble Nucle-
ation Mechanisms in Supersaturated Solutions: A Macroscopic Per-
spective, ECS Meeting Abstracts, 2018, MA2018-01 1366.77 Vachaparambil and Einarsrud 2018a
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Chapter 4:
Overview of the underlying physics

Electrochemistry and thermodynamics

In order to understand the underlying electrochemical reactions that
occur during water electrolysis, it is critical to understand the thermo-
dynamics of the process. The overall electrochemical reaction of water
electrolysis, Eq.1.1, involves generation of one mole of hydrogen and
half mole of oxygen from a mole of water. The standard enthalpy of
formation (H0) and molar entropy of the reactants and products (S0)
corresponding to their physical state at standard operating conditions
(pressure of 1 bar and 298 K) are tabulated in Table.4.1. The change in
molar entropy due to reaction (∆S) is calculated as S0

H2
+ 0.5S0

O2
− S0

H2O
to be 0.16 kJmol−1K−1 and the corresponding change in enthalpy (∆H)
is 285.8 kJmol−1. The Gibbs free energy (∆G) for the reaction can be
calculated as ∆H − T∆S to be equal to 237.12 kJmol−1, which shows
that electrolysis of water is non-spontaneous and require external en-
ergy source.

Units H2O (l) H2 (g) O2(g)

H0 kJ mol−1 -285.8 0 0

S0 J mol−1K−1
70.0 130.7 205.2

Table 4.1: Thermodynamic properties of
reactants and products during electroly-
sis of water at 298 K [Haynes, 2011].

Based on the calculated Gibbs free energy, the theoretical minimum
voltage required for water splitting reaction, known as reversible po-
tential for the reaction (Erev), can be calculated as

Erev =
∆G
nF

, (4.1)

where n and F are number of electrons transferred (equal to 2 for HER)
and Faraday’s constant, to be equal to 1.23 V [Coutanceau et al., 2018,
Zeng and Zhang, 2010]. Use of higher temperature for electrolysis re-
duces Erev as the contribution from T∆S increases with temperature,
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as shown by Coutanceau et al. [2018]. Due to the losses, described in
Eq.1.2, the applied potential must be larger than Erev to start electro-
chemical reactions, discussed in Table.1.1.

Bubble nucleation

Due to the continuous electrochemical reactions, the electrolyte in the
vicinity of the electrode ultimately becomes supersaturated. The su-
persaturation ratio (S), which indicates the concentration of the dis-
solved gas that exceeds the saturation condition, is calculated as

S =
C

Csat
, (4.2)

where C is the local concentration of dissolved gas and Csat is the
saturation concentration which is computed based on the Henry’s law
[Henry and Banks, 1803]. In the attempt to regain equilibrium, i.e.
S = 1, the supersaturated electrolyte undergoes ’nucleation’ which
can occur via one of the four modes proposed by Jones et al. [1999].
According to the ’classical theory’, the minimum radii of the nucleated
bubble is calculated as

Rc =
2σ0

(S − 1)P
(4.3)

where P represents the pressure inside the bubble (including the Laplace
pressure) and σ0 is the surface tension of the liquid-air interface at 1

atm, which for pure water is equal to 0.07198 N/m, [Massoudi and
King, 1974, Lubetkin, 2003]. These four nucleation modes, which pro-
vide a mechanistic description of the formation of these bubbles, are
summarized below.

Homogeneous nucleation

Figure 4.1: Illustration of homogeneous
nucleation based on analogous graphics
in Jones et al. 1999.

(a) Before nucleation (b) After nucleation

In homogeneous nucleation, the formation of bubbles occurs ran-
domly in the bulk as shown in Fig.4.1. This nucleation mode occurs
at very high values of S, typically in the order of 100 [Hemmingsen,
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1977]. The homogeneous nucleation is very difficult to observe exper-
imentally, due to high supersaturation required [Liu, 2000]. For in-
stance in electrochemical systems, supersaturation of electrolyte in the
vicinity of the electrode would establish mass transport due to natural
convection which would result in the redistribution of the dissolved
gas [Babu and Das, 2019].

Heterogeneous nucleation

(a) Before nucleation (b) After nucleation

Figure 4.2: Illustration of heterogeneous
nucleation mode based on analogous
graphics in Jones et al. 1999.

The heterogeneous nucleation refers to the bubble formation that
is aided by surface imperfections, as shown in Fig.4.2. The super-
saturation required for this mode of bubble formation is lower than
the homogeneous mode due to smaller nucleation energy requirement
[Liu, 2000]. Once a bubble is formed via heterogeneous nucleation,
a part of the bubble remains attached to the microstructure after the
original bubble grows and detaches. The remaining bubble serves as
a site for pseudo-classical and non-classical nucleation modes [Jones
et al., 1999].

Pseudo-classical nucleation

Figure 4.3: Illustration of the pre-
existing bubbles, whose radii is smaller
than Rc, relevant in pseudo-classical
nucleation mode based on analogous
graphics in Jones et al. 1999.

Pseudo-classical nucleation uses pre-existing bubbles of radii smaller
than the critical radius of nucleation, Eq.4.3, which are present on the
microstructure at the surface or in the bulk, see Fig.4.3. Although
classically speaking bubbles with radii below Rc shrink and disappear,
these bubbles exist in supersaturated solutions due to the reduction on
surface tension due to adsorption of gases at the interface [Lubetkin,
2003]. For example, the surface tension (σ) of water due to adsorption
of hydrogen under saturation condition can be written as

σ = σ0 + bP, (4.4)

where b is dependent of the adsorbed gas which in the case of H2

is equal to −0.0250 dyn/(cm·atm) [Massoudi and King, 1974]. The
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revised critical radius, R∗
c (which is smaller than Rc), for nucleation

can be estimated as

R∗
c =

2(σ0 + bP)
(S − 1)P

=
2σ0

(S − 1)P
+

2b
S − 1

. (4.5)

Apart from these bubbles, the stable nanobubbles, which has radii
smaller than Rc [Attard, 2016], has also been observed to aid in bub-
ble evolution [Hao et al., 2018]. Compared to heterogeneous nucle-
ation, pseudo-classical mode requires lower supersaturation as the
pre-existing bubble reduces the energy barrier [Jones et al., 1999].

Non-classical nucleation

Figure 4.4: Illustration of pre-existing
bubbles, whose radii is larger or equal to
Rc, relevant in non-classical nucleation
mode based on analogous graphics in
Jones et al. 1999.

The pre-existing bubbles, with radii ≥ Rc, which are present on the
surface imperfections and in the bulk (see Fig.4.4) can effectively re-
duce the nucleation energy required to zero [Jones et al., 1999]. This
nucleation mode drives the cyclic evolution of bubbles, even at rela-
tively low supersaturation levels (S ≤ 8) or low current densities (in
the order of 100 A/m2), from the same site on the surface like observed
during gas evolution during water electrolysis [Glas and Westwater,
1964, Brussieux et al., 2011].

Bubble growth, coalescence and detachment

Once a pre-existing bubble is available for the non-classical nucleation,
the bubble grows and coalesce with adjacent bubbles. The evolution
of the single bubble radius (R) can be expressed empirically as

R = Atx, (4.6)

where A, x are the growth coefficient and time coefficient respectively.
The value of x varies across three regimes of bubble growth: inertial
controlled, diffusion controlled and direct injection [Matsushima et al.,
2009, Sakuma et al., 2014, Zhao et al., 2019b]. The first regime is based
on the work by Rayleigh [1917], characterized by x is equal to unity,
is inertial controlled which can be understood as being limited by the
displacement of the surrounding fluid, see Bejan and Kraus [2003].
This growth regime lasts only for fraction of a second and is typically
observed in bubbles smaller than the 0.1 mm, see Matsushima et al.
[2009], Sakuma et al. [2014]. In the second regime of bubble growth,
which is diffusional mass transfer across the interface, is characterized
by time coefficient equal to 0.5 [Scriven, 1959, Burman and Jameson,
1976]. In this regime, the wettability slightly influences the time co-
efficient, due to the dependence of the shape of the bubble on the
contact angle [Sakuma et al., 2014]. The third regime, known as direct
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Figure 4.5: Experimentally observed de-
tachment of a hydrogen bubble dur-
ing water electrolysis under a constant
current density of 7000A/m2 [Brussieux
et al., 2011]. The smaller hydrogen bub-
bles in the figure are formed at the bor-
der of the electrode whereas the bigger
bubbles (which are in the order of few
millimeters) are at the center of the elec-
trode. Reproduced from Brussieux et al.
2011 with permission from Elsevier.

injection, which is characterized by x equal to 1/3 that corresponds to
bubble growth controlled by the electrochemical reactions [Zhao et al.,
2019b, Sakuma et al., 2014, Matsushima et al., 2009]. Apart from mass
transfer driven bubble growth, adjacently growing bubbles can coales-
cence to form a larger bubble which has been observed in electrochem-
ical systems [Westerheide and Westwater, 1961, Brussieux et al., 2011,
Bashkatov et al., 2019].

Once the bubble is large enough the forces due to buoyancy and
convection in electrolyte overcomes the anchoring force (related to the
surface tension and wetting properties) and the bubble detaches, see
Fig.4.5. Additionally, the convection induced by the coalescence of

R

θ90◦ − θde/2

Figure 4.6: Illustration of bubble on a mi-
croelectrode along with the contact angle
(estimated in the liquid). At detachment,
θ is equal to θde and footprint of the bub-
ble is nearly the size of the electrode (of
diameter in the order of few hundred
micrometers) as observed in Fernández
et al. 2014.

bubbles has been proposed, in the recent numerical work by Zhang
et al. [2020], to help in detachment of the merged bubble. A simple
correlation for bubble radius at detachment (Rde), derived in Fernán-
dez et al. [2014], is based on balance of surface tension and buoyancy
forces of a spherical bubble at departure as

4
3

πR3
de∆ρg = 2π

de

2
σsinθde, (4.7a)
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where ∆ρ is the difference in the densities of the electrolyte and bub-
ble1, g is the acceleration due to gravity, θde is the contact angle at1 Typically ∆ρ is expressed as ∆ρ ≈ ρ1,

as the density of the bubble (in the order
of 10

0 kg/m3) can be neglected in com-
parison to the density of the electrolyte
(in the order of 10

3 kg/m3).

detachment and de is the diameter of the electrode, which in the case
of Fernández et al. 2014 is approximately equal to the footprint of the
bubble on the electrode. By rearranging the terms in the above equa-
tion and substituting sinθde as de/(2Rde), based on Fig.4.6, gives

Rde =

(
3d2

e σ

8g∆ρ

)1/4

, (4.7b)

which has been shown to reasonably predict the hydrogen bubble de-
tachment in the work by Fernández et al. [2014]. Another commonly
used formulation, obtained empirically for boiling phenomena, used
in literature to predict detachment size of bubbles in an electrochemi-
cal systems is

Rde = Aθde

√
σ

g∆ρ
, (4.8)

where A is dependent on the experiment, typically reported to be
lower than unity [Brussieux et al., 2011, Vogt and Balzer, 2005]. Apart
from this simple correlation, other works have used more complex ap-
proaches that considers the force balance to account for the effect of
surface tension, buoyancy and other forces to predict detachment ra-
dius of the bubble, see Garcia-Navarro et al. [2019], Zhang and Zeng
[2012], Taqieddin et al. [2017]. As larger current densities cause the
evolution of more bubbles, Vogt and Balzer [2005] proposed a correla-
tion to describe the dependence of bubble coverage of the electrode (Θ)
on i (expressed in A/m2): Θ = (i/iΘ−→1)

0.3, where iΘ−→1 corresponds
to the current density when the electrode is completely covered by
bubbles.

Once the bubble detaches, gas dissolved in the electrolyte is trans-
ported by the various transport modes (see review by Zhao et al.
2019b): diffusion of the reactant from fresh electrolyte after detach-
ment (penetration model developed initially by Adam et al. [1971]),
microconvection due to growth of an adhered bubble (developed by
Stephan and Vogt [1979]) and the convection caused by swarm of ris-
ing bubbles (hydrodynamic model developed by Janssen and Hoog-
land [1970, 1973]). A recent work by Vogt and Stephan [2015] reported
a global correlation to treat the transport associated with penetration,
microconvection and wake (of detached bubble) modes. Apart from
these classical convection modes, related to bubble evolution, which
aids in the transport of the dissolved gas, recent experimental works by
Yang et al. [2018] have reported the existence of Marangoni convection
which generates strong vortex at the foot of the electrochemically gen-
erated hydrogen bubble. Additionally the spatial variations in density,
due to gradients in temperature and supersaturation, produces natural
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convection in electrochemical systems which is dominant when bub-
ble evolution is negligible [Novev and Compton, 2018, Babu and Das,
2019]. These complex flow features, developed as a result of electro-
chemical gas evolution, results in redistribution of the dissolved gas
which in turn influences further bubble evolution.





Chapter 5:
Multiphase flows

In this chapter an overview of both dispersed phase modelling and
interface resolving (IR) methods, which were introduced in Chapter 2,
is presented with emphasis on the latter.

Interface resolving methods

IR methods are typically used when interface dynamics is the topic
of investigation like during bubble growth and detachment. These IR
methods are generally used to understand the flow physics and de-
velop ’engineering type’ correlations for momentum, heat and mass
transfer for specific flow scenarios. The IR methods can broadly be
divided into two approaches: interface tracking and capturing ap-
proaches. Interface tracking, like the moving mesh method, uses a
boundary fitted mesh for each phase and are used typically to sim-
ulate mild deformation of interfaces, see Tuković and Jasak [2012].
In interface capturing approaches, a fixed grid method that does not
track the interface, reconstructs the interface from a scalar field which
represents the phases [Sommerfeld, 2017]. Examples of popular inter-
face capturing approaches are the Volume of Fluid (VOF) [Deshpande
et al., 2012a], Phase Field [Jamshidi et al., 2019, Zhang et al., 2020] and
Level-Set [Sussman et al., 1994] methods. The phase field model re-
lies on the evolution of the phase field parameter, which is computed
based on Cahn-Hilliard equation, to describe the dynamics of the in-
terfacial region of finite thickness [Jamshidi et al., 2019]. The thickness
of the diffused nature of the interface is dependent on the user-defined
value of capillary width which can introduce imbalance in mass if it
is not small enough [Yue et al., 2007]. The level-set methods, which
is based on the advection of a level-set parameter, relies on a reini-
tilization procedure to capture the interface accurately [Sussman et al.,
1994]. Apart from the additional step required to reinitialize the level
set function, the method as proposed by Sussman et al. [1994] has dif-
ficulties in conserving the mass, mainly due to numerical diffusion of
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the solution [Yuan et al., 2018], but improvements to the method have
addressed this, for example, using source terms [Yuan et al., 2018] and
gradient-augmented level set methods [Nave et al., 2010]. The VOF
method, which is based on the advection of a scalar volume fraction,
in principle ensures mass conservation but to obtain a sharp interface
it requires either an algebraic algorithm or sub-cell level reconstruc-
tion of the interface to render a sharp interface [Deshpande et al.,
2012a]. Due to the relative ease to numerically implement and con-
serve mass, VOF is very commonly used to simulate multiphase flows
[Deshpande et al., 2012a, Sommerfeld, 2017, Jamshidi et al., 2019] and
is available in both commercial, such as ANSYS® Fluent® [ANSYS Inc.,
2020] and FLOW-3D® [Flow Science Inc., 2019], and opensource, like
OpenFOAM® [OpenFOAM, 2019], softwares.

The Volume of Fluid method

Proposed initially by Hirt and Nichols [1981], the Volume of Fluid
(VOF) method uses a scalar known as volume fraction of liquid (α1) to
distinguish between the phases:

α1(~x, t) =





0 (within gas or Phase 2)

0 < α1 < 1 (at the interface) ,

1 (within liquid or Phase 1)

where α1 can be understood to be a scalar field that represents the frac-
tion of the volume occupied by liquid per unit grid volume. Similarly
the volume fraction of the gas (α2) can be calculated as 1 − α1. The
fluid properties like density and viscosity, χ ∈ [ρ, µ], are determined
as

χ = α1χ1 + α2χ2. (5.1)

The mass conservation of the phases can be written as

∇ · ~U = ṁ, (5.2)

where ṁ is a source term and ~U is the single field description of ve-
locity (shared by both phases). The advection equation for volume
fraction of liquid is

∂α1

∂t
+∇ · (~Uα1) = α1ṁ. (5.3)

To capture the interface, which essentially is a discontinuous α1 field,
the advection of volume fraction is performed with either a computa-
tionally expensive geometric reconstruction method, to render a very
sharp interface in one cell, or a computationally cheaper algebraic
method, which produces a comparatively smeared interface (over 2
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or 3 cells), described further in Deshpande et al. [2012a]. The momen-
tum equation for both phases is described using a single conservation
equation:

∂ρ~U
∂t

+∇ · (ρ~U~U) = −∇p +∇ · µ(∇~U +∇~UT) + ρ~g + ~FST , (5.4)

where ~FST is the volumetric representation of the surface tension force
which is typically modelled with the Continuum Surface Force ap-
proach, as proposed by Brackbill et al. [1992].

The VOF based approaches to study electrochemical gas evolution
can be broadly divided based on the complexity into: (a) pure VOF,
(b) multphysics VOF, (c) hybrid VOF. Studies based on pure VOF, like
Wang et al. [2011], Lafmejani et al. [2017], consider the multiphase
nature of the phenomena by describing bubble evolution by using ap-
propriate boundary conditions to account for bubble growth. The mul-
tiphysics VOF accounts for the works which treat some multiphysics
relevant to electrochemical gas evolution, for example; Liu et al. [2016]
simulated the growth and evolution of a hydrogen bubble due to in-
terfacial mass transfer based on a Sherwood number correlation1. The 1 The use of Sherwood number correla-

tions to compute interfacial mass trans-
fer is further described in Chapter 6.

hybrid VOF refers to works that account mainly for the multiscale
nature of electrochemical gas evolution by simulating the larger bub-
bles with VOF and the sub-grid bubbles modelled using dispersed
modelling approaches. For example, the works by Sun et al. [2018]
and Einarsrud and Johansen [2012], Einarsrud et al. [2017] coupled
sub-grid bubbles, modelled using a Lagrangian approach and pop-
ulation balance model respectively, to the VOF model to enable the
growth of the larger bubble due to coalescence with the sub-grid bub-
bles. Einarsrud and Johansen [2012], Einarsrud et al. [2017] also treated
the charge transport and the electrochemical reactions to estimate the
growth of the sub-grid bubbles.

Dispersed phase modelling

As dispersed phase modelling approaches do not resolve the gas bub-
bles, the information lost about these dispersed bubbles are incorpo-
rated in the governing equations via closure terms for momentum and
mass transfer. These closure terms are often flow scenario specific, for
example the computation of drag force on a moving spherical bubble
is dependent on Reynolds number of the associated flow and knowl-
edge on the bubble size, see Yeoh and Tu [2010], Liu et al. [2018a],
Hreiz et al. [2015b]. Readers interested in the mathematics underlying
the use of averaging technique to derive the governing equations for
this approach should refer to books like Drew and Passman [1999] or
Yeoh and Tu [2010]. In this section, the final forms of the averaged
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governing equations2 are provided along with a few examples of its2 To reduce complexity in representation,
the averaged variable differs from the
variables used in VOF by a different sub-
script, i.e. c and d for continuum and
disperesed phases respectively.

applications to electrochemical gas evolution, see Hreiz et al. [2015b],
Catañeda et al. [2019] for review.

Euler-Euler

The averaged mass conservation equation can be described as

∂

∂t
(ρkαk) +∇ · (ρkαk~Uk) = Ṙk, (5.5)

where αk is the averaged volume fraction and Ṙk describes the source
term of the dispersed (d) or continuum (c) phases based on k. The
averaged momentum equation for the phase k is

∂

∂t
(ρkαk~Uk) +∇ · (ρkαk~Uk~Uk) = −αk∇p + αkρk~g

+∇·
[

µkαk

(
∇~Uk +∇~UT

k

)]
+ Ṙk~Uk + ~Finter

k ,
(5.6)

where p is the shared pressure between the phases, µk is the sum
of molecular and turbulent dynamic viscosities, ~Finter

k represents the
momentum transfer between the phases and Ṙk~Uk is the momentum
due to mass sources. The momentum transfer between the phases
typically accounts for

• Drag, which opposes the motion of bubbles in liquid [Deen et al.,
2001, Yamoah et al., 2015],

• Lift, which is experienced by bubbles due to rotation or shear flow
[Deen et al., 2001, Yamoah et al., 2015],

• Added/virtual mass, accounts for the the work required to acceler-
ate the liquid as a result of the acceleration of the dispersed bubble
[Deen et al., 2001],

• Wall lubrication, caused by the pressure difference experienced by
the bubble as it travels close to the wall [Yamoah et al., 2015].

• Turbulent dispersion, accounts for the effect of turbulence on bub-
bles [Liu et al., 2018a],

which are calculated based on some degree of approximation [Deen
et al., 2001, Yamoah et al., 2015, Liu et al., 2018a].

The application of Euler-Euler method to simulate electrochemi-
cal gas evolution during water electrolysis typically treat momentum
transfer due to forces like drag, lift and turbulent dispersion but vary
with respect to the assumption of bubble size used in the simulations.
Works like Liu et al. [2018a], Alexiadis et al. [2012] and Mat et al. [2004]
assume that the bubbles are of a constant size which leads to ignoring
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the effects of bubble coalescence and breakup. In order to obtain the
variations in bubble sizes, works like Liu et al. [2018b] and Zhan et al.
[2018] coupled the Euler-Euler model with interfacial area concentra-
tion and population balance models, which relies on approximations
to describe the coalescence and breakup of bubbles [Wang et al., 2005,
Fu and Ishii, 2003].

Mixture

A simpler variant of the Euler-Euler approach, known as the Mixture
model, is based on the approximation that complex interactions be-
tween the phases would cancel out if the mixture is considered, for
instance ∑ Rk = 0 [Sommerfeld, 2017]. The governing equation for
conservation of mass for the mixture of phases is

∂

∂t
(ρm) +∇ · (ρm~Um) = 0, (5.7)

where the ρm and ~Um are defined in

χm = ∑ αkχk where χ ∈ [ρ, µ], (5.8a)

ρm~Um = ∑ αkρk~Uk. (5.8b)

The momentum conservation equation for the mixture is

∂

∂t
(ρm~Um) +∇ · (ρm~Um~Um) = −∇p + ρm~g

+∇·
[

µm

(
∇~Um +∇~UT

m

)]
−∇ · ∑ αkρk~Ukm~Ukm,

(5.9)

where ~Ukm = ~Uk − ~Um is the relative slip between the phase k (which
represents continuous fluid (c) and dispersed phase (d)) and the mix-
ture [Sommerfeld, 2017, Sanyal et al., 1999]. In the special case when
~Ukm is equal to zero, the approach is known as homogeneous mixture
model [Sommerfeld, 2017]. Additionally, mixture model uses a con-
servation equation for the dispersed phase (represented by subscript
d) which is expressed as

∂

∂t
(ρdαd) +∇ · (ρdαd~Um) = Ṙd −∇ · (αdρd~Udm), (5.10)

where Ṙd is the generation of the gas bubble at the electrode [Sanyal
et al., 1999].

The mixture model has been used to simulate the electrochemical
gas evolution during water electrolysis, with non-zero ~Ukm (which is
modelled using closure terms that accounts for momentum transfer be-
tween phases) along with the assumption of constant size of bubbles,
in works like Wedin and Dahlkild [2001], Dahlkild [2001], Schillings
et al. [2015].
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Euler-Lagrange

In this approach, the Euler approach is used to treat the continuous
fluid (represented by subscript c) but the individual dispersed bubbles
are computed using Lagrangian approach. The averaged continuity
equation is described as

∂

∂t
(ρcαc) +∇ · (ρcαc~U) = Ṙc, (5.11)

where αc and ~U are the averaged volume fraction and the velocity of
the continuous fluid respectively, and Ṙc is the source term which ac-
counts for the bubble growth, see Taqieddin et al. [2017], Battistella
et al. [2018]. The averaged momentum conservation equation for con-
tinuous phase can be described as

∂

∂t
(ρcαc~U) +∇ · (ρcαc~U~U) = −αc∇p + αcρc~g

+∇·
[

µcαc

(
∇~U +∇~UT

)]
+ ~Finter,

(5.12)

where ~Finter accounts for the momentum transfer between liquid and
the Lagrangian bubbles and µc accounts for both molecular as well as
turbulent viscosities of the continuous phase [Taqieddin et al., 2017,
Battistella et al., 2018]. For the dispersed phase, which are treated in
a Lagrangian approach, the velocity, position, volume and density of
individual bubble are represented by~vb, ~xb, Vb and ρb respectively. The
Lagrangian tracking of the individual bubble is based on governing
equations for particle velocity, position and volume as

ρbVb
d~vb
dt

= ∑~F − ρb
dVb
dt

~vb, (5.13a)

d~xb
dt

= ~vb, (5.13b)

ρb
dVb
dt

= Ṙb, (5.13c)

where Ṙb accounts for the bubble growth due to mass transfer and
∑~F accounts for net force acting on the bubble [Taqieddin et al., 2017,
Battistella et al., 2018].

The Euler-Lagrange based approach has been used in works like
Philippe et al. [2005], Hreiz et al. [2015a] to simulate the bubble evo-
lution during water electrolysis where the variations in the bubble
size during evolution due to growth, coalescence and breakup are ne-
glected. Similarly, the work by Nierhaus et al. [2009] simulated the
effect of bubble evolution with polydispersed sizes in a rotating disk
during water electrolysis.



Chapter 6:
Electrochemical reactions and bubble
growth

Charge transport and electrochemical reactions

In single phase flow, the flux of cations and anions in a bubble free
electrolyte, can be described using the Nernst-Planck equation:

~N± = − F
RT

z±C±D±∇Φ − D±∇C± + C±~U, (6.1)

where the first, second and last terms represents the movement of the
ions driven by potential difference, diffusion and convection respec-
tively. In Eq.6.1, F is the Faraday’s constant, RT is the product of the
universal gas constant and temperature, z± is the charge, D± is the
diffusion coefficient of the ions in the solution, Φ is the potential ap-
plied at the electrodes and C± is the concentration of the ions. The
current density is calculated as

~i = Fz−~N− + Fz+~N+. (6.2)

The governing equation for conservation of charge, known as Gauss’
law (of the Maxwell’s equations of electromagnetism), is

∇ ·~i = 0. (6.3)

In order to solve Eq.6.3, an additional transport equation of the anions
and cations, based on Eq.6.1, in a single phase can be described using
the Nernst–Planck equation as

∂C±
∂t

= ∇ · ~N±. (6.4)

As Eq.6.3 and Eq.6.4 are coupled, they are solved using a iterative
methods with individual transport equation for each ions that is being
modelled, see Litrico et al. [2017]. This approach is typically used in
single phase flow applications like in electrochemical copper deposi-
tion [Litrico et al., 2017].
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Due to the complexity in extending these ion transport equation for
multiphase flows, whereas interfacial jump conditions1 are relevant,1 The interfacial jump conditions for dis-

solved species is further discussed in
Eq.6.10a and Eq.6.10b.

a simpler alternative can be obtained by assuming electroneutrality
which neglects the temporal and spatial gradients of C±. This approx-
imation allows Eq.6.2 to be simplified to get Ohm’s law:

~i = −Γe∇Φ, (6.5)

where Γe describes the conductivity of the pure electrolyte, derived
from Eq.6.1 and Eq.6.2 based on the assumptions used in this ap-
proach, as

Γe =
F2

RT

(
z2
+D+C+ + z2

−D−C−
)

. (6.6)

In the presence of bubbles, which are insulating, the effective conduc-
tivity of the electrolyte is lower than Γe, which can be estimated using
the correlations available to literature, see Table.1.2. When using in-
terface resolving methods, Γe is replaced with Γ in Eq.6.5 and then
combined with Eq.6.3 to get

∇ · (Γ∇Φ) = 0, (6.7)

where Γ can be computed as the arithmetic mean [Einarsrud and Jo-
hansen, 2012], analogous to Eq.5.1, and harmonic mean [Einarsrud
et al., 2017], analogous to Eq.6.13, of the individual phase conductivi-
ties.

Once the current density (~i) is known at the electrode surface, the
electrochemical gas reaction can be modelled based on Faraday’s law
of electrolysis [Ehl and Ihde, 1954] as

Rh =
|~i|
nF

, (6.8)

where Rh is the rate of production of dissolved gas per unit area and
n is the number of electrons transferred for the reaction, which for the
hydrogen evolution reaction (HER) is equal to two.

Dissolved gas transport

For an incompressible single phase flow, the transport of the species,
which does not modify the flow, can be written as

∂C
∂t

+∇ · (~UC) = ∇ · D∇C +Sc, (6.9)

where ~U is the velocity of the single phase, Sc is the source/sink term
for the dissolved gas, C and D represents the molar concentration and
diffusion coefficient of the dissolved species. When compared to single
phase flows, the species transport in a two phase systems must account
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for the jump conditions across the interface for the fluxes (Eq.6.10a)
and concentration (Eq.6.10b):

J(−Di,j∇Ci,j) ·~nK = 0, (6.10a)

Ci,2 = HeiCi,1, (6.10b)

where the squre brackets are used to represent the interfacial jump, Di,j

and Ci,j represent the diffusion coefficient and molar concentration of
dissolved gas (i) in phase j respectively, ~n is the unit normal vector to
the interface, and Hei is the non-dimensional partition coefficient that
describes the concentration jump across the interface [Deising et al.,
2016, Falcone and Marschall, 2017].

In order to satisfy the interface conditions, the governing equation
that is used to describe the species transport in two phase systems can
be categorized into single and two field approaches. The two field ap-
proach distinguishes between the species present in individual phases
and computes the transport species for each phase as

∂Ci,j

∂t
+∇ · (~UjCi,j) = ∇ · Di,j∇Ci,j + Si, (6.11)

where Si is a source/sink term. Eq.6.11 is solved in each phase in-
dividually with the interfacial constraints, described in Eq.6.10a and
Eq.6.10b, applied as boundary condition for both the phases, see We-
ber et al. [2017], Falcone and Marschall [2017].

The alternative to the two field approach is the single field model
which treats the concentration in both phases and the interfacial condi-
tions in a single unified governing equation. The single field approach
proposed by Haroun et al. [2010], which was later called the Contin-
uum Species Transfer (CST)2 approach [Marschall et al., 2012, Deising
et al., 2016], computes the distribution of dissolved species Ci (in both
phases) based on 2 Readers interested in the derivation of

the CST approach should refer to Deis-
ing et al. 2016.∂Ci

∂t
+∇ · (~UCi) = ∇ ·

(
D̂i∇Ci −

1 − Hei
α1 + α2Hei

D̂iCi∇α1

)
+ Si, (6.12)

where D̂i is the harmonic mean of the diffusion coefficients of the
species (Di,j) determined as

D̂i =
Di,1Di,2

Di,2α1 + Di,1α2
. (6.13)

The CST approach has been used to simulate mass transfer in a liquid
film [Haroun et al., 2010], bubbly flows [Deising et al., 2016, Marschall
et al., 2012] and flow through porous media [Graveleau et al., 2017].
This approach has been shown to generate errors in predicting the in-
terfacial jump when local convection, near the interface, is greater than
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diffusion [Yang et al., 2017]. To address this numerical error reported
by Yang et al. [2017], Maes and Soulaine [2018] proposed a Compres-
sive Continuum Species Transfer (C-CST) model:

∂Ci
∂t

+∇ · (~UCi) = ∇·
(

D̂i∇Ci −
1 − Hei

α1 + α2Hei
D̂iCi∇α1

)

−∇ ·
(

1 − Hei
α1 + α2Hei

α1α2~UrCi

)
+ Si,

(6.14)

where ~Ur is compressive velocity used in algebraic VOF method, which
will be discussed in Chapter 8.

Although both single and two field models can treat interfacial mass
transfer and account for interfacial conditions, the latter (which is com-
putationally more expensive) must be used along with VOF methods
that use geometric reconstruction method (that produce very sharp in-
terface) whereas the computationally cheaper former approach can be
used with algebraic VOF methods in order to avoid artificial species
transfer, see Deising et al. [2016].

Supersaturation driven bubble growth

Due to the supersaturation of the liquid by the dissolved gas in the
vicinity of the bubble, the mass transfer across the interface will result
in the bubble growth. The driving force for the interfacial mass trans-
fer can be computed by either using the phenomenological Fick’s 1

st

law or case specific Sherwood number (Sh) correlations.
The Fick’s 1

st law based approach, can be understood based on the
interfacial jump condition described in Eq.6.10a which ensures that the
amount of species i that is transferred across the interface is conserved.
So the local driving force (j) as a result of the presence of supersatu-
rated liquid in the vicinity of interface can be computed as33 Eq.6.15 is based on the assumption that

the concentration gradient in the tangen-
tial direction to the interface is negligi-
ble. This approximation is used by Deis-
ing et al. 2016 to derive CST model, de-
scribed in Eq.6.12.

j = MiDi,1|∇Ci|, (6.15)

where ∇Ci the gradient of the concentration of the dissolved gas and
Mi is the molar mass of dissolved species (i). Due to the universal-
ity of Fick’s 1

st law, this approach can provide a generic approach to
model supersaturation driven bubble growth given ∇Ci is calculated
accurately, which requires the concentration boundary layer to be well
resolved.

Another commonly used approach, computes the local driving force
(j) using Sherwood number4 (Sh) based correlations as4 Sh is a dimensionless number which is

defined as the ratio of convective to dif-
fusive mass transfer.

j = Mik(Ci − Csat) =
Di,1Sh

L
Mi(Ci − Csat), (6.16)
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where L is the characteristic length scale (specific to flow scenario),
k is the mass transfer coefficient and Sherwood number correlation,
according to Deising et al. [2018], can be expressed as 5

5 In the limit Re −→ 0, for a spherical par-
ticle/bubble in a stagnant fluid, Eq.6.17

reduces to Sh = 2, see Villadsen et al.
2011 for derivation.

Sh = 2 + aRebScc (6.17)

where Re and Sc are the Reynolds number6 and Schmidt number7
6 Re is a dimensionless number which is
defined as the ratio of inertial to viscous
forces, equal to U∞ L/ν1 where U∞ is the
characteristic velocity of the flow condi-
tion and ν1 is the liquid kinematic vis-
cosity.
7 Sc is a dimensionless number which is
defined as the ratio of kinematic viscos-
ity of liquid to diffusion coefficient of the
dissolved gas in liquid.

respectively. As Re and L are flow specific, Sh and the correspond-
ing driving force (j) are decided based on a priori knowledge of the
phenomena. A few examples of Sh correlations reported in literature
along with the applicable flow scenario is tabulated in Table.6.1. Read-
ers interested in overview of Sh correlations available in literature can
refer to works like Deising et al. [2018], Taqieddin et al. [2018] and
Griffith [1960].

Sh correlation Applicable flow scenario Reference

Sh = 2 + 0.6515
√

ReSc For small mass transfer from spher-
ical bubble in a creeping flow
(Re << 1)

Bird et al. 2006

Sh = 2√
π

√
ReSc f (E), where f (E) = 0.524 +

0.88E − 0.49E2 + 0.086E3 and E is aspect ratio

For rising oblate bubbles, 500 <

Re < 1000, Sc > 100 and 1 ≤ E ≤ 3
Figueroa-Espinoza and Leg-
endre 2010

Sh = 2 + 0.6Re1/2Sc1/3 Evaporation of droplets (0 ≤ Re ≤
200)

Ranz and Marshall 1952

Table 6.1: Few examples of various Sher-
wood number correlations available in
literature.

Although Fick’s 1
st law is universally applicable, this approach can

at times be computationally expensive due to the need to resolve the
concentration boundary layer. On the other hand, Sherwood number
based correlations, which are computationally cheaper as the gradient
calculation is circumvented, has limited applicability as they are valid
for specific flow scenarios. Despite the pros and cons associated with
each of these approaches, both Fick’s 1

st law [Maes and Soulaine, 2020]
and Sh based correlation [Liu et al., 2016] has been used to model the
change in the size of bubbles due to interfacial mass transfer.





Part III

Introduction to the
numerical framework





Chapter 7:
Overview of OpenFOAM® and the
Finite Volume Method

In order to simulate the multiphysics nature of electrochemical hydro-
gen evolution, the numerical framework used must be able to treat the
relevant physics. As interface resolving modelling capabilities are al-
ready available in popular CFD codes, like ANSYS® Fluent® [ANSYS
Inc., 2020], FLOW-3D® [Flow Science Inc., 2019] and OpenFOAM®

[OpenFOAM, 2019], implementation of other numerical techniques
and governing equations would require customization of the frame-
work. In contrast to commercial CFD codes, like ANSYS® Fluent®

[ANSYS Inc., 2020] and FLOW-3D® [Flow Science Inc., 2019], the open
source nature of OpenFOAM® [OpenFOAM, 2019] allows the user to
access the source code and modify it, which makes it an ’ideal starting
point’ to develop the proposed framework.

OpenFOAM® or Open Source Field Operation and Manipulation is
a framework, written in C++, to develop applications to solve contin-
uum mechanics (especially fluid dynamics related) problems [Open-
FOAM, 2019]. This framework was initially developed by Weller et al.
[1998] and subsequently released as open source code in 2004. The
OpenFOAM® framework, out-of-the-box, provides a suite of solvers
and utilities which can be used/customized by the users. The solvers
are generic applications that can simulate a multitude of fluid flow sce-
narios like incompressible (icoFoam), compressible (rhoPimpleFoam),
multiphase modelling based on interface resolved (interFoam) and dis-
persed phase (twoPhaseEulerFoam), combustion (fireFoam) and heat
transfer (buoyantPimpleFoam) flows [Greenshields, 2019]. Utilities
are used for pre/post processing like to generate/manipulate/import
meshes, parallel processing and extract data from simulations [Green-
shields, 2019]. The results from the simulations can be post-processed,
by default, using ParaView [Kitware Inc., 2020], an open-source visu-
alization application.

OpenFOAM® employs the finite volume method (FVM), which is



64 interface resolved simulations of continuum scale electrochemical hydrogen

evolution

a common method used in commercial CFD software like ANSYS®

Fluent®, to solve the relevant governing equations. This method is
based on dividing the computational domain into small control vol-
umes based on the user defined mesh, then describing the governing
equation on the control volume in its discretized form, which is then
solved to obtain the solution. Each of these small control volumes
have a cell center and faces, like shown in Fig.7.1. The implementa-
tion of finite volume method in OpenFOAM® uses a co-located ap-
proach to store the flow variables (like pressure and velocity) at the
cell center. In order to address the ’checker-board’ problem which
arises from using the co-located approach [Versteeg and Malalasekera,
2007], OpenFOAM® employs a solution procedure that uses the values
of the relevant flow variables at the cell face of the control volume, by
interpolation.

Cell center

Cell face

Figure 7.1: Schematic of dividing the
computational domain into small control
volumes (cells).

In this chapter, the finite volume method, in OpenFOAM®, is il-
lustrated using an example of governing equation of species trans-
port in a single phase flow, Eq.6.9. This chapter is by no means a
comprehensive description of the method but merely an overview to
aid readers in understanding the settings and its implementation used
while setting up simulations using this framework. For readers inter-
ested in understanding finite volume method and its implementation
in OpenFOAM® can refer to books like Versteeg and Malalasekera
[2007] and Holzmann [2017] respectively.

Illustration of the Finite Volume Method in OpenFOAM®
P Nf ~S f

Figure 7.2: Illustration of a control vol-
ume used in the calculation, highlighted
in red, along with its neighbouring cell
whose cell center is represented by N
and common face by f .

Before going into FVM and the solution methodology, let us revisit the
control volume. Each control volume has a cell center (denoted by P)
along with a volume of V and say a neighbouring cell (which has a cell
center denoted by N) with which it shares a common face (denoted by
f ) whose surface area vector is represented by ~S f , as shown in Fig.7.2.

To show the solution methodology used by finite volume method,
the governing equation for the species transport in a single phase flow
with a source term (Sc), based on Eq.6.9, is written as

∂C
∂t

+∇ · (~UC) = ∇ · D∇C +Sc. (7.1)

1 f v S c a la rMatr ix CEqn
2 (
3 fvm : : ddt (C)
4 + fvm : : div ( phi , C)
5 − fvm : : l a p l a c i a n (D, C)
6 − Gc
7 ) ;
8 CEqn . solve ( ) ;

Listing 7.1: Illustration of implementing
the species transport equation in single
phase flow.

In OpenFOAM®, the flow parameters, which are scalars (like C) or
vectors (like ~U), are both saved at cell centers using volScalarfield

and volVectorfield, see OpenCFD [2020]. Compared to the flow pa-
rameters, D is defined as a dimensionedScalar which is ’looked up’
during run time from the case files whereas the source term Sc, which
is defined as a volScalarfield as Gc in Listing.7.1, is computed based
on the relevant physics. For this example, ~U in Eq.7.1 is assumed to
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be a known vector field which can either be user defined or obtained
at the previous time step.

OpenFOAM® uses ’equation
mimicking’ to implement the
governing equation, Eq.7.1, see
Listing.7.1. To temporally im-
plicitly and explicitly treat each
term in the governing equa-
tion, these terms must be
implemented using fvm and
fvc namespaces respectively
[OpenCFD, 2020]. Both these
namespaces contains functions
like ddt, div and laplacian to
perform time derivative, diver-
gence and laplacian operations
respectively [OpenCFD, 2020].

The numerics behind running Listing.7.1 is presented briefly to il-
lustrate the underlying idea of the finite volume method. Eq.7.1 is first
integrated over the control volume and time to get

∫ t+δt

t

[ ∫

V

∂C
∂t

dV+
∫

V
∇ · (~UC)dV

]
dt =

∫ t+δt

t

[ ∫

V
∇ · (D∇C)dV +

∫

V
ScdV

]
dt.

(7.2)

Using Gauss’s theorem, the volume integrals of second and third terms
in Eq.7.2 can be converted to surface integrals, based on control vol-
ume illustrated in Fig.7.2, as

∫

V
∇ · (UC)dV =

∫

S
d~S · (~UC) ≈ ∑

f

~S f · (~U f C f ), (7.3a)

∫

V
∇ · (D∇C)dV =

∫

S
d~S · (D∇C) ≈ ∑

f

~S f · (D f∇ f C), (7.3b)

where subscript f represents the interpolated value at the face. phi,
used in Listing.7.1, corresponds to scalar volume flux field computed
as ~U f · ~S f . The central differencing method to obtain the interpolated
value of C f is

C f = lxCP + (1 − lx)CN , (7.3c)

where lx is equal to
|~X f −~XN |

|~X f −~XN |+|~X f −~XP |
and ~Xi represents the vector rep-

resenting location of the cell centers (P and N) and cell face ( f ), see
Rusche [2003]. ∇ f C is the cell face value of ∇C. The term ~S f · ∇ f C, in
Eq.7.3b, is calculated as

~S f · ∇ f C = |~S f |
CN − CP

|~d|
, (7.3d)

where ~d is calculated as ~XN − ~XP [Rusche, 2003]. It should be noted
that Eq.7.3d is valid only when ~S f and ∇ f C are parallel, which occurs
in an orthogonal mesh. When a non-orthogonal mesh is used, i.e.
~S f · ∇ f C 6= |~S f |(CN − CP)/|~d|, correction terms are used to ensure
the accuracy of the term, see Rusche [2003]. The last term in Eq.7.2,
volumetric integral of source term can be written as

∫

V
ScdV = ScV, (7.4)

where Sc is equal to (1/V)
∫

V ScdV. In order to solve Eq.7.1, initial
and boundary conditions are required. The boundary conditions used
in simulations can be broadly divided into the Dirichlet, which is im-
plemented as fixedValue, and von Neumann, which is implemented
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as fixedGradient, conditions [Greenshields, 2019]. The implementa-
tion of boundary conditions are further described in Rusche [2003].
Finally, the volume integral of temporal term can be expressed based
on Euler time stepping as

∫

V

∂C
∂t

dV =
Cn

P − Cn−1
P

∆t
V, (7.5)

where n and n − 1 represent the current and the previous time steps.
The initial conditions required to solve the species transport equation
corresponds to data at t = 0. Substituting Eq.7.3a, Eq.7.3b, Eq.7.4 and
Eq.7.5 in Eq.7.2 gives

∫ t+∆t

t

[
Cn

P − Cn−1
P

∆t
V+∑

f
(~S f · ~U f )C f

]
dt =

∫ t+δt

t

[
∑

f

~S f · (D f∇ f C) +ScV

]
dt.

(7.6)

The temporal treatment of the convective, diffusive and source terms
in the above equation can be done implicitly (which uses values of C
at n for spatial terms) or explicitly (which uses values of C at n − 1 for
the spatial terms). For implicit treatment of these terms, Eq.7.6 can be
written as

Cn
P − Cn−1

P
∆t

V + ∑
f
(~S f · ~U f )Cn

f = ∑
f

~S f · (D f∇ f Cn) +S
nV. (7.7)

The time step (∆t) used by the solver is computed based on maximum
Courant number, which must be set to be less than unity, or maximum
time step constraint1. The source term, S

nV, is often written in a1 The time step taken by the solver
(∆t) can be summarized as ∆t =
min

(
∆tCo , ∆tuser

)
, see Greenshields 2019,

where ∆tuser is the user-defined max-
imum permissible time step and ∆tCo
is the time step based on maximum
Courant number (Co) can be understood
to satisfy

Co =
|~U|
X ∆tCo ,

where X is the cell size in the direc-
tion of the flow velocity. Readers inter-
ested in the exact procedure employed
in calculating the time step can refer to
Berberović et al. 2009.

linearized form like (G1Cn
P + G2)V, see Rusche [2003]. Substituting

Eq.7.3c and Eq.7.3d in Eq.7.7 gives

Cn
P − Cn−1

P
∆t

V + ∑
f
(~S f · ~U f )

(
lxCn

P + (1 − lx)Cn
N

)
=

∑
f

(
D f |~S f |

(
Cn

N − Cn
P

)
/|~d|

)
+ (G1Cn

P + G2)V.

(7.8)

The above equation can be rewritten as

V
∆t

Cn
P − V

∆t
Cn−1

P + ∑
f
(~S f · ~U f )lxCn

P + ∑
f
(~S f · ~U f )(1 − lx)Cn

N =

∑
f

(
D f |~S f |Cn

N/|~d|
)
− ∑

f

(
D f |~S f |Cn

P/|~d|
)
+ G1VCn

P + G2V.

(7.9)

The above equation can be rearranged into the form, which considers
multiple neighbouring cells and shared faces, of

aPCn
P + ∑

N
aNCn

N = aP, (7.10)
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where ∑N accounts for the multiple neighbouring cells for the control
volume, whose cell center is denoted by P, and individual terms are
defined as

aPCn
P =

V
∆t

Cn
P + ∑

f
(~S f · ~U f )lxCn

P + ∑
f

(
D f |~S f |Cn

P/|~d|
)
− G1VCn

P,

∑
N

aNCn
N = ∑

f
(~S f · ~U f )(1 − lx)Cn

N − ∑
f

(
D f |~S f |Cn

N/|~d|
)

,

aP =
V
∆t

Cn−1
P + G2V.

Please refer to Chapter 4 in Versteeg and Malalasekera [2007] for addi-
tional details about transforming a governing equation to linear equa-
tion, like Eq.7.10. This linear algebraic equation can be written in ma-
trix form as

[A][C] = [A] (7.11)

where [C] is the column vector associated with the species concen-
tration at the different cell centers in the domain, [A] is the column
vector associated with aP at various cell centers in the computational
domain and matrix [A] consists of diagonal elements formed by aP

and off-diagonal elements based on aN . Additional information about
the matrix form of the system linear algebraic equation can be found
in Rusche [2003].

Due to the computational cost in computing [C] directly as [A]−1[A],
numerical approaches typically determines the solution using either
direct or iterative methods [Rusche, 2003]. Direct methods solve the
matrices in a finite number of matrix operations using algorithms, like
LU decomposition or Gaussian Elimination [Gentle, 1998], which are
computationally expensive for very large matrices [Rusche, 2003]. The
iterative methods, on the other hand, calculate [C] based on the contin-
uous improvement of an initial approximation until a convergence cri-
teria is met [Gentle, 1998, Rusche, 2003]. As iterative methods are com-
putationally economical, most of the solvers available in OpenFOAM®

are iterative [Greenshields, 2019]. The convergence criteria, used in
iterative methods, is based on a reduction of scaled residual with iter-
ations [OpenCFD, 2020]. The iterative procedure is stopped when the
residuals obtained while solving the Eq.7.11 becomes lower than the
tolerance criteria specified by the user.

In order to improve the stability of computations, an under-relaxation
factor can be used. OpenFOAM® allows the use of under-relaxation
factors, set in fvSolution, to control the advancement of flow variables
between iterations [Greenshields, 2019]. This operation can be applied
either on a field or equation using under-relaxation factor (λ ∈ [0, 1]),
see Greenshields [2019]. The under-relaxation of C field is
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Cnew = Cn−1 + λ(Cn − Cn−1) (7.12)

where superscript new is the updated field C [Rusche, 2003]. The field
under-relaxation is implemented in OpenFOAM® as C.relax(). Set-
ting a value of λ equal to zero, the field (C) does not get updated with
iterations [Greenshields, 2019]. The under-relaxation of equation, for
example Eq.7.10, can be expressed as described in Rusche [2003] as

aP
λ

Cn
P + ∑

N
aNCn

N = aP +
1 − λ

λ
aPCn−1

P . (7.13)

Under-relaxation of Eq.7.10, which is represented by Listing.7.1, is im-
plemented in OpenFOAM® as CEqn.relax(). For transient simula-
tions, when λ < 1, Eq.7.12 and Eq.7.13 would update the new solution
based on values from the previous time step which would result in
under-predicting the flow parameters which is being solved. On the
contrary, when under-relaxation factor is used in steady-state simula-
tions, n and n − 1 would represent the iterations towards convergence
[Rusche, 2003].

Further details of the numerical approach used by OpenFOAM® to
solve partial differential equations can be found in Rusche [2003] or
OpenCFD [2020].



Chapter 8:
Overview of the Volume of Fluid solver
in OpenFOAM®

In order to simulate the phenomena of interest in this thesis, inter-
Foam, the interface resolving method based on Volume of Fluid (VOF),
available in OpenFOAM®

6 [OpenFOAM, 2019] which simulates the
behaviour of two isothermal, immiscible and incompressible fluids is
customized based on Fig.2.2. The interFoam solver was first imple-
mented in the initial version of OpenFOAM® framework, proposed by
Weller et al. [1998], during the 1990s by Ubbink [1997]. Since this initial
implementation, interFoam has undergone various changes with re-
spect to the implemented numerical methods. Due to the open source
nature of the solver, it is very popular and has been used out-of-the-
box and customized to successfully simulate a multitude of multi-
phase flow scenarios, see Table.8.1. Due to its widespread use and
application specific verification in literature, a much needed review
of the interFoam solver (included in older versions of OpenFOAM®

framework) was performed by Rusche [2003], Deshpande et al. [2012a],
which provided the knowledge foundation needed for this chapter of
the thesis.

Solver - interFoam Application

Berberović et al. 2009 Out-of-the-box Splashing
Deshpande et al. 2012b Out-of-the-box Jet impingement
Hoang et al. 2013 Modified surface tension model Droplet/bubble microfluidics
Klostermann et al. 2013 Out-of-the-box Rising bubbles
Samkhaniani and Ansari 2016 Added thermal energy transport equation

and relavent phase change source terms
Bubble condensation

Maes and Soulaine 2020 Added species transport equation and
relavent source terms

Shrinkage of rising bubble due to
interfacial transfer of species

Table 8.1: Few examples of studies
which used interFoam, both out-of-the-
box and customized, to simulate multi-
phase flow scenarios.In this chapter, the Volume of Fluid (VOF) method based solver
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available in OpenFOAM®
6, interFoam, is discussed. The sections

within this chapter delve into solution approach used in interFoam
and the limitations of the solver.

Solving the advection of volume fraction

As briefly presented in Chapter 5, the VOF approach uses a scalar
called the volume fraction of liquid (α1) which denotes the fraction
of control volume occupied by the liquid phase. α1 is equal to zero
in the gas phase and unity in the liquid phase whereas 0 < α1 < 1
in the interface region. The volume fraction of the gas (α2), which
occupies the remaining region in the control volume, can be computed
as 1 − α1. The fluid properties, like density (ρ) and dynamic viscosity
(µ), are computed based on volume fraction weighted averaging, see
Eq.5.1.

The governing equation that dictates the transport of volume frac-
tion of liquid is

∂α1

∂t
+∇ · (~U1α1) = 0, (8.1)

which is essentially an advection equation for α1 which is advected
based on the velocity field in liquid phase (~U1). interFoam uses a single
field description of the velocity field (~U), which can be understood as

~U = α1~U1 + α2~U2, (8.2)

where ~U1 and ~U2 are the velocity fields in liquid and gas phase re-
spectively. The relative velocity between the phases (~Ur) is computed
as

~Ur = ~U1 − ~U2. (8.3)

Combining α1×Eq.8.2 and α1(1 − α1)×Eq.8.3 gives

α1~U + α1(1 − α1)~Ur = α1~U1. (8.4)

Eq.8.1 can be written as

∂α1

∂t
+∇ · (α1~U) +∇ · (α1(1 − α1)~Ur) = 0. (8.5)

Eq.8.5, which is referred to as the interface compression approach,
generates an interface which is smeared over 2-3 cells and it belongs
to a class of VOF methods known as algebraic VOF [Deshpande et al.,
2012a]. In the limit of very sharp interface, when α1(1 − α1)~Ur −→ 0,
Eq.8.5 reduces to

∂αi
∂t

+∇ · (α1~U) = 0. (8.6)

Eq.8.6 is usually coupled with an algorithm to geometrically recon-
struct the interface within a cell to preserve its sharpness, this ap-
proach belongs to a class of VOF approach known as the geometric
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VOF, see Cifani et al. [2016]. The additional steps that is involved with
reconstructing the interface in geometric VOF makes this approach
more computationally expensive but they render a much sharper in-
terface (in one cell). The VOF approach employed in interFoam uses
an algebraic VOF method based on Eq.8.5.

When a single field formulation of velocity is used, ~Ur is unknown
and so it is numerically estimated as

~Ur = Cα

∣∣∣∣∣
~U f · ~S f

|S f |

∣∣∣∣∣~n, (8.7)

where ~n is unit normal vector to the interface, ~U f is the interpolated
value of the velocity at the cell face and Cα is a user-defined value
that determines the extent of the interface smearing [Deshpande et al.,
2012a]. The associated scalar flux computed at the cell face, which
is implemented in interFoam as shown in Listing.8.1, is calculated as
~Ur f · ~S f , where ~Ur f is the value of ~Ur at the cell face. Although Cα can
theoretically be set to any value, Cα < 1 renders a very smeared in-
terface whereas Cα > 1 generates errors in interfacial curvature calcu-
lations which results in numerical artifacts in the simulations [Hoang
et al., 2013, Cifani et al., 2016]. An optimal value of Cα, equal to unity,
which generates a reasonably sharp interface and reduces numerical
errors is recommended for multiphase simulations [Hoang et al., 2013,
Greenshields, 2019].

s u r f a c e S c a l a r F i e l d phic ( mixture . cAlpha ( ) * mag( phi/mesh . magSf ( ) ) ) ;
Listing 8.1: Code snippet from al-
phaEqn.H, from the interFoam source
code, in which flux associated with ~Ur
is calculated.

1 i f ( nAlphaSubCycles > 1 )
2 {
3 .
4 .
5 .
6 for
7 (
8 subCycle < v o l S c a l a r F i e l d > alphaSubCycle ( alpha1 , nAlphaSubCycles ) ;
9 ! (++ alphaSubCycle ) . end ( ) ;

10 )
11 {
12 # include " alphaEqn .H"
13 rhoPhiSum += ( runTime . del taT ( ) / t o t a l D e l t a T ) * rhoPhi ;
14 }
15 rhoPhi = rhoPhiSum ;
16 }
17 e ls e
18 {
19 # include " alphaEqn .H"
20 }

Listing 8.2: Code snippet to showcase
the sub-cycling algorithm used to solve
the volume fraction advection equation
in alphaEqnSubCycle.H.

Eq.8.5 is solved using semi-implicit Multidimensional Universal Lim-
iter with Explicit Solution (MULES) algorithm, which is enabled by
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setting MULESCorr to ’yes’, to ensure the boundedness of α1 (between
zero and one) [Greenshields, 2014]. The semi-implicit MULES involves
solving Eq.8.5 by a implicit predictor and explicit corrector method, see
Greenshields [2014]. The interFoam solver allows to sub-cycle Eq.8.5
which allows for smaller temporal increments between the time steps
of n − 1 and n [Greenshields, 2019]. It should be noted that, the sub-
cycling, uses ~U values based on n− 1 time step, as velocity is computed
after α1 is determined. These intermediate time steps are based on the
user-defined value of nAlphaSubCycles [Greenshields, 2019]. Based
on nAlphaSubCycles the number of sub-cycling is decided, see List-
ing.8.2. When nAlphaSubCycles > 1, each sub-cycle is associated with
a time step (∆tsubc) which is computed as ∆tsubc = ∆t/Nsubc, where
Nsubc is the user defined nAlphaSubCycles, otherwise ∆tsubc = ∆t. If
Nsubc > 1, then Eq.8.5 is solved using semi-implicit MULES, in line
12 of Listing.8.2, for each sub-cycle. If Nsubc ≤ 1, Eq.8.5 is directly
computed using semi-implicit MULES in line 19 of Listing.8.2.

Computing the velocity field: Pressure-velocity cou-
pling

The pressure (p) can be rewritten as in terms of a modified pressure
term (prgh), defined as prgh = p − ρ~g · ~x. The use of prgh instead of p
allows for simpler pressure boundary condition [Rusche, 2003]. As the
modified pressure is used, this must be accounted for in the momen-
tum equation (Eq.5.4), which uses gradient of pressure, by

−∇prgh = −∇p +~g ·~x∇ρ + ρ~g (8.8)

The viscous terms in Eq.5.4, ∇ · µ(∇~U +∇~UT), is reformulated1 to a1 See Appendix A for further details of
the reformulation of the viscous terms. numerically efficient (∇ · (µ∇~U) +∇~U · ∇µ), as reported by [Rusche,

2003, Deshpande et al., 2012a, Deising et al., 2016]. Substituting these
simplifications to Eq.5.4 gives the momentum equation as used in in-
terFoam:

∂ρ~U
∂t

+∇ · (ρ~U~U) = −∇prgh +
(
∇·(µ∇~U) +∇~U · ∇µ

)

−~g ·~x∇ρ + σκ∇α1,
(8.9)

where the last term treats the surface tension force based on the Con-
tinuum Surface Force model proposed by Brackbill et al. [1992] using
interfacial curvature (κ) and surface tension (σ). Eq.8.9 can be inte-
grated over a control volume, and divergence terms can be converted
to surface intergrals using Gauss’ theorem to get
∫

V

∂ρ~U
∂t

dV +
∫

S
(ρ~U~U) · d~S = −

∫

V
∇prghdV −

∫

V
~g ·~x∇ρdV

+
∫

S
(µ1∇~U1) · d~S +

∫

V
∇~U1 · ∇µdV +

∫

V
σκ∇α1dV.

(8.10)
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The solution to the momentum equation is obtained by iteratively
correcting a predicted velocity field using the pressure correction step
in the Pressure Implicit with Splitting of Operators (PISO) algorithm
[Issa, 1986]. These iterations are indicated using the superscript m. At
first iteration m = 0 is known from the field values known at time
step n − 1. The first step of the PISO algorithm, based on Issa [1986],
Deshpande et al. [2012a], is to calculate a predicted velocity field (~U∗)
using the temporal, convective and viscous terms of the momentum
equation:

∂ρ~U
∂t

+∇ · (ρ~U~U) =
(
∇ · (µ∇~U) +∇~U · ∇µ

)
(8.11)

which is implemented in interFoam as shown in Listing.8.3. The vis-

1 fvVectorMatr ix UEqn
2 (
3 fvm : : ddt ( rho , U)
4 + fvm : : div ( rhoPhi , U)
5 + MRF. DDt( rho , U)
6 + turbulence −>divDevRhoReff ( rho , U)
7 ==
8 fvOptions ( rho , U)
9 ) ;

Listing 8.3: Code snippet of the UEqn.H
where interFoam constructs descritized
from of Eq.8.11 which is used, in PISO
algorithm, to compute pressure and cor-
rected velocity fields.

cous terms, ∇ · (µ∇~U) and ∇~U · ∇µ, which are accounted via line 6

in Listing.8.3, are treated implicitly and explicitly respectively [Desh-
pande et al., 2012a, Deising et al., 2016]. The descritized form of
Eq.8.11 can be converted to a form similar to Eq.7.10:

AP~U∗
P + ∑

N
AN~Um−1

N = AP, (8.12)

where subscript P and N represents the value stored at the owner’
cell center and neighbour’ cell center respectively. The exact formu-
lation of the matrices AP, AN and H can be found in the work by
Deshpande et al. [2012a]. For ease of writing, Eq.8.12 can be expressed
as AP~U∗

P = H, where H = AP − ∑N AN~U∗
N . The predicted velocity

can be computed as ~U∗
P = H/AP. The flux (~U∗

f · ~S f ), at the cell face,

associated with predicted velocity, ~U∗
P, can be computed as

~U∗
f · ~S f =

(
H
AP

)

f

· ~S f (8.13)

The next step in PISO algorithm is to include the effects of gravity
and surface tension, whose values at current time (n) is known as
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volume fraction equation is solved before PISO algorithm:

~U∗
f · ~S f =

(
H
AP

)

f

· ~S f+

(
(σκ)n

AP

)

f

∇ f αn
1 · ~S f

−
(
(~g ·~x)n

AP

)

f

∇ f ρn · ~S f ,

(8.14)

where ∇ f α1 and ∇ f ρ are the cell face values of gradient of volume
fraction of liquid and density respectively. Eq.8.14 corresponds to line

Listing 8.4: Illustration how interFoam
adds the fluxes associated with gravity
and surface tension to the predicted ve-
locity. This code snippet is obtained
from pEqn.H.

1 s u r f a c e S c a l a r F i e l d phig
2 (
3 (
4 mixture . surfaceTensionForce ( ) − ghf * fvc : : snGrad ( rho )
5 ) * rAUf *mesh . magSf ( )
6 ) ;
7 phiHbyA += phig ;

7 of Listing.8.4. The surface tension force, based on Brackbill et al.
[1992], is computed2 in line 4 of Listing.8.4. In order to compute ~Um

f ·
~S f , the contribution of pressure must be accounted in Eq.8.14:2 The surface tension model, proposed

by Brackbill et al. 1992 is used by
mixture.surfaceTensionForce().
This function is part of the
interfaceProperties.C in
transportModels. The surface ten-
sion force is computed as

~FCSF = σκ∇α1, (8.15a)

where κ is the local interfacial curvature
which is determined as

κ = −∇ ·~n, (8.15b)

where ~n is the unit normal to the inter-
face which is computed as

~n =
∇α1

|∇α1|+ δ
, (8.15c)

where δ is a stabilization value used
to prevent denominator from becoming
zero, and then corrected for the effect of
contact angle at the wall boundaries.

~Um
f · ~S f =

(
H
AP

)

f

· ~S f +

(
(σκ)n

AP

)

f

∇ f αn
1 · ~S f

−
(
(~g ·~x)n

AP

)

f

∇ f ρn · ~S f −
(∇pm

rgh

AP

)

f

· ~S f ,

(8.16)

which can be written as

~Um
f · ~S f = ~U∗

f · ~S f −
(∇pm

rgh

AP

)

f

· ~S f . (8.17)

To compute prgh, the continuity equation, ∇ · ~Um = 0 whose dis-
cretized form is ∑ ~Um

f ·~S f = 0, is imposed on Eq.8.17 to get a pressure-
correction equation:

∑
(∇pm

rgh

AP

)

f

· ~S f = ∑ ~U∗
f · ~S f , (8.18)

which is implemented in interFoam as shown in Listing.8.5. The ~Um.~S f

is calculated by correcting the predicted flux using Eq.8.17 and imple-
mented in the source code as shown in Listing.8.6. The final step of the
PISO algorithm is to calculate the velocity field stored at the cell center
by reconstructing the vectors from the volumetric flux at cell face, see
Deshpande et al. [2012a]. The steps from calculating a predicted veloc-
ity (in Eq.8.11) to reconstructing the velocity vectors from face values
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f vSca larMatr ix p_rghEqn
(

fvm : : l a p l a c i a n ( rAUf , p_rgh ) == fvc : : div ( phiHbyA )
) ;

Listing 8.5: Code snippet from pEqn.H,
from the interFoam source code, in
which the pressure (prgh) is computed
based on Eq.8.18.

of flux are iteratively computed until both velocity and pressure satisfy
both continuity and momentum equations. The number of predictor-
corrector iterations is set by user in nCorrectors, typically to two or
three [Greenshields, 2019]. At the end of the iterative procedure, when
the both pressure and velocity fields have converged, the values at the
final iteration are set to the new time advanced fields at n.

phi = phiHbyA − p_rghEqn . f l u x ( ) ;
Listing 8.6: Code snippet from pEqn.H
which corrects the predicted flux based
on Eq.8.17.

Limitations of the Volume of Fluid method in OpenFOAM®

As discussed previously, interFoam employs interface capturing based
on the interface compression approach, Eq.8.5, which belongs to the
algebraic class that produces an interface which is smeared across
two-three cells. Although this approach is easier to implement and
computationally cheaper, it provides an approximate rendering of the
interface when compared to a more accurate and sharp interface ob-
tained from geometric VOF approach which employs sub-grid level
reconstruction of the interface, see Fig.8.1.

0 0 0.05 1 1

0 0 0.3 1 1

0 0.1 0.75 1 1

0.6 0.9 1 1 1

1 1 1 1 1

0 0 0.05 0.95 1

0 0.05 0.5 0.95 1

0 0.1 0.8 0.95 1

0.6 0.8 0.1 1 1

0.9 0.95 1 1 1

(a) Geometric VOF (b) Algebraic VOF

Figure 8.1: Illustration of the volume
fraction field produced by (a) Geomet-
ric and (b) Algebraic VOF methods with
respect to the physical interface (repre-
sented by ).

In VOF methods, due to the discontinuous change of α1 between
the phases, the interfacial curvature and normal which are computed
based on second and first order derivatives of α1 in Eq.8.15b and
Eq.8.15c are subject to numerical errors [Cifani et al., 2016]. These



76 interface resolved simulations of continuum scale electrochemical hydrogen

evolution

numerical errors are associated with surface tension calculations and
cause the associated pressure jump across the interface to converge to a
value which is different from the analytical solution of the Laplace–Young
equation3 [Deshpande et al., 2012a]. Another source of these numer-3 For a 2D static bubble, the pressure

jump in the bubble as described by the
Laplace-Young equation is computed as
∆p = σ/R, where R is the radius of the
2D bubble.

ical errors is the inconsistent force discretization [Deshpande et al.,
2012a]. These numerical errors, which are important when simulat-
ing surface tension dominant flows [Deshpande et al., 2012a], generate
nonphysical flow near the interface which are commonly referred to
as spurious velocities/currents [Klostermann et al., 2013, Raeini et al.,
2012, Hoang et al., 2013, Samkhaniani and Ansari, 2016]. Spurious ve-
locities adversely affect the accuracy of the simulations by altering the
heat and mass transfer across the interface [Samkhaniani and Ansari,
2016], as well as cause nonphysical flows that can induce ’random
walk’ of a bubble or droplet [Hoang et al., 2013]. The effect of these
spurious velocities has been reported to increase with smaller Capil-
lary4 number [Deshpande et al., 2012a, Hoang et al., 2013]. As a result4 Capillary number (Ca), is a dimension-

less number, which is determined as ra-
tio of viscous forces to surface tension
force. Smaller values of Ca represents
flow scenarios in which surface tension
is dominant.

of these spurious velocities, interFoam cannot simulate bubbles which
are smaller than a millimeter, see Deshpande et al. [2012a], Jamshidi
et al. [2019].

By interpolating the flow variables, which are stored at cell center,
to obtain the corresponding cell face values and performing gradient
calculations at the cell face, interFoam ensures consistent discretization
of pressure gradient, gravitational, surface tension force and velocity
flux, see Eq.8.16 and Eq.8.18. Despite the consistent discretization, the
convergence criterion used to determine prgh , in Eq.8.18, introduces
some force imbalance which can be reduced by setting a very low (in
the order of 10−20) tolerance [Deshpande et al., 2012a]. The balance be-
tween the forces, which would result in negligible amount of spurious
velocities if errors associated with computing interfacial curvature are
negligible, has been showcased for interFoam by using a static bubble
whose radius of curvature was imposed [Deshpande et al., 2012a].

The main source of spurious velocities in interFoam is associated
with errors in curvature calculations, as shown in the work by Desh-
pande et al. [2012a]. In geometric VOF methods, which produce the
interface within a cell, the errors associated in calculating interfacial
curvature based on Eq.8.15b is circumvented by using more advanced
formulations to determine κ, which is based on the sub-cell level geo-
metric representation of the interface (see Renardy and Renardy [2002]
and Guo et al. [2015]). Although spurious velocities has been observed
even when geometric reconstruction of the interface is used, geometric
VOF methods are far superior to algebraic VOF methods as the spuri-
ous velocities generated as several order of magnitude lower [Renardy
and Renardy, 2002, Guo et al., 2015]. Due to the complexity in imple-
menting geometric VOF methods and added computational overhead
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of interface reconstruction [Gerlach et al., 2006], works like Raeini et al.
[2012] and Hoang et al. 2013 have attempted to address spurious ve-
locities by implementing ’different’ surface tension models which are
used with algebraic VOF methods. These methods typically employ
a smoothened α1 to compute κ, there by reducing the errors associ-
ated with the first and second order differentiation of α1, to reduce
spurious velocities by few orders of magnitude when compared to the
out-of-the-box interFoam [Raeini et al., 2012, Hoang et al., 2013].

As discussed in Chapter 8, the solution algorithm in interFoam first
solves the advection of α1, then momentum and continuity equations
are solved together using PISO algorithm. The advection of α1 is based
on the velocity at the previous time step, see Eq.8.5. This means that
the surface tension force, used in the momentum equation, is com-
puted based on the advected α1 from Eq.8.5, as shown in Eq.8.14. This
would lead to the surface tension force remaining constant during the
PISO algorithm as the velocity field gets updated and α1 is not corre-
spondingly advected. This is known as the explicit treatment of the
surface tension model. The explicit treatment of surface tension force
imposes time step constraint to prevent the growth of the generated
spurious velocities, Brackbill et al. [1992],

∆t <

√
ρavg(∆x)3

2πσ
, (8.19)

where ρavg is the average of the fluid densities and ∆x is the grid
spacing. Another time step constraint, based on the work by Galusin-
ski and Vigneaux [2008], dependent on the average dynamic viscosity
of the phases (µavg) is

∆t ≤ 1
2

(
C2τµ +

√
(C2τµ)2 + 4C1τ2

ρ

)
, (8.20)

where C1 and C2 are constants, τµ and τρ are time scales which are

defined as µavg ∆x/σ and
√

ρavg(∆x)3/σ. The work by Deshpande
et al. [2012a] proposed a additional constraint on time step (for inter-
Foam) along with Eq.8.20 to control the evolution of spurious velocities
as

∆t ≤ max
(

C2τµ , 10C1τρ

)
. (8.21)

Deshpande et al. [2012a] also reported that, for interFoam, C1 and C2

(used in Eq.8.20 and Eq.8.21) are equal to 0.01 and 10 respectively.
These time step constraints increase the computational overhead, es-
pecially for ’fine’ meshes, for example a mesh resolution equal to 1 µm
and ρavg /σ around 1000 s2/m3 gives ∆t < 1.2 × 10−8 s (computed
based on Eq.8.19). One of ways to ease this time step constraint is by
implicitly treating the surface tension term, which was hypothesized
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by Brackbill et al. [1992], as shown in works like Hysing [2006] and
Raessi et al. [2009].
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To achieve the PhD objective, which is to develop an interface re-
solved framework to simulate the electrochemical evolution of contin-
uum scale hydrogen bubbles, customization of interFoam is paramount.
In order to achieve this goal, a modularized approach is undertaken
during the PhD to incrementally develop the framework which can be
summarized as

1. Surface tension modelling, spurious velocities and simulating
submillimeter bubbles

Due to the presence of spurious velocities, discussed in Chapter 8,
bubbles simulated with interFoam are typically larger than a mil-
limeter, see Deshpande et al. [2012a], Jamshidi et al. [2019]. The ob-
jective of this task is to reduce spurious velocities, in the algebraic
VOF method used to compute the advected interface in the frame-
work, by implementing a different surface tension model instead of
the Continuum Surface Force model available in interFoam. Addi-
tionally, the implemented surface tension model should be able to
reliably simulate bubbles whose diameters are below one millime-
ter. This work is reported in papers A and B.

2. Interfacial mass transfer and associated bubble growth

Although modelling of interfacial mass transfer in interFoam has
been an active topic of investigation (see Chapter 6), it has not been
coupled to the associated bubble growth except in Liu et al. [2016]
who employed a Sh based correlation. In this module, a VOF based
framework to simulate supersaturation driven bubble growth is de-
veloped. This work has been reported in papers C and D. It should
be pointed out that while paper C was undergoing peer-review,
Maes and Soulaine [2020] reported a interFoam based framework
which simulated the shrinking of a rising bubble due to interfacial
mass transfer using a single field formulation of dissolved species
transport.

3. Framework for continuum scale electrochemical hydrogen evolu-
tion

Papers E and F, developed during this module, delves into imple-
menting the multiphysics relevant to simulate continuum scale elec-
trochemical hydrogen evolution which was summarized in Fig.2.2.

The chapters in this part provides summaries of the six papers de-
veloped during the PhD in order to highlight the advances made to-
wards addressing the project objective. Please note that this part of
the thesis contains just summaries of the papers, so readers interested
in details like the convergence, implemented governing equations and
mass/dissolved gas conservation should refer to the appended papers.





Chapter 9:
Summary of paper A

Comparison of Surface Tension Models for the Volume of Fluid
Method
K.J. Vachaparambil & K.E. Einarsrud, Processes, 2019, 7, 542.1 1 Vachaparambil and Einarsrud 2019

Context to the work

Spurious velocities produced during VOF simulations affect the accu-
racy of simulations, so it is critical to address them.

Two approaches that has been reported to reduce spurious veloc-
ities, by a few orders of magnitude, when using algebraic VOF ap-
proach, like the interface compression implemented in OpenFOAM®

[Deshpande et al., 2012a], are based on Raeini et al. [2012] and Hoang
et al. [2013] who reformulated the surface tension calculation to obtain
variants of the Continuum Surface Force (CSF) model [Brackbill et al.,
1992] known as the Sharp Surface Force (SSF) model and Smoothed
CSF model respectively. Both these models are easy to implement and
do not need the computationally expensive interface reconstruction
method when compared to the geometric VOF method and they have
been used to simulate a variety of surface tension dominant flows:

• The SSF model has been used to simulate capillary rise [Raeini et al.,
2012] and interfacial mass transfer [Maes and Soulaine, 2018];

• The Smoothed CSF model has been used to simulate bubble/droplet
microfluidics [Hoang et al., 2013] and bubble condensation [Samkha-
niani and Ansari, 2016].

Objective

The primary objective of the paper is to implement both SSF (as pro-
posed by Raeini et al. [2012]) and Smoothed CSF (as proposed by
Hoang et al. [2013]) surface tension models in interFoam. The abil-
ity of these models were compared to the out-of-the-box interFoam
(which uses CSF model) to capture surface tension dominant flows
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and quantify the spurious velocities generated during the simulations.
Apart from these, the influence of the under-relaxation factors and
maximum time step constraints on the spurious velocities are investi-
gated.

Overview of implemented surface tension models

The Continuum Surface Force model, proposed by Brackbill et al.
[1992], is the default surface tension model available in interFoam
which is computed based on Eq.8.15a, Eq.8.15b and Eq.8.15c (which
is corrected for contact angle at wall boundary conditions).

The Smoothed CSF model, proposed by Hoang et al. [2013], employ
a smoothened α1 in order to compute the unit normal to the interface
which is corrected to account for the contact angle and then used to
compute the interfacial curvature. This smoothening procedure used
on α1 reduces the discontinuous nature of the volume fraction field
which allows for a less error prone first and second order derivative
calculations which reduces spurious velocities [Hoang et al., 2013].

The Sharp Surface Force model, proposed by Raeini et al. [2012],
is more complex compared to the other two models. The first step is
to smoothen α1, then estimate the unit normal to the interface (which
is corrected for the contact angle conditions). After which the initial
estimate to interfacial curvature is computed. The second step involves
smoothening the interfacial curvature away from the interface. The
final step involves sharpening α1 to get αsh:

αsh =
1

1 − Csh

[
min

(
max

(
α1,

Csh
2

)
, 1 − Csh

2

)
− Csh

2

]
, (9.1)

where Csh is the sharpening coefficient2. The sharpened volume frac-2 In this paper, Csh is set to 0.5 for cap-
illary rise and rising bubble simulations
and 0.98 for static bubble simulations.

tion of liquid (αsh) and final estimate of curvature (κ f inal) is used to
compute the surface tension force which is represented as

~Fst = σκ f inal∇αsh. (9.2)

Main results

The three surface tension models are compared on its ability to sim-
ulate two-dimensional cases of rising bubbles and capillary rise along
with the static bubble of diameter equal to 5 mm.

Rising bubbles simulated consisted of two cases (TC1 and TC2) which
was proposed by Hysing et al. [2009] as a computational benchmark.
The cases TC1 and TC2 differed in the Capillary number (Ca), i.e.
equal to 0.286 and 3.571 respectively. The predictions from the three
surface tension models were compared to the benchmark with respect
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to the reported data for bubble morphology and rise velocities. As
shown in Fig.9.1 and Fig.9.2 the surface tension models provide rea-
sonable agreement to the rising bubble benchmark for both cases. The
deviations in the bubble morphologies and rise velocities observed in
TC1 and TC2 from the computational benchmark can be attributed to
the spurious velocities, as discussed by Klostermann et al. [2013].
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(a) Bubble morphology at t = 3s. (b) Transient evolution of bubble rise velocity.

Figure 9.1: Comparison of the predic-
tions of the three surface tension models
with the 2D benchmark data reported by
Hysing et al. 2009 for TC1.
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Figure 9.2: Comparison of the predic-
tions of the three surface tension models
with the 2D benchmark data reported by
Hysing et al. 2009 for TC2.Capillary rise height (hb) for the liquid rising between two parallel

vertical plates can be obtained analytically as

hb =
2σcosθ

∆ρ|~g|a , (9.3)

where a is the distance between the plates and θ is the contact angle at
the side walls which is equal to 45

◦ [Bullard and Garboczi, 2009]. For
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the computational settings used in the simulations, hb equal to 9.9mm
and a is equal to one millimeter. The capillary rise height predicted
by SSF and CSF had an error of 6.5% and 7.6% respectively but the
Smoothed CSF model did not converge to a steady state solution (due
to spurious velocities), as shown in Fig.9.3.

Figure 9.3: Comparison of the predic-
tions of the three surface tension models
for the 2D capillary rise simulations.
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Static bubbles are an ideal way to study spurious velocities as theo-
retically the velocity in the domain must be zero. The fluid properties
used in the stationary bubble simulations are ρ1 = 1000 kg/m3, ρ2 = 1

kg/m3, ν1 = 10
−6 m2/s, ν2 = 1.48×10

−5 m2/s and σ = 0.07 N/m. The
static bubble, with a diameter of 5 mm, has been reliably simulated
with all three surface tension models. For meshes, which resolve bub-
ble diameter with 40-60 cells (which is practically used in VOF simula-
tions [Samkhaniani and Ansari, 2016]), Smoothed CSF and SSF models
predicted the Laplace pressure in the bubble with an error around 9%
whereas CSF model had a slightly larger error (around 13%). Spu-
rious velocities developed with SSF and Smoothed CSF models were
one-twentieth and one-tenth of the spurious velocities developed dur-
ing the static bubble simulation using CSF model. When using the
CSF model, finer mesh resulted in larger spurious velocities whereas
for Smoothed CSF and SSF models these numerical artifacts did not
increase.

When no under-relaxation is used in the solution algorithm, the use
of time step constraint due to the explicit treatment of surface tension
as reported by Deshpande et al. [2012a] (Eq.8.20 and Eq.8.21) seems to
reduce spurious velocities for both Smoothed CSF and SSF but it had
no significant effect on CSF model when compared to the simulations
run with Brackbill et al. [1992] (Eq.8.19).

The use of an under-relaxation factor equal to 0.9 resulted in reliable
simulations for stationary bubbles. However, this approach cannot be
used for transient cases, as it can lead to under predicting the flow
variables (as shown in Eq.7.12 and Eq.7.13).



Chapter 10:
Summary of paper B

On sharp surface force model: effect of sharpening coefficient
K.J. Vachaparambil & K.E. Einarsrud, Published in Experimental and
Computational Multiphase Flow, 2020.1 1 Vachaparambil and Einarsrud 2020b

Context to the work

Due to the existence of spurious velocities in interFoam, which is
shown in paper A, reliably simulating bubbles less than a millime-
ter in diameter is difficult, see Jamshidi et al. [2019]. To be able to
study continuum scale electrochemical gas evolution, which were ob-
served in experimental works like Brussieux et al. [2011], Baczyzmalski
et al. [2017], Yang et al. [2018], Bashkatov et al. [2019], it is necessary
to resolve bubbles in the order of hundreds of micrometer. Addition-
ally, these bubbles evolve from an electrode surface where the wetting
condition at the electrode also plays a role in the bubble detachment
[Zhang and Zeng, 2012].

Objective

The objective of the paper is to show that using an appropriate choice
of sharpening coefficient (Csh) used in the SSF model, Eq.9.2, can re-
duce spurious velocities which can enable two-dimensional simula-
tions of millimeter and submillimeter sized bubble as well as simulate
wetting dependent phenomena like capillary rise. For the simulations,
the effect of 0 ≤ Csh ≤ 0.5 is investigated for these 2D cases.

Main results

It should be pointed out the all the simulations in this paper are
based on the time step constraint proposed by Deshpande et al. [2012a]
which was also investigated in paper A. The fluid properties used
in the stationary bubble and capillary rise simulations are ρ1 = 1000

kg/m3, ρ2 = 1 kg/m3, ν1 = 10
−6 m2/s, ν2 = 1.48×10

−5 m2/s and σ =
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0.07 N/m. For the 2D capillary rise simulation, gravity of 10 m2/s is
enabled while for stationary 2D millimeter and submillimeter bubble
simulations it is set to zero.

Capillary rise simulations consider the distance between the two
parallel side walls to be 1 mm with a contact angle of 45

◦. The results,
tabulated in Table.10.1, show that the SSF model is approximately able
to predict the capillary rise height quite well for the range of sharp-
ening coefficient considered in the simulation. The spurious velocities
are observed to be largest when using sharpening coefficient equal to
zero, see Table.10.1.

Table 10.1: Variation of capillary rise
height with sharpening coefficients.

Csh Usc|‡t=1.5s (m/s) hS (mm) Error†

0.0 0.1810 9.36 0.056

0.1 0.0098 9.30 0.062

0.2 0.0097 9.34 0.057

0.3 0.0050 9.30 0.061

0.4 0.0041 9.31 0.061

0.5 0.0031 9.26 0.065

† Error = (hb − hS)/hb where hb is calculated based on Eq.9.3.
‡ Usc is the measure of spurious velocities which is calculated as max(|~U|).

Static bubble simulations consider bubbles with a radius equal to
2.5 mm, referred to as millimeter sized bubbles, and 0.25 mm, which
are referred to as submillimeter bubbles, in the absence of gravity. For
the case of millimeter sized bubble, the static bubble is obtained for
0 ≤ Csh ≤ 0.5 but spurious velocities decreased with larger values
of Csh and the error in predicted Laplace pressure in the bubble is
around 8 %-9 %. The submillimeter bubble can be reliably simulated
only using Csh ≤ 0.3, see Table.10.2.

Table 10.2: Time averaged spurious ve-
locities, Laplace pressure and associated
error (calculated as (∆pT − ∆pS)/∆pT ,
where pT is equal to σ/R) while mod-
elling a 2D submillimeter bubble.

Csh U‡
sc (m/s) ∆pS

† (Pa) Error

0.0 0.061 254.285 0.092

0.1 0.039 254.294 0.092

0.2 0.028 255.350 0.088

0.3 0.011 255.279 0.088

0.4 Bubble numerically drifts from the original position
0.5 Bubble numerically drifts from the original position
‡ Usc is the time averaged spurious velocities.
† ∆pS is the time averaged predicted Laplace pressure in the bubble.
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Numerical simulation of bubble growth in a supersaturated solution
K.J. Vachaparambil & K.E. Einarsrud, Applied Mathematical Modelling,
2020, 81, 690-710.1 1 Vachaparambil and Einarsrud 2020a

Context to the work

As discussed in Chapter 6, VOF based modelling of interfacial mass
transfer, in the OpenFOAM® framework, has been an active topic of
investigation, see Eq.6.12 and Eq.6.14, but the associated change in
bubble volume has not been coupled to the proposed frameworks, see
Haroun et al. [2010], Deising et al. [2016], Marschall et al. [2012] and
Maes and Soulaine [2018]. Although an attempt to simulate this phe-
nomena was reported by Liu et al. [2016], their work computed the
driving force for bubble growth based on the flow scenario specific Sh
based correlation, see Chapter 6. This paper is an attempt to address
this issue.

Objective

The objective of the paper is to develop a framework, based on in-
terFoam, to simulate the growth of a bubble in the presence of a su-
persaturated solution. In order to achieve this objective, interFoam,
described in Chapter 8, is modified to treat the relevant source terms
to account for the growth of the bubble which is coupled to the trans-
port of dissolved gas and the driving force for interfacial mass transfer
based on local supersaturation. The effect of modelling driving force
for bubble growth computed based on both Fick’s 1

st law and Sh based
correlations are also investigated.

Overview of developed framework

This section provides an overview of the framework discussed in pa-
pers C and D along with some additional notes.
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The first step of the developed framework is to solve for the vol-
ume fraction of fluid α1, based on the interface compression approach,
using

∂α1

∂t
+∇ · (α1~U) +∇ · (α1(1 − α1) ~Ur) = Ṡα. (11.1)

The term on the right hand side of the above equation is associated
with the bubble growth and is calculated as Ṡα = α1∇ · ~U. As demon-
strated in appendix B, this formulation of the source term is equivalent
to Ṡ = α1ṁ/ρ, where ṁ is computed as described in Eq.11.5. Eq.11.1
is computed based on the semi-implicit Multidimensional Universal
Limiter with Explicit Solution (MULES) method, described in Green-
shields [2014]. It should be noted that the semi-implicit MULES uses
a predictor-corrector algorithm which results in the source term ex-
pressed in implicit and explicit formulations.

The concentration of the dissolved gas over the saturation condi-
tion (represented2 by Ci) is used to calculate the driving force based2 Please note the Ci used in this part

are different from the concentration field
used in Chapter 6.

on Eq.6.15 and Eq.6.16. This assumption leads to saturation concen-
tration being represented by Ci = 0 mol/m3 and the driving forces is
implemented as

• Fick’s 1
st law: j = MiDi,1|∇Ci|, where Di,1 is the diffusion coeffi-

cient of the dissolved gas in the liquid,

• Sh correlation: j = Di,1ShMiCi/L, where

Sh = 2 + 0.6515
√

ReSc, (11.2)

which is derived for small mass transfer rates from bubble in a
creeping flow, see Bird et al. [2006]. The characteristic velocity and
length scale (L), used to compute Re and j, are calculated as rate of
change of bubble radius and bubble diameter respectively.

The source terms are computed based on the approach initially devel-
oped by Hardt and Wondra [2008] and then adapted to interFoam by
Kunkelmann and Stephan [2009], Kunkelmann [2011] for temperature
driven phase change processes3. Once driving force j is computed, by3 The approach developed by Hardt and

Wondra 2008 is in principle indepen-
dent of the employed interface capturing
method which allows it to be used on
both geometric and algebraic VOF meth-
ods.

Fick’s 1
st law or based on Sh correlation, the local mass transfer rate

ψ0 is computed at the liquid side of the interface as

ψ0 = Njα1|∇α1|, (11.3)

where N is a normalization factor [Hardt and Wondra, 2008]. ψ0 is
then smeared based on

D∆t∇2ψ = ψ − ψ0, (11.4)

where D∆t is a user defined value [Hardt and Wondra, 2008]. Using
the value of ψ, the source terms for continuity equation (ṁ) is shifted
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away from the interface to the pure gas phase by applying a heavyside
function which uses a volume fraction cutoff of 10−3, this procedure,
further described in Kunkelmann [2011], results in the redistribution
of ṁ in the region where α1 < 10−3. Shifting the source term for
continuity equation, allows the interface to be advected only based on
the velocity field and not influenced by the source term [Kunkelmann,
2011]. The source term for the continuity equation is calculated as

ṁ = Aα2ψ, (11.5)

where A is another normalization factor [Hardt and Wondra, 2008]. In
order to ensure the disappearance of dissolved gas at the interface, the
sink term for the dissolved gas transport is computed as

Si = −Nα1(j|∇α1|)
Mi

, (11.6)

which is applied to the liquid side of the interface.
In the next step, the continuity equation, with source term calcu-

lated in Eq.11.5,

∇ · ~U =
ṁ
ρ

, (11.7)

is solved together with the momentum equation,

∂ρ~U
∂t

+∇ · (ρ~U~U) = −∇prgh +
(
∇ · (µ∇~U) +∇~U · ∇µ

)

−~g ·~x∇ρ + ~FST ,
(11.8)

using PISO scheme (described in Chapter 8). The surface tension force
implemented in Eq.11.8 is the Sharp Surface Force (SSF) model as
reported in papers A and B. Finally, the transport of the dissolved
gas is computed based on the C-CST model proposed by [Maes and
Soulaine, 2018] and sink term calculated using Eq.11.6 as

∂Ci
∂t

+∇ · (~UCi) = ∇ ·
(

D̂i∇Ci −
1 − Hei

α1 + α2Hei
D̂iCi∇α1

)

−∇ ·
(

1 − Hei
α1 + α2Hei

α1α2~UrCi

)
+ Si,

(11.9)

where Hei describes the concentration jump across the interface4, see 4 Due to the single field Ci used in C-CST
model, Hei should be set to a small value
to simulate the dissolved gas in addition
to obtaining the saturation concentration
at the interface, see papers C and D for
detailed discussion.

Eq.6.10b.

Main results

The proposed model is compared to well known analytical models, Ep-
stein and Plesset [1950] and Scriven [1959], to describe diffusion con-
trolled growth of bubbles due to supersaturation. Epstein and Plesset
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[1950] derived an ’approximate solution’ which describes the temporal
evolution of the bubble radius when the effects of bubble convection
is neglected. This assumption was subsequently addressed by Scriven
[1959] who derived an asymptotic solution of the change in bubble ra-
dius time based on the assumption of radially uniform growth of bub-
ble in an unbounded medium (referred for simplicity as Scriven). As
Scriven [1959] does not account for the initial growth phase, the work
by Hashemi and Abedi [2007] reported an extension to the Scriven
[1959] to account for the diffusive growth from a pre-existing bubble
(referred to as Extended Scriven). As these models are derived for
spherical bubbles, its equivalent for two-dimensional bubbles which
are treated in the simulations are derived in the appended paper C.

When convection is neglected, the increase in bubble radius
with time can be determined analytically:

Consider a two dimensional
growing bubble, whose radius
at any give time is denoted by
R, from a pre-existing bubble
(of radius R0). Its growth can
be described as

ρ2

(
2πR

dR
dt

)
= 2πRj, (11.10a)

where R is the radius of the
bubble and j is calculated as the
driving force. Eq.11.10a can be
written as

ρ2

( dR
dt

)
= Mik∆Ci , (11.10b)

where k = (Di,1/2R)(2 +

0.6515
√

ReSc), based on Eq.11.2
and ∆Ci represents the bulk
concentration over the satu-
ration condition. When the
convection caused by bubble
growth is neglected, i.e. Re = 0,
the above equation can be writ-
ten as

ρ2

( dR
dt

)
=

Mi
Di,1

R
∆Ci ,

(11.10c)

which can be integrated in time
to obtain Eq.11.11. The corre-
sponding driving force can be
written as

j =
Di,1

R
Mi∆Ci . (11.10d)

( R
R0

)2
= 1 +

2MiDi,1(∆Ci)

ρ2R2
0

t, (11.11)

where ∆Ci is set as equal to 200.64 mol/m3, which corresponds to
supersaturation ratio of seven, as used in the simulations. Eq.11.11

is the approximate solution derived by Epstein-Plesset [Epstein and
Plesset, 1950]. The driving force for the simulations is set to Eq.11.10d
as it is used to derive Eq.11.11. The predictions using the proposed
solver and Eq.11.11 agree well, see Fig.11.1.

When convection is considered, the asymptotic solution of bub-
ble growth in a supersaturated solution, as proposed by Scriven [1959],
is given by

RScriven = 2β
√

Di,1t, (11.12)

where β is the growth parameter. Based on the work by Hashemi
and Abedi [2007], an Extended Scriven model that modifies Eq.11.12

to account for the growth from a pre-existing bubble of radius R0 can
be described as

RScriven−ext = 2β

√√√√Di,1

(
t +

R2
0

4Di,1β2

)
. (11.13)

Previous works by Wang et al. [2016], Jones et al. [1999], reported an
analytical expression to determine β for a spherical bubble as

β3D =
a +

√
a2 + 2a
2

, (11.14)

where a is equal to Mi∆Ci/ρ2. An equivalent expression for growth
parameter for two dimensional bubble growth driven by supersatura-
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tion is

β2D =
a +

√
a2 + 4a

2
√

2
, (11.15)

where a is defined based on Eq.11.14. The derivation of Eq.11.15,
which is based on Wang et al. [2016], is included in the appendix of
the appended paper C. For the simulations in this paper, β3D and β2D

are equal to 5.3346 and 4.0509 respectively. The comparison of pro-
posed solver using Fick’s 1

st law and Sh correlation with Eq.11.12 and
Eq.11.13 based on 2D and 3D formulations of β is shown in Fig.11.2.
The predictions from the proposed framework using Fick’s 1

st law pro-
vides a reasonable agreement to the analytical model when using β2D.
The framework when using Sh correlation, described in Eq.11.2, seems
to under-predict the bubble radius. The difference in the predictive
ability between the models can be explained by the evolution of growth
rate, see Fig.11.3. The large initial growth rate (compared to the an-
alytical model) when using Fick’s 1

st law in the proposed framework
is due to the lack of concentration boundary layer in the distribution
of the dissolved gas used to initialize the simulation. Due to the uni-
form initialization used, during the first time step, the gradient at the
interface would be larger but with time the concentration boundary
layer develops, as dissolved gas is removed from the liquid, then the
predicted growth rates matches the analytical model as observed in
Fig.11.3.

Figure 11.1: Comparison of the temporal
evolution of 2D bubble radius predicted
by the proposed solver (based on driving
force described in Eq.11.10d) with the
approximate solution of Epstein–Plesset
(Eq.11.11).

Parametric studies on the influence of Hei (in Eq.11.9) shows that
using a value of 10−4 can reasonably predict the transport of dissolved
gas. Similarly, D∆t (in Eq.11.4) equal to a value of 10−6 m2 seems to



94 interface resolved simulations of continuum scale electrochemical hydrogen

evolution

provide a solution which is independent of the user-defined parame-
ter.

Another notable result in the paper is that spurious velocities gen-
erated when simulating the growth of a bubble (with surface tension
treated but gravity neglected) reduces the growth rate by removing the
dissolved gas away from the interface.

Figure 11.2: Comparison of the evolu-
tion of 2D bubble radius predicted by the
proposed solver (based on driving force
described using Fick’s 1

st law and Sh
correlation) with analytical models like
Eq.11.12 and Eq.11.13.

Figure 11.3: Comparison of the evolu-
tion of growth rate for a 2D bubble pre-
dicted by the proposed solver (based on
driving force described using Fick’s 1

st

law and Sh correlation),
∫

ψ0dV, with
analytical model based on Eq.11.13.
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Modeling interfacial mass transfer driven bubble growth in super-
saturated solutions
K.J. Vachaparambil & K.E. Einarsrud, AIP Advances, 2020, 10, 105024.1 1 Vachaparambil and Einarsrud 2020c

Context to the work and objectives

Despite the universal applicability of Fick’s 1
st law to describe the in-

terfacial mass transfer and bubble growth, application oriented simu-
lation of the processes, like Liu et al. [2016], tend to rely on Sh cor-
relations. In paper C, the Sherwood number correlation used, Sh =

2 + 0.6515
√

ReSc, under-predicts the bubble growth but the Fick’s 1
st

law (due to the lack of concentration boundary layer in the initialized
dissolved gas distribution) predicted a large initial growth rate. This
raised the following questions:

• Which Sh correlation can describe the analytical bubble growth de-
rived by Scriven [1959] and later extended by Hashemi and Abedi
[2007] ?

• Is the framework proposed in paper C valid for a range of supersat-
uration levels?

The objective of this paper is to answer these questions.

Derivation of a new driving force based on Sh correlation for bubble
growth

This derivation is based on the work by Burman and Jameson [1976],
who derived an analytical expression for Sh, based on bulk supersat-
uration, to describe the bubble growth by Scriven [1959]. For the 2D
bubble, the growth rate can be expressed as

ρ2
dV
dt

= jA, (12.1)
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where V is the volume of the bubble which is equal to πR2h, A is the
surface area of the bubble which is computed as 2πRh and the driving
force is calcualted as j = MikCi, where h is the unit cell thickness
used to define 2D domains in OpenFOAM® which is set equal to one
micrometer. Substituting the expression for V, A and j into the above
equation gives

ρ2
dR
dt

= MikCi. (12.2)

The rate of change of the radius can be calculated based on Eq.11.13

as
dR
dt

=
2β2Di,1

R
. (12.3)

Substituting Eq.12.3 in Eq.12.2 to get

2β2Di,1

R
=

MikCi
ρ2

. (12.4)

The above equation can be rearranged and multiplied with two on
both sides to get

k =
Di,1

2R
4β2ρ2

MiCi
, (12.5)

and the corresponding Sh is defined as

Sh =
4β2ρ2

MiCi
. (12.6)

Simulation setup

In the framework proposed in paper C, the following driving force for
interfacial mass transfer are implemented:

• Fick’s 1
st law: j = MiDi,1|∇Ci|,

• Sh correlation 1: j = Di,1ShMiCi/L where

Sh = 2 + 0.6515
√

ReSc, (12.7)

which is derived for small mass transfer rates from bubble in a
creeping flow, see Bird et al. [2006]. The characteristic velocity and
length scale (L) used to compute Re and j are calculated as rate of
change of bubble radius and bubble diameter respectively.

• Sh correlation 2: Based on k defined in Eq.12.5, the corresponding
driving force can be written as j = MiCik.

The 2D simulations are initialized with a uniform distribution of
dissolved gas in the liquid phase at three different concentrations (over
saturation concentration) equal to 50.16 mol/m3, 100.32 mol/m3 and
200.64 mol/m3 which correspond to supersaturation (S) equal to 2.5,
4 and 7 respectively. By substituting the relevant values into the an-
alytical solution, Eq.11.15, these three levels of supersaturation yields
growth coefficient (β2D) equal to 1.3230, 2.2632 and 4.0509.
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Main results

As the different driving forces for interfacial mass transfer results in
various growth rates, which is also observed in paper C, it is important
to account for the variation of bubble size. This can be accounted by
calculating growth rate per unit area of the interface, discussed in the
mesh convergence studies performed in paper C. In the case of two
dimensional bubble, as the surface area of the bubble is proportional
to radius, the growth rate normalized with bubble radius can be used
to compare the simulations.

The driving force based on Sh correlation 1 consistently under-
predicts the normalized growth rate and bubble radius in the three
supersaturation levels considered in the simulations, see Fig.12.1. On
the other hand, the driving force based on Sh correlation 2 provides a
very good agreement with the analytical predictions of bubble radius
and normalized growth rate, see Fig.12.1. Interestingly, driving force
using Fick’s 1

st law has a larger deviation from the analytical solution
for smaller supersaturation which can be explained as a result of the
higher initial growth rate due to the initialized concentration distri-
bution of the dissolved gas. The bubble radius growth rate reaches
the values predicted by the analytical model once the concentration
boundary layer is developed and bubble growth is diffusion limited.
The higher initial growth rates leads to quicker increase in the bubble
size which causes the discrepancy observed in Fig.12.1.

The results show that it is necessary to choose the Sh correlation
carefully to simulate a flow scenario. If the Sh correlations are not
available or the flow scenario cannot be described by a single correla-
tion, it is preferable to use Fick’s 1

st law to compute the driving force.
The simulations also show the importance of having a resolved con-
centration boundary layer even at t = 0 s when using Fick’s 1

st law.
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(a) S = 2.5: Bubble radius (R) (b) S = 2.5:
∫

ψ0dV/R

(c) S = 4.0: Bubble radius (R) (d) S = 4.0:
∫

ψ0dV/R

(e) S = 7.0: Bubble radius (R) (f) S = 7.0:
∫

ψ0dV/R

Figure 12.1: Comparison of the pre-
dicted bubble radius and normalized
growth rate using driving forces de-
scribed using Fick’s 1

st law and Sh cor-
relations based 2D simulations with Ex-
tended Scriven model (with β2D) for var-
ious levels of supersaturation: 2.5, 4.0
and 7.0.
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On modelling electrochemical gas evolution using the Volume of
Fluid method
K.J. Vachaparambil & K.E. Einarsrud, Under-peer review in 14th In-
ternational Conference on Computational Fluid Dynamics In the Oil & Gas,
Metallurgical and Process Industries (CFD2020), Trondheim.

Objective

In this paper, the multiphysics modules, summarized in Fig.2.2, re-
quired to simulate continuum scale electrochemical gas evolution is
described and validated in a decoupled approach.

Main results - decoupled multiphysics modules and their verification

Submillimeter bubbles of diameter 500 µm, which are present in
the bulk and on the surface, are simulated using sharpening coefficient
equal to 0.3 in Sharp Surface Force model, implemented in paper A
and B. The results showed that both the cases were reliably simulated
by SSF model, see Fig.13.1.

Transport of the dissolved gas is performed by implementing
the Compressive species transport (C-CST) equation, which is Eq.11.9
without the source/sink term, in interFoam. The interfacial condi-
tion which describes the concentration jump across the interface (Hei),
see Eq.6.10b, is set to 10

−4 based on parametric study performed in
paper C. In order to verify that the transport of the dissolved gas is
simulated accurately, a qualitative check is performed for the case of
rising bubble through a region of supersaturation. As the bubble rises
up through the supersaturated region, the dissolved gas get advected
without numerically diffusing into the bubble, see Fig.13.2

Supersaturation driven bubble growth is simulated based on



100 interface resolved simulations of continuum scale electrochemical hydrogen

evolution

(a) Bubble in bulk (b) Bubble on surface

Figure 13.1: Comparison of the spurious
velocities (m/s) generated while mod-
elling stationary 2D submillimeter bub-
bles at t = 0.05s with interface (at α1 =
0.5) represented by the white contour.

(b) t = 1 s (c) t = 2 s (d) t = 3 s

Figure 13.2: The concentration of dis-
solved gas (mol/m3) around a 2D ris-
ing bubble (interface, at α1 = 0.5, is
represented by white contour) modelled
based on C-CST.



summary of paper e 101

the proposed framework in paper C and D, and validated against
the analytical bubble growth predicted by Hashemi and Abedi [2007],
Scriven [1959] in Eq.11.13. Due to the initialized uniform concentration
of the dissolved gas, the initial growth rate is larger than theory but it
reduces to the analytical predictions once the concentration boundary
layer is established, which has been reported in both papers C and D.

Charge transport is simulated using the Gauss’ law (one of the
four Maxwell’s equations of electromagnetism), see Eq.6.3 and current
density described based on Ohm’s law, see Eq.6.5, to get a governing
equation for charge conservation: ∇ · Γ∇Φ = 0, where Γ is the arith-
metic mean of the electrical conductivities of the phases. Under con-
stant potential difference, the current can be obtained as ∑~i · ~S, where
~S is the surface area vector of individual mesh at the boundary. The
verification of this module is performed based on two stationary sce-
narios in which both gravity and surface tension effects are neglected,
but the bubble is located in the bulk or on the electrode surface.

Figure 13.3: Illustration of the 2D cases,
EC1 and EC2, considered to showcase
the effect of electrode screening. EC1,
represented by , considers a bubble of
radius 1mm at the center of domain.
EC2, represented by , considers two
equal sized bubbles (semicircles with
radii equal to 1mm) whose centers are
2.5mm and 6.5mm away from the bot-
tom wall.

The first scenario indicates the change in current when the bubble is
present on the electrode and in the bulk which are denoted by EC1 and
EC2, see Fig.13.3. When bubble is present on the surface, apart from
the ohmic resistance the bubble also reduces the area of electrode in
contact with electrolyte which results in larger resistance than when
equivalent bubble is in the bulk. As a result when bubble leaves the
surface the current increases which is observed in EC1 and EC2, see
Table.13.1.

Case 1 − Θ Area of 2D bubbles (m2) Current (A)

EC1 1 3.16 ×10−6
9.384×10−7

EC2 0.6 3.16 ×10−6
9.306×10−7

Please note that 1 − Θ, which represents the fraction of the elec-
trode area in contact with electrolyte, is different from the nota-
tion used in paper E.

Table 13.1: Reduction of current due to
the presence of bubble on the electrode.

The second scenario describes the current obtained when the bub-
bles are in the bulk, in this case, 11 three dimensional and 9 two dimen-
sional simulations in which the bubbles are initialized with random
sizes and location in the bulk are simulated. The predictions of the
current density1 is verified by comparing against the equivalent the- 1 Current density is calculated as the cur-

rent at the boundary divided by the total
area of the electrode surface.

ortical solution obtained using the correlation for effective conductiv-
ity proposed by Bruggeman [1935], see Table.1.2. The 3D simulations
agrees reasonably well with the theoretical solution but two dimen-
sional simulations, as expected, predicts a lower current density, see
Fig.13.4.
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Figure 13.4: Comparison of the current
density (A/m2) reduction with increase
in void fraction of bubbles (in bulk) pre-
dicted by the simulations (for 2D and
3D) and Bruggermann’s correlation.
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Numerical simulation of continuum scale electrochemical hydrogen
bubble evolution
K.J. Vachaparambil & K.E. Einarsrud, Submitted to Applied Mathemati-
cal Modelling.

Objective

In paper E, the various modules relevant to developing a coupled mul-
tiphysics framework were presented and discussed. In this paper,
these individual modules are integrated into a single framework to
study the multiphysics nature of continuum scale electrochemical gas
evolution.

Overview of the developed framework

This section provides an overview of the framework, based on some
simplifications1, discussed in paper F. 1 The simplifications used in the pro-

posed framework are

• Bubble evolution is assumed to occur
only at the cathode whereas the an-
ode is assumed to not effect the flow.

• Flow is isothermal and laminar.

• Density and viscosity of liquid and
gas is constant.

• The interface is assumed to be
always at saturation concentration
which does not change as the bubble
evolves.

• The changes in current, under con-
stant potential difference, is a result
of shielding the electrode and ohmic
resistance of the bubbles. The effects
of surface and concentration overpo-
tentials are not treated.

The advection of the volume fraction of fluid (α1), based on the
interface compression approach, is solved as

∂α1

∂t
+∇ · (α1~U) +∇ · (α1(1 − α1) ~Ur) = α1∇ · ~U. (14.1)

The term on the right hand side of Eq.14.1 is the source term associated
with the bubble growth, see paper C. Once α1 is computed, the volume
fraction of bubble (α2) is computed as α2 = 1 − α1.

The driving force for interfacial mass transfer is then computed
based on the Fick’s 1

st law as

j = MiDi,1|∇Ci|, (14.2)

where Mi is the molar mass of the dissolved hydrogen (i) and Di,1 is
the diffusion coefficient of the dissolved hydrogen in the electrolyte.
Then the local mass transfer rate (ψ0) is computed at the liquid side
of the interface based on Eq.11.3. ψ0 is then smeared using Eq.11.4
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to obtain ψ. The source for the continuity equation and sink term
for the dissolved gas transport are computed as Eq.11.5 and Eq.11.6
respectively.

The continuity, Eq.11.7, and momentum, Eq.11.8, equations are solved
together with PISO algorithm. The surface tension is treated using the
Sharp Surface Force (SSF) model as implemented in papers A and B.

The change transport is computed based on Gauss’s law as

∇ ·~i = 0 (14.3)

where~i, the current density vector, is written in terms on Ohm’s law
as ~i = −Γ∇Φ and Γ is the arithmetic mean of the electrical conduc-
tivities of the phases. The transport of the dissolved hydrogen is then
computed based on Eq.11.9.

The electrochemical reactions are accounted through boundary con-
dition at the electrode via Faraday’s law of electrolysis as ∂nCi =

|~i|α1/(nFDi,1), where n is the number of electrons transferred for the
electrochemical reaction to produce hydrogen (equal to 2), F is the
Faraday’s constant (equal to 96485 As/mol) and Di,1 is the diffusion
coefficient of dissolved hydrogen in the liquid.

Main results

Figure 14.1: The change in the dissolved
gas concentration, Ci , (mol/m3) as a sin-
gle 2D bubble evolves from the electrode
with a contact angle equal to 30

◦. The
white line represents the interface which
is plotted at α1 = 0.5.

Verification of the proposed framework is based on bubble growth
in a uniformly supersaturated solution predicted by Hashemi and
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Abedi [2007], Scriven [1959] and qualitative analysis of the variation
in current based on static bubble simulations.

Single bubble evolution from a horizontal electrode shows that
when submillimeter sized bubbles are initialized on the surface, the
difference between the initialized contact angle and the wetting con-
dition at the electrode causes the detachment. As the bubble rises up
the dissolved gas is also transported, see Fig.14.1. Due to the stronger
hydrophilic nature of the electrode at smaller contact angles2, detach- 2 When the contact angle of 45

◦ is used,
although the bubble is deformed, it did
not detach from the surface.

ment time of the bubble in the case of contact angle equal to 15
◦ is

smaller than when it is 30
◦. As the bubble detaches and rises up, the

surface of the bubble undergoes deformation, i.e. it flattens and then
gets elongated, see Fig.14.2b-c. When the bubble is flatter, the pro-
jected area of the bubble on the electrode is larger which reduces the
current3, see Fig.14.2. Larger rise velocity of the bubble, results in a 3 The current at the electrode is com-

puted as the dot product between the lo-
cal current density and surface area vec-
tor of the individual mesh face at the
boundary, i.e. I = ∑~i · ~S.

more deformed bubble, as a result of the shape dictated by drag and
surface tension, which reduces the current. Interestingly, although the
growth of the bubble does not result in substantial changes to detach-
ment time or rise velocity it effects the current but it is only noticeable
when the bubble deformations are damped. Once the bubble has de-
tached, the current is observed to decrease as the bubble rises up from
the electrode due to the increase in the effective length experienced
by the current path lines (until the bubble reaches half the distance
between the electrodes).
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Figure 14.2: Comparison of the current
normalized with current without any
bubbles (I/I0), fraction of the volume
of bubble with respect to the compu-
tational domain ( f ), the bubble defor-
mation in horizontal (∆x) and vertical
(∆y) directions for a single 2D bubble
evolving from an electrode with a con-
tact angle of 30

◦. The vertical black line
indicates the detachment of the bubble
which in this case is around 1.69 ms. The
red lines are equidistant at every 0.001 s
to enable comparison between the plots.
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Coalescence driven bubble evolution considers the two bub-
bles which are equally and unequally sized as shown in Fig.14.4 and
Fig.14.5 respectively. The simulations show that coalescence driven
bubble evolution consists of three different regimes: necking, propaga-
tion of deformation waves, and detachment/deformation of the rising
bubble which has also been observed experimentally in Moreno Soto
et al. [2018], see Fig.14.4. The propagation of the deformation waves
are symmetric during the coalescence of two equally sized bubbles
but in the case of non-uniform bubble sizes these deformation waves
are observed to travel towards the smaller bubble, see Fig.14.5. The
propagation of the deformation wave causes the quicker detachment
as well as the translation of the bubble along the electrode as observed
in Fig.14.5. A large increase in the current is observed as a result of the
bubble detachment due to coalescence, see Fig.14.3, when compared
to single bubble detachment (where the effect of bubble deformation
and its rising are significant), see Fig.14.2 and Fig.14.3. This large in-
crease in current is a result of the larger decrease in the fraction of
electrode covered by the bubble, see Fig.14.2b and Fig.14.3b. These
simulations suggests coalescence as the primary mechanism of bubble
detachment, at least for continuum scale bubbles, when compared to
bubble growth due to interfacial mass transfer.

Figure 14.3: Comparison of the current
normalized with current without any
bubbles (I/I0), fraction of the volume
of bubble with respect to the computa-
tional domain ( f ), the bubble deforma-
tion in horizontal (∆x) and vertical (∆y)
directions for coalescence driven bub-
ble evolution of two unequally sized 2D
bubbles from an electrode with a con-
tact angle of 45

◦. The vertical black line
indicates the detachment of the bubble
whereas the red lines are equidistant at
every 0.0004 s to enable comparison be-
tween the plots.
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Figure 14.4: The evolution of the inter-
face and the concentration of the dis-
solved gas, Ci , (mol/m3) as the bub-
ble coalescence and evolves from two
equally sized 2D bubbles for a contact
angle of 45

◦. The necking process (be-
tween 0 s-0.4 ms), propagation of defor-
mation waves along the bubble interface
which leads to the lifting of the bubble
(between 0.6 ms-2 ms) and detachment
as well as the oscillations of the bubble
surface leading to elongation and flat-
tening (2 ms-4 ms). The interface is plot-
ted at α1 = 0.5.
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Figure 14.5: The evolution of the inter-
face and the concentration of the dis-
solved gas, Ci , (mol/m3) as the bubble
coalescence and evolves from two un-
equally sized 2D bubbles for a contact
angle of 45

◦. Note the necking process
(between 0 s-0.2 ms), propagation of de-
formation waves along the bubble inter-
face which leads to the lifting of the bub-
ble (between 0.4 ms-1.2 ms) and detach-
ment as well as the oscillations of the
bubble surface leading to elongation and
flattening (1.8 ms-3 ms). The interface is
plotted at α1 = 0.5.



Part V

Summary and final
thoughts





Chapter 15:
Conclusions

The thesis delves into the development of a VOF based multiphysics
framework to study the evolution of continuum scale electrochemi-
cal hydrogen bubbles. As understanding the physics of electrochem-
ical gas evolution is crucial to building a new modelling framework,
Part II summarizes the various fundamental aspects of how hydro-
gen evolution occurs during water electrolysis as well as the review
of numerical methods available in literature to treat the various multi-
physics modules. Part III of the thesis is a summary of the knowledge
gained about the numerical method and its associated implementation
in OpenFOAM® and interFoam source code. The idea of having this
chapter is to share the knowledge about OpenFOAM® and interFoam
to enable further development. Part IV discusses the modularized ap-
proach undertaken to develop the framework:

• Surface tension modelling, spurious velocities and modelling sub-
millimeter bubbles: The Sharp Surface Force (SSF), proposed by
Raeini et al. [2012], is implemented in interFoam. The implemented
surface tension model is compared against out-of-the-box interFoam
(which uses the Continuum Surface Force model by Brackbill et al.
[1992]) and the commonly used the Smoothed CSF (as proposed by
Hoang et al. [2013]). The results show that the SSF model reduces
the spurious velocities by almost an order of magnitude and can
reliably simulate two-dimensional capillary rise and rising bubble
simulations. Tuning the user defined value of sharpening coeffi-
cient in SSF model, i.e. Csh ≤ 0.3, has been shown to lower spurious
velocities enough to reliably simulate a 2D submillimeter bubble of
diameter equal to 500 µm.

• Interfacial mass transfer and associated bubble growth: This mod-
ule focused on developing a novel framework to model the super-
saturation driven bubble growth. This entailed implementing dis-
solved gas transport using C-CST model, proposed by Maes and
Soulaine [2018]; source/sink terms for governing equations for the
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continuity and transport of dissolved gas equation, which is based
on the approach developed by Hardt and Wondra [2008] and Kunkel-
mann [2011] and similarly a source term for the volume fraction
advection equation (as shown in Eq.11.1); and finally the driving
force which is simulated using either the universally valid Fick’s 1

st

law or the flow specific Sh correlations. This framework is validated
using 2D analytical models of bubble growth in supersaturated so-
lutions. The driving force computed based on a Sh correlation, if
available for a specific flow scenario, can reasonably simulate the
process without having to resolve concentration gradients like in
Fick’s 1

st law. The simulations showed that for processes like elec-
trochemical gas evolution, which has complex flow fields associated
with bubble growth and detachment which cannot be captured by a
single Sh correlation, Fick’s 1

st law based approach provides a more
realistic prediction.

• Framework for continuum scale electrochemical hydrogen evolu-
tion: In this final module a coupled multiphysics framework based
on Volume of Fluid method is developed. The multiphysics in-
cluded are charge transport based on Gauss’ law and Ohm’s law,
supersaturation driven bubble growth based on Fick’s 1

st law (de-
veloped in the previous task) and electrochemical reaction, which
is treated via boundary condition, based on the Faraday’s law of
electrolysis. The developed framework when used to simulate con-
tinuum scale hydrogen bubble evolution showed that the detached
bubble undergoes surface deformations which causes the current to
fluctuate. The effect of growth of the bubble on the rise velocity and
detachment time is negligible but the associated reduction in cur-
rent is noticeable only when the bubble deformations has damped.
Coalescence of bubbles occurs via three stages: necking, the propa-
gation of deformation waves and the detachment as well as surface
deformation of the rising bubble. The propagation of the deforma-
tion waves during coalescence influences the detachment process.
The framework also predicts the increase in current due to bub-
ble detachment. These simulations suggest that coalescence as a
primary mechanism for bubble detachment, atleast at continuum
scales which were of interest in this work, when compared to the
interfacial mass transfer driven bubble growth.



Chapter 16:
Topics for future research

Although the framework developed in this thesis can simulate multi-
physics aspect of the evolution of a continuum scale hydrogen bub-
ble and the associated impact, this framework needs further advance-
ments to be applied to an industrial scale water electrolyzer. Some of
the avenues for further advances to the proposed framework are:

1. Although the framework developed in this thesis in principle is
applicable for 3D simulations, further simulations are needed to
confirm this.

2. Although Sharp Surface Force model generated less spurious veloc-
ities when compared to the Continuum Surface Force model, these
numerical artifacts still influences interfacial mass transfer. Future
works could implement a geometric VOF method1 which uses an 1 Please note that the latest version of

OpenFOAM®, i.e. version 8, has re-
leased libraries to enable geometric VOF
based interface capturing, see Green-
shields 2020.

sub-cell interface reconstruction to reduce these spurious velocities.

3. As observed in paper F, the inconsistent contact angle of the ini-
tialized bubble and the wetting condition at the electrode results
in inducing momentum which causes bubble detachment. In order
to address this problem, it is important to consider the multiscale
nature of the process where sub-micrometer bubbles, grow by in-
terfacial mass transfer and coalescence to reach continuum length
scales. In order to capture these range of length scales, interface
resolved methods can be coupled to dispersed phase modelling ap-
proaches like done in works like Einarsrud and Johansen [2012],
Einarsrud et al. [2017] and Sun et al. [2018].

4. The proposed framework considers only the ohmic and shielding
effects of the bubble, further advancements can take into account
the consequences of surface and concentration overpotentials which
were discussed in Chapter 1 or refer to Leistra and Sides [1987].

5. As water electrolysis can be operated under both potentiostatic or
galvanostatic conditions, the framework can be extended to gal-
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vanostatic conditions to determine the effect of electrochemical gas
evolution on the observed overpotential.

6. Additional developments could also treat Marangoni and natural
convection which have been observed during electrochemical gas
evolution, see Yang et al. [2018], Babu and Das [2019].

7. Further advances to the framework to enable its eventual use in
optimizing industrial scale electrolyzers involve reducing the com-
putational requirement like by the implicit treatment of the surface
tension term in the solution algorithm, see Chapter 8, to remove the
time step constraint. Another potential end use to the multiscale-
multiphysics framework is to develop correlation for mass transfer
which can be used as closure models in the computationally cheaper
dispersed phase modelling as well as the prediction of bubble size
at detachment.

8. Last but not the least, in order to validate the numerical framework,
its predictions must be compared to experiments. Some of the pos-
sible parameters which could be used for comparison are the bub-
ble detachment radius and potential/current fluctuations associated
with bubble evolution.



Appendix A: Calculation of viscous
terms

The velocity vector (~U) can be written as

~U =




u
v
w


 .

The corresponding gradient of velocity ∇~U can be computed as

∇~U =




∂u
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∂v
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,

see Lai et al. [2010], Kundu et al. [2016]. The transpose of ∇~U, i.e.
∇~UT , is equal to

∇~UT =
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The viscous stress, i.e. ∇ · µ
(
∇~U +∇~UT

)
, can be calculated as

∇ · µ
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∇~U +∇~UT
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The matrix can expanded using chain rule and it can be rearranged
as:

∇ · µ
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)
=



∂µ
∂x

∂u
∂x + µ ∂2u

∂x2 +
∂µ
∂y

∂u
∂y + µ ∂2u

∂y2 + ∂µ
∂z

∂u
∂z + µ ∂2u

∂z2

∂µ
∂x

∂v
∂x + µ ∂2v

∂x2 +
∂µ
∂y

∂v
∂y + µ ∂2v

∂y2 +
∂µ
∂z

∂v
∂z + µ ∂2v

∂z2

∂µ
∂x

∂w
∂x + µ ∂2w

∂x2 + ∂µ
∂y

∂w
∂y + µ ∂2w

∂y2 + ∂µ
∂z

∂w
∂z + µ ∂2w

∂z2




+




∂µ
∂x

∂u
∂x + µ ∂2u

∂x2 +
∂µ
∂y

∂v
∂x + µ ∂2v

∂x∂y + ∂µ
∂z

∂w
∂x + µ ∂2w

∂x∂z

∂µ
∂x

∂u
∂y + µ ∂2u

∂x∂y + ∂µ
∂y

∂v
∂y + µ ∂2v

∂y2 +
∂µ
∂z

∂w
∂y + µ ∂2w

∂y∂z

∂µ
∂x

∂u
∂z + µ ∂2u

∂x∂z +
∂µ
∂y

∂v
∂z + µ ∂2v

∂y∂z +
∂µ
∂z

∂w
∂z + µ ∂2w

∂z2




.



appendix a: calculation of viscous terms 117

The above matrices can be further rearranged as
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which can be written as
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Using the conservation of mass for incompressible fluids, i.e. ∇ · ~U =

0, the last matrix reduces to zero and the remaining matrices can be
written as

∇ · µ
(
∇~U +∇~UT

)
= ∇ · (µ∇~U) +∇~U · ∇µ.





Appendix B: Calculation of source term
for volume fraction advection

The α1 advection can be obtained from continuity equation:

∇ · ~U =
ṁ
ρ

,

∂

∂t
(α1 + α2) +∇ · (α1~U + α2~U) =

ṁ
ρ
(α1 + α2).

(16.1)

The advection of liquid volume fraction is

∂α1

∂t
+∇ · (α1~U) =

ṁ
ρ

α1, (16.2)

which can be rewritten based on interface compression as

∂α1

∂t
+∇ · (α1~U) +∇ · (α1(1 − α1) ~Ur) =

ṁ
ρ

α1, (16.3)

where the term on the right hand side of the equation is the source
term associated with the bubble growth. Based on the continuity equa-
tion, the above equation can be written as

∂α1

∂t
+∇ · (α1~U) +∇ · (α1(1 − α1) ~Ur) = α1∇ · ~U, (16.4)

which is formulation used in the proposed framework.
In order to investigate the effect of computing α1 based on Eq.16.3

and Eq.16.4, the bubble growth from a pre-existing bubble in the bulk
of a uniformly supersaturated (Ci is equal to 200.64 mol/m3 at t = 0s),
analogous to the case discussed in paper C, is simulated based on driv-
ing force computed based on Sh correlation, Eq.12.6, and Fick’s 1

st law,
Eq.6.15. The result shows that the temporal evolution of bubble radius
and growth rate predicted based on Eq.16.3 and Eq.16.4 using Sh cor-
relation and Fick’s 1

st law based driving forces are nearly identical as
seen in Fig.16.1.
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Figure 16.1: Comparing of the tempo-
ral change in bubble size and growth
rate normalized by bubble radius pre-
dicted based on the source term used
in α1 advection equation using driving
force computed based on Sh correlation
in Eq.12.6 (α1∇ · ~U (�) and α1ṁ/ρ (∗))
Fick’s 1

st law in Eq.6.15 (α1∇ · ~U (�)
and α1ṁ/ρ (∗)). Please note that these
are 2D simulations and the points in the
plots correspond to the bubble radius
and growth rate at every 40 time steps
taken by the solver.



Appendix C: Computational resources

The simulations discussed in thesis were mainly run on two High Per-
formance Computing (HPC) systems:

• Idun, which is a computing platform for NTNU, see NTNU HPC
Group n.d. for more information,

• Fram, which is a cluster that belongs to the Norwegian national e-
infrastructure (provided by UNINETT Sigma2), see Uninett Sigma2

n.d. for more information.

In order provide an overview of the computational cost associated with
running interface resolved multiphysics simulations discussed in this
thesis, resources and CPU time used for two illustrative cases are de-
scribed below.

• Supersaturation driven bubble growth, described in paper D which
considered a domain of 3 cm×3 cm and meshed by 4000×4000 cells
(corresponding to a mesh resolution of 7.5×10

−6m), was run on
5×32 cores (on Fram). The simulation case with supersaturation of
seven took 20 hours whereas case with supersaturation equal to 2.5
took around 5 hours to complete. It should be noted that the choice
of the iterative solver used to obtain ψ (by smearing ψ0 based on
Eq.11.4) has been observed to substantially influence the simulation
time, see appendix b of appended paper D for further discussion.

• Electrochemical evolution of hydrogen bubble, described in paper F
which considered a domain of 10 mm×5 mm which was meshed by
1600×800 cells (corresponding to a mesh resolution of 6.25×10

−6m),
was run on 5×32 cores (on Fram) and took about 12 hours to com-
plete.
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Abstract: With the increasing use of Computational Fluid Dynamics to investigate multiphase flow
scenarios, modelling surface tension effects has been a topic of active research. A well known
associated problem is the generation of spurious velocities (or currents), arising due to inaccuracies
in calculations of the surface tension force. These spurious currents cause nonphysical flows which
can adversely affect the predictive capability of these simulations. In this paper, we implement the
Continuum Surface Force (CSF), Smoothed CSF and Sharp Surface Force (SSF) models in OpenFOAM.
The models were validated for various multiphase flow scenarios for Capillary numbers of 10−3–10.
All the surface tension models provide reasonable agreement with benchmarking data for rising
bubble simulations. Both CSF and SSF models successfully predicted the capillary rise between
two parallel plates, but Smoothed CSF could not provide reliable results. The evolution of spurious
current were studied for millimetre-sized stationary bubbles. The results shows that SSF and CSF
models generate the least and most spurious currents, respectively. We also show that maximum time
step, mesh resolution and the under-relaxation factor used in the simulations affect the magnitude of
spurious currents.

Keywords: surface tension modelling; VOF; rising bubbles; capillary rise

1. Introduction

For a comprehensive understanding of flow physics in multiphase systems, which is ubiquitous
in both nature and technological processes, consideration of surface tension is important. For instance,
the break down of a fluid jet into droplets is used to form droplets in inkjets [1] and lab-on-chip
devices [2] while the thinning and breakdown dynamics of non-Newtonian fluid filaments is critical in
its application in jetting [3,4]. Flow scenarios such as underground water flows [5], oil recovery [6]
and paper-based microfluidics [7] are examples of flow through porous media where dominance of
surface tension may produce a capillary rise. The detachment diameter of the bubble [8,9] and shape
of rising bubble [10] during bubble evolution in champagne, boiling and electrochemical gas evolution
is dependent on surface tension, as is the droplet size produced during atomisation of fuels [11],
spraying [12,13] and growth of a bubble in confined geometries [14]. The effect of surface tension is
also important in events such as nucleation of bubbles [15,16] and droplets [17].

Due to the importance and complex nature of multiphase flows, numerical simulations, especially
computational fluid dynamics (CFD), are commonly used to study and understand these processes.
The CFD strategies used to model multiphase flows can broadly be divided into four categories:
Euler–Euler (EE), Euler–Lagrange (EL), interface tracking and capturing methods. The EE approach
assumes that phases are interpenetrating, which is efficient when modelling large-scale industrial
processes [18,19], while EL tracks the dispersed phases individually, which can be computationally
expensive [20,21]. As both EE and EL approaches do not resolve the complete interactions between

Processes 2019, 7, 542; doi:10.3390/pr7080542 www.mdpi.com/journal/processes
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the phases, they require so called “closure laws” (see [18–21]). Interface tracking methods, such
as the moving mesh method, use a separate boundary-fitted moving mesh for each phase [22].
Although interface tracking methods are quite accurate, they are typically used to model bubble
or droplets with mild-moderate deformations [22,23] but to handle complex interface deformations
these methods require a global or local re-meshing [24]. Interface capturing methods use a fixed grid
with functions to capture the interface such as the Volume Of Fluid method (VOF) [25], level-set [26]
and diffuse interface methods [27]. Other methods available in the literature employ a hybrid interface
tracking-capturing approach, such as the immersed boundary [28] and front tracking method [29].
Due to its ability to conserve mass (both level-set [30] and phase-field [31] models have difficulties in
conserving mass), robustness and ability to produce reasonably sharp interfaces VOF is very popular in
multiphase simulations [32–57] and implemented in both commercial (ANSYS Fluent R© and Flow-3D R©)
and open source (OpenFOAM R©) CFD packages.

Due to the popularity of open source CFD packages, this paper predominantly delves into the
VOF formulation and reported development in interFoam, which is the VOF-based solver available
in OpenFOAM R©. In the VOF method, a scalar function representing the volume fraction of phases
in the computational cells is advected. The advection of the volume fraction equation is done using
specific discretisation schemes, such as the interface compression method [58], to prevent the excessive
smearing of the interface thickness. Apart from interface compression method, recent work has
explored reconstruction of interface using techniques such as the isoAdvector method [59,60] and piece
wise linear interface calculation (PLIC) algorithm [61]. Although the VOF approach in theory produces
a sharp interface, the “real” VOF, which is implemented in solvers such as interFoam, produces a
non-sharp interface, which stretches over a few computational cells. This non-sharp nature of the
volume fraction leads to errors in the calculated curvature which generates spurious currents that is
quantified in the work by Harvie et al. [62], appearing as vortices around the interface (see [63,64]).
The presence of these spurious currents introduces non-physical velocities near the interface, which
can increase the interfacial mass transfer while modelling condensation [32] and evaporation [57]
scenarios and adversely effects the accuracy of simulations. In the literature, spurious currents in VOF
methods can be reduced by the following approaches:

• force balance, which is achieved by discretising the surface tension and pressure forces at the same
location [65];

• accurate calculation of the curvature (see Table 1); and
• choosing the appropriate time step for the solver (see [63]).
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Table 1. An overview of improved curvature calculations and surface tension models developed for
VOF method.

Publication Remarks

Brackbill et al. [66] Introduced the Continuum Surface Force (CSF) and density scaled
CSF models. These methods are very common due to its relatively
straightforward implementation in a VOF framework.

Ubbink [67] Proposed using a smoothed volume fraction to calculate curvature (referred
to as “Smoothed CSF” in this paper). Using a smoothed volume fraction
to compute the curvature instead of non-smoothed volume fraction in
CSF model reduced spurious current up to one order of magnitude [56].
This method has been used in modelling condensing bubbles [32] and
droplets in microfluidic devices [56]. A similar smoothening of α1 was
proposed by Heyns and Oxtoby [68].

Sussman and Puckett [69] Developed a fully coupled level-set VOF (CLSVOF) method which combines
the mass conservativeness of VOF method with smoothness of the
level-set function to reduce spurious currents. The CLSVOF method has
been used to applications such as splashing droplets [45], flow through
microfluidic devices [46], wave breaking [47] and droplet evaporation [43].
Another variant of coupled level set approach is the simple coupled level-set
VOF (S-CLSVOF) proposed by Albadawi et al. [70].

Raessi et al. [71] Proposed a method to calculate κ based on advected normals. The spurious
currents were lower than CSF (within the same order) while modelling cases
such as stationary bubble, rising bubble and Rayleigh–Taylor instability [71].

Renardy and Renardy [72] Introduced parabolic reconstruction of surface tension (PROST) algorithm
which uses a least-squares fit of the interface to a quadratic surface.
The spurious current produced by the algorithm is lower by two orders
of magnitude compared to CSF [72]. The model was used to simulate droplet
deformation including breakup [48,72].

Cifani et al. [61] Implemented piecewise linear interface calculation (PLIC) algorithm
(proposed by Youngs [73]) to reconstruct the interface in interFoam and
managed to reduce spurious currents.

Pilliod and Puckett [74] Developed an efficient least squares volume-of-fluid interface reconstruction
algorithm (ELIVRA) which reconstructs the interface using a least square
method to fit the interface to a linear surface.

Popinet [75] Proposed calculating curvature using height functions. Use of height
functions have reduced spurious current (slightly outperformed PROST
algorithm [75]) and has been shown to model flow in microchannels [49],
rising bubble [34,44] and other multiphase flows [50].

Raeini et al. [76] Introduced a sharp surface force formulation to calculate the capillary force,
which is then filtered to reduce the spurious currents (known as FSF model).
Neglecting the filtering terms in the FSF model provides a sharp surface
formulation of surface tension known as SSF, which is described in [42].
The SSF has been reported to be reduce the spurious currents by two to
three orders in comparison to CSF [42]. The FSF model has been reported
to provide periodic bursts in the velocity fields but lower spurious current
than SSF [42]. The approach has been used to model bubbles in microfluidic
devices [51] and flow through porous media [52].

Denner et al. [77] Proposed the use of artificial viscosity model, which applies artificial shear
stress in the tangential direction to interface, to dampen the spurious currents.
The model has been used to model rising bubble and capillary instability of
a water jet [77].

Lafaurie et al. [78] Proposed an alternative to the CSF model, known as the Continuum Surface
Stress (CSS) model, determines surface tension as divergence of stress tensor
without relying on complex curvature calculations. Due to imbalance in
the surface tension and pressure, CSS model can also produce spurious
currents [35] which has reported to be in the same order as CSF [72].
CSS model has been used to model static droplets and rising bubbles [35],
but it does not provide reliable results for falling films [41].
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To analyse the force balance (described in [65]), Deshpande et al. [63] evaluated interFoam
and showed that there is no imbalance in the surface tension and pressure forces due to
inconsistent discretisation. However, the iterative process, which is used to solve pressure equation,
introduces an imbalance which is related to the user defined tolerance level of the solution [63].
An overview of literature that provides an improved estimate of the interface curvature and surface
tension modelling approaches is provided in Table 1. The improved representation of the interface
(which aids in accurate calculation of the interface curvature) is provided bycoupled level-set VOF
(CLSVOF) method, height functions and interface reconstruction algorithms (like piecewise linear
interface calculation (PLIC), parabolic reconstruction of surface tension (PROST) and efficient least
squares volume-of-fluid interface reconstruction (ELIVRA) algorithms), whereas the other methods
discussed in Table 1 provide alternative approaches to model surface tension. To ensure that spurious
currents do not grow over time, a stability condition, proposed by Brackbill et al. [66], for explicit
treatment of surface tension is

∆t <

√
ρavg(∆x)3

2πσ
, (1)

where ∆x, σ and ρavg are grid spacing, surface tension and average of density of both phases,
respectively. As proposed by Galusinski and Vigneaux [79], a comprehensive constraint on the
time step must consider the effect of both density and viscosity which can be expressed as

∆t ≤ 1
2

(
C2τµ +

√
(C2τµ)2 + 4C1τ2

ρ

)
, (2)

where τµ and τρ are time scales which are defined as µavg∆x/σ and
√

ρavg(∆x)3/σ, where µavg

is the average dynamic viscosity between the phases, respectively. An evaluation of interFoam,
by Deshpande et al. [63], proposed that time step should satisfy

∆t ≤ max
(

C2τµ, 10C1τρ

)
, (3)

along with the time step constraint discussed in Equation (2). Deshpande et al. [63] also calculated
the values of C1 and C2 for interFoam to be equal to 0.01 and 10, respectively. Further details of the
numerical methods used to model surface tension is available in the recent review work by Popinet [80].

In the literature, comparison between surface tension models is often done for a specific of flow
phenomenon and at times a static scenario is used to quantify the spurious currents. Some examples
of flow phenomena used to compare surface tension models are rising bubbles whose diameters are
in the order of few millimetres [33–35], translating and rotating bubbles [64], oscillating droplets or
bubbles [34], stagnant bubbles or droplets [34,35,39,64], Rayleigh–Taylor instability [37,38], Taylor
bubbles [64], falling films [41], droplet splashing [38,39], capillary rise [42] and bubble evolution [37,40].
These typically compare the CSF model with height functions [33,34,64], PROST [37], PLIC [42],
CLSVOF and its variants [37–40,64], FSF and SSF [42], and CSS [35,41] models. Although the flow
scenarios that are used to compare surface tension models are diverse, they can be broadly categorised
based on the dominance of surface tension in the flow using the Capillary number (Ca), which is
defined as the ratio of viscous to surface tension forces in the system. Flow phenomena such as
capillary rise and stationary bubbles are examples of low values of Ca whereas flows with larger values
of Ca include rising bubbles and falling films.

During processes such as gas evolution during electrochemical reactions and boiling, nucleated
bubbles grow by mass transfer across the interface [15,16] or coalescence [8], but once the bubble
detaches it may deform as it rises up and/or interacts with other bubbles [53]. Other complex
processes, such as splashing, involve droplet spreading on a surface which is accompanied by formation
of secondary smaller droplets at the rim [81]. To reliably model these processes, surface tension
models must be able to accurately handle flow scenarios with both small and large capillary numbers.
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In literature, the work by Hoang et al. [56] implemented the Smoothed CSF approach to model the
steady motion of bubbles in a straight two-dimensional channel, the formation of bubbles in two-
and three-dimensional T-junctions, and the breakup of droplets in three-dimensional T-junctions.
A study by Heyns and Oxtoby [68] implemented a selection of surface tension modelling approaches
(e.g., the CSF, a variant of Smoothed CSF and a force-balanced higher-resolution artificial compressive
formulation) to model a stationary bubble. To the best of the authors’ knowledge, a recent study by
Yamamoto et al. [36] is the only one of its kind where different surface tension models (i.e., S-CLSVOF,
density scaled S-CLSVOF and CSF) are compared based on a variety of processes with various capillary
numbers (e.g., rising bubbles, capillary rise, capillary wave and thermocapillary flows).

In this study, we implemented three different surface tension models, namely CSF [66], Smoothed
CSF [67] and SSF [76], in interFoam available in OpenFOAM 6. To investigate the capability of the
surface tension models to handle various flow scenarios, we used two benchmark cases:

• two-dimensional rising bubbles (proposed by Hysing et al. [54], Klostermann et al. [55]); and
• two-dimensional capillary rise.

These two benchmark cases were selected due to their relevance in a variety of processes.
To compare the spurious currents generated by the surface tension models, a stationary bubble
was simulated. For practical applications, the time step constraint can substantially increase the
computational time, thus the temporal development of the spurious currents with the surface tension
models were also examined. Furthermore, the evolution of spurious currents with mesh resolution and
under-relaxation factor used for the simulations was also investigated. In the interest of knowledge
dissemination, the solvers and the test cases (implemented in OpenFOAM 6) discussed in the paper
are available in the Supplementary Materials.

2. Numerical Model

2.1. Governing Equations

The VOF approach (developed by Hirt and Nichols [25]) denotes the individual phases using a
scalar function called volume fraction, represented as

α1(~x, t) =





0 (within Phase 2 or gas)

0 < α1 < 1 (at the interface)

1 (within Phase 1 or liquid),

(4)

where α1 is the volume fraction of liquid. The fluid properties such as density (ρ) and viscosity (µ) in a
control volume are calculated as

χ = χ1α1 + χ2α2 where χ ∈ [ρ, µ], (5)

where χ1 and χ2 represent the fluid property of liquid and gas phase, respectively.
Considering the fluids to be incompressible, isothermal and immiscible, the VOF approach solves

a single set of continuity and momentum equation for the whole domain. The continuity equation is
written as

∇ · ~U = 0, (6)

where ~U is the fluid velocity. The momentum equation is

∂ρ~U
∂t

+∇ · (ρ~U~U) = −∇p + ρ~g +∇ · µ
(
∇~U +∇~UT

)
+ ~Fst, (7)
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where last term represents the surface tension forces, the second last term is the viscous term, ~g is the
acceleration due to gravity and p is the pressure. Advection of the volume fraction of liquid (α1) is
implemented in interFoam as

∂α1

∂t
+∇ · (α1~U) +∇ · (α1(1 − α1) ~Ur) = 0, (8)

where the third term is an artificial compression term used to sharpen the interface [58,61]. The artificial
compression term uses a relative velocity (~Ur) defined as

~Ur = Cα

∣∣∣∣∣
φ

|S f |

∣∣∣∣∣~n f , (9)

where φ, S f , Cα and ~n f are the velocity flux, face surface area, an adjustable compression factor and
unit normal vector to the interface, respectively. In the literature, Cα can be set between 0 and 4, where
Cα equal to zero and one correspond to the case of no and moderate compression, respectively [56].
The increase in the value of Cα sharpens the interface but increases the magnitude of spurious currents
(see [51,56]). To model practical flow scenarios using interFoam, the value of Cα is generally set to
unity [32,63].

2.2. Surface Tension Models

This section introduces the three surface tension models: CSF, Smoothed CSF and SSF.

2.2.1. The Continuum Surface Force (CSF) Model

Proposed by Brackbill et al. [66], the CSF model provides a volumetric representation of surface
tension, represented as

~Fst = σκ∇α1, (10)

where σ is the surface tension and κ is the curvature, defined in Equation (13). The unit normal vector
at the interface is calculated as

n̂ =
∇α1

|∇α1|+ δ
, (11)

where δ is a small non-zero term to ensure that the denominator does not become zero. δ is calculated

as 10−8/
(

∑N Vi
N

)1/3
, where N is the number of computational cells and ∑N Vi provides the sum of the

volumes of individual cells (represented by i). Once n̂ is calculated, it is corrected to account for wall
adhesion through

n̂ = n̂wcosθ + t̂wcosθ (12)

where θ is the contact angle of the gas–liquid interface at the walls (measured in the liquid phase),
and n̂w and t̂w are unit vectors that are normal and tangential to the wall, respectively [82].
The curvature of the interface is then calculated as

κ = −∇ · n̂. (13)

2.2.2. The Smoothed CSF Model

The Smoothed CSF model (by Ubbink [67]) proposed modifying CSF by modifying the calculation
of curvature of interface by using a smoothed volume fraction of liquid (α1).

The smoothed volume fraction field is calculated using a smoother proposed by Lafaurie et al. [78],
which has been implemented in the literature [32,56] and is represented as

α̃1 =
∑N

f=1 < α1 >c−→ f S f

∑N
f=1 S f

, (14)
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where the indices c and f are the cell and face centre indices, respectively. < α1 >c−→ f represents
the interpolation of α1 from cell to face centre. The smoothening of volume fraction, done using
Equation (14), is applied twice to obtain a smooth volume fraction field, which is used in Equation (15).
Implementation of Equation (14) in interFoam is done using the subroutine developed in the work
by [56]. Based on the smoothed volume fraction field, the unit normal to the interface is calculated as

˜̂n =
∇α̃1

|∇α̃1|+ δ
, (15)

which is then corrected for wall adhesion (based on Equation (12)). The curvature of the interface is
then calculated as

κ̃ = −∇ · ˜̂n. (16)

The surface tension can be represented using the modified curvature (κ̃ in Equation (16)), which
can be represented as

~Fst = σκ̃∇α1. (17)

2.2.3. The Sharp Surface Force (SSF) Model

In the SSF model, proposed by Raeini et al. [76], smoothened and sharpened volume fraction
fields are used to calculate curvature and gradient of of volume fraction.

The smoothened volume fraction (αs) is calculated based on interpolating the cell-centred values
of α1 to the cell faces using a three consecutive smoothening steps described using Equations (18a)–(18c)

αs1 = C
〈
< α1 >c−→ f

〉
f−→c

+
(

1 − C
)

α1, (18a)

αs2 = C
〈
< αs1 >c−→ f

〉
f−→c

+
(

1 − C
)

αs1, (18b)

αs = C
〈
< αs2 >c−→ f

〉
f−→c

+
(

1 − C
)

αs2, (18c)

where C is set equal to 0.5. The unit normal to the interface is then calculated as

n̂s =
∇αs

|∇αs|+ δ
, (19)

which is then corrected for wall adhesion (based on Equation (12)). The curvature (κs) is calculated
using Equation (19) as

κs = −∇ · n̂s. (20)

The interface curvature is smoothed by using a three step procedure, which can be broadly
summarised into Equations (21a), (21c), and (21d). The first step involves smoothening the curvature
calculated in Equation (20) as

κ f 1 =
(

2
√

αc(1 − αc)
)

κs +
(

1 − 2
√

αc(1 − αc)
)

κ∗s (21a)

where αc is defined as min(1,max(α1,0)) and

κ∗s =

〈
< wκs >c−→ f

〉
f−→c〈

< w >c−→ f

〉
f−→c

, w =
√

αc(1 − αc) + 10−3. (21b)
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The second step further smoothens the curvature (calculated in Equation (21a)) as

κ f 2 =
(

2
√

αc(1 − αc)
)

κs +
(

1 − 2
√

αc(1 − αc)
)

κ∗s2, where κ∗s2 =

〈
< wκ f 1 >c−→ f

〉
f−→c〈

< w >c−→ f

〉
f−→c

. (21c)

The final step calculates the the final curvature as

κ f inal =
< wκ f 2 >c−→ f

< w >c−→ f
. (21d)

The surface tension is then given as

~Fst = σκ f inal∇αsh, (22)

where αsh is a sharpened volume fraction of liquid defined in Equation (23).

αsh =
1

1 − Csh

[
min

(
max

(
α1,

Csh
2

)
, 1 − Csh

2

)
− Csh

2

]
, (23)

where Csh is a sharpening coefficient. A value of Csh=0 reduces αsh to α1, whereas Csh=1 provides
sharp representation of the interface (which is numerically unstable). We used Csh=0.98 for static cases
and Csh=0.5 for dynamic cases.

3. Solver Settings

To simplify the treatment of pressure boundary condition and density change across the interface,
interFoam uses prgh which is defined as p − ρ~g · ~x, where ρ~g · ~x is the hydrostatic component
of pressure [58]. The volume fraction evolution equation (Equation (8)) is solved using the
Multidimensional Universal Limiter with Explicit Solution (MULES) algorithm, which preserves
the boundedness of volume fraction [61,63]. Once volume fraction is solved, the continuity equation
(Equation (6)) and momentum equation (Equation (7)) are solved using the Pressure Implicit with
Splitting of Operator (PISO) algorithm [83]. In PISO, a predicted velocity is updated using a pressure
correction procedure to advance velocity and pressure fields in time [58,63]. To understand the
implementation and solution algorithm of the governing equations (Equations (6)–(8)) in interFoam,
please refer to the work by Rusche [58] or Deshpande et al. [63]. The discretisation schemes, solvers
and others parameters used to solve the governing equations for all the simulations discussed in
this paper are presented in Tables 2–4, respectively. Under-relaxation factors, if set to less than
unity, cause damping of the solution, which can lead to longer computational time for the solution
reach to a steady state value. In flow scenarios where there is no steady state solution, using an
under-relaxation factor can lead to erroneous results due to under-prediction of the flow variables.
We used an under-relaxation factor in the solver equal to one for dynamic cases and 0.9 for static cases.
The effect of using an under relaxation factor of one on static cases is also investigated.
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Table 2. Discretisation schemes.

Modeling Term Keyword Scheme Remarks

Time derivatives ddtSchemes Euler First order implicit method (see [84])

Divergence term
∇ · (ρ~U~U)

∇ · (~Uα1)

∇ · ( ~Ucα1(1 − α1))

vanLeerV
vanLeer
interfaceCompression

Modified vanLeer for vector fields (see [84])
See [85]
See [63]

Gradient term gradSchemes linear Operator with ∇ (see [84])
Laplacian term laplacianSchemes linear corrected Operator with ∇2 (see [84])

Others
snGradSchemes
interpolationSchemes

corrected
linear

Surface normal gradients (see [84])
Interpolates values (see [84])

Table 3. Solvers used for the discretised equation.

Equation Linear Solver Smoother/Preconditioner Tolerance

Pressure correction equation PCG DIC 10−20 (based on [63])
Momentum equation smoothSolver symGaussSeidel 10−12

Volume fraction equation smoothSolver symGaussSeidel 10−12

Table 4. Other parameters used in solving the discretised equations.

Parameter Value Notes

nAlphaCorr 2 Number of α1 correction [55]; typically set equal to 1 or 2
for time-dependent flows [86].

nAlphaSubCycles 1 Represents the number of sub-cycles within α1
equation [84].

cAlpha (Cα) 1 Used for interface compression in Equation (9).
MULESCorr yes Switches on semi-implicit MULES [87].
nLimiterIter 3 Number of MULES iterations over the limiter [87].
momentumPredictor no Controls solving of the momentum predictor; typically

set to ’no’ for multiphase and low Reynolds number
flows [84].

minIter 1 Minimum number of iterations used in momentum
calculation.

nOuterCorrectors 1 PISO algorithm is selected by setting this parameter equal
to unity (in PIMPLE algorithm) [84].

nCorrectors 3 The number of times the PISO algorithm solves the
pressure and momentum equation in each step; usually
set to 2 or 3 [84].

nNonOrthogonalCorrectors 0 Used when meshes are non-orthogonal [84].

4. Validation: Benchmark Test Cases

4.1. Two Dimensional Rising Bubbles

Due to the computational overhead of modelling a three-dimensional rising bubble, we model the
buoyancy driven motion of a single bubble as proposed by Hysing et al. [54], Klostermann et al. [55].
The work by Hysing et al. [54] reported benchmarking data such as the bubble shape, rising velocity
and circularity for two cases. These benchmarking data are produced based on numerical simulations
using codes such as TP2D, FreeLIFE and MoonNMD [54]. In the work by Klostermann et al. [55],
the benchmark proposed by Hysing et al. [54] was used to evaluate the VOF solver in OpenFOAM R©

(i.e., interFoam) for various meshes.
The computational domain used for the simulation is a rectangle of dimensions 1 m × 2 m where

the bubble of diameter 0.5 m was initialised such that the centre of the bubble is at a distance of 0.5 m
from the bottom and side walls. As mesh convergence could not be achieved perfectly in previous
works [36,55], we used a uniform grid 160 × 320 for the simulations, corresponding to the fine mesh
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used in [54]. The pressure boundary conditions used in the simulations were zero gradient on the
side and bottom walls, and a Dirchlet condition (equal to zero) at the top wall. The volume fraction of
fluid used a zero gradient boundary condition on all walls. The velocity boundary conditions used
for the simulations were no slip on top and bottom walls, but slip condition was implemented for the
side walls. The fluid properties associated with the test cases, which are abbreviated as TC1 and TC2,
are tabulated in Table 5. The maximum Courant number used by the solver was set equal to 0.01 and
maximum time step permitted was based on Equations (2) and (3). The test cases are distinguished
based on Reynolds (Re), Eötvös (Eo) and Capillary (Ca) numbers, which are defined as

Re =
UgL
ν1

, Eo =
ρ1U2

g L
σ

, Ca =
Eo
Re

(24)

with L and Ug being the characteristic length scale (equal to 0.5 m) and characteristic velocity (defined
as

√
|~g|L), respectively. The bubble shape was obtained at α1 = 0.5 and rising velocity was calculated

based on bubble volume averaged vertical component of the velocity vector [54,55]. For validation,
we used the the data reported by Klostermann et al. [55] and Hysing et al. [54] (for the predictions by
the FreeLIFE solver, which is referred to as ’Benchmark’ in this paper) for a uniform grid of 160 × 320.

Table 5. Physical parameters used for the rising bubble simulations (see [54]).

Cases ρ1(kg/m3) ρ2(kg/m3) ν1(m2/s) ν2(m2/s) σ(N/m) ~g(m/s2)* Re Eo Ca

TC1 1000 100 10−2 10−2 24.5 (0 −0.98 0) 35 10 0.286
TC2 1000 1 10−2 10−1 1.96 (0 −0.98 0) 35 125 3.571

*~g is the reduced gravity as described in [54].

The first test case, TC1, corresponds to the case where surface tension effects are dominant [55].
The temporal evolution of the bubble as predicted by the various surface tension models is compared
in Figure 1. Due to the stronger surface tension effects, the interface deforms into an ellipsoidal
bubble (see Figure 2). The bubble shape (at t = 3 s) predicted by CSF model provides a slightly better
agreement to the benchmark data compared to the other surface tension models. The surface tension
models also tend to underpredict the position of the bubble at t = 3 s. This underprediction could be
attributed to the lower rising velocity (see Figure 3), which has also been reported in previous studies
using OpenFOAM [36,54,55]. Although bubble shape and rising velocity provide an overview of the
capability of the surface tension models, the quantification of the errors associated with the models
was based on the maximum rising velocity (Vmax) and the time at which the Vmax occurred (tabulated
in Table 6). The benchmarking data show that SSF model provides a better agreement to the data
reported by Hysing et al. [54] (absolute error is less than 2%) and Klostermann et al. [55] (absolute
error is nearly 1.5%) in comparison to the other models.
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Figure 1. Temporal evolution of the bubble for TC1: (a) t = 0.5 s; (b) t = 1.5 s; and (c) t = 2.5 s.
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Figure 2. Validation Bubble shape for TC1 at t = 3 s: (a) bubble morphology; and (b) detailed.

Table 6. Benchmark quantities for TC1.

Parameter CSF Smoothed CSF SSF [55] Benchmark ([54])

Vmax 0.2366 0.2375 0.2386 0.2365 0.2419
t(Vmax) 0.9632 0.9491 0.9104 0.9219 0.9270
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Figure 3. Validation Bubble rising velocity for TC1: (a) temporal changes of bubble rising velocity; and
(b) detailed.

The other test case, TC2, corresponds to a case where the surface tension effects are lower [55]. This
results in larger deformation of interface as the bubble evolves (see Figure 4) and eventually forms a
skirted bubble that has thin filaments that breaks down into smaller droplets (see Figure 5). Comparing
the surface tension models to the benchmark for final bubble shape shows that the models agree
quite well (see Figure 5) but there is a difference between the models with respect to the prediction
of the skirted part of the bubble (see Figure 5b). Figure 6 shows that the surface tension models in
comparison to the benchmark data under-predicts the rise velocity. Comparing with the benchmark,
the SSF model provides the closest agreement for Vmax1 (absolute error is nearly 3.5% [54] and less
than 0.1% for [55]) and t(Vmax1) (absolute error is nearly 3–3.5% for both [54,55]) (see Table 7). On the
other hand, CSF model agrees with the benchmarking data for Vmax2 (absolute error is nearly 5.7% [54]
and 0% for [55]) and t(Vmax2) (absolute error is nearly 0.6% for both [54,55]) (see Table 7).
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Figure 4. Temporal evolution of the bubble for TC2: (a) t = 0.5 s; (b) t = 1.5 s; and (c) t = 2.5 s.

Table 7. Benchmark quantities for TC2.

Parameter CSF Smoothed CSF SSF [55] Benchmark ([54])

Vmax1 0.2434 0.2429 0.2427 0.2431 0.2514
t(Vmax1) 0.7663 0.7637 0.7502 0.7250 0.7281

Vmax2 0.2302 0.2290 0.2260 0.2302 0.2440
t(Vmax2) 1.9721 1.9700 1.9729 1.9594 1.9844
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Figure 5. Validation Bubble shape for TC2 at t = 3 s: (a) bubble morphology; and (b) detailed.
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Figure 6. Validation Bubble rising velocity for TC2: (a) temporal changes of bubble rising velocity; and
(b) detailed.
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In the previous work by Klostermann et al. [55], the spurious currents were reported to be the
reason for the error between the benchmark ([54]) and their simulations (for both TC1 and TC2). Thus,
the differences in the predictions, for the rising bubble simulations, between the three surface tension
models considered in this paper and their departure from the benchmark can also be attributed to
spurious currents generated by these models (which is discussed below). For TC2, the larger variation
between the surface tension models after the first peak in the transient evolution of the rise velocity
(see Figure 6) can be attributed to the differences in the shapes of filament or satellite droplets (based
on the work of Yamamoto et al. [36]). Interestingly, there are also some differences in the predictions by
the CSF model (for both TC1 and TC2) and the data reported by Klostermann et al. [55], which could
be attributed to the difference in the solver settings (e.g., the discretisation schemes, linear solvers and
number of iterations) and/or the variations within the different versions of OpenFOAM. The influence
of the discretisation schemes on the predicting the flow variables has been previously investigated
in [88,89] but further investigation into the effects of other solver settings (e.g., the choice of linear
solver and number of iterations) on the solution is required to quantify its effect. As OpenFOAM gets
updated, some of the functionalities and/or the algorithms are modified, for example, the artificial
interface compression term used in advection of α1 (defined in Equation (9)) is computed differently
in the older versions of the software (see [55]). To the best knowledge of the authors, no study
has reported a comparison of the performance of various versions of OpenFOAM for specific flow
scenarios. These settings, especially discretisation schemes and interface compression algorithms,
would effect the generation and evolution of spurious currents, which could be the potential source of
the discrepancy between our simulations and the data reported in literature.

4.2. Two-Dimensional Capillary Rise

The rise of liquid through a narrow tube or between two parallel plates, which occurs as a
consequence of the wetting of the walls by the liquid, is known as capillary rise. As the liquid rises,
it reaches a point of equilibrium when the vertical component of the force exerted by surface tension is
balanced by the gravitational force acting on the risen liquid column. This equilibrium point (for liquid
rising between two vertical parallel plates) is denoted using a height (hb), which can be analytically
calculated as

hb =
2σcosθ

∆ρ|~g|a , (25)

where ∆ρ is the difference between densities of liquid and gas, and a is the distance between the
plates [90].

To study capillary rise, we used a rectangular domain of dimensions 1 mm × 20 mm, where a
(defined in Equation (25)) is equal to 1 mm, with a uniform mesh of 20 × 400. This mesh resolution
provided the most accurate prediction of capillary rise for the same computational domain while using
CSF model in the previous work by Yamamoto et al. [36]. The boundary conditions for velocity field
imposes a no slip boundary condition for the walls and pressure based condition (applied to both inlet
and outlet) that computes inlet velocity based on the patch-face normal component of the internal-cell
velocity and outflow using the zero gradient condition. The volume fraction field uses a zero gradient
condition at walls (with a contact angle of 45◦) and outlet, along with a Dirchlet condition (equal to one)
at inlet. The boundary condition for pressure uses a Dirichlet condition (equal to zero) at inlet and
outlet whereas the walls use a Neumann boundary condition. The materials properties used for the
simulations are described in Table 8. The initial volume fraction of liquid in the domain is set such
that the liquid–gas interface is at a height of 8 mm from the bottom surface. The maximum time step
(which satisfies both Equations (2) and (3)) and maximum Courant number were set equal to 3.5 µs
and 0.1, respectively.
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Table 8. Physical parameters used for the capillary rise simulations.

ρ1(kg/m3) ρ2(kg/m3) ν1(m2/s) ν2(m2/s) σ(N/m) ~g(m/s2)* Ca

1000 1 10−6 1.48 × 10−5 0.07 (0 −10 0) 0.0014
*This value of ~g is used to study capillary rise by Yamamoto et al. [36].

Once the interface position stabilised (see Figure 7), the capillary height hb,calc was calculated
approximately from the volume fraction field as

hb,calc =

∫
S α1dS

a
, (26)

where the numerator is the area occupied by the liquid in the computational domain [36]. The capillary
rise height calculated from the simulations is compared to the analytically derived hb (which was
determined to be 9.9 mm using Equation (25)) in Table 9.

Table 9. Errors associated with the surface tension models on prediction of capillary rise.

Surface Tension Model hb,calc (mm) E(h) = (hb,calc − hb)/hb

CSF 9.16 −0.076
Smoothed CSF Capillary height did not stabilise during simulations (see Figure 7)

SSF 9.26 −0.065
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Figure 7. Evolution of the water column during capillary rise.

Table 9 shows that SSF model provides a better prediction of the capillary rise height compared
to CSF model. A previous work by Yamamoto et al. [36] reported an error of 7.7% for a capillary
rise model using the CSF model. Interestingly, the Smoothed CSF model could not provide a reliable
capillary rise prediction due to the oscillation of the water column (see Figure 7). This discrepancy can
be explained based on the evolution of the spurious currents (Usc defined in Equation (27)), which
are plotted in Figure 8. The magnitude of spurious currents (Usc) generated in the simulations was
computed at each time step as

Usc = max(|~U|). (27)

The periodic growth and decay of the spurious currents in the Smoothed CSF model (see Figure 8)
results in the unrealistic motion of the interface whereas the CSF model which has much larger
magnitude of spurious currents is much more periodic (see Figure 8), which reduces the net motion of
the liquid–gas interface. Compared to CSF and Smoothed CSF models, the spurious current evolution
in the SSF model is lowered by nearly two orders of magnitude (see Figure 8).
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Figure 8. Evolution of spurious currents during the capillary rise simulations. It is worth pointing
out that the figure is plotted using data extracted at every 500th point from the dataset obtained from
simulations in order to reduce the rendering time of the image but care has been taken to showcase the
larger temporal variations of Usc.

5. Analysis: Spurious Current

To study the spurious currents generated during the simulations, we simulated a stationary
bubble where the effect of gravity was neglected. A bubble of diameter 2R was set at the centre
of a square domain of dimensions 4R × 4R. The properties of the two phases and other physical
parameters used for the simulations described in this section are tabulated in Table 10. For these
simulations, the boundaries were assigned the Dirichlet condition, equal to 101325 Pa, for pressure
and zero gradient condition for both α1 and ~U. The simulations were run until an end time of 0.05 s to
ensure that initial transients (if any) were eliminated with maximum time step calculated based on
Equations (2) and (3) along with maximum Courant number of 0.1.

Table 10. Physical parameters used for the simulations in the analysis of spurious current.

ρ1(kg/m3) ρ2(kg/m3) ν1(m2/s) ν2(m2/s) σ(N/m) ~g(m/s2)

1000 1 10−6 1.48 × 10−5 0.07 (0 0 0)

The accuracy of the surface tension models was calculated based on the following parameters:
Laplace pressure, magnitude of spurious currents and mass imbalance. For a two-dimensional bubble,
the Laplace pressure can be calculated using the Young–Laplace equation as

∆p′c =
σ

R
. (28)

The Laplace pressure inside the bubble was calculated from the simulation as

∆pc =

∫
V α2 pdV∫
V α2dV

− p0, (29)

where p0 is the operating pressure (which was equal to 101325 Pa). The mean error associated with the
Laplace pressure calculated by the various surface tension models was determined as

E(∆pc) =
∆pc − ∆p′c

∆p′c
, (30)
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where the overbar represents the time averaged variables.

5.1. Stagnant Bubble of Few Millimetres

In this test case, we modelled a bubble with a radius of 2.5 mm using fluid properties described
in Table 10 and under-relaxation factor of 0.9. The computations were performed using a uniform
structured grid. The total number of mesh elements and maximum time step (which satisfies both
Equations (2) and (3)) used in the simulations are described in Table 11.

Table 11. Details of mesh and the associated maximum time step calculated based on Equations (2)
and (3) used for stationary bubble simulations.

Mesh Mesh Resolution (mm2) Total Number of Cells R/δx* Maximum Time Step (s)

M0 0.5 × 0.5 400 5 9 × 10−5

M1 0.25 × 0.25 1600 10 3 × 10−5

M2 0.125 × 0.125 6400 20 1 × 10−5

M3 0.083 × 0.083 14400 30 6 × 10−6

*R/δx is the ratio of the radius of the bubble and the cell size.

To understand how spurious currents occur with various surface tension models, Usc is plotted
at t = 0.05 s for the grid described by M3 in Figure 9. In the surface tension models considered in
this study, the spurious currents occur around the interface but their magnitudes are much larger in
the bubble than outside. To quantify the spurious currents from the simulations, the magnitude of
spurious currents and capillary pressure are tabulated in Table 12. The spurious currents generated by
the surface tension models tends to reduce with finer meshes for both SSF and Smoothed CSF. On the
other hand, the increase in spurious current for CSF can be explained based on the dependence on the
mesh size (∆x) is given by

C∆x ∼
√

σ

ρ∆x
, (31)

where C∆x is the magnitude of the spurious velocities (studied for CSF model [63,66]). Equation (31)
indicates that smaller mesh sizes result in larger values of spurious currents for CSF model. As shown
in Table 12, the Laplace pressure predicted by the surface tension models does not perfectly match ∆p′c
but both Smoothed CSF and SSF provides a better prediction in comparison to CSF.
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(a) CSF (b) Smoothed CSF

(c) SSF
Figure 9. Comparison of spurious current generated by surface tension models at t = 0.05 s using M3
mesh. The gas–liquid interface in the domain is represented using a contour (in white) that is plotted at
α1 = 0.5.

Table 12. Comparison of spurious currents based on mesh and surface tension models (using an
under-relaxation factor of 0.9).

Surface Tension Model Mesh Usc Ca =
ρ1ν1Usc

σ ∆pc E(∆pc) Mass Imbalance

CSF

M0 0.133 0.002 22.29 −0.20 0
M1 0.171 0.002 23.03 −0.18 0
M2 0.174 0.002 24.06 −0.14 0
M3 0.189 0.003 24.77 −0.12 0

Smoothed CSF

M0 0.096 0.001 24.12 −0.14 0
M1 0.088 0.001 25.14 −0.10 0
M2 0.062 0.001 25.19 −0.10 0
M3 0.049 0.001 26.09 −0.07 0

SSF

M0 0.045 0.001 23.95 −0.14 0
M1 0.087 0.001 25.12 −0.10 0
M2 0.036 0.001 25.88 −0.08 0
M3 0.041 0.001 25.55 −0.09 0
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5.2. Effect of Time Step

The two time step constraints were from Brackbill et al. [66] (Equation (1)) and
Deshpande et al. [63] (Equations (2) and (3)). To study the effect of time step constraint, the simulations
used a bubble of 2.5 mm with the M3 mesh (see Table 11) and fluid properties described in Table 10
using an under-relaxation factor of 0.9. The maximum time steps (∆t) used for the simulations are
25 µs (based on [66]) and 6 µs (based on [63]).

The temporal evolution of Usc is compared for the surface tension models in Figure 10. Using
the time step dictated by Deshpande et al. [63], the spurious currents generated by the CSF model are
reduced by less than half in comparison to when time step constraint proposed by Brackbill et al. [66]
was used. The other models show an absolute difference in the mean spurious current of nearly 7%
and 6%, respectively, for the time step constraints (see Table 13).
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Figure 10. Evolution of spurious currents for various surface tension models.

Table 13. Comparison of spurious currents for the time stepping constraints based on M3 mesh and
surface tension models (while using an under-relaxation factor of 0.9).

Surface Tension Model Usc based on Brackbill et al. [66] Usc based on Deshpande et al. [63]

CSF 0.395950 0.189170
Smoothed CSF 0.052188 0.048619

SSF 0.038550 0.040984
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5.3. Effect of Under-Relaxation Factor

To understand the effect of under-relaxation factor, we considered a case which used an
under-relaxation factor of unity for modelling the stationary bubble of 2.5 mm with M3 mesh. Table 14
provides a summary of the spurious current and the Laplace pressure in the bubble. Comparison of
the results from under-relaxation factor of 0.9 (see Table 12) and 1 (see Table 14) shows that spurious
currents generated by Smoothed CSF model is substantially larger when using a larger under-relaxation
factor (nearly twice). The SSF model provides the least amount of spurious currents for both the
under-relaxation factors and the CSF model generates larger spurious currents with larger mesh
density (as described by Equation (31)). It is also worth pointing out that the evolution of spurious
currents for the time step constraints provide marginally higher spurious currents for CSF model
(0.1% using the time step constraint by Equation (1)) but the Smoothed CSF and SSF models show a
spurious current reduction by nearly 10% and 11%, respectively (see Table 15). Based on the evolution
of spurious currents based on time step constraint, the SSF model generates the least spurious current
when compared to Smoothed CSF and CSF models.

Table 14. Comparison of spurious currents based on mesh and surface tension models (using no
under-relaxation and time step dictated by Deshpande et al. [63]).

Surface Tension Model Mesh Usc Ca =
ρ1ν1Usc

σ ∆pc E(∆pc) Mass Imbalance

CSF

M0 0.158 0.002 22.27 −0.20 0
M1 0.279 0.004 23.09 −0.18 0
M2 0.510 0.007 24.34 −0.13 0
M3 0.723 0.010 24.47 −0.13 0

Smoothed CSF

M0 0.154 0.002 24.02 −0.14 0
M1 0.122 0.002 24.97 −0.11 0
M2 0.104 0.001 25.21 −0.10 0
M3 0.075 0.001 26.03 −0.07 0

SSF

M0 0.042 0.001 24.07 −0.14 0
M1 0.065 0.001 24.86 −0.11 0
M2 0.033 0.000 26.04 −0.07 0
M3 0.036 0.001 25.64 −0.08 0

Table 15. Comparison of spurious currents for the time stepping constraints based on M3 mesh and
surface tension models (while providing no under-relaxation to the flow variables).

Surface Tension Model Usc based on Brackbill et al. [66] Usc based on Deshpande et al. [63]

CSF 0.722930 0.723390
Smoothed CSF 0.082800 0.075458

SSF 0.040016 0.035903

6. Conclusions

In the study, we successfully implemented CSF, Smoothed CSF and SSF models in OpenFOAM
and compared them based on their ability to simulate a two-dimensional stationary bubble, rising
bubbles and capillary rise. The flow scenarios modelled corresponds to a variety of capillary numbers
(in the order of 10−3, 0.1 and 1), which is relevant in various industrial processes. The numerical
simulations show that:

• For a stationary bubble with a 2.5 mm radius, CSF and SSF models generate the most and
least amount of spurious currents, respectively. For the finest mesh used, Smoothed CSF and
SSF models reduce spurious currents by nearly one-tenth and one-twentieth of the CSF model
(when no under-relaxation factor is used), respectively. When using a lower under-relaxation
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factor (for the finest mesh), Smoothed CSF and SSF models reduce the spurious currents by
approximately one-fourth of the CSF model.

• The time step constraints proposed by Brackbill et al. [66] and Deshpande et al. [63] show
that spurious currents generated by the CSF is significantly reduced while using a lower
under-relaxation factor. In Smoothed CSF and SSF models, when using the same under-relaxation
factor, the time step constraint slightly reduces the spurious currents by 6–7%. Interestingly, when
no under-relaxation is used, the CSF model generates marginally larger (nearly 0.1%) spurious
currents with the time step constraint proposed by Deshpande et al. [63], but other models show a
reduction in spurious current by less than 10%.

• The Laplace pressure in the bubbles predicted by Smoothed CSF and SSF is more accurate with an
error of 7–9% for the higher mesh densities than CSF model with negligible imbalance in mass of
the phases.

• Although using a lower under-relaxation factor reduces the spurious currents and predicts the
Laplace pressure in the stationary bubble (for all the surface tension models considered) quite
reasonably, it can adversely effect the accuracy of dynamic cases such as rising bubbles by
underestimating the flow variables.

• Using a higher mesh density results in larger spurious currents for CSF model but they are reduced
for both Smoothed CSF and SSF models for the static case considered.

• The effect of mesh resolution was studied only for the stationary bubble in this work. For the case
of rising bubbles, previous works [36,55], using the CSF model, reported challenges in achieving a
mesh independent solution. Similarly, for capillary rise using the CSF model, Yamamoto et al. [36]
reported an increasing error when using a finer mesh. The meshes used in this paper correspond
to the finest grid (used in FreeLIFE solver) implemented by Hysing et al. [54] and the grid that
provided a most accurate model for capillary rise in the work by Yamamoto et al. [36]. We expect
similar effects of mesh resolution for both Smoothed CSF and SSF models for dynamic cases,
as they are variants of the same formulation. The quantification of these errors will be treated in
future work.

• Rising bubbles were successfully modelled using the surface tension models and validated
based on the final bubble shape and rising velocities proposed by Hysing et al. [54] and
Klostermann et al. [55].

• Modelling the capillary rise with SSF was shown to provide a more accurate representation than
the CSF model. Interestingly, the Smoothed CSF could not reliably simulate capillary rise due to
spurious currents.

Although the surface tension models considered in this study did not eliminate spurious currents
entirely, the comparison provides insights into the limitations of these models. Based on the simulations
done in this study, the SSF model seems to provide a versatile surface tension formulation that
generates small spurious currents and provides a more accurate representation of various processes in
comparison to the standard CSF model.
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Author Contributions: K.J.V. built the models, ran the simulations, post-processed and analysed the results,
and wrote the manuscript. K.E.E. contributed contributed in supervising, reviewing of the results and
revising manuscript.

Funding: We would also like to thank the Department of Material Science and Engineering, NTNU, for funding
this research.

Acknowledgments: The authors would like to thank the OpenFOAM community (both developers and
contributors). We would also like to thank the reviewers whose comments improved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funding organisation had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the
decision to publish the results.



Processes 2019, 7, 542 21 of 24

References

1. Basaran, O.A.; Gao, H.; Bhat, P.P. Nonstandard inkjets. Annu. Rev. Fluid Mech. 2013, 45, 85–113. [CrossRef]
2. Clark, I.C.; Abate, A.R. Microfluidic bead encapsulation above 20 kHz with triggered drop formation.

Lab Chip 2018, 18, 3598–3605. [CrossRef] [PubMed]
3. Jomy Vachaparambil, K. An Analytical and Numerical Study of Droplet Formation and Break-off for

Jetting of Dense Suspensions. Master’s Thesis, KTH, School of Engineering Sciences (SCI), Mechanics,
Stockholm, Sweden, 2016.

4. Valette, R.; Hachem, E.; Khalloufi, M.; Pereira, A.; Mackley, M.; Butler, S. The effect of viscosity, yield
stress, and surface tension on the deformation and breakup profiles of fluid filaments stretched at very high
velocities. J. Non-Newton. Fluid Mech. 2019, 263, 130–139. [CrossRef]

5. Høst-Madsen, J.; Jensen, K.H. Laboratory and numerical investigations of immiscible multiphase flow in
soil. J. Hydrol. 1992, 135, 13–52. [CrossRef]

6. Muggeridge, A.; Cockin, A.; Webb, K.; Frampton, H.; Collins, I.; Moulds, T.; Salino, P. Recovery rates,
enhanced oil recovery and technological limits. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 2014,
372, 20120320. [CrossRef] [PubMed]

7. Osborn, J.L.; Lutz, B.; Fu, E.; Kauffman, P.; Stevens, D.Y.; Yager, P. Microfluidics without pumps: reinventing
the T-sensor and H-filter in paper networks. Lab Chip 2010, 10, 2659–2665. [CrossRef] [PubMed]

8. Brussieux, C.; Viers, P.; Roustan, H.; Rakib, M. Controlled electrochemical gas bubble release from electrodes
entirely and partially covered with hydrophobic materials. Electrochimica Acta 2011, 56, 7194–7201. [CrossRef]

9. Guan, P.; Jia, L.; Yin, L.; Tan, Z. Effect of bubble contact diameter on bubble departure size in flow boiling.
Exp. Heat Transf. 2016, 29, 37–52. [CrossRef]

10. Clift, R.; Grace, J.; Weber, M. Bubbles, Drops, and Particles; Dover Civil and Mechanical Engineering Series;
Dover Publications: Mineola, NY, USA, 2005.

11. Vuorinen, V.A.; Hillamo, H.; Kaario, O.; Nuutinen, M.; Larmi, M.; Fuchs, L. Effect of droplet size and
atomization on spray formation: A priori study using large-eddy simulation. Flow Turbul. Combust. 2011,
86, 533–561. [CrossRef]

12. Hilz, E.; Vermeer, A.W. Spray drift review: The extent to which a formulation can contribute to spray drift
reduction. Crop Prot. 2013, 44, 75–83. [CrossRef]

13. Bouffard, J.; Kaster, M.; Dumont, H. Influence of process variable and physicochemical properties on the
granulation mMechanism of mannitol in a fluid bed top spray granulator. Drug Dev. Ind. Pharm. 2005,
31, 923–933. [CrossRef] [PubMed]

14. Gallino, G.; Gallaire, F.; Lauga, E.; Michelin, S. Physics of Bubble-Propelled Microrockets. Adv. Funct. Mater.
2018, 28, 1800686. [CrossRef]

15. Vachaparambil, K.J.; Einarsrud, K.E. Analysis of bubble nucleation mechanisms in supersaturated solutions:
A macroscopic perspective. Meet. Abstr. 2018, MA2018-01, 1366.

16. Vachaparambil, K.J.; Einarsrud, K.E. Explanation of bubble nucleation mechanisms: A gradient theory
approach. J. Electrochem. Soc. 2018, 165, E504–E512. [CrossRef]

17. Xu, W.; Lan, Z.; Peng, B.; Wen, R.; Ma, X. Heterogeneous nucleation capability of conical microstructures for
water droplets. RSC Adv. 2015, 5, 812–818. [CrossRef]

18. Alexiadis, A.; Dudukovic, M.; Ramachandran, P.; Cornell, A.; Wanngård, J.; Bokkers, A. Liquid–gas flow
patterns in a narrow electrochemical channel. Chem. Eng. Sci. 2011, 66, 2252–2260. [CrossRef]

19. Gupta, A.; Roy, S. Euler–Euler simulation of bubbly flow in a rectangular bubble column: Experimental
validation with Radioactive Particle Tracking. Chem. Eng. J. 2013, 225, 818–836. [CrossRef]

20. Shams, E.; Finn, J.; Apte, S.V. A numerical scheme for Euler–Lagrange simulation of bubbly flows in
complex systems. Int. J. Numer. Methods Fluids 2011, 67, 1865–1898. [CrossRef]

21. Legendre, D.; Zevenhoven, R. A numerical Euler–Lagrange method for bubble tower CO2 dissolution
modeling. Chem. Eng. Res. Des. 2016, 111, 49–62. [CrossRef]
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Abstract 
Amongst the multitude of approaches available in literature to reduce spurious velocities in 

Volume of Fluid approach, the Sharp Surface Force (SSF) model is increasingly being used due to 
its relative ease to implement. The SSF approach relies on a user-defined parameter, the 
sharpening coefficient, which determines the extent of the smeared nature of interface used to 

determine the surface tension force. In this paper, we use the SSF model implemented in 
OpenFOAM® to investigate the effect of this sharpening coefficient on spurious velocities and 
accuracy of dynamic, i.e., capillary rise, and static bubble simulations. Results show that 

increasing the sharpening coefficient generally reduces the spurious velocities in both static and 
dynamic cases. Although static millimeter sized bubbles were simulated with the whole range of 
sharpening coefficients, sub-millimeter sized bubbles show nonphysical behavior for values 

larger than 0.3. The accuracy of the capillary rise simulations has been observed to change 
non-linearly with the sharpening coefficient. This work illustrates the importance of using an 
optimized value of the sharpening coefficient with respect to spurious velocities and accuracy of 

the simulation.  
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1 Introduction 

Modelling surface tension dominant multiphase flows is 
relevant in a multitude of industrial processes like 
lab-on-chip, atomization, and boiling. One of the main 
approach to capture the interface dynamics is the Volume 
of Fluid method which uses the advection of scalar volume 
fraction based on algebraic (interface compression) or 
geometric (piecewise linear interface calculation or PLIC) 
reconstruction algorithms in order to preserve the 
sharpness of interfacial region (Cifani et al., 2016). The 
VOF based solver available in OpenFOAM, interFoam, 
which generates an interface which is smeared over a few 
computational cells uses the interface compression method 
due to its relative simplicity (Deshpande et al., 2012).  

In the VOF approach used in interFoam, the volume 
fraction field is used to determine curvature and corres-
ponding surface tension force based on models like the 
widely used Continuum Surface Force (CSF) approach 
(Brackbill et al., 1992). Due to the smeared nature of the 
interface, the curvature and the pressure jump across the 
interface obtained from the simulations do not match the 
theoretical value which generates spurious velocities 

(Deshpande et al.,     2012). These spurious velocities introduce 
nonphysical flows near the interface which may cause the 
bubble to numerically drift as well as alter the heat/mass 
transfer coefficients in supersaturation and temperature 
driven phase change processes (Samkhaniani and Ansari, 
2016; Saufi et al., 2019; Vachaparambil and Einarsrud, 
2020). The works by Popinet (2018) and Deshpande et al. 
(2012) have reviewed the various approaches reported to 
mitigate these effects, namely: improved curvature 
estimation, force balance between surface tension and 
pressure gradient (for static cases), time step constraint 
when surface tension is calculated explicitly and temporally 
implicit approach to estimate surface tension.  

Amongst the approaches proposed, the Sharp Surface 
Force model, developed by Raeini et al. (2012), estimates 
surface tension based on a smoothed interface curvature 
and a sharpened interface region defined using a user 
defined sharpening coefficient (Csh). This model, which is 
relatively simple to implement compared to height 
function based approach (Pavuluri et al., 2018), has been 
shown to reduce spurious velocities in comparison to 
commonly used CSF model (Pavuluri et al., 2018; 
Vachaparambil and Einarsrud, 2019a). The SSF model, 
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using Csh [0, 0.5]Î , has been used to simulate dynamic 
cases like rising bubbles (Vachaparambil and Einarsrud, 
2019a), microfluidic T-junction (Soh et al., 2016), 
microchannels (Pavuluri et al., 2018), capillary rise (Raeini 
et al., 2012; Vachaparambil and Einarsrud, 2019a), 
interfacial mass transfer (Maes and Soulaine, 2018), and 
bubble growth (Vachaparambil and Einarsrud, 2020) 
whereas when modelling static cases, like stationary 
millimeter sized bubble, Csh is set equal to 0.98 (Vacha-
parambil and Einarsrud, 2019a). The choice of the value Csh 
used in the simulations is often heuristic and to the best 
knowledge of the authors there has not been a systematic 
attempt to quantify the effect of this user-defined 
parameter.  

In this paper, we investigate the effect of the sharpening 
coefficient used in the SSF model, as developed on 
OpenFOAM 6 by Vachaparambil and Einarsrud (2019a), 
to model two dimensional dynamic cases like capillary rise 
and static cases like millimeter and sub-millimeter bubbles. 
All the simulations discussed in this work use the 
sharpening coefficient typically used in simulating practical 
flow scenarios, i.e., sh0 0 5C .≤ ≤  (based on the values 
used in Raeini et al. (2012), Soh et al. (2016), Maes and 
Soulaine (2018), Pavuluri et al. (2018), Vachaparambil and 
Einarsrud (2019a), Vachaparambil and Einarsrud (2020)).  

2 Governing equations 

The volume fraction ( 1α ) used in VOF method is a scalar 
field that is zero in gas phase, unity in the liquid phase, and 

10 1α< <  at the interface. The interface dynamics is 
captured based on the advection of 1α  as  

 r
1

1 1 1( ) ( (1 ) ) 0α α α α
t
¶
+⋅ +⋅ - =

¶
U U  (1) 

where U is the velocity in both phases and the third term is 
the interface compression term that acts in the interfacial 
region to prevent excessive smearing using Ur which is 
defined as  

 r
f

αC=
| |
U n
S

 (2) 

where αC ,  , fS , and n represent adjustable compression 
factor (set equal to unity as recommended by Greenshields 
(2019)), volumetric flux across the cell face, cell face surface 
area, and unit normal to interface respectively (Deshpande 
et al., 2012). The fluid properties like density ( ρ ) and 
viscosity ( μ ) are calculated as  

 1 1 2 2 ,χ χ α χ α= +   where [  ]χ ρ μÎ ,  (3) 

where 2 11α α= - . The mass conservation of the incom-

pressible phases is described using continuity equation as  

 0⋅ =U  (4) 

The momentum equation is written based on a modified 
pressure ( rghp ), defined as rghp p ρ= - ⋅g x , as  

 rgh

T
ST ( )

ρ ρ p ρ
t

μ

¶
+⋅ =- - ⋅ 

¶
+⋅  + +

U UU g x

U U F
 

(5) 

where FST is the surface tension modelled based on SSF 
described in Vachaparambil and Einarsrud (2019a) and 
Raeini et al. (2012). Initially, a smoothed volume fraction is 
obtained using a three consecutive smoothing steps ( i = 1, 
2, 3) as  

 ( )1 c f f c
1s s s

i i iα C α C α+  
= < > + -  (6) 

where 1
sα = 1α , C is equal to 0.5, and 1 c fα < >  repre-

sents the interpolation of 1α  from cell center to face. The 
unit normal to the smoothed interface is calculated and 
corrected for the effects of contact angle, see 
Vachaparambil and Einarsrud (2019a). Subsequently an 
initial estimate of curvature is calculated as  

 4
1

4

s

s

ακ
α δ


=-⋅
| |+

 (7) 

where ,δ  defined as ( )
1 3

810 ,iN
V

N

/
- å/  is used to prevent  

denominator from becoming zero. The curvature is 
smoothed using a two step procedure (i=1, 2) as  

 c f f c
1 1

c f f c

2 (1 2 )
s
is
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wκ
κ Aκ A

w
 

+
 

< >
= + -

< >
 (8) 

where 1 1
sκ κ= , 0 001w A= + . , and min(1 maxA = ,  

1 1(  0))(1 min(1  max( 0))).α α, - , , The final curvature is 
calculated as  

 3 c f
final

c f

swκκ
w





< >
=
< >

 (9) 

The surface tension is estimated based on ST finalσκ= ⋅F  
sh ,α  where shα  is  

 sh sh sh
sh 1

sh

1 min(max(  )  1 )
1 2 2 2

C C Cα α
C
é ù

= , , - -ê ú
- ê úë û

 (10) 

where Csh is the sharpening coefficient which when equal to 
zero produces shα  that is equivalent to 1α . Due to the 
coupled nature of Eq. (4) and Eq. (5), these equations are 
solved by Pressure-Implicit with Splitting of Operators 
(PISO) algorithm (Deshpande et al., 2012). PISO algorithm 
involves estimation of a predicted velocity that is used to 
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calculate pressure, using pressure correction equation, 
which is used to update the velocity in an iterative manner 
(Deshpande et al., 2012). In order to reduce spurious 
velocities, the force balance between pressure gradient, 
surface tension, and gravitational force due to discretization 
is ensured by calculating the gradients at cell faces as 
described in Deshpande et al. (2012). However the iterative 
procedure used to solve rgh ,p  i.e., the PISO algorithm, 
converges based on a user defined tolerance (Deshpande et 
al., 2012). This tolerance, required to calculate rghp , 
introduces a force imbalance between surface tension, 
gravitational force, and pressure gradient which can be 
reduced by setting a very low convergence criterion, like 
10 20-  used in Table 1, as recommended by Deshpande et 
al. (2012). 

3 Computational domain and solver settings 

The governing equations are discretized using first and 
second order methods in time and space respectively, see 
Vachaparambil and Einarsrud (2019a), and solved based 
on methods described in Table 1. Other numerical settings 
like the sub-cycling of volume fraction equation and 
momentum predictor, which are relevant in solving the 
governing equations, are set based on OpenFOAM default 
settings/recommendations for simulating multiphase flows 
which has also been used in Vachaparambil and Einarsrud 
(2019a). The simulations are run with no under-relaxation 
factor and maximum time step is calculated as  

( )μ μ ρ

μ ρ

t C τ C τ C τ

t C τ C τ

2 2
2 2 1

2 1

1 ( ) 4  
2

and max( 10 )

D + +

D ,

≤

≤
 

(11) 

where 1 0 01C = . , 2 10C = , avgμτ μ x σ= D / , and ρτ =  
3

avg ( )ρ x σD / .  avgμ  and avgρ  are defined as the  
average dynamic viscosity and density between the phases 
and xD  is the mesh resolution used in the simulations 
(Deshpande et al., 2012; Vachaparambil and Einarsrud, 
2019a).  

The fluid properties used in the both capillary rise and 
stationary bubble simulations are 1ρ = 1000 kg/m3, 2ρ = 
1 kg/m3, v1=10 6 m2/s, v2=1.48 10 5 m2/s, and σ = 0.07 
N/m. The capillary rise simulations use  g  equal to 10 
m/s2 whereas stationary bubble simulations neglect gravity 
(Yamamoto et al., 2017; Vachaparambil and Einarsrud, 
2019a). 

The computational domain used for the capillary 
rise simulations is 20 mm 1 mm and meshed with a 
hexahedral grid of 400 20. This mesh is chosen based on 
the work by Yamamoto et al. (2017) that investigated the 

Table 1  Solvers used for the discretized equation (Greenshields, 
2019) 

Equation  Linear solver Smoother/preconditioner Tolerance 
Pressure correction 

equation  PCG  GAMG  1020 

Momentum equation smoothSolver symGaussSeidel  1010 
Volume fraction 

equation  smoothSolver symGaussSeidel  1010 
 

effect of grid resolution on the accuracy of the capillary rise 
simulations. The boundary conditions used for 1  is zero 
gradient at the outlet, Dirichlet condition equal to one at 
inlet, and zero gradient with a constant contact angle of 45° 
at the side boundaries. The modified pressure ( rghp ) uses 
Dirichlet condition, equal to zero, at inlet and outlet but 
the side walls are assigned the zero gradient condition. The 
boundary conditions for U at side boundaries are set as no 
slip whereas the inlet and outlet are assigned a pressure- 
inlet outlet velocity condition (Greenshields, 2019). The 
simulations are initialized with liquid column at a height of 
8 mm (from the inlet) in the computational domain. These 
simulations are run until 1.5 s which is enough to reach 
steady capillary rise height with maximum time step, 
calculated based on Eq. (11), equal to 3.5 μs. 

In order to model a stationary bubble of radius R, 
which is initialized at the center of a square computational 
domain of dimensions 4 4R R´ , gravity is neglected. The 
four boundaries are assigned zero gradient condition for U 
and 1α  but the rghp  employs a Dirichlet condition equal 
to the operating pressure (equal to 101,325 Pa). The 
bubbles modelled in this work are a millimeter sized bubble 
of radius equal to 2.5 mm and a sub-millimeter bubble of 
radius equal to 0.25 mm. These simulations are run until 
0.05 s and the corresponding time step constraints based 
on the mesh resolution are discussed in Section 4.2 and 
Section 4.3.  

4 Results and discussions 

In order compare the results from the dynamic and static 
simulations, spurious velocities, denoted by Usc , are 
calculated as max(| |U ). The time averaging of an arbitrary 
parameter   and spurious velocities are represented as 
with an over bar as   and scU  respectively.  

4.1 Capillary rise 

For 2D capillary rise, the equilibrium height (hT) at which 
when gravitational force balance the vertical component of 
surface tension force for a liquid column rising between 
two parallel plates can be theoretical calculated as 

 T
2 cosσ θh
ρ t

=
D | |g

 (12) 
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where ,θ t, and ρD  are the contact angle, distance between 
parallel plates (equal to 1 mm), and difference between 
densities of the phases respectively (Bullard and Garboczi, 
2009). hT, based on Eq. (12), is equal to 9.91 mm and the 
capillary rise height from the simulations is calculated as  

 
1

S

d
S
α S

h
t

=
ò

 (13) 

where the numerator represents the area of the liquid in the 
computational domain.  

The capillary rise from the simulations is compared to 
Eq. (12) in Table 2. The temporal evolution of the capillary 
rise heights and spurious velocities (Usc) are plotted in Fig. 
1 and Fig. 2 respectively. Although Sh  obtained from the 
simulations stabilize after the initial transients, the capillary 
rise height obtained with sh 0 3C = .  oscillates slightly, by 
approximately 9.30  0.009 mm, as shown in Fig. 1. This 
oscillation in the interface position, using sh 0 3C = . , also 
cause the periodic variation of scU  which is shown in Fig. 
2. As the oscillations in capillary rise height are lower 
than  0.1% of the capillary rise height, we assume that the 
simulations have converged reasonably. hS obtained when 
using Csh = 0.5 matches the capillary rise height reported by 
Vachaparambil and Einarsrud (2019a) using SSF model. It 
is also worth pointing out that scU  obtained using 

sh 0 0C    is an order larger than spurious velocities 
obtained with other values of sharpening coefficients, see 
Table 2 and Fig. 2.  

4.2 Millimeter sized stationary bubble 

The Laplace pressure in a 2D bubble can be theoretically 
calculated using the Young–Laplace equation as  

 T
σp
R

D =  (14) 

 

  

Fig. 1  Temporal evolution of capillary rise height, calculated 
based on Eq. (13), for various values of sharpening coefficients (Csh). 

Table 2  Variation of capillary rise height with sharpening 
coefficients 

Csh sc 1.5stU =| (m/s) hS (mm) T S T( ) ( )E h h h h= - /

0.0 0.1810 9.36 0.056 

0.1 0.0098 9.30 0.062 

0.2 0.0097 9.34 0.057 

0.3 0.0050 9.30 0.061 

0.4 0.0041 9.31 0.061 

0.5 0.0031 9.26 0.065 

 

 
Fig. 2  Temporal evolution of spurious velocities (Usc) during 
capillary rise simulations for various values of sharpening 
coefficients (Csh). 

 
which for the bubble radius of 2.5 mm in the simulation is 
equal to 28 Pa. For simulations, the Laplace pressure in the 
bubble is calculated as  

 
2

S 0

2

d

d
V

V

α p V
p p

α V
D = -

ò
ò

 (15) 

where p0 is the operating pressure (equal to 101,325 Pa). 
The mesh resolution and the time step constraints 
(calculated based on Eq. (11)) used in the simulations are 
summarized in Table 3.  

The stationary millimeter bubble has been modelled 
with the three meshes as well as for a range of sharpening 
coefficients between 0 and 0.5, see Table 4 and Fig. 3. 
Spurious velocities are observed on both sides of the 
interface for all the cases modelled, as illustrated in Fig. 3. 
The use of larger sharpening coefficients seems to reduce 
the error in calculating Laplace pressure as well as spurious 
velocities in the simulations, see Table 4. Decreasing the mesh 
size does not always exacerbate spurious velocities which 
is contrast to the increasing scU  observed with CSF model 
in the work by Deshpande et al. (2012) and Vachaparambil 
and Einarsrud (2019a). The variation between scU  
reported in Table 4 and the work by Vachaparambil and  
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(a) sh 0 0C = .                   (b) sh 0 1C = .                  (c) sh 0 2C = .  

           
(d) sh 0 3C = .                   (e) sh 0 4C = .                   (f) sh 0 5C = .  

Fig. 3  Magnitude of velocity (m/s) at t = 0.05 s observed in the simulations of millimeter sized bubble for mesh M3 for various values 
of Csh. The white contour represents the interface at 1 0 5α = . . 

 
Table 3  Details of mesh and the associated maximum time 
step, calculated based on Eq. (11), used for stationary bubble 
simulations  

Mesh Mesh resolution 
(mm2)  

Total number 
of cells  

*2R x
Maximum time 

step (s)  

M1 0.250.25  1600  20  310 5   

M2 0.1250.125  6400  40  110 5   

M3 0.0830.083  14400  60  610 6  

* 2R δx/  is the ratio of the bubble diameter (equal to 5 mm) and the cell size.  
 

Einarsrud (2019a) is due to the difference in the shC  and 
solver setting, in Table 1, used for the simulations. 

4.3 Sub-millimeter sized stationary bubble 

A value of 2R x  around 50–60 is typically used in 
thermal and supersaturation driven phase change 
processes (Samkhaniani and Ansari, 2016). Consequently, 
a sub-millimeter bubble, of radius equal to 0.25 mm, is 
initialized in a 1 mm2 domain that is meshed by 120120 
cells and the corresponding maximum time step, calculated  

Table 4  Variation of the time averaged spurious velocities (m/s), Laplace pressure (Pa), and associated error, calculated as 
S T S T( ) ( )E p p p pD = D -D /D , with sharpening coefficients and meshes 

Mesh M1 Mesh M2 Mesh M3 
shC  

scU  SpD  S( )E pD  scU  SpD  S( )E pD  scU  SpD  S( )E pD  

0.0 0.110 24.008 0.143 0.075 25.096 0.104 0.061 25.596 0.086 

0.1 0.077 24.173 0.137 0.051 25.111 0.103 0.054 25.651 0.084 

0.2 0.070 24.644 0.120 0.044 25.118 0.103 0.048 25.679 0.083 

0.3 0.065 24.784 0.115 0.039 25.123 0.103 0.042 25.676 0.083 

0.4 0.060 24.822 0.113 0.036 25.123 0.103 0.037 25.668 0.083 

0.5 0.056 24.845 0.113 0.034 25.132 0.102 0.034 25.700 0.082 
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based on Eq. (11), is set at 0.6 μs. 
The Laplace pressure in the sub-millimeter bubble, 

equal to 280 Pa, is compared to the corresponding value 
obtained from simulations in Table 5. The sub-millimeter 
bubble could be modelled with sh 0 3C .≤ , see Fig. 4 and 
Fig. 5, but for sharpening coefficient of 0.4 and 0.5 the 
bubble numerically drifts. For sh 0 2C .≤ , the interface 
undergoes slight periodic deformation which is reflected in 
the oscillations in Usc observed in Fig. 6. This deformation 
is not substantial enough to observe a noticeable deviation 
from the circular bubble shape, see Fig. 4. At t = 0.05 s, the 
simulations using Csh = 0.3 seems to have very low spurious 
velocities on both sides of the interface when compared to 
other sharpening coefficients, see Fig. 5. 

5  Conclusions 

The effect of sharpening coefficient used in Sharp Surface 
Force model, developed in the work by Vachaparambil and 
Einarsrud (2019a), is investigated for capillary rise and 
stationary bubbles of radii equal to 0.25 and 2.5 mm. The 
solver ensures force balance between pressure gradient, 
surface tension, and gravitational force due to discretization  

 

 
 

Fig. 4  Bubble morphology, represented by   1 0 5 , at t = 
0.05 s for values of sharpening coefficients compared with a 
theoretically perfect 2D bubble of radius equal to 0.25 mm. 

Table 5  Time averaged spurious velocities, Laplace pressure, 
and associated error (calculated as S T S T( ) ( )E p p p pD = D -D /D ) 
while modelling a sub-millimeter bubble 

Csh scU  (m/s) SpD  (Pa)  S( )E pD  

0.0 0.061 254.285 0.092   

0.1 0.039 254.294 0.092   

0.2 0.028 255.350 0.088   

0.3 0.011 255.279 0.088   

0.4  Bubble numerically drifts from the original position   

0.5  Bubble numerically drifts from the original position   

  
 (a) sh 0 0C = .                 (b) sh 0 1C = .  

  
 (c) sh 0 2C = .                 (d) sh 0 3C = .  

Fig. 5  Magnitude of velocity (m/s) at t = 0.05 s observed in the 
simulations of sub-millimeter sized bubble for various values of 
Csh. The white contour represents the interface at 1 0 5α = . . 

 

 
 

Fig. 6  Temporal evolution of spurious velocities during simulations 
of bubble with radius equal to 0.25 mm for various values of Csh. 
 
and iterative procedure used to solve for prgh as 
recommended by Deshpande et al. (2012). In order to 
prevent the growth of spurious velocities, time step 
constraint based on fluid viscosity and density as well as 
mesh size, in Eq. (11), proposed by Deshpande et al. (2012) 
is used. The simulations for a range of value of sharpening 
coefficients, sh0 0 5C .≤ ≤ , shows that  

The use of a larger value of Csh generally reduces the 
spurious velocities in capillary rise and stationary 
bubble simulations.  

The mesh refinement does not always exacerbate 
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spurious velocities, see Table 4, unlike while using CSF 
model (Deshpande et al., 2012; Vachaparambil and 
Einarsrud, 2019a).  

The millimeter sized bubble can be modelled with 
sh0 0 5C .≤ ≤  and the three meshes. Using the finest 

M3 mesh and Csh equal to 0.5 provides the lowest 
spurious velocities as well as the most accurate 
prediction of Laplace pressure.  

The sub-millimeter bubble can be modelled with 
sh 0 3C .≤  but the lowest spurious velocities and error 

in Laplace pressure are observed when Csh = 0.3.  
The capillary rise simulations show a non-linear 

variation of hS with Csh albeit the decrease in spurious 
velocities. The reduced spurious velocities and error in 
the capillary rise height is obtained when using Csh = 
0.2.  

Although this paper investigated the effect of Csh for a 
few flow scenarios, the results show the importance of 
choosing an optimized value of the sharpening coefficient 
for future applications of SSF model to simulate two-phase 
flow phenomena.  
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a b s t r a c t 

In this paper, a Volume of Fluid (VOF) based approach to simulate the growth of 

a pre-existing bubble in a supersaturated solution is developed and implemented in 

OpenFOAM 
R ©. The model incorporates the Compressive Continuous Species Transfer ap- 

proach to describe the transport of dissolved gas and surface tension is treated using the 

Sharp Surface Force method. The driving force for bubble growth is defined using Fick’s 1 st 

law and a Sherwood number based correlation. The source terms for the governing equa- 

tions are implemented by extending the work by Hardt and Wondra, J. Comp. Phys. 227 

(2008) 5871–5895. The predictions of the proposed solver is compared against theoreti- 

cal models for bubble growth in supersaturated solutions. The effect of spurious currents, 

which are generated while modelling surface tension, on bubble growth is also investi- 

gated. The proposed approach is used to model the growth of a rising bubble in the su- 

persaturated solution. 

© 2020 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

The growth of gas bubbles in supersaturated solutions occurs when the amount of dissolved gas ( C ) is higher than the 

saturation concentration ( C sat ) in the liquid given by Henry’s law [1] . Some processes where this phenomena is relevant 

are effervescence in beer [2] , champagne [3] and carbonated beverages [4] , decompression sickness [5] , and electrochemical 

systems like electrolysis of water [6] and chloralkaline processes [7] . 

Bubble evolution in supersaturated solutions consists of nucleation of the bubble, which is an atomistic event, whereas 

bubble dynamics and the associated convection are continuum scale events [8] . Different modes by which nucleation can 

occur in a supersaturated solution has been proposed by Jones et al. [9] , Vachaparambil and Einarsrud [10] and the critical 

radius ( R c ) required is 

R c = 

2 σ(
C 

C sat 
− 1 

)
P 

, (1) 

where C / C sat indicates the supersaturation ratio ( S ), σ is the surface tension and P is the operating pressure [11] . The current 

paper delves into the continuum scale phenomena of bubble evolution in supersaturated systems, but not atomistic scale 
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events. The works by [8,11–13] provides a brief overview of various aspects of research in atomistic scale events relevant in 

bubble evolution. 

The literature that has investigated bubble growth in supersaturated solutions can be divided into theoretical, experi- 

mental and numerical approaches. The two landmark theoretical papers are those by Epstein–Plesset [14] and Scriven [15] . 

Epstein and Plesset [14] studied the evolution of the bubble radius at various supersaturation levels when the effect of con- 

vection associated with the bubble growth is neglected. Scriven [15] considered the effect of this convection and obtained 

an asymptotic expression for the evolution of bubble radius. To account for the growth of bubble from a pre-existing bubble, 

Scriven’s asymptotic solution is extended in [16] . On the other hand, experimental studies has reported the bubble radius to 

evolve as R = At x where A and x are growth and time coefficients, respectively [15,17–19] . A value of x approximately equal 

to 0.5, derived by Scriven [15] , indicates that the rate determining step is the diffusion of dissolved gas across the interface 

[17] . When rate determining step for bubble growth is the electrochemical reactions, x has been reported to be equal to 1/3 

[18,19] . The effect of bubble growth on rise velocities of bubbles is studied in works like [20] . 

Computational Fluid Dynamics (CFD) is a widely used numerical approach to model continuum scale processes like bub- 

ble evolution. The main multiphase approaches used in CFD are Euler–Euler (EE), Euler–Lagrange (EL) and Volume of Fluid 

(VOF) methods. Although EE [21–26] and EL [8,25,27–31] approaches have been used to model gas evolution in supersatu- 

rated systems, they rely on the so called closure laws to model the interaction between the phases [32] . Compared to EE 

and EL approaches, the VOF method advects the volume fractions of the phases without using any approximation for the 

shape of the interface [32] , which provides a versatile method to study the bubble evolution. In the work by Liu et al. [33] , 

evolution of a single hydrogen bubble from the electrode surface has been modelled using the VOF approach and validated 

by comparison against evolution of bubble radius obtained from experiments. Other studies have used the VOF approach 

to model large carbon dioxide bubbles but the smaller bubble (which are below the mesh resolution) are described using 

a population balance model [34–36] and EL method [37,38] which are then validated using experimental data on electrical 

potential and bubble thickness respectively. Interestingly, these previous works [33–38] are developed based on a commer- 

cial solvers like FLUENT R ©. The VOF based approaches typically use a Sherwood number ( Sh ) based correlation to describe 

the mass transfer across the interface [33–36] . Modelling mass transfer based on Sh can lead to erroneous results as these 

correlations are dependent on both the bubble shape and local velocity field [39,40] . A more universal approach is to use 

the Fick’s 1 st law of diffusive mass transfer instead [5,41,42] . 

Although considerable progress has been made in stimulating of bubble evolution driven by supersaturation, certain 

aspects of the phenomena such as bubble dynamics, mass transfer and momentum exchange between the phases are usually 

modelled rather than resolved to reduce the computational costs and are often suitable for very specific applications. To 

the best knowledge of the authors, there is a lack of generic solvers that can model bubble dynamics in supersaturated 

solutions and are validated using theoretical benchmarks. To further improve the computational approaches used, insights 

from the simulating boiling can be relevant. A review of the various computational approaches used for simulating boiling 

and condensation phenomena is available in [43] . One such approach, reported in the study by [44] , developed a VOF based 

model for evaporation by using a continuum-field representation of source terms in FLUENT R © which was subsequently 

implemented in OpenFOAM 
R © 1.5.x [45] as ‘evapVOFHardt’ [46,47] . Apart from evapVOFHardt, other approaches developed 

using OpenFOAM 
R © to model phase change driven by temperature are [4 8 , 4 9] and ‘phaseChangeHeatFoam’ [50,51] . 

In this paper, we propose a VOF based solver to model the bubble evolution in a supersaturated solution. The proposed 

solver is based on interFOAM (available in OpenFOAM 
R © 6 [52] ) and the mass transfer approach, developed for evaporation 

by Hardt and Wondra [44] as well as Kunkelmann and co-workers [46,47] , is extended and implemented for the bubble 

growth driven by supersaturation of dissolved gases. The driving force for the bubble growth is modelled using both the 

Fick’s 1 st law and a correlation using Sh . The transport of the dissolved gas is modelled using a Compressive Continuous 

Species Transfer (C-CST) model [53] and the surface tension force is modelled using the Sharp Surface Force approach [54] . 

Following the derivation of the governing equations and its implementation in OpenFOAM 
R ©, the mass transfer model in 

the proposed solver is validated against theoretical models like the approximate solution of Epstein–Plesset [14] , asymptotic 

solution of Scriven [15] and the extended Scriven model [16] . Spurious currents, produced due to modelling surface tension, 

and its effects on bubble growth are investigated. Finally, the proposed model is used to simulate the growth of a rising 

bubble in a supersaturated solution. 

2. Governing equations and its implementation 

The VOF method uses a scalar function to represent the interface and individual phases as 

α1 ( � x , t) = 

{ 

0 (within Phase 2) 
0 < α1 < 1 (at the interface) 
1 (within Phase 1). 

(2) 

In the proposed solver, α1 represents the volume fraction of Phase 1 (or liquid) and the volume fraction of Phase 2 (or 

bubble) can be written as α2 = 1 − α1 . 

Fluid properties like density ( ρ) and viscosity ( μ) are determined using the volume fraction as a weighting function: 

χ = χ1 α1 + χ2 α2 where χ ∈ [ ρ, μ] . (3) 
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The continuity equation for a growing bubble is written as 

∇ · � U = 

˙ m 

ρ
, (4) 

where ˙ m = ˙ m 1 α1 + ˙ m 2 α2 , with ˙ m 1 and ˙ m 2 representing source/sink terms for Phase 1 and Phase 2, are defined in Eq. (24) . 

The continuity equation ( Eq. (4) ) can be used to derive a corresponding equation to describe the volume fraction as 

shown below 

∂(α1 + α2 ) 

∂t 
+ ∇ · ((α1 + α2 ) � U ) = 

˙ m 

ρ
(α1 + α2 ) . (5) 

Based on Eqs. (4) and (5) , the evolution of α1 can be computed as 

∂α1 

∂t 
+ ∇ · (α1 

� U ) = α1 ∇ · � U , (6) 

which is analogous to the volume fraction equation described in [46,47] . In order to render a sharp interface, the advection 

term in Eq. (6) is modified to include a compressive flux as 

∂α1 

∂t 
+ ∇ · (α1 

� U ) + ∇ · (α1 (1 − α1 ) � U r ) = α1 ∇ · � U , (7) 

where � U r is compressive velocity defined in Eq. (8) . 

� U r = C α

∣∣∣∣ φ

| S f | 
∣∣∣∣ ∇α1 

|∇α1 | + δ
, (8) 

where φ, is volume flux that is computed based on velocity and S f is cell face area vector, C α and δ are velocity flux, 

cell surface area, a user-defined compression factor and a small non-zero value which is calculated as 10 −8 / 

(∑ 

N V i 
N 

)
1 / 3 , 

respectively. C α controls the interface smearing and is typically set to a value between zero and four [55] . 

In order to efficiently compute the pressure boundary condition and density jump at the interface, the solver uses a 

modified pressure ( p rgh ), defined as 

p rgh = p − ρ� g · � x , (9) 

which is explained in [56] . Due to the use of modified pressure, −∇p + ρ� g can be written as 

−∇ p + ρ� g = −∇ p rgh − � g · � x ∇ ρ. (10) 

The momentum equation, which is solved to obtain the velocity field in both the phases, is calculated as 

∂ρ � U 

∂t 
+ ∇ · (ρ � U 

� U ) = −∇ p + 

(
∇ · (μ∇ 

� U ) + ∇ 
� U · ∇ μ

)
+ ρ� g + 

� F ST , (11) 

where last term represents the surface tension force which in this solver is computed based on the Sharp Surface Force 

(SSF) model [54] . Substituting Eq. (10) in Eq. (11) gives the momentum equation as implemented in OpenFOAM 
R ©, 

∂ρ � U 

∂t 
+ ∇ · (ρ � U 

� U ) = −∇ p rgh + 

(
∇ · (μ∇ 

� U ) + ∇ 
� U · ∇ μ

)
− � g · � x ∇ ρ + 

� F ST . (12) 

The SSF formulation used to describe the surface tension force can be defined as 

� F st = σκ f inal ∇αsh , (13) 

where κfinal is curvature of the interface obtained using a three step procedure described in [54] and αsh is a sharpened 

volume fraction of liquid defined as 

αsh = 

1 

1 −C sh 

[
min 

(
max 

(
α1 , 

C sh 
2 

)
, 1 − C sh 

2 

)
− C sh 

2 

]
, (14) 

where C sh is a sharpening coefficient. If C sh = 0, αsh is equivalent to α1 whereas when C sh = 1 describes a very sharp inter- 

face that is numerically unstable [54] . Based on preliminary simulations, SSF model is preferred over the commonly used 

Continuum Surface Force model [57] because of its ability to reliably simulate a sub-millimeter bubble. 

As the bubble growth is driven by supersaturation, the dissolved gas concentration ( C i ) can be represented as 

C i = C −C sat . (15) 

Eq. (15) represents a concentration of dissolved gas that causes bubble growth when C i > 0 as it represents concentration 

greater than C sat . Assuming that the interface of a bubble growing is saturated, the interface is represented by C i equal 

to zero, based on Eq. (15) . The governing equation for the transport of C i is based on the Compressive Continous Species 

Transfer (C-CST) model, proposed by Maes and Soulaine [53] , as 

∂C i 
∂t 

+ ∇ · ( � U C i ) = ∇ ·
(
ˆ D i ∇ C i − ˆ D i B C i ∇ α1 

)
− ∇ ·

(
B α1 α2 

� U r C i 

)
+ S i , (16) 
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where B is equal to (1 − He i ) / (α1 + α2 He i ) , S i is the sink term for the dissolved gas in the liquid at the interface (de- 

scribed in Eq. (25) ), � U r is the compressive velocity (defined in Eq. (8) ) and ˆ D i is the harmonic interpolation of the diffusion 

coefficients [53] : 

ˆ D i = 

D i, 1 D i, 2 

D i, 2 α1 + D i, 1 α2 

, (17) 

where D i ,1 is the diffusion coefficient of dissolved gas in Phase 1 and D i ,2 is the self-diffusion coefficient of the gas [58] . In 

Eq. (16) , He i represents dimensionless Henry’s constant that accounts for the jump in Ci across the interface that is expressed 

as C i, 2 = He i C i, 1 . In order to obtain the saturation condition of the interface when C i is defined based on Eq. (15) , He i should 

be equal to zero. The concentration of the dissolved gas ( C i ) represents the α1 C i, 1 + α2 C i, 2 . 

The mass transfer across the interface is described using two approaches: Fick’s 1 st law and Sherwood number based 

correlation. Fick’s 1 st law, which is applicable for any arbitrary flow scenario, is implemented as 

j = M i D i, 1 |∇C i | , (18) 

where M i is the molar mass of the species i . The alternative method, which is typically implemented in practical applica- 

tions, utilizes a Sherwood number correlation which can be written as 

j = M i k ( C −C sat ) = M i kC i , (19) 

where k is the mean mass transfer coefficient defined as k = D i, 1 Sh/ 2 R, where the mean Sherwood number ( Sh ) is derived 

from Fick’s 1 st law for the mass transfer at interface for a spherical bubble in creeping flow [39] as 

Sh = 

2 Rk 

D i, 1 

= 2 + 0 . 6515 
√ 

ReSc , where Re = 

U ∞ 2 R 

ν1 

and Sc = 

ν1 

D i, 1 

. (20) 

In Eq. (20) , U ∞ is calculated as (R − R n −1 ) / �t, where R − R n −1 is the difference between the radius of the bubble at the 

current time step and the previous time step and �t is the time step used by the solver. Equivalently, the mean mass 

transfer coefficient can be determined based on Eq. (20) as 

k = 

D i, 1 

2 R 

(
2 + 0 . 6515 

√ 

ReSc 

)
. (21) 

The local mass transfer rate ( ψ 0 ) can be written based on j (defined in Eqs. (18) and (19) ) as 

ψ 0 = N jα1 |∇α1 | , (22) 

where N is a normalization factor is defined in Eq. (26) . The term α1 is multiplied Eq. (22) to ensure that the mass flux that 

drives the bubble growth is based only on the supersaturation of the liquid. 

In order to increase numerical stability, ψ 0 is smeared over a few computational cells by solving 

D �t ∇ 
2 ψ = ψ − ψ 0 , (23) 

where ψ describes the smeared ψ 0 at every time step [44] . In Eq. (23) , D �t is a product of a diffusion constant and 

parameter with dimension of time which controls the amount of smearing in Eq. (23) [44] . 

The source term of the continuity equation ( Eq. (4 )), ˙ m = ˙ m 1 α1 + ˙ m 2 α2 reduces to ˙ m = ˙ m 2 α2 because liquid is not con- 

sumed when during bubble growth due to supersaturation. Based on the value of ψ , source term ˙ m (in Eq. (4 )) can be 

calculated as 

˙ m = Aα2 ψ, (24) 

where A is a normalization factor defined in Eq. (26) . The source term ˙ m , which is defined in Eq. (24) , is calculated in the 

region where α1 < 0.001 by artificially moving them away from the interface based on volume fraction of the liquid (further 

described in [44,47] ). 

The sink term in dissolved gas transport ( S i ), in Eq. (16) , which represents the dissolved gas lost into the bubble due to 

mass transfer across the interface is calculated as 

S i = −Nα1 ( j|∇α1 | ) 
M i 

, (25) 

where N is the normalization factor defined in Eq. (26) and α1 in Eq. (25) ensures that S i is non-zero only at the liquid side 

of the interface. The normalization factors used in the solver can be defined as 

A = 

∫ 
 ψ 0 dV ∫ 

 α2 ψdV 
and N = 

∫ 
 |∇α1 | dV ∫ 

 α1 |∇α1 | dV , (26) 

where  is the domain for the flow computation. 

The overall algorithm used to solve the governing equations ( Eqs. (4) , (7), (12), (16) and (23) ) is summarized in Fig. 1 . 

The volume fraction equation ( Eq. (7) ) is solved the Multidimensional Universal Limiter with Explicit Solution (MULES) 

method [57] . The Pressure Implicit with Splitting of Operator (PISO) algorithm is used to solve the momentum ( Eq. (12) ) 

and continuity ( Eq. (4) ) equations [56,57,59] . The PISO algorithm recasts the continuity equation into a pressure Poisson 

equation (or ’pressure correction equation’) which is solved and then used to update the predicted velocity fields [56,57] . 
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Fig. 1. Schematic of the solution procedure implemented in the proposed solver. 

3. Computational setup 

The computational domain is a square of dimensions 3 cm ×3 cm with a pre-existing bubble of radius equal to 250 μm 

located at the center of the geometry. The boundaries are set to zero gradient conditions for � U , ψ , C i and α1 while p rgh is 

equal to 101,325 Pa. The phenomena modelled in this paper corresponds to a pre-existing bubble of radius equal to 250 μm 

growing in a solution supersaturated by carbon dioxide. The saturation concentration of dissolved carbon dioxide in water 

is calculated using Henry’s law at 25 ◦C and 101,325 Pa to be 33.44 mol/m 
3 [60] . The initial bulk concentration of carbon 

dioxide in water is set to C i = 200 . 64 mol/m 
3 , corresponding to a supersaturation ratio (defined as C / C sat ) equal to seven. 

To validate the mass transfer model implemented in the proposed solver, some of the simulations neglect the gravity and 

surface tension. When gravity and surface tension are treated in selected simulations, � g is assigned as (0 −9.81 0) m/s 2 and 

σ equal to 0.0468 N/m [31] , respectively. 

The settings used in the simulations are described in Table 1 and internal fields used for the simulations is tabulated 

in Table 2 . Values for D �t and He i are set equal to 10 
−6 m 

2 and 10 −4 respectively and the maximum Courant number 

( Co max ) is set equal to 0.05. In simulations where surface tension is neglected, the maximum time step is allowed to adjust 
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Table 1 

Fluid properties at 25 ◦C and 101325 Pa. 

Fluid properties Dimensions Liquid (Phase 1) Bubble (Phase 2) 

Density kg/m 
3 997.0751 [67] 1.81 [68] 

Kinematic viscosity m 
2 /s 8.92 ×10 −7 [67] 8.228 ×10 −6 [68] 

Diffusion coefficient m 
2 /s 1.94 ×10 −9 [69] 9.18 ×10 −6 [58] 

Table 2 

Initial internal field of parameters used for the simulations. 

Dimensions Liquid (Phase 1) Bubble (Phase 2) 

α1 – 1 0 (Pre-existing bubble, R 0 = 250 μm) 

C i mol/m 
3 200.64 0 

p rgh Pa 101,325 101,325 
� U m/s (0 0 0) (0 0 0) 

ψ kg/m 
3 s 0 0 

Table 3 

Discretisation schemes. 

Modelling term Keyword Scheme Remarks 

Time derivatives ddtSchemes Euler First order implicit method [70] 

Divergence 

term 

∇ · (ρ � U � U ) vanLeerV Modified vanLeer for vector fields [70] 

∇ · ( � U α1 ) , ∇ · ( � U C i ) vanLeer [71] 

∇ · ( � U r α1 (1 − α1 )) interfaceCompression Used in [50,57] 

∇ ·
(
ˆ D i B C i ∇α1 

)
vanLeer [53] 

∇ ·
(
B α1 α2 

� U r C i 

)
vanLeer [53] 

Gradient term gradSchemes Linear Operator with ∇ 

Laplacian term laplacianSchemes Linear corrected Operator with ∇ 
2 

Other 
snGradSchemes Corrected Surface normal gradients 

interpolationSchemes Linear Interpolates values 

Table 4 

Solvers used for the discretised equation. 

Equation Linear solver Smoother/preconditioner Tolerance 

Pressure correction equation PCG GAMG 10 −20 

Momentum equation ( Eq. (12) ) smoothSolver symGaussSeidel 10 −10 

Volume fraction equation ( Eq. (7) ) smoothSolver symGaussSeidel 10 −10 

Species transport equation ( Eq. (16) ) PBiCGStab Diagonal 10 −10 

Smearing of mass transfer rate ( Eq. (23) ) PBiCGStab Diagonal 10 −10 

automatically based on the Co max . When surface tension is considered, the time step constraint, which is required to prevent 

the temporal growth of spurious currents, is calculated as 

�t ≤ 1 

2 

(
C 2 τμ + 

√ 

(C 2 τμ) 2 + 4 C 1 τ 2 
ρ

)
and �t ≤ max 

(
C 2 τμ, 10 C 1 τρ

)
, (27) 

where τμ and τρ are time scales which are defined as μavg �x / σ and 
√ 

ρa v g (�x ) 3 /σ respectively, μavg and ρavg are defined 

as the average dynamic viscosity and density between the phases whereas �x is the mesh resolution which is equal to 

7.5 μm [57] . The values of C 1 and C 2 has been reported to be equal to 0.01 and 10, respectively [57] . For the M4 mesh used 

in the simulations, the constraint on the time step is calculated, based on Eq. (27) , to be equal to 7.2 ×10 −7 s. A parametric 

study to the investigate the effect of pre-existing bubble size, D �t and He i on the solution is discussed later in the paper. 

The governing equations ( Eqs. (4) , (7), (12), (16) and (23) ) are discretised using schemes as mentioned in Table 3 with 

the relevant settings summarized in Tables 4 and 5 . The tolerence criteria while solving the pressure correction equation 

is set to 10 −20 to reduce the force imbalance (between surface tension and pressure forces) which is generated due to the 

iterative procedure used in the solution algorithm [57] . The maximum number of iterations while solving the governing 

equations are set such that the tolerance criteria set in Table 4 is met at every time step. 

4. Convergence studies 

The convergence of the simulations is studied using the Fick’s 1 st law as the driving force (in Eq. (18) ) for bubble growth 

and neglecting gravity. The surface tension is also neglected in these simulations as the spurious currents generated are 
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Table 5 

Other parameters used in solving the discretised equations. 

Parameter Value Notes 

nAlphaCorr 2 Number of α1 correction; usually set equal to 1 or 2 for time-dependent flows [72] . 

nAlphaSubCycles 1 Represents the number of sub-cycles within α1 equation [70] . 

cAlpha ( C α ) 1 Used for interface compression in Eq. (8) . 

MULESCorr yes Switches on semi-implicit MULES [73] . 

nLimiterIter 3 Number of MULES iterations over the limiter [73] . 

momentumPredictor no Controls solving of the momentum predictor; typically set to ‘no’ for multiphase and low 

Reynolds number flows [70] . 

nOuterCorrectors 1 PISO algorithm is selected by setting this parameter equal to unity in PIMPLE algorithm [70] . 

nCorrectors 3 The number of times the PISO algorithm solves the pressure and momentum equation in each 

step; usually set to 2 or 3 [70] . 

nNonOrthogonalCorrectors 0 Used when meshes are non-orthogonal [70] . 

relaxationFactors 1 Specifies the under-relaxation factors; set equal to one for transient simulations [54] . 

C sh 0.3 Sharpening coefficient in Eq. (14) ; to model a reliable pre-existing bubble of radius 250 μm [74] . 

Table 6 

Mesh convergence studies. 

Mesh Total number of cells Mesh resolution ( �x ) 2 R 0 / �x a Radius normalized growth rate ( G ) b Relative error (%) c 

M0 1000,000 3.00 ×10 −5 m 16.67 8.2248 ×10 −10 –

M1 1999,396 2.12 ×10 −5 m 23.57 8.5821 ×10 −10 4.34 

M2 4000,000 1.50 ×10 −5 m 33.33 8.7887 ×10 −10 2.41 

M3 7997,584 1.06 ×10 −5 m 47.13 8.8682 ×10 −10 0.90 

M4 16,000,000 7.50 ×10 −6 m 66.67 8.9308 ×10 −10 0.71 

M5 31,990,336 5.30 ×10 −6 m 94.27 8.9513 ×10 −10 0.23 

a 2 R 0 / �x represents the number of cells that resolve the pre-existing bubble diameter. b Radius normalized growth rate (kg m 
−1 s −1 ) is calculated at t = 4.5s 

as ∫ ψ 0 dV / R . 
c Relative error is calculated as (G Mi +1 − G Mi ) × 100 / G Mi where i = 0 , 1 , 2 , 3 and 4. 

dependent on the mesh resolution and a ’true’ mesh convergence is difficult to achieve especially for capillary dominant 

flows [54,61,62] . The convergence is analyzed based on three criteria: independence of solution from the mesh, conservation 

of phases and dissolved gas, effect of domain size of the solution, and monitoring supersaturation/pressure data away from 

the bubble. 

The grid convergence is analyzed using six different hexahedral meshes, as shown in Table 6 , based on the radius nor- 

malized growth rates at t = 4 . 5 s. The growth rates and bubble radii for various meshes, shown in Fig. 2 , at t = 4 . 5 s show 

a relative deviation of nearly 2% between the M4 and M5 meshes. This discrepancy is due to the discontinuous initial con- 

dition of C i (in Table 2 ) which leads to a larger initial growth rate, offsetting the bubble radius for further time steps, see 

Fig. 2 (a). The radius normalized growth rate, equivalent to the mass flux in 2D, is not influenced by this offset. As the rela- 

tive change of the radius normalized growth rate at t = 4 . 5 s between two finest meshes is lower than 0.25%, see Table 6 , 

M4 has been used for simulations in the paper. 

The imbalance in the phases, illustrated in Fig. 3 , is lower than 0.1% of the volume of the liquid initially in the system. 

Calculated based on the amount of dissolved gas which is numerically in the bubble, the imbalance in the dissolved gas is 

lower than 0.1% of initial amount of dissolved gas in the system as shown in in Fig. 4 . 

The region far stream from the bubble growth should have a constant concentration and pressure as it is not effect by 

the bubble growth. Monitoring a point away from the interface shows that C i and p rgh remains equal to 200.64 mol/m 
3 and 

101,325 Pa, respectively for the duration of the simulation. 

Using smaller domain for the simulations has been observed to affect the radially symmetric nature of the velocity field 

as shown in Fig. 5 . In order reduce the effect of this error, the domain used in the simulations is nearly twelve times the 

bubble diameter at t = 10s i.e. 3 cm ×3 cm, which has been showed in Fig. 5 (c). 

5. Validation 

In this section, the proposed solver is validated by comparing against two theoretical cases i.e. the approximate solution 

of Epstein-Plesset [14] , the asymptotic solution of Scriven [15] and Extended Scriven [16] . It is worth pointing out that 

surface tension is neglected in the simulations discussed in this section unless explicitly specified. The simulations used for 

comparison can be divided based on the description of driving force that drives the mass transfer across the interface as 

• Constant driving force: The definition of j based on Sh correlation ( Eq. (19) ) is modified to account for driving force for 

bubble growth that is dependent on the bulk concentration of the supersaturated solution ( C ∞ ) which is expressed as 

j = M i k ( C ∞ −C sat ) . (28) 

• Local driving force: Eq. (19) provides a Sh correlation based definition of driving force that is dependent on the local 

concentration of the dissolved gas around the interface. 
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Fig. 2. Effect of mesh on the temporal changes in bubble radius and growth rates. 

Fig. 3. Comparison of the bubble volume obtained from the solver and calculated based on the volume of liquid adjusted for the amount lost through the 

boundaries to calculate the imbalance of the phases in the system. 
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Fig. 4. The temporal variation in the imbalance of the dissolved gas during the simulation. 

Fig. 5. Comparison of the velocity field, at t = 10 s, analyzed through | � U | contours plotted at 1 ×10 −5 m/s ( ), 2 ×10 −5 m/s ( ), 3 ×10 −5 m/s ( •), 4 ×10 −5 m/s 

( ) and 5 ×10 −5 m/s( ) with different computational domains used for the simulations. 



K.J. Vachaparambil and K.E. Einarsrud / Applied Mathematical Modelling 81 (2020) 690–710 699 

Fig. 6. Comparison of the temporal evolution of bubble radius predicted by the proposed solver, using the constant driving force and k as defined in 

Eq. (33) , with the approximate solution of Epstein–Plesset ( Eq. (32) ). 

• Fick’s 1 st law: Described in Eq. (18) , Fick’s 1 st law, provides a generic driving force for the bubble growth that is applicable 

for any flow scenario. 

5.1. When convection of species concentration is neglected 

The simulations consider a two dimensional growing bubble, a rate of bubble that is growing can be described as 

ρ2 

(
2 πR 

dR 

dt 

)
= 2 πR j, (29) 

where R is the radius of the bubble and j is the constant driving force that causes the bubble growth (described in Eq. (28) ), 

i.e. 

ρ2 

(
dR 

dt 

)
= M i k ( C ∞ −C sat ) , where k = 

D i, 1 

2 R 

(
2 + 0 . 6515 

√ 

ReSc 

)
. (30) 

When the convection caused by bubble growth is neglected, i.e. Re = 0 , the above equation can be written as 

ρ2 

(
dR 

dt 

)
= M i k ( C ∞ −C sat ) , where k = 

D i, 1 

R 
. (31) 

Integrating the above equation from R 0 at t = 0 s to R at t gives (
R 

R 0 

)
2 = 1 + 

2 M i D i, 1 ( C ∞ −C sat ) 

ρ2 R 
2 
0 

t. (32) 

which is the ’approximate solution of Epstein–Plesset’ [14] when the effect of surface tension and convection is neglected. 

Eq. (32) provides bubble growth when the bubble growth is driven by a the bulk concentration of the dissolved gas. 

As the effect of convection on the bubble growth is neglected in the theoretical benchmark, the solver is modified by 

implementing the mass transfer coefficient as 

k = 

D i, 1 

R 
. (33) 

Using the mass transfer across the interface that is governed by Eqs. (33) and (28) in the proposed solver provides a 

prediction of bubble growth that is equivalent to the Epstein–Plesset solution as shown in Fig. 6 . The predictions from 

the proposed solver marginally under-predicts the final radius of the bubble by less than 0.01%. The concentration of the 

dissolved gas, interface and velocity distribution in the domain for bubble growth driven by a constant driving force (using 

mass transfer coefficient described in Eq. (33) ) is illustrated in Fig. 7 . 

5.2. When convection of species concentration is considered 

The asymptotic solution of bubble growth in a supersaturated solution, proposed by Scriven [15] , when convection is 

considered, is given by 

R Scri v en = 2 β
√ 

D i, 1 t (34) 
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Fig. 7. Simulated concentration field and velocity at t = 10 s using a constant driving force with k defined in Eq. (33) . The interface is represented with a 

white contour corresponding to α1 = 0 . 5 . 

where β is the growth parameter, valid only for diffusion controlled growth of spherical bubble in an unbounded medium. 

Based on the work by [16] , an ‘Extended Scriven model’ that modifies Eq. (34) to account for the growth from a pre-existing 

bubble of radius R 0 can be described as 

R Scri v en −ext = 2 β

√ 

D i, 1 

(
t + 

R 2 
0 

4 D i β2 

)
. (35) 

Previous works by Wang and others [4,9,19] , reported an analytical expression to determine β for a spherical bubble as 

β3 D = 

a + 

√ 

a 2 + 2 a 

2 
where a = 

M i ( C ∞ −C sat ) 

ρ2 

. (36) 

which has been shown to agree with the predictions by Scriven [15] . The formulations proposed in [4,9,15,19] to calculate 

β is derived for a spherical bubbles which is different from the 2D bubbles simulated in the current paper. For direct 

comparison to the simulations, β2 D , derived in Appendix A based on the work by Wang et al. [19] , can be calculated as 

β2 D = 

a + 

√ 

a 2 + 4 a 

2 
√ 

2 
, (37) 

where a is defined the same as Eq. (36) . For the phenomena modelled in this paper, β3 D and β2 D can be calculated, using 

Eqs. (36) and (37) , are equal to 5.3346 and 4.0509, respectively. 

The velocity, concentration of dissolved gas and interface position is compared for Fick’s 1 st law ( Eq. (18) ) and local 

driving force ( Eqs. (19) and (21) ) in Fig. 8 . The temporal evolution of bubble size from simulations are compared to the 

Scriven’s asymptotic ( Eq. (34) ) and Extended Scriven ( Eq. (35) ) in Fig. 9 . As expected, the bubble growth predicted by 

the Scriven’s asymptotic expression and Extended Scriven theories using β2 D provides a better representation than β3 D . 

The driving force based on the Sh correlation under predicts the bubble radius by nearly a factor of 2 at t = 10 s while 

Fick’s 1 st law provides a better agreement to the theoretical predictions using β2 D , with an error less than 2.5% at t = 10 s. 

The discrepancy between the simulations can be explained using the growth rate in Fig. 10 , where the growth rate is nearly 

6.5 times smaller for the Sh correlation. Although the growth rate predicted by the driving force described by Fick’s 1 st law 

is initially different from the corresponding theory, it seems to asymptotically match the theoretical prediction. The initial 

discrepancy between the two is due to the discontinuous nature of concentration while initializing, see Table 2 . 

5.3. Influence of surface tension 

Due to small length scales associated with bubble growth, surface tension dominates the flow physics. Modelling surface 

tension has its own challenges, namely the generation of spurious currents around the interface [44,50,54,57] . Due to the 

time step constraint, described in Eq. (27) , the simulations are run only until 2 ms. 

The spurious currents ( U sc ), calculated as max( | � U | ), are observed on both sides of the interface as illustrated in Fig. 11 
and its temporal variation plotted in Fig. 12 (a). The convection that is generated by spurious currents seems to remove the 

dissolved gas at the interface which results in the reduction of the growth rate (calculated as volume integral of ψ 0 in 

the computational domain) observed in Fig. 12 (c). Due to the generation of large magnitude of spurious currents initially, 

there is a substantially drop in the growth rate of the bubble in the first few time steps as seen in Fig. 12 (c). The average 

growth rate of the bubble during 2 ms reduces by approximately 32% compared to when surface tension is not treated. 

The reduction in the growth rate is also reflected in the temporal variation of bubble radius, as shown in Fig. 12 (b). At 

t = 0 . 002 s, the bubble radius differs by nearly 0.15% from the bubble radius when surface tension is not treated. 
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Fig. 8. Simulated concentration field and velocity at t = 10 s using a local driving force and Fick’s 1 st law. The interface is represented with a white contour 

corresponding to α1 = 0 . 5 . 

The Laplace pressure in the bubble obtained from the simulations ( �p c ) is calculated as 

�p c = 

∫ 
 α2 pdV ∫ 
 α2 dV 

− p 0 , (38) 

where p 0 is the operating pressure is equal to 101,325 Pa. For the two-dimensional bubble, the Laplace pressure in the 

bubble is calculated based on the Young-Laplace equation ( �p ∗c = σ/R ). The error associated with predicting the Laplace 

pressure can be calculated based on (�p c − �p ∗c ) / �p ∗c and its temporal variation is plotted in Fig. 13 . Although there is 

large initial discrepancy, the absolute error quickly reduces to values lower than 0.1, in Fig. 13 . 

6. Growth of a rising bubble in a supersaturated solution 

The computational domain for modelling the growth and rise of a two-dimensional bubble is 3 mm ×9 mm. The pre- 

existing bubble of radius equal to 250 μm is initialized such that its center is at a distance of 1mm from the bottom 

boundary and equidistant from the side boundaries. The dissolved carbon dioxide in the water is set at 200.64 mol/m 
3 . 

Both gravity and surface tension are treated in this simulation. The four boundaries are described using a zero gradient 

conditions for α1 , C i , � U and ψ whereas a Dirchlet condition (equal to 101,325 Pa) is used for p rgh . The mesh used in the 

simulation has a grid resolution ( �x ) and R 0 / �x equal to 7.5 μm and 33.33, corresponding to the M4 mesh in Table 6 . The 

simulation is terminated at 0.04s but the maximum time step, calculated based on Eq. (27) , and maximum Courant number 

permitted are set to 7.2 ×10 −7 s and 0.05 respectively. The driving force for bubble growth is described using Fick’s 1 st law 

as it provides a more realistic growth rate than Sh based correlation as shown in Fig. 9 . The imbalance in the phases and 

dissolved gas in the simulation of the growth of the rising bubble is lower than 0.1% of the amount present initially in the 

system. 

The changes in the bubble morphology along with its position in the computational domain as it evolves is illustrated 

in Fig. 14 . The distribution of the dissolved gas around the bubble and velocity in the domain due to the rising bubble at 

t = 0.04s is illustrated in Fig. 15 (a) and (b), respectively. As the growing bubble grows and rises, the dissolved gas at rear of 

the rising bubble gets depleted before the mass transfer by convection and diffusion can replenish it. On the other hand, 

the incoming supersaturated liquid always replenishes the depleted dissolved gas. This variation in the concentration of the 
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Fig. 9. Comparison between the simulated bubble radii using different driving forces ( Sh based Local driving force and Fick’s 1 st law) and theoretical 

models ( Eqs. (34) and (35) ). 

Fig. 10. Comparison of the growth rate predicted by the proposed solver using different driving forces for mass transfer across the interface to the Extended 

Scriven model. The growth rate of the bubble from the simulations and theory are calculated as 
∫ 
 ψ 0 dV and Eq. (A.1) , respectively. 

dissolved gas around the interface leads to larger local mass transfer rate, calculated based on Eq. (22) , in front of the bubble 

in comparison to its rear as shown in Fig. 15 (c). 

In order to understand the effect of bubble growth on rising, its rise velocity is compared to a bubble that is just rising 

without any growth. The rise velocity of the bubble is computed as the bubble volume averaged vertical component of the 

velocity vector [54] . The bubble rising without any growth is implemented by setting the dissolved gas concentration to 

zero in the simulation. Fig. 16 (a) shows that, for 0.04s simulated, there is no substantial change in the rise velocity due 

to growth of the bubble by mass transfer across the interface. The corresponding growth of the rising bubble is illustrated 

through the increase in area of the bubble with time in Fig. 16 (b). The insignificant change in the rise velocity indicates that 

the change in buoyancy force experienced by the bubble does not change as a result of the growth, which agrees with a 

previous experimental study [20] . 
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Fig. 11. U sc (m/s), at t = 2 ms, while modelling surface tension when the bubble growth is modelled based on the Fick’s 1 st law and α1 = 0 . 5 is represented 

by a white contour. 

Fig. 12. Effect of modelling surface tension on the bubble growth. 

7. Influence of user defined parameters 

In this section, the effect of user defined parameters, like He i , D �t and size of pre-existing bubble, are investigated using 

the the setup described in the validation studies i.e. neglecting surface tension and gravity while using Fick’s 1 st law as 

driving force for bubble growth. 

Smearing of ψ 0 to obtain ψ , using Eq. (23 ), relies on a user defined D �t and ideally the solution should be independent 

of the effect of this parameter. As ψ is used to compute the source term required for bubble growth (i.e. ˙ m which is defined 
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Fig. 13. Error in calculating the Laplace pressure in the growing bubble. 

Fig. 14. Growth of a bubble rising through a supersaturated solution. The interface is represented by α1 = 0 . 5 . 

in Eq. (24 ), the evolution of the bubble radius can be used to study the effect of D �t . The parameter, D �t , is set equal to 

10 −6 m 
2 , 10 −7 m 

2 , 10 −8 m 
2 and 10 −9 m 

2 which corresponds to a length scale for smearing the ψ 0 equal to nearly 0.001 m, 

0.0 0 032 m, 0.0 0 01 m and 0.0 0 0 03 m, respectively (calculated as 
√ 

D �t [44] ). The effect of D �t on the growth rate of 

bubble is shown in Fig. 17 and the solution becomes nearly independent of D �t when using larger values (i.e. 10 −6 m 
2 and 

10 −7 m 
2 ). 

The parameter He i , which is used to model concentration jump across the interface, should theoretically be set equal to 

zero to model the transport of the dissolved gas and describe the interface as saturated. When He i is set equal to zero the 

denominator in B (in Eq. (16 )) becomes infinity for α1 = 0 . Although He i cannot be set equal to zero, the saturated condition 

of the interface can be reasonably reproduced by using a low enough value of He i . So He i is set to a non-zero number 
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Fig. 15. Contours of velocity, concentration of dissolved gas and local mass transfer rate plotted at t = 0 . 04 s. The interface is represented with a white 

contour at α1 = 0 . 5 . 

Fig. 16. The effect of bubble growth as the bubble rises up in a supersaturated liquid. 

(i.e. 10 −4 , 10 −3 , 10 −2 , 10 −1 and one) and its influence on the concentration distribution of dissolved gas and associated 

bubble growth is compared in Figs. 18 and 19 , respectively. When He i is equal to 10 
−3 or 10 −4 , both bubble growth and 

concentration of dissolved gas in bubble becomes nearly independent of He i which indicates that the saturation condition 

of the interface has been nearly reproduced. It is also worth pointing out that setting He i to 10 
−3 or 10 −4 , introduces some 

temporal unboundedness in the beginning of the simulation in the value of C i . As the mass balance of the dissolved gas is 

not affected due to this temporal unboundedness of C i , we consider effect of this error to be rather negligible. 

The effect of the size of pre-existing bubbles (radii equal to 250 μm and 500 μm) on the bubble growth is investigated 

in Fig. 20 . The computational domain and the mesh resolution used in these simulations has been changed to make the 
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Fig. 17. Comparison of the evolution of bubble radius for various D �t . 

Fig. 18. The temporal variation of the concentration of dissolved gas numerically present in the bubble, due to the use of a non-zero He i . 

relative number of mesh elements equal in both simulations. The growth of the bubbles, in Fig. 20 , shows that smaller the 

bubble higher the growth rate. 

Although size of the pre-existing bubble (250 μm) used in the simulations is much larger than the critical radius, cal- 

culated using Eq. (1) , it is in the same order as the radii of the pre-existing bubbles used in the theoretical work like 

[14] but larger than the cavity size reported in experiments, which is typically around 50–200μm [4] . These micrometer 

sized bubble are very difficult to model due the presence of spurious currents that can sometimes be large enough enough 

to render simulations inaccurate [63] . As lower limit to the size of the pre-existing bubble is dictated by the spurious cur- 

rents, implementation of more advanced surface tension models are required to model micrometer size bubbles. It is also 

worth pointing out that boiling studies performed using OpenFOAM 
R © [46,64] and condensation studies [50] typically use 

pre-existing bubbles radius in the same range as the ones used in this paper but other solvers, which use more advanced 

interface reconstruction algorithms, like Piecewise-Linear Interface Calculation (PLIC) scheme [44] , and/or surface tension ap- 

proach, using height functions [65] , enables modelling even smaller pre-existing bubbles (in the order of few micrometers) 

due to the lower spurious current [44,66] . 
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Fig. 19. Effect of He i on the growth of the bubble. 

Fig. 20. Comparison of the evolution of bubble radius based on the size of the pre-existing bubble when the effect of both gravity and surface tension are 

neglected. 

8. Conclusions 

In this paper, a new VOF based solver to model bubble evolution in supersaturated systems is implemented in Open- 

FOAM 6. The proposed solved is created by adding dissolved gas transport equation (C-CST model [53] ), surface tension (SSF 

[54] ) model, driving force for bubble growth (Fick’s 1 st law and a Sh based correlation) and the relevant source terms are 

implemented, by extending the work of [44,46,47] , in interFOAM. 

The mass transfer models applied in the proposed solver are validated based on theoretical models like Epstein–Plesset 

[14] which do not consider the effect of convection, and Scriven [15] as well as Extended Scriven [16] which accounts for 

the effect of radial bubble growth. The proposed solver utilizing a driving force based on Eqs. (28) and (33) , matches well 

with the approximate solution of Epstein–Plesset [14] as shown in Fig. 6 . A driving force based on Fick’s 1 st law provides a 

better agreement to Scriven [15] and Extended Scriven [16] models than a Sh correlation as shown in Figs. 9 and 10 . The 

modelling of the growth of the rising bubble using Fick’s 1 st law shows that the proposed solver, for the duration of 0.04 s, 

predicted the negligible effect of the bubble growth on rise velocity. Further remarks about the proposed solver are: 
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• Spurious currents, generated while modelling surface tension, introduces numerical convection near the interface that 

reduces the growth rate of the bubble by advecting away the dissolved gas at the interface. 
• As expected, the solver is able to predict higher growth rate of smaller bubbles compared to larger bubbles and the 

increase in local mass transfer rate at the front of the bubble than its rear when a bubble is rising. 
• The simulations also shows that the bubble growth is sensitive to the value of D �t but the solution becomes nearly 

independent of the parameter at larger values. 
• The use of He i equal to 10 

−4 in the C-CST has been shown to describe the transport of dissolved gas as well as the 

saturation condition at the interface reasonably well. 
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Appendix A 

Based on the derivation of expression to determine β3 D , i.e. Eq. (36) which is described in [19] , we use the same approach 

to obtain a formulation for β2 D that describes a 2D bubble growing in a supersaturated solution. The growth rate of the 

bubble can be calculated as 

ρ2 2 πRh 
dR 

dt 
= M i (J 1 + J 2 ) , (A.1) 

where first term describes the rate of increase of the bubble volume, h describes a unit grid thickness which is set equal 

to 10 −6 m which is used in the simulations, and J 1 + J 2 corresponds to the sum of mass transfer across the interface 

( Eq. (A.3) ) and effect of convection generated by bubble growth ( Eq. (A.4b) ) [19] . The theortical distribution of dissolved 

gas ( C ′ ), once concentration boundary layer is developed, can be expressed as a sigmoid function, based on simulations as 

shown in Fig. 8 (c), like 

C ′ = 

2( C ∞ −C sat ) 

1 + e −m (r−R ) /R 
+ 2 C sat −C ∞ , (A.2) 

that satisfies the following boundary conditions 

r = R, C ′ = C sat , 

r −→ ∞ , C ′ −→ C ∞ , 

where m is a constant that is defined in Eq. (A.6) . The diffusive mass transfer across the interface can be described as 

J 1 = (2 πRh ) D i, 1 

∂ C ′ 
∂r 

∣∣∣
r= R 

= 2 πRhD i, 1 

m ( C ∞ −C sat ) 

2 R 
. (A.3) 

The effect of convection established by the increase in bubble radius on the growth rate is treated as 

J 2 = A 

√ 

D i, 1 

d A/d t 

A 
( C ∞ −C sat ) , (A.4a) 

where A is the interface surface area that is equal to 2 πRh which can be used to reduce the above equation as 

J 2 = 2 πRhD i, 1 ( C ∞ −C sat ) 

√ 

1 

RD i, 1 

dR 

dt 
. (A.4b) 

Substituting Eqs. (A.3) and (A.4b) in Eq. (A.1) gives 

dR 

dt 
= 

M i 

ρ2 

(
D i, 1 

m ( C ∞ −C sat ) 

2 R 
+ D i, 1 ( C ∞ −C sat ) 

√ 

1 

RD i, 1 

dR 

dt 

)
. (A.5) 

When J 2 is neglected, the above equation must reduce to Eq. (31) , which shows that 

m = 2 . (A.6) 

As bubble radius in 2D also evolve as described by Eqs. (34) and (35) , bubble radius evolution can be described as R = 

2 β2 D 

√ 

D i, 1 t + B , where B = R 2 0 / ( 4 β
2 
2 D ) it can be substituted in the above equation to obtain 

β2 D D i, 1 √ 

D i, 1 t + B 
= 

M i 

ρ2 

D i, 1 ( C ∞ −C sat ) 

( 

1 

2 β2 D 

√ 

D i, 1 t + B 
+ 

√ 

1 

D i, 1 2 β2 D 

√ 

D i, 1 t + B 

β2 D D i, 1 √ 

D i, 1 t + B 

) 

, (A.7) 
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which can be further simplified to a quadratic equation for β2 D as 

2 
√ 

2 β2 
2 D − 2 aβ2 D −

√ 

2 a = 0 , (A.8) 

where a is defined in Eq. (36) . Based on Eq. (A.8) , β2 D can be calculated as 

β2 D = 

a + 

√ 

a 2 + 4 a 

2 
√ 

2 
. (A.9) 
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ABSTRACT

A commonly encountered phenomenon in chemical processes is bubble evolution driven by supersaturation. On the continuum scale, this
essentially involves interfacial mass transfer resulting in the growth of bubbles and their subsequent detachment from a surface. Analytical
approaches to study this phenomenon typically involve estimating the driving force for interfacial mass transfer based on Sherwood number
(Sh) correlations and the bulk concentration of dissolved gas. This is often not practical since the bulk concentration is often unknown and
Sh correlations are sometimes not available to provide an accurate description of the associated flow fields. With the use of interface-resolved
simulations to model these processes, the local distribution of dissolved gas can be obtained by solving for the concentration field. The driving
force for interfacial mass transfer can be computed based on Sh correlations (which can be adopted for specific flows and are typically used in
“engineering” applications) or the universally applicable Fick’s first law. This paper compares the predictions of these approaches for the well-
studied case of a two-dimensional bubble growing in an unbounded supersaturated solution for three different levels of supersaturation. The
equivalent two-dimensional simulations are run in a previously developed volume of fluid framework on OpenFOAM® [K. J. Vachaparambil
and K. E. Einarsrud, Appl. Math. Model. 81, 690–710 (2020)]. The results show that the choice of an appropriate Sh correlation can provide a
reasonable estimate of bubble growth. In a more universal approach, which is relevant when the flow being simulated cannot be captured by
a single Sh correlation (e.g., bubble growth/coalescence and detachment) or when existing Sh correlations are not applicable, Fick’s first law
can be used to compute the driving force for bubble growth, provided that the concentration boundary layer can be resolved.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0020210

I. INTRODUCTION

Bubble evolution in supersaturated solutions is a process ini-
tiated by nucleation, followed by interfacial mass transfer driven
growth and eventually detachment from the surface.1 This phe-
nomenon is relevant to processes such as electrolysis of water and
electrolytic reduction of alumina, as well as to the opening of cham-
pagne bottles. As the presence of bubbles reduces the efficiency of
electrochemical systems,2 it is important to efficiently remove them.
The bubble growth can be divided into two main regimes: inertial
(which lasts for less than a second for very small bubbles of the order
of tens of micrometers in size) and diffusion-controlled (the interfa-
cial mass transfer driven regime relevant for continuum scale bub-
bles).2 Apart from these two regimes, in electrochemical systems, the

heterogeneous reactions that result in supersaturation of the liquid
can also affect the bubble growth.2 Consequently, the continuum-
scale bubble growth driven by interfacial mass transfer in supersatu-
rated solutions is an important topic that has been investigated using
analytical, numerical, and experimental approaches.

Seminal analytical studies were carried out by Epstein and Ples-
set11 and by Scriven7 in the 1950s. Epstein and Plesset11 derived an
approximate solution for the temporal changes in bubble size start-
ing from a pre-existing bubble, although they neglected the effect of
convection induced by the bubble growth. The effect of convection
induced by the radially symmetric bubble growth was subsequently
treated by Scriven7 who derived an asymptotic solution describing
the bubble growth controlled by interfacial mass transfer. Bruman
and Jameson8 derived a Sherwood number (Sh) correlation (see
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TABLE I. Some examples of Sherwood number (Sh) correlations reported in the
literature.

Sh correlation Applicable flow scenario References

Sh = 2 Re = 0 flow around a
spherical bubble

3

Sh = 2 + 0.6515(Re Sc)1/2 Re≪ 1 flow around a
bubble

4

Sh = 2 + 0.6Re1/2Sc1/3 2 < Re < 200 flow
around a droplet

5 and 6

Sh = 4β2/Aa Bubble growth based
on the work of Scriven7

8

Sh = 0.332Re1/2Sc1/3 Laminar flow over a
flat plate

9

Sh = 1.26Re1/3Sc1/3 Rising bubble in
champagne

10

aβ andA are dimensionless numbers that are defined in Eqs. (16) and (17), respectively.

Table I) based on the bubble growth scenario described by Scriven.
The growth of rising bubbles in champagne was also described using
a Sh correlation by Liger-Belair et al.10 In these works based on Sh
correlations, the analytical driving force ( ja) for interfacial mass
transfer is computed as

ja =MDSh
L
(C∞ − Csat), (1)

where M and D are the molar mass and the diffusion coefficient of
the dissolved gas, respectively, L is a characteristic length scale, and
C∞ −Csat is the difference between the concentration of dissolved
gas in the bulk and at the interface (which is assumed to be at satura-
tion). The supersaturation is represented by S, which is calculated as
C∞/Csat. Additionally, these analytical models assume that the bub-
bles are present in the bulk and are surrounded by an unbounded
uniformly supersaturated solution.

In contrast to these analytical models, which present a greatly
simplified view of the process, experimental studies have revealed
the complex nature of bubble growth, including its dependence on
surface wettability and the inhomogeneous distribution of supersat-
uration around the bubble.2 Owing to the inhomogeneous distribu-
tion of supersaturation, as a result of convection or heterogeneous
reactions, the driving force for interfacial mass transfer must be
computed based on the local value of the dissolved gas concentration
near the interface.

Numerical approaches, especially interface-resolved multi-
phase models such as the Volume of Fluid (VOF) method, can
provide an adequate framework to resolve and study the growth of
individual bubbles as well as to solve for the dissolved gas transport
to determine its distribution and even treat heterogeneous reac-
tions. However, owing to the difficulty in modeling transport of
dissolved gas in multiphase flows and coupling this to the bub-
ble growth, advances in numerical modeling of the latter phe-
nomenon have been made only relatively recently. The transport of
dissolved gas in multiphase flows requires treatment of the inter-
face conditions that account for the jump in concentration and that
of the continuity of the diffusive fluxes that accounts for interfa-
cial mass transfer.12 The ways in which these interfacial conditions

have been addressed in the literature can be broadly grouped as
follows:

● two-field approaches,12–14 which use individual transport
equations for the dissolved species in each phase and in
which interfacial conditions are applied as boundary condi-
tions for each phase; and● single-field approaches,15–17 which use a single governing
equation (which accounts for the interfacial conditions) to
describe the transport of dissolved gas in both phases.

Although interfacial mass transfer can be simulated by both
types of approaches, the two-field approach has a greater compu-
tational requirement owing to the larger number of governing equa-
tions that have to be solved, as well as the requirement for the
sharp representation of the interface (obtained using geometrical
reconstruction in VOFmethods).15 This information about the local
concentration of the dissolved gas can be used to obtain a driving
force for the interfacial mass transfer and bubble growth, which is
computed in one of the following ways:

● Fick’s first law provides an accurate representation of inter-
facial mass transfer for any given flow scenario, but it is
computationally expensive owing to the need to resolve
concentration gradients at the interface.● The use of Sherwood number correlations is computa-
tionally cheaper and circumvents the need for gradient
calculations by means of flow-specific approximations for
“engineering” applications. As a result of these approxi-
mations, Sh correlations can be adopted for specific flow
scenarios (see Table I) and can be generally expressed as
Sh = 2 + aRebScc, where a, b, and c are case-specific con-
stants, Re is the Reynolds number (the ratio of inertial to
viscous forces), and Sc is the Schmidt number (the ratio of
the kinematic viscosity to the diffusion coefficient).16 The
associated driving force is computed based on the Sh corre-
lations and the local concentration of the dissolved gas near
the interface.

A summary of studies that have implemented these methods
for determining driving forces and have simulated bubble growth by
interfacial mass transfer is presented in Table II. Although the use
of a driving force based on Fick’s first law provides an accurate and
generic representation of bubble growth for any flow scenario, Sh
correlations are typically used for engineering applications.

The aim of this paper is to compare the bubble growth predic-
tions using driving forces based on Fick’s first law and two Sh corre-
lations for a bubble growing in an unbounded solution that is super-
saturated for a range of values. These driving forces are implemented
in a VOF-based framework on OpenFOAM® 6 proposed in our
recent work.21 This flow scenario, which has been thoroughly inves-
tigated analytically, is chosen because of the availability of the exact
solutions that can be used for the verification of the computational
model. The results from the simulations show that carefully chosen
Sh correlations can provide reasonably predictions that match ana-
lytical models. For flow scenarios that cannot be described by a single
Sh correlation, such as bubble evolution (which includes growth,
coalescence, and detachment), Fick’s first law should be used to com-
pute the driving force for interfacial mass transfer. Finally, when
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TABLE II. Summary of the literature on bubble evolution driven by interfacial mass transfer.

Reference Interfacial mass transfer Transport Concentration treateda VOF schemeb

19 Sh correlation Two-field Lc Geometric
20 Fick’s first law Two-field L + I + G Geometric
21 Fick’s first law Single-field L + I Algebraic
22 Fick’s first law Single-field L + I + G Algebraic
aThis refers to the regions to which the dissolved gas transport model applies: the liquid phase (L), the interfacial region where
the jump conditions are treated (I), and the gas phase (G).
bGeometric VOF methods employ interface reconstruction within each cell, whereas algebraic VOF methods, which are compu-
tationally cheaper, generate an interface based on algebraic techniques (e.g., interface compression), which results in the interface
being smeared over a few computational cells.18
cInterface jump conditions are not described in Ref. 19.

Fick’s first law is used, the concentration boundary layermust always
be resolved. This paper shows that using the appropriate Sh corre-
lation can provide reliable results, which is beneficial for obtaining
computationally cheaper simulations in engineering applications. As
the effect of gravity has been studied in our previous work,21 it will
not be investigated again here. This paper will also ignore surface
tension, since its modeling can lead to the well-known problem of
spurious velocities,18,23–25 which has been reported to alter interface
mass transfer.21

II. GOVERNING EQUATIONS AND SOLUTION
ALGORITHM

The solver used in the this paper, proposed in Ref. 21, is based
on the algebraic VOF method used by OpenFOAM® 6 (in the
interFoam solver18) along with a single-field dissolved gas trans-
port model [the Compressive-Continuous Species Transfer (C-CST)
model17] and a continuum field representation of source terms that
was adapted based on the work of Hardt andWondra26 and Kunkel-
mann.27 An overview of the governing equation and the overall
solution algorithm of the solver is provided in this section; for
further details and the derivation of the governing equations, see
Ref. 21.

The first step of the solver is advection of the volume fraction of
liquid. The volume fraction of liquid, denoted by α1, is a scalar used
in the VOF method to distinguish between the phases. α1 = 1 indi-
cates the liquid (phase 1), α1 = 0 indicates the gas/bubble (phase 2),
and 0 < α1 < 1 indicates the interfacial region. To preserve the sharp-
ness of the interface, α1 is advected using the interface compression
method (which belongs to the algebraic VOF approach), which is
described as follows:

∂α1
∂t
+∇ ⋅ (α1U⃗) +∇ ⋅ [α1(1 − α1)U⃗r] = α1∇ ⋅ U⃗, (2)

where the first two terms on the left-hand side are the temporal
and convection terms, while the third term, which is nonzero only
in the interfacial region, compresses the interface depending on the
relative velocity between the phases, U⃗r .18 The term on the right-
hand side is associated with the source term that results in the bub-
ble growth.21 Equation (2) is solved using the semi-implicit multi-
dimensional limiter for explicit solution (MULES) to ensure that α1
remains bounded.28 The volume fraction of phase 2, α2, is calcu-
lated as 1 − α1. The fluid properties such as density ρ and viscosity

ν are computed using volume fraction based algebraic averaging as
χ = α1χ1 + α2χ2, where χ ∈ [ρ, ν].

Once α1 has been advected, the driving force for interfacial
mass transfer is calculated. The solver computes the transport only
to the dissolved gas (see Table II) and determines only the con-
centration Ci above the saturation condition. These simplifications
allow the saturation concentration on the gas side of the interface
to be described as 0 mol/m3, and correspondingly, the driving force
can be computed based on one of the following approaches:

● Fick’s first law in the form

j =MiDi,1∣∇Ci∣, (3)

where Mi is the molar mass of dissolved gas (i) and Di,1 is
the diffusion coefficient of the dissolved gas in the liquid.
Equation (3) is based on the assumption that the gradient of
concentration of the dissolved gas at the interface in the tan-
gential direction is negligible in comparison with the normal
component, as discussed by Deising et al.15● Sh correlation 1:Sh = 2 + 0.6515√Re Sc, which is applicable
for low solubility/small mass transfer rates from the interface
to liquid for a bubble in a creeping flow.4 In this case,

j =MikSh1Ci, (4)

with kSh1 given by

kSh1 = Di,1

2R
Sh = Di,1

2R
(2 + 0.6515√Re Sc), (5)

where R is the bubble radius, Re is given by 2RU∞/ν1 (where
U∞ is computed as the rate of increase in the bubble radius),
and Sc = ν1/Di,1.● Sh correlation 2: Sh = 4β2ρ2/(MiCi), which is applicable for
the bubble growth driven by supersaturation (derived in
Appendix A). In this case,

j =MikSh2C1 = (Di,1

2R
4β2ρ2
MiCi

)MiCi

= 4β2ρ2Di,1

2R
, (6)

where β is the growth coefficient used in Scriven’s model7
and is estimated using Eq. (16).
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Based on j, the local mass transfer rate is computed at the liquid
side of the interface as

ψ0 = Njα1∣∇α1∣, (7)

where N is a normalization factor calculated as∫Ω ∣∇α1∣dV/ ∫Ω α1∣∇α1∣dV . To improve numerical robust-
ness, the calculated local mass transfer rate is smeared at the
interface, according to the method of Hardt and Wondra,26 using a
user-defined value DΔt as follows:

DΔt∇2ψ = ψ − ψ0. (8)

For the simulations reported in this paper, DΔt is set equal to
10−6 m2 based on the parametric study reported in our previous
work.21 For numerical stability, the source term for the continuity
equation, which is redistributed in the region where α1 < 10−3 using
a Heaviside function (as described by Kunkelmann27), is expressed
as

ṁ = Aα2ψ, (9)

whereA is a normalization factor equal to ∫Ω ψ0 dV/ ∫Ω α2ψ dV . The
sink term in the transport of the dissolved gas is computed at the
liquid side of the interface as

Si = −Nα1(j∣∇α1∣)Mi
, (10)

where N is the normalization factor used in Eq. (7).
The momentum equation, using a modified pressure (prgh= p − ρg⃗ ⋅ x⃗) and a single-field velocity field (U⃗), is written as

∂ρU⃗
∂t
+∇ ⋅ (ρU⃗U⃗) = −∇prgh +∇ ⋅ (μ∇U⃗) +∇U⃗

⋅ ∇μ − g⃗ ⋅ x⃗∇ρ + F⃗ST, (11)

where ∇ ⋅ (μ∇U⃗) +∇U⃗ ⋅ ∇μ are the viscous terms of the momen-
tum equation.18 As the surface tension effects are not simulated in
this paper, F⃗ST, which is the volumetric surface tension force, will
not be considered here. As the densities of the individual phases are
assumed to be constant, mass conservation can be described using
the continuity equation as

∇ ⋅ U⃗ = ṁ
ρ
, (12)

where ṁ is the source term for phase 2 computed in Eq. (9). The
momentum and continuity equations are solved together using the
pressure implicit with splitting of operator (PISO) algorithm.18,21

Finally, the C-CST model17 for the transport of the dissolved
gas is solved,

∂Ci

∂t
+∇ ⋅ (U⃗Ci) =∇ ⋅ (D̂i∇Ci) −∇ ⋅ (D̂i

1 −Hei
α1 + α2Hei

Ci∇α1)
−∇ ⋅ ( 1 −Hei

α1 + α2Hei
α1α2U⃗rCi) + Si, (13)

where Si is computed using Eq. (10), Hei describes the interfacial
jump in concentration, which is set to 10−4 to reliably model just the
dissolved gas,21 U⃗r is the relative velocity between the phases that
appears in Eq. (2), and D̂i is the harmonic average of the diffusion
coefficients of the phases.17

TABLE III. Settings used to solve the governing equations.

Equation Linear solver Smoother/preconditioner Tolerance

prgh PCG GAMG 10−20
U⃗ smoothSolver symGaussSeidel 10−10
α1 smoothSolver symGaussSeidel 10−10
Ci PBiCGStab Diagonal 10−10
ψ PCG DIC 10−10

A. Numerical settings
The governing equations are discretized with the first- and

second-order schemes in time and space,21 respectively, and
computed using the iterative solvers listed in Table III. Other
OpenFOAM® specific numerical settings, such as MULESCorr and
momentumPredictor, are set as described in our previous work.21
The maximum time step is set by applying an upper limit on the
Courant number equal to 0.05. The iterative solver used to solve
for ψ, given in Table III, is used instead of the settings used in
our previous work,21 namely, PBiCGStab–diagonal, to reduce the
computational time required, as described in Appendix B.

III. RESULTS AND DISCUSSION

A. Problem description
The computational domain and boundary/initial conditions

used in the simulations are presented in Fig. 1. The fluid proper-
ties used in the simulations, adapted from our previous work,21 are
listed in Table IV. The supersaturation levels used in the simulations

FIG. 1. Computational domain and boundary/initial conditions used in the simula-
tions. The operating pressure (p0) and the pre-existing bubble radius (R0) used
in the simulations are equal to 101 325 Pa and 250 μm, respectively. The con-
centration of the dissolved gas at t = 0 s is set based on the various levels of
supersaturation S.
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TABLE IV. Fluid properties used for the simulations (adapted from Ref. 21).

Property Phase 1 (liquid) Phase 2 (bubble)

Density (kg/m3) 997.0751 (Ref. 29) 1.81 (Ref. 30)
Viscosity (m2/s) 8.92 × 10−7 (Ref. 29) 8.228 × 10−6 (Ref. 30)
Diffusion 1.94 × 10−9 (Ref. 31) 9.18 × 10−6 (Ref. 32)
coefficient (m2/s)
Molar mass (kg/mol) 44 × 10−3 (Ref. 21)
are 2.5, 4, and 7, which correspond to the initialized concentra-
tions of dissolved gas Ci equal to 50.16 mol/m3, 100.32 mol/m3, and
200.64 mol/m3, respectively (with a saturation concentration equal
to 33.44 mol/m3). It should be noted that the initialized uniform dis-
tribution of the dissolved gas does not take account of any concen-
tration boundary layer, the implications of which will be explored
later in the discussion of the results. Again, both surface tension and
gravity are neglected in the simulations, but we have investigated
the influence of these parameters on growth previously.21 The mesh
used for all the simulations presented in this paper had a uniform
hexahedral grid of 16 × 106 cells based on grid convergence studies

performed for the bubble growth associated with S = 7 and a driving
force based on Fick’s first law in our previous work.21

B. Choice of analytical model
As the Epstein–Plesset model11 ignores the effect of bub-

ble growth on interfacial mass transfer, Scriven’s asymptotic solu-
tion7 provides the most reliable description of bubble growth via
interfacial mass transfer, as was also noted by Burman and Jame-
son.8 According to Scriven,7 the increase in bubble radius can be
described as

RScriven = 2β√Di,1t, (14)

where β is the growth coefficient. To treat the interfacial mass trans-
fer driven growth of a pre-existing bubble, Scriven’s solution was
extended by Hashemi and Abedi33 (in what we will refer to here
as the “extended Scriven model”) where the evolution of the bubble
radius is described by

RScriven−ext = 2β
¿ÁÁÀDi,1(t + R2

0

4Di,1β2
), (15)

FIG. 2. Comparison of the results of simulations of bubble radius evolution using the driving forces based on Fick’s first law [Eq. (3)] and on Sh correlations [Eqs. (4) and (6)]
with the results of the extended Scriven model (with β2D) for various levels of supersaturation: (a) 2.5, (b) 4.0, and (c) 7.0.
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where R0 is the radius of the pre-existing bubble. Our previous
work21 has shown that Eq. (15) provides a better representation of
the process of interfacial mass transfer driven bubble growth from a
pre-existing bubble when compared to Eq. (14).

The growth coefficient for two-dimensional bubbles should be
calculated as21

β2D = A +√A2 + 4A
2
√
2

, (16)

where A is calculated as

A = MiΔC
ρ2

, (17)

with ΔC being the concentration of the dissolved gas in the bulk
above the saturation condition. As the simulations in this paper
deal with the growth of a two-dimensional bubble from a pre-
existing bubble, the theoretical model used to verify the simulations
is the extended Scriven model [Eq. (15)] with the growth coefficient
determined based on Eq. (16). As ΔC in the simulations is set to
50.16 mol/m3, 100.32 mol/m3, and 200.64 mol/m3, the correspond-
ing values of β2D are 1.3230, 2.2632, and 4.0509, respectively.

C. Verification of the simulations
As the simulations predict bubble growth due to uniform

supersaturation, the velocity and concentration of the dissolved gas
around the bubble are radially symmetric (as reported in our pre-
vious work21). Figure 2 compares the increase in bubble radius
predicted by simulations using a driving force for interfacial mass
transfer based on Fick’s first law and on Sh correlations with the pre-
diction by the analytical solution of the extended Scriven model for
various supersaturation levels. The simulations using a driving force
based on Sh correlation 1 underpredict the bubble size compared
with the analytical model for all three supersaturation levels. Inter-
estingly, the simulation using a driving force based on Fick’s first law
appears to agree with the analytical model at larger supersaturation,
whereas the simulations using a driving force based on Sh correla-
tion 2 exhibits good agreement with the extended Scriven model for
all three supersaturation levels.

As the interfacial mass transfer is proportional to the surface
area of the bubble (which in the case of a two-dimensional bub-
ble is proportional to the bubble radius), a normalized growth rate
based on the bubble radius, which is computed as ∫ ψ0dV/R, is
used to account for the different bubble sizes.21 In the extended

FIG. 3. Comparison of the results of simulations of bubble radius normalized growth rates (kg m−1 s−1) based on Fick’s first law [Eq. (3)] or on Sh correlations [Eqs. (4) and
(6)] with the results of the extended Scriven model (with β2D) for various levels of supersaturation: (a) 2.5, (b) 4.0, and (c) 7.0.
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Scriven model, the radius normalized growth rate is computed as
the rate of change in the mass of the bubble divided by the bubble
radius based on the analytical model, i.e., Eq. (15). The discrepan-
cies between the temporal change in bubble radius computed using
a driving force based on Fick’s first law or on Sh correlations and
that computed using the analytical extended Scriven model can be
explained based on the bubble radius normalized growth rate (see
Fig. 3). The driving force based on Sh correlation 1 used for the
simulations appears to underpredict the radius normalized growth
rate (see Fig. 3) compared with the analytical model, which results
in the bubble being smaller (see Fig. 2). On the other hand, the evo-
lution of the bubble radius predicted using a driving force based on
Sh correlation 2 agrees reasonably well with the analytical model,
since the normalized growth rates from the two methods match,
with an absolute deviation of less than 1% for all three cases at t = 10
s (see Figs. 2 and 3). As the initialized distribution of the dissolved
gas does not take account of the concentration boundary layer, the
local value of Ci, which is used to calculate j based on Eq. (4), is
close to the bulk supersaturation, which causes the initial spike in
the normalized growth rate observed in Fig. 3. As the simulation
proceeds over time, a concentration boundary layer develops, and
the local Ci becomes lower than the bulk supersaturation. Although
for Sh correlations, j is calculated to be proportional to Ci, Fick’s
first law computes j based on the gradient of the local concentra-
tion [see Eq. (3)]. As a result of this gradient-based calculation, the
use of j from Fick’s first law leads to a large normalized growth rate
that is greater than the analytical solution, as observed in Fig. 3. As
the concentration boundary layer becomes fully developed, the sim-
ulated radius normalized growth rate matches the analytical solu-
tion for all three supersaturation levels. This initial larger growth
rate in the simulations causes the bubble radius to increase more
rapidly than expected, which results in the discrepancy observed
in Fig. 2.

IV. CONCLUSIONS

In this paper, the VOF-based approach proposed previously21
has been used to simulate the interfacial mass transfer driven growth
of a bubble in a unbounded and uniformly supersaturated solution
(for S = 2.5, 4, and 7). As an analytical solution is available for this
flow scenario, the results of simulations with the driving forces com-
puted based on Fick’s first law and on two Sh correlations have been
compared with the theoretical results to assess the predictions of
bubble growth. The results reveal the following:

● If a Sh correlation that is appropriate for the specific flow
being simulated is chosen to compute the driving force for
interfacial mass transfer, a reasonably accurate prediction
of bubble growth can be obtained. In the case of radially
symmetric bubble growth driven by supersaturation, Sh cor-
relation 2 [Eq. (6)] is better suited than Sh correlation 1
[Eq. (4)].● If Sh correlations are not available to describe a flow scenario
or if a single correlation cannot capture a complex phe-
nomenon (such as bubble growth, coalescence, and detach-
ment), the driving force should be computed based on Fick’s
first law, since it provides a better representation of the flow
than a single Sh correlation with limited applicability.

● The driving force computed using Fick’s first law has been
shown to be able to handle bubble growth for a range
of supersaturation levels, provided that the concentration
boundary layer has been resolved, even at t = 0 s.● The driving forces based on Sh correlations and Fick’s first
law are proportional to the local concentration and the gra-
dient of Ci. This means that the computational requirements
(with respect to mesh resolution) needed with Sh correla-
tions are lower than when Fick’s first law is used, since the
latter requires the resolution of concentration gradients near
the interface.

Future work within this framework will utilize a driving force
computed based on the local concentration to model the bubble
growth driven by heterogeneous reactions such as electrochemical
gas evolution.
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APPENDIX A: DERIVATION OF Sh CORRELATION 2

In this appendix, based on the original work by Burman and
Jameson,8 we extend their approach to derive Sh correlation that is
used in simulations.

For a two-dimensional bubble as simulated in this paper, the
growth rate can be expressed as

ρ2
dV
dt
= jA, (A1)

where V = πR2h, A = 2πRh, and j =MikCi, with h being the unit
cell thickness used to define the two-dimensional domains in
OpenFOAM®, which in this paper is set to 1 μm. Substituting the
expressions for V , A, and j, we get

ρ2
dR
dt
=MikCi. (A2)

The rate of change in the radius can be calculated based on
Eq. (15) as

dR
dt
= 2β2Di,1

R
. (A3)

Substituting Eq. (A3) into Eq. (A2), we get

2β2Di,1

R
= MikCi

ρ2
. (A4)

This equation can be rearranged and multiplied by 2 on both sides
to give

k = Di,1

2R
4β2ρ2
MiCi

, (A5)

and the corresponding Sh is defined as 4β2ρ2/(MiCi). In the work
by Burman and Jameson,8 the value of Ci is written in terms of the
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bulk concentration of the dissolved gas under the assumption of
diffusion-limited mass transfer through the liquid film. This leads
to Sh being defined as 4β2ρ2/(MiΔC), where ΔC is defined as in
Eq. (17). At a very low supersaturation, when Re is approximately
zero and β is small, Burman and Jameson8 showed that Sh→ 2, as
expected for the case of diffusive mass transfer in the absence of
convection (see Table I).

APPENDIX B: CHOICE OF LINEAR SOLVER
AND PRECONDITIONER

To reduce the computational time required for the simula-
tions, the effect of the iterative solver used to smear ψ0 [Eq. (8)],
which is the bottleneck in the simulation at each time step, is
investigated in this appendix. Bubble growth driven by super-
saturation S = 7 is chosen as the flow scenario to be simulated,
with the convergence criterion for Eq. (8) set at 10−10. The first
case corresponds to the setting used in this paper, i.e., Eq. (8) is
solved using PCG (linear solver)–DIC (preconditioner). The sec-
ond case corresponds to the setting used in our previous work,21
i.e., Eq. (8) is solved using PBiCGStab (linear solver)–diagonal
(preconditioner).

Although the bubble growths predicted by the two simulations
are in very close agreement (see Fig. 4), the number of iterations
required for the convergence of Eq. (8) is reduced by almost half at
every time step, as observed in the log file obtained from the solver
during the run:

● For the PCG–DIC solver setting:

– At t = 0 s:DICPCG: Solving for psi, Initial residual= 1, Final residual = 9.88185e − 11, No Iterations
1842

– At t = 10 s:DICPCG: Solving for psi, Initial resid-
ual = 0.0132484, Final residual = 9.94304e−11, No
Iterations 1218

● For the PBiCGStab–diagonal solver setting:

FIG. 4. Bubble size simulated using the various solvers for Eq. (8). The bubble
evolution for the PBiCGStab/diagonal setting is obtained from the data reported in
our previous work.21

– At t = 0 s:diagonalPBiCGStab: Solving for psi, Ini-
tial residual = 1, Final residual = 4.55196e−11, No
Iterations 4020

– At t = 10 s:diagonalPBiCGStab: Solving for
psi, Initial residual = 0.0131794, Final residual= 9.72418e−11, No Iterations 2904
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within the article.
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ABSTRACT
In this work we describe the various building block relevant in
simulating electrochemical gas evolution using Volume of Fluid
(VOF) method. These building blocks are implemented in the VOF
solver available in OpenFOAM® and its predictions are compared
to the theoretical models reported in literature. The fully coupled
solver to model electrochemical gas evolution is used to model the
case of a bubble evolving on a vertical electrode under constant
potential condition to showcase its ability.

Keywords: VOF, Surface tension modelling, Interfacial mass
transfer, Bubble growth, Gauss’s law, Dissolved gas transport, Elec-
trochemical systems .

NOMENCLATURE

Greek Symbols
ρ Density, [kg/m3]
µ Dynamic viscosity, [kg/ms]
ν Kinematic viscosity, [m2

/s]
σ Surface tension, [N/m]
κ Interfacial curvature, [1/m]
α Volume fraction, [−]
φ Potential, [V ]
β Growth coefficient, [−]
F Fraction of electrode area covered by bubble, [−]

Latin Symbols
D Diffusion coefficient, [m2

/s].
~g Acceleration due to gravity, [m/s2].
k Conductivity, [S/m].
p Pressure, [Pa].
C Molar concentration, [mol/m3].
~x Position vector, [m].
~U Velocity vector, [m/s].
~i Current density vector, [A/m2].
~S Individual cell face surface area vector, [m2].
He Jump condition across the interface, [−].
f Void fraction, [−].
R Bubble radius, [m].
I Current when no bubbles are present, [A].
d Interelectrode distance, [m].
A Total electrode area, [m2].
M Molar mass, [kg/mol].
F Faraday’s constant (=96485), [As/mol].

Sub/superscripts
1 Liquid or phase 1.
2 Bubble or phase 2.
i Dissolved gas species.
0 Operating condition.
s Saturation condition.
e Averaged or effective value.
′ Initial/starting condition.
m Modified.
∞ At bulk.
ˆ Harmonic average.

INTRODUCTION

Electrochemical gas evolution is relevant in a variety of
industrial processes such as water-splitting, chloralkaline
and Hall–Héroult. Bubble evolution in these systems in-
volve nucleation, growth, coalescence and detachment from
electrode. The dynamic behaviour of bubbles causes over-
potential changes due to supersaturation, ohmic resistance
and electrode screening, as well as enhanced mass transfer
(Zhao et al., 2019). Due to the complex and coupled nature
of electrochemical gas evolution (Taqieddin et al., 2018),
numerical modelling of the system is an ideal way to under-
stand its physics and develop strategies to efficiently remove
these bubbles.
In literature, the numerical models used to simulate the con-
tinuum scale processes in electrochemical gas evolution can
be broadly divided into dispersed and interface-resolving ap-
proaches. The dispersed approaches, like Euler-Euler, Mix-
ture and Euler-Lagrange models, relies on a priori knowl-
edge of flow to select interphase closure terms (Hreiz et al.,
2015). These approaches do not resolve the dispersed bub-
bles and are typically used to simulate industrial scale elec-
trochemical systems (Hreiz et al., 2015). On the other hand,
interface-resolving approaches, like Volume of Fluid (VOF)
(Einarsrud and Johansen, 2012; Einarsrud et al., 2017; Sun
et al., 2018) and phase-field (Zhang et al., 2020), resolve in-
dividual bubbles and is typically used to study in detail the
dynamic behaviour of few bubbles. Although these studies
have provided knowledge relevant to simulate the multi-
physics nature of electrochemical gas evolution, there is still
a lack research that addresses the coupled multiphysics as
well as the multiscale nature of the process as highlighted
by Taqieddin et al. (2018)
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Figure 1: Schematic of the coupling between various modules of
the proposed solver proposed to model electrochemical
gas evolution.

In this work, we highlight various modules required to sim-
ulate electrochemical gas evolution, see Fig.1, to partly ad-
dress the knowledge gap highlighted by Taqieddin et al.
(2018). The decoupled modules are developed on the VOF
solver available on OpenFOAM® 6, interFoam (Deshpande
et al., 2012). These modules are individually verified by
comparison to relevant theoretical models available in liter-
ature and finally the potential of the fully coupled solver is
discussed.

THE DECOUPLED MODEL DESCRIPTION

In this section, we introduce the various modules that are rel-
evant in modelling electrochemical gas evolution: reliable
small (sub-millimeter) bubbles, transport of dissolved gas,
supersaturation driven bubble growth and ohmic resistance
associated with bubble evolution. Before these individ-
ual modules are described, the VOF model as implemented
in interFoam is introduced, for further details please refer
Deshpande et al. (2012). The VOF model uses a scalar func-
tion known as volume fraction of liquid (α1) which takes a
value equal to unity in the liquid, zero in the gas phase and
0 < α1 < 1 in the interface. The volume fraction of gas is
calculated as α2 = 1 − α1. The advection of the volume
fraction of liquid is computed as

∂α1

∂t
+∇ · (α1

~U) +∇ · (α1(1− α1) ~Ur) = 0, (1)

where ~U is the velocity in domain and ~Ur is the compres-
sive velocity computed based on a user-defined compression
factor (Cα), see Deshpande et al. (2012). The fluid prop-
erties, like density (ρ) and viscosity (µ), are computed as
χ = α1χ1 + α2χ2. The mass conservation equation of the
phases, described using continuity equation, is

∇ · ~U = 0. (2)

The momentum equation is written using a modified pres-
sure, pm = p− ρ~g · ~x, as

∂ρ~U

∂t
+∇ · (ρ~U ~U) =∇ · (µ∇~U) +∇~U · ∇µ+ ~FST

−∇pm − ~g · ~x∇ρ,

(3)

where ~FST is the surface tension force is treated using the
Continuum Surface Force (CSF) model (Brackbill et al.,
1992) and viscous term, usually written as∇·µ(∇~U+∇~UT )

can be expressed as ∇ · (µ∇~U) +∇~U · ∇µ using Eq.2, see
Deshpande et al. (2012).

Modelling sub-millimeter bubbles

One of the main well known problems associated with VOF
approach is the errors in determining the local curvature
used in surface tension modelling. These errors generate
spurious velocities near the interface that can cause non-
physical flow in the computational domain (Popinet, 2018;
Vachaparambil and Einarsrud, 2019). The spurious veloc-
ities tend to become stronger with smaller length scales
or lower Capillary number and it can sometimes be strong
enough to generate nonphysical random walk of the bubbles.
One of the approaches to reduce spurious velocities is to re-
place the commonly used CSF model with the Sharp Surface
Force (SSF) model, proposed by Raeini et al. (2012), other
advances has been reviewed in Popinet (2018). The work by
Vachaparambil and Einarsrud (2019), has shown the abil-
ity of SSF to successfully simulate capillary rise and rising
bubbles as well as reduce spurious velocities compared to
CSF model.
The SSF model, based on the work of Raeini et al. (2012);
Vachaparambil and Einarsrud (2019), describes ~FST as

~FST = σκfinal∇αsh, (4)

where κfinal is obtained using a three step smoothing of
curvature and αsh is calculated as

αsh =
1

1− Csh

[
min
(

max
(
α1,

Csh

2

)
, 1−Csh

2

)
−Csh

2

]
,

(5)
where Csh is the user-defined sharpening coefficient which
must satisfy 0 ≤ Csh < 1. To model sub-millimeter bubble,
the sharpening coefficient is set to 0.3 (Vachaparambil and
Einarsrud, 2020b).

Transport of dissolved gas

Compared to single phase flows, the transport of species in
a two phase flow requires the treatment of the interfacial
conditions i.e. concentration jump across the interface and
continuity of diffusive fluxes, see Maes and Soulaine (2018)
or Deising et al. (2018). These interfacial conditions are
incorporated into a single unified transport equation which
solves for the concentration field in both liquid and the gas
in the Compressive Continuous Species Transfer (CCST)
model, developed by Maes and Soulaine (2018). The gov-
erning equation for Ci, in CCST model, is

∂Ci

∂t
+∇ · (~UCi) = ∇ · (D̂i∇Ci − D̂iBCi∇α1)

−∇ · (Bα1α2
~UrCi),

(6)

where ~Ur is the compressive velocity (used in Eq.1), B is
the defined as (1−He)/(α1+α2He), where He describes
the concentration jump across the interface (also known as
partition coefficient), and D̂i is the harmonic averaging of
the diffusion coefficients, see Maes and Soulaine (2018) for
further details. Inorder to simulate the transport of dissolved
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gas, which should only be in the liquid, we use He equal to
a value near zero (like 10−4), to minimize the transport of
dissolved gas into the bubble which is accounted for by the
CCST model based on the defined value of He (Maes and
Soulaine, 2018; Vachaparambil and Einarsrud, 2020b). As
He is a small number (10−4), Ci obtained from Eq.6 can be
interpreted as Ci = Ci − Cs, where Ci is the actual con-
centration and Cs represents the saturation concentration,
based on Vachaparambil and Einarsrud (2020a,b).

Supersaturation driven bubble growth

When modelling interfacial mass transfer phenomena and
the associated bubble growth, Sherwood number based cor-
relations are widely used in CFD simulations (Einarsrud and
Johansen, 2012; Einarsrud et al., 2017). The drawback of
these correlations is its limited applicability, due to its de-
pendence on the bubble shape and relevant Reynolds and
Schmidt number (Deising et al., 2018). A more universal
approach is to use the Fick’s 1st law, which is the govern-
ing equation used in deriving Sherwood number correlations
(Bird et al., 2007). To the best of the authors knowledge there
are only two very recent works that has used Fick’s 1st law
to model bubble evolution: Vachaparambil and Einarsrud
(2020a,b) and Maes and Soulaine (2020).
In order to model the growth of bubble driven by the su-
persaturated electrolyte, we use the approach proposed by
Vachaparambil and Einarsrud (2020a,b). In this work, the
phenomenological Fick’s 1st law, the driving force for bub-
ble growth, is coupled to CCST, described based on Eq.6,
with relevant source terms for species transport (Eq.6), ad-
vection of α1 (Eq.1) and continuity (Eq.2) equations is
implemented by extending the work of Hardt and Wondra
(2008). For information about the relevant governing equa-
tions and source terms, please refer to Vachaparambil and
Einarsrud (2020b).

Modelling electromagnetic effects

To model the electromagnetic effects, we use Gauss’s law
which can be described mathematically as

∇ ·~i = 0, (7)

where the current density (~i) can be expressed using the
gradient of potential (φ) as

~i = −k∇φ, (8)

where k is the conductivity, calculated as an algebraic aver-
aging of conductivities, i.e. α1k1+α2k2. This approach has
been used in literature to describe the evolution of carbon
dioxide bubbles in aluminum reduction process (Einarsrud
and Johansen, 2012).

SOLVER SETTINGS

Due to the coupled nature of momentum and pressure equa-
tions, the equations are computed using the PISO algorithm,
see Deshpande et al. (2012). The governing equations are
discretized with first order schemes for time and second
order schemes in space, for details please refer to Vacha-
parambil and Einarsrud (2020b). The convergence criterion
used solve governing equations for prgh and other variables
(like φ, ~U , Ci and others) are 10−20 and 10−10 respec-
tively. When surface tension is relevant in the simulations,

a constraint on time step constraint described in Deshpande
et al. (2012); Vachaparambil and Einarsrud (2019) is used
to prevent the growth of spurious velocities.

VERIFICATION OF THE DECOUPLED SOLVER

In this section, we verify the individual modules imple-
mented in interFoam using theoretical models described in
literature.

On sub-millimeter bubbles

The ability of the SSF model to reliably simulate sub-
millimeter bubbles is demonstrated by a simulation of a
stationary bubble. Without body forces, i.e. gravity, in
the domain, any velocities present in the simulation can be
attributed to spurious velocities. As electrochemically gen-
erated bubbles can be present on both the electrode surface
and in the bulk (after detachment), it is necessary to reliably
simulate sub-millimeter bubbles for both cases.
The properties of the liquid and gas used in the simulation
are ρ1 = 1000kg/m3, ρ2 = 1kg/m3, ν1 = 10−6m2/s, ν2 =
1.48×10−5m2/s and σ = 0.07N/m. Two test cases, where
the bubble is available in the bulk (SBC1) and attached to
the electrode surface (SBC2), where the stationary bubble
has a diameter (2R) of 0.5mm are simulated in a 2D domain
of dimensions 4R× 4R. Both SBC1 and SBC2 are meshed
using a hexahedral grid with 120×120 cells. For SBC1, all
the boundaries are assigned zeroGradient for both ~U and
α1 but the prgh is assigned fixedValue of 101325Pa. In
the case of SBC2, where the left and right boundaries are
defined as walls, ~U uses no-slip condition at the walls and
zeroGradient at the other boundaries along with α1 uses
zeroGradient on all boundaries (with a default contact angle
of 90◦ at the walls) and prgh as fixedValue (equal to 0Pa)
at the top wall and fixedFluxPressure (Greenshields, 2019)
on the other boundaries. Due to the surface tension, the
maximum time step allowed is manually limited to 0.6µs
(see Deshpande et al. (2012); Vachaparambil and Einarsrud
(2019)) and the simulations are run until 0.05s.
The accuracy of these simulations are estimated using
Laplace pressure and magnitude spurious velocities, like in
Vachaparambil and Einarsrud (2019). The Laplace pressure
in a 2D bubble can be calculated based on Young-Laplace
equation as ∆pc = σ/R and the spurious velocities (Usc) is
estimated as max(|~U |). The Laplace pressure in the bubble,
from the simulations, is calculated as

∆p =

∫
V
α2pdV∫

V
α2dV

− p0, (9)

where p0 is the operating pressure used in the simulations.
The associated error in Laplace pressure (E) is calculated as
(∆p−∆pc)/∆pc, where the overbar indicates the averaged
value over the simulation time.

Table 1: Time averaged values of spurious velocities, Laplace pres-
sure and its error obtained while simulating a stationary
sub-millimeter bubble.

Case Usc (m/s) ∆p (Pa) E
SBC1 0.0108 255.35 −0.088
SBC2 0.0198 253.91 −0.093

As shown in Fig.2, the spurious velocities generated are
present on both sides of the interface (for both TC1 and
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(a) Bubble in the bulk (SBC1). (b) Bubble on the wall (SBC2).

Figure 2: Comparison of the spurious velocities (m/s) generated while modelling stationary bubbles at t = 0.05s with interface (at α1 = 0.5)
represented by the white contour.

TC2). Interestingly, the spurious velocities generated are
quite different in both TC1 and TC2, with the latter gener-
ating strong spurious velocities near the foot of the bubble.
These time averaged spurious velocities and error in estimat-
ing the Laplace pressure of the bubble quantified in Table.1.

On the transport of dissolved gas

In order to show that Eq.6 with He = 10−4 can model
the transport of dissolved gas reasonably well, we take a
hypothetical case where a rising bubble moves through a
region of supersaturation. The fluid properties used in the
simulations, which are adapted from Hysing et al. (2009),
are ρ1 = 1000kg/m3, ρ2 = 1kg/m3, ν1 = 0.01m2/s,
ν2 = 0.1m2/s, σ = 1.96N/m and |~g| = 0.98m/s2 along
with D1 = 10−9m2/s and D2 = 10−5m2/s. A bubble
of diameter 0.5m is initialized such that its center is 0.5m
from the bottom and side boundaries in a domain of di-
mensions 1m×2m. The simulation is run with hexahedral
mesh with 160×320 cells. The region of supersaturation,
Ci = 10mol/m3, is initialized in an area of 1m×0.7m from a
distance of 0.8m from the bottom wall. All four boundaries
are assigned the zeroGradient condition for Ci and α1. The
boundary conditions for ~U are assigned slip conditions at
the side walls and remaining walls are set as no-slip. For
prgh, the top wall is assigned the fixedValue (equal to zero)
but the other walls are described using fixedFluxPressure
(Greenshields, 2019).

The spatial distribution of the dissolved gas as the bubble
rises and deforms is illustrated in Fig.3. The convection
induced by the rising bubble does not advect the dissolved
gas into the bubble. Due to the use of a non-zero He, to
prevent B in Eq.6 from becoming infinity, dissolved gas
does numerically drift into the bubble but this is negligible
(lower than 0.01% of the amount of dissolved gas).

On supersaturation driven bubble growth

Adapted fromVachaparambil and Einarsrud (2020a,b),
the fluid properties used in the simulation are ρ1 =
997.08kg/m3, ρ2 = 1.81kg/m3, ν1 = 8.92 × 10−7m2/s,
ν2 = 8.228 × 10−6m2/s, D1 = 1.94 × 10−9m2/s, D2 =
9.18 × 10−6m2/s and M = 44 × 10−3kg/mol. Both sur-
face tension and gravity are neglected in the simulations.
The parameters used in the solver are defined based on the
work by Vachaparambil and Einarsrud (2020b). The domain
used for the computation is 3cm×3cm which is meshed with
4000×4000 cells, the pre-existing bubble (of diameter equal
to 0.5mm) is initialized at the center of the domain. The liq-
uid phase is initialized with a concentration of dissolved
gas at 200.64mol/m3. The boundary conditions used are
described in Vachaparambil and Einarsrud (2020b).
The approach to describe the growth of a pre-existing bubble
in a supersaturated solution can be verified by the Extended
Scriven model proposed by Hashemi and Abedi (2007)
(based on the work by Scriven (1959)):

R = 2β

√√√√D1

(
t+

R′2

4D1β2

)
, (10)

where β is the growth coefficient and R′ is the radius of the
pre-existing bubble. The growth coefficient for 2D bubbles,
derived in Vachaparambil and Einarsrud (2020b), is

β2D =
a+

√
a2 + 4a

2
√
2

, (11)

where a is equal to M∆C/ρ2 and ∆C is equal to the con-
centration of the dissolved gas that is over the saturation
condition (equal to 200.64mol/m3). Fig.4 shows that the
evolution of bubble radius predicted by the model agrees
reasonably with the Extended Scriven with β2D. The dis-
crepancy between the simulation and the Extended Scriven
model can be explained by the discontinuous nature of dis-
solved gas concentration at t = 0s (Vachaparambil and
Einarsrud, 2020a,b).
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(a) t = 0s. (b) t = 1s.

(c) t = 2s. (d) t = 3s.

Figure 3: The concentration of dissolved gas (mol/m3) around a rising bubble (interface, atα1 = 0.5, is represented by white contour) modelled
based on Eq.6.
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model (Eq.10) using β2D = 4.0509.

On electromagnetism and its effects

In the case of constant potential difference across the elec-
trodes, the current varies due to the bubble evolution. The
effect of bubbles can be divided based on its position, i.e. in
the bulk and attached to the electrode, which is investigated
in this subsection.
The fluid parameters used for these simulations are ρ1 =
1000kg/m3, ρ2 = 1kg/m3, ν1 = 10−6m2/s, ν2 = 1.48 ×
10−5m2/s, k1 = 100S/m and k2 = 10−13S/m. Both grav-
ity and surface tension are neglected in these simulations.
Assuming that the electrolyte is bubble free, for an inter-
electrode gap of 1cm and the difference in potential between
the electrode is 0.01V corresponds to a current density of
100A/m2. Any change in current density can be attributed
to the presence of bubbles in the computational domain.

When bubbles are attached on the electrode surface

When bubbles are present on the electrode surface, it in-
creases the resistance in the system due to volume of the
bubble and electrode screening. If an area of 2D bubble,
which is present in the bulk, is redistributed on the surface
such that the effective area is the same, the current reduces
due to the increase in effective resistance at the electrode
(due to electrode screening). This is showcased by consid-
ering two cases: EC1 (bubble is present in the bulk) and
EC2 (bubble is attached to the electrode), see Fig.5.
The computational domain, of dimensions 1cm×1cm, is
meshed by 200×200 cells. The left and right boundaries,
which are the electrodes, are assigned as no-slip conditions
for velocity and fixedFluxPressure (Greenshields, 2019) for
pressure. The top and bottom boundaries are assigned fixed-
Value (equal to 0Pa) for prgh and zeroGradient for velocity.
All the boundaries are assigned zeroGradient for α1. For φ,
left and right walls are assigned 0V and 0.01V respectively,
whereas the remaining boundaries are set as zeroGradient.
The initial conditions for the α1, are set as described in
Fig.5.
The reduction of the current due to the presence of the bubble
on the electrode surface is shown in Table.2.

Figure 5: Illustration of the cases, EC1 and EC2, considered to
showcase the effect electrode screening. EC1, repre-
sented by , considers a bubble of radius 1mm at the
center of domain. EC2, represented by , considers
two equally sized bubbles (semicircles with radii equal
to 1mm) whose centers are 2.5mm and 6.5mm away from
the bottom wall.

Table 2: Reduction of current due to the presence of bubble on the
electrode.

Case Fa Area of 2D bubbles (m2) Currentb (A)
EC1 1 3.16 ×10−6 9.384×10−7

EC2 0.6 3.16 ×10−6 9.306×10−7

a F represents the fraction of the left electrode area in contact with
electrolyte, b Current is calculated as

∑
~i.~S where ~S is the face surface

area of individual cell on the left electrode.

When bubbles are present in the bulk

The 2D simulations use the a domain, of size 1cm×1cm,
which is meshed with 200×200 cells. The left and right
boundaries use no-slip, fixedFluxPressure (Greenshields,
2019) and fixedValue (equal to 0V and 0.01V) for ~U , prgh
and φ respectively. The other boundaries are assigned ze-
roGradient for both ~U and φ whereas prgh use fixedValue
(equal to 0V). For α1, all the boundaries are assigned the
zeroGradient condition. For 3D simulations, the domain of
size 1cm×1cm×1cm is meshed with 200×200×200 cells.
The left and right boundaries are set according to the anal-
ogous conditions for 2D simulations whereas the remaining
boundaries are treated like the top/bottom boundaries used
in 2D simulations. The initial conditions used for α1 is
chosen so that bubble, with a range of sizes, are randomly
placed in the bulk, as shown in Fig.A1 and Fig.A2 for 2D
and 3D simulations respectively.
The bubbles change the effective conductivity of the elec-
trolyte (ke) which can be theoretically estimated using the
Bruggermann’s correlation (valid for polydispersed spheri-
cal bubbles (Bruggeman, 1935)) as

ke/k1 = (1− f)1.5, (12)

where f is the void fraction (calculated as the ratio of total
volume of the bubble to the volume of the domain). Once
the ke is computed, the resistance is computed as d/(keA),
where d is the interelectrode distance (equal to 1cm) and
A is the area of the 3D electrode (equal to 0.01×0.01m2),
and current in the system and current density are deter-
mined based on Ohm’s law with cell voltage computed as
the difference between the right and left boundary condi-
tions for φ (equal to 0.01V). As expected, Fig.6 shows that
3D simulations provides a better agreement to the current
density obtained from Bruggermann correlations than the
2D simulations. Further the solver successfully predicts the
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Figure 6: Comparison of the current density (A/m2) reduction with
increase in void fraction of bubbles (in bulk) predicted
by the simulations (for 2D and 3D) and Bruggermann’s
correlation.

reduction of current density with the increase in the void
fraction of bubbles.

ON THE FULLY COUPLED SOLVER

For the fully coupled solver, the solution is obtained by
solving the volume fraction equation, then calculating the
relevant source terms, the coupled momentum and continu-
ity equations, then the Gauss’law and finally the transport
of dissolved gas using CCST model at each time step.

Figure 7: Comparison interface morphology and position with time
in the computational domain.

In order to showcase the ability of the solver, we simulate the
growth of a pre-existing bubble due to electrochemical reac-
tions occurring at a vertical electrode-electrolyte interface.
The occurrence of pre-existing bubbles at surface imper-
fections, for instance from previous nucleation events, can
reduce the energy required for nucleation to values as low
as zero (Vachaparambil and Einarsrud, 2018). This approx-
imation, which is physically reasonable as bubble has been
observed to generate from the same site on the electrode
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Figure 8: Comparison change in footprint of the bubble on the
electrode (fraction of bubble covered electrode) and the
associated change in normalized current (calculated as
(
∑

~i · ~S)/(I), where I is the current when no bubbles
are present, i.e. 100A/m2 ×(5×10−9m2)) with time.

for a range of current densities (Westerheide and Westwa-
ter, 1961; bo Liu et al., 2019), enables direct modelling of
the growth of the bubble without the need to treat bubble
nucleation. In order to treat bubble nucleation in a CFD
framework, algorithms like the one proposed by Damme
et al. (2010) are required.
The computational domain used for the simulation is
1mm×5mm which is meshed by 200×1000 cells. The left
and right boundaries are set as walls and the boundary con-
ditions are described based on the individual modules in
the decoupled solver except for the the Ci at the left wall
which is computed using the Faraday’s law of electrolysis,
as ∂nCi = |~i|α1/(2FD1), and φ is assigned a fixedValue of
0V and 10−3V at left and right walls respectively. The pre-
existing bubble, of radius equal to 0.25mm, is initialized as
that its center is on the left wall at a distance of 0.55mm from
the lower boundary. The fluid properties used in the proof
of concept simulation are: ρ1 = 1000kg/m3, ρ2 = 1kg/m3,
ν1 = 10−6m2/s, ν2 = 1.48 × 10−5m2/s, D1 = 10−9m2/s,
D2 = 10−5m2/s, σ = 0.003N/m, M = 44 × 10−3kg/mol,
k1 = 100S/m, k2 = 10−13S/m and |~g| = 9.81m/s2. Due to
the use of surface tension, the maximum time step allowed
is manually limited to 8µs (see Deshpande et al. (2012);
Vachaparambil and Einarsrud (2019)) and the simulations
are run until 0.1s.
The concentration distribution of the dissolved gas generated
by the electrochemical reactions and the current density dis-
tribution around the rising bubble attached to the electrode
at t = 0.1s is shown in Fig.9. As the bubble rises up, the
growth rate and the effective radius of the bubble increases
as seen in Fig.10 which is associated with the increase in the
bubble footprint after the initial transient behaviour of the
bubble, see Fig.8. The change in current obtained directly
correlates with the footprint and size of the bubble, see Fig.8
and Fig.10.

CONCLUSION

We implemented the individual models relevant in mod-
elling an electrochemical gas evolution in the VOF solver
available in OpenFOAM® 6. The modules added into in-
terFoam are: SSF (for surface tension modelling), C-CST
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(a) Ci (mol/m3). (b) |~i| (A/m2).

Figure 9: Comparison of the distribution of dissolved gas and current density (magnitude) around the bubble (whose interface, at α1 = 0.5, is
represented by the white contour) at t = 0.1s.
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Figure 10: Comparison of the growth rate and the effective radius of the bubble as it evolves.
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(transport of dissolved gas), supersaturation driven bubble
growth model and Gauss’s law. The predictions from these
decoupled modules agree quite reasonably with relevant the-
oretical models available in literature. The bubble evolution,
under constant potential condition, as predicted by the fully
coupled solver is also discussed to showcase the ability of
the proposed solver to handle electrochemical gas evolution.
The proposed fully coupled solver, unlike other works re-
ported in literature, can ’theoretically’ be applied to simulate
a variety of flow configuration (current density and electrode
orientations) as well as the impact of bubble detachment in
electrochemical systems due to the use of phenomenological
models.
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Figure A1: The distribution of the 2D bubbles in the computational domain.
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(a) f = 0.013. (b) f = 0.015. (c) f = 0.014.

(d) f = 0.038. (e) f = 0.088. (f) f = 0.073.

(g) f = 0.118. (h) f = 0.102. (i) f = 0.268.

(j) f = 0.190. (k) f = 0.311.

Figure A2: The distribution of the 3D bubbles in the computational domain.
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Abstract

One of the important aspects in improving the efficiency of electrochemical

processes, such as water electrolysis, is the efficient removal of bubbles which

evolve from the electrodes. Numerical modelling based on Computational Fluid

Dynamics (CFD) can describe the process, provide insights into its complexity,

elucidate the underlying mechanisms of how bubbles evolve and their effect as

well as aid in developing strategies to reduce the impact of the bubble.

In this paper, a Volume of Fluid (VOF) based simulation framework to study

the evolution of hydrogen bubbles in the order of few hundred micrometers,

refered to as continuum scale bubbles, is proposed. The framework accounts

for the multiphase nature of the process, electrochemical reactions, dissolved

gas transport, charge transport, interfacial mass transfer and associated bubble

growth. The proposed solver is verified by comparison to analytical solution of

bubble growth in supersaturated solutions and qualitative analysis based on ex-

perimental observations of the variations in current based on static simulations.

The proposed solver is used to simulate the evolution of a single bubble under

various wetting conditions of the electrode as well as the coalescence driven evo-

lution of two bubbles. The results show that as the bubbles detach, the surface

of the bubble oscillates and as it rises it reaches a stable shape determined by

the balance between drag force and surface tension. These surface oscillations,
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which causes the bubble to get flattened and elongated, results in temporal vari-

ation of the electrical current. The reduction of current due to bubble growth is

visible only when these surface oscillations have reduced. The simulations also

show the current as a function of the position of the bubble in the interelectrode

gap. The framework also predicts the increase in current as a result of bubbles

leaving the surface which is larger when the process is coalescence driven. The

simulations indicate that bubble coalescence is the underlying mechanism for

continuum scale bubble detachment.

Keywords: Volume of Fluid, Multiphysics simulations, Electrochemical bubble

evolution

1. Introduction

One of the potential ways to address the intermittencies in energy production

via renewable sources is to convert surplus energy into hydrogen using water

electrolysis. This hydrogen can be used as an energy vector which would reduce

the dependence on fossil fuels, reduce carbon footprint and foster the move

to the environmentally-benign hydrogen economy [1]. In order to enable this

transition, the cost of hydrogen production from water electrolysis must be

reduced, with cheaper electricity from renewable sources on energy (as electricity

can account upto 70% of the costs [1]) and more efficient water electrolyzers.

On going research into making efficient water electrolyzers has been focused

primarily on the development of active and durable electrocatalysts for the

water splitting reactions, see [2, 3, 4]. Another aspect to improve the efficiency

of the electrolyzer is to remove bubbles, which reduce the area of the electrode in

contact with electrolyte as well as the effective electrolyte conductivity, see [5, 6].

Additionally, convection associated with bubble evolution has been reported to

increase mass transfer rates in the electrochemical systems [6]. As efficient

removal of bubbles during water electrolysis can result in saving 10-25% of the

energy supplied [5], understanding the dynamics of bubble evolution can aid in

developing strategies to improve the efficiency of the water electrolyzers.
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Figure 1: Illustration of the coupled nature of electrochemical gas evolution.

Although experimental works have provided substantial insights into the

physics underlying the electrochemical gas evolution, [7, 8, 9, 10], numerical

simulations can provide a fundamental understanding of the coupled nature of

the process as well as the temporal and spatial variations of the flow param-

eters as bubbles evolve. As electrochemical gas evolution is a multiphysics-

multiscale process, the choice of numerical simulations employed depends on

the phenomena of interest, see [11]. Broadly speaking, atomistic process like the

electrochemical reactions and the bubble nucleation are typically studied using

molecular dynamic simulations [12] whereas continuum scale process (which are

few hundred micrometer or larger) like bubble growth and detachment can be

studied using Computational Fluid Dynamics (CFD) [13] and the intermediate

scales relevant for ion migration and continuous bubble evolution can be inves-

tigated using meso-scale models like Lattice Boltzmann method [14, 15]. This

paper delves into the evolution of continuum scale hydrogen bubbles, which are

few hundred micrometers in radius, observed in experimental works like [7, 9],

which are studied using multiphase-multiphysics CFD approaches.

In order to study the dynamics of continuum scale electrochemical bubble
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evolution it is necessary to simulate the relevant multiphysics, summarized in

Fig. 1. The numerical modelling of multiphase flows can be divided into dis-

persed phase and interface resolved modelling [16]. Dispersed phase modelling

(which includes Euler-Euler, Mixture and Euler-Lagrange approaches) requires

closure models to describe the momentum transfer between the phases as the

individual bubbles are below the mesh resolution. These momentum closure

terms relies on the assumption of a bubble size which is typically set based on

experimentally observed detachment diameter, see [17]. The dispersed phase

modelling approaches, which are used in majority of the numerical simulation

of the electrochemical gas evolution, see the review by [17], are typically em-

ployed to study the dynamics of industrial scale electrolyzers where the larger

flow features are of interest. On the other hand interface resolved modelling

approaches, like the Volume of Fluid (VOF), are typically used to study the

detailed behaviour of the interface without using any approximations for mo-

mentum transfer. As a result of resolving the bubble, VOF provides an ideal

framework to study the details of evolution of bubbles which are of interest in

this work. The VOF model uses a scalar, the volume fraction of liquid (α1),

to identify the bubble, liquid and interface which corresponds to α1 equal to

zero, unity and (0, 1) respectively [16]. The interface is captured by advecting

α1 and the sharpness of the interface is ensured by using either the computa-

tionally cheap algebraic VOF, see [18], or the sharper but computationally more

demanding geometric VOF, see [19]. A drawback of the algebraic VOF method1

is the smeared nature of the interface which generates numerical artifacts known

as ’spurious velocities’ when simulating surface tension dominant flows, which is

very well studied in literature [19, 18, 20, 21]. Some of the approaches proposed

to reduce the spurious velocities are the Sharp Surface Force and Smoothed CSF

models proposed by [22] and [23] respectively. Readers interested in the source

1It should be noted geometric VOF methods also generate spurious velocities but they are

several orders of magnitude smaller than the ones produces in algebraic VOF methods, see

[18, 19].
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of these spurious velocities and review of on going research to address them are

referred to works like [20].

Another relevant feature in electrochemical gas evolution of continuum scale

bubble is the transport of the dissolved gas which requires treatment of interfa-

cial jump conditions for diffusive fluxes and concentration across the interface,

see [24]. Two ways to simulate the dissolved gas transport are single and two

field approaches. The two field approach, described by [24, 25], uses individual

transport equations for dissolved gas in each phase and the interfacial jump

conditions are treated like boundary conditions for each phase. The single field

approach, described by [26, 27], uses a unified governing equation that accounts

for the interfacial jump conditions to describe the transport of dissolved gas in

both phases. Although dissolved gas transport can be simulated by both these

approaches, two and single field approaches are recommended to be used with

geometric and algebraic VOF methods respectively, see [26]. Once the dissolved

gas distribution is known, the interfacial mass transfer and the associated bubble

growth can be computed based on universally valid Fick’s 1st law (see [28, 29])

or with flow scenario based Sherwood number based correlations (see [30]). As

Sherwood number correlations are applicable for a specific flow scenario, bubble

evolution, which is associated with complex flow patterns as well as interface

deformation, cannot be accurately described by a single Sherwood number cor-

relation to the best of the authors’ knowledge.

Another aspect of simulating electrochemical gas evolution is the charge

transport, which drives the electrochemical reactions as it is proportional to

the current density, based on Faraday’s law of electrolysis. The commonly

used approach to simulate it is based on charge conservation using Gauss’s law,

one of the four Maxwell’s equations for electromagnetism, and current density

expressed based on the Ohm’s law analogous to works like [31, 32].

Due to the coupled multiphysics relevant in electrochemical gas evolution,

literature which employs interface resolved simulations to study the dynamics of

electrochemically generated bubbles are quite limited to the best of the knowl-

edge of the authors. These works can be divided into pure and hybrid VOF
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methods. In ’pure’ VOF methods, like [30], the evolution of a single hydrogen

bubble was studied by simulating the growth driven by interfacial mass transfer

(based on Sherwood number) without accounting for the charge transport. In

’hybrid’ VOF approaches, like [31, 32, 33], VOF was coupled with sub-grib bub-

bles treated via dispersed modelling approaches and the resolved bubble were

assumed to grow only via coalescence. These hybrid VOF, typically used to sim-

ulate the carbon dioxide evolution at the anode during aluminium production,

is used to simulate bubble evolution on an whole electrode. [31, 32] reported

the transient evolution of voltage (under constant current condition) as result

of bubble evolution from the electrode whereas [33] did not simulate the current

distribution nor the transport of dissolved gas generated from the electrochem-

ical reactions. Apart from these studies, other simplified studies have employed

interface resolved simulations to investigate the behaviour of the interface with-

out considering any multiphysics effects like [34]. Although the previous works

have provided substantial knowledge into the modelling of evolution of electro-

chemically generated bubbles, there is still a lack of computational models that

treat the complexity associated with the multiphysics and multiscale nature of

the process as highlighted in the recent review by [11]. Additionally, another

review on the hydrodynamics of electrochemical gas evolution, by [35], high-

lights the lack of CFD studies that consider the effect of bubble coalescence and

detachment.

In this paper, we attempt to partly address this lack of knowledge by develop-

ing a coupled multiphysics solver that can handle the continuum scale hydrogen

bubble evolution during water electrolysis. The proposed solver is based on

the algebraic VOF framework available in OpenFOAM R© 6 which is modified to

account for transport of dissolved gas [27] along with the associated supersat-

uration driven bubble growth (based on [28]) and charge transport (based on

Gauss’s law and Ohm’s law, see [31]) which are coupled based on electrochem-

ical reaction defined based on Faraday’s law of electrolysis. In order to reduce

the complexity of the process, the proposed solver is subject to the following

simplifications:
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• The bubble evolution and the electrochemical reactions occurs only at

the cathode and the anode/counter-electrode is assumed to not affect the

process,

• The proposed model treats the evolution of only continuum scale bubbles,

which are in the order of few hundred micrometers,

• The liquid and the bubble are assumed to be have a constant density and

viscosity,

• The flow is assumed to be isothermal and laminar,

• The interface is assumed to be always saturated and saturation concentra-

tion is assumed to be constant with the variation of hydrostatic pressure

and Laplace pressure in sub-millimeter sized bubbles as it evolves,

• The system is assumed to be under constant potential difference, so the

bubble evolution leads to changes in current. The proposed solver accounts

for the current variation as a result of the ohmic contribution of the bub-

bles present in the bulk and on the surface. The change in current due to

the contributions from the surface and concentration overpotentials, see

[36], as a result of bubble evolution is neglected in this paper.

The ability of the proposed solver is showcased via 2D simulations of the evolu-

tion of the single hydrogen bubble from cathode for various wetting condition at

the electrode. In addition to single bubble simulations, the evolution of bubble

driven by coalescence is also investigated. The temporal change in the current

as bubble evolves is analyzed for these cases.

2. Governing equations and solution algorithm

The proposed solver is developed based on OpenFOAM R© 6 with VOF frame-

work for interface capturing. The VOF framework is modified, based on works
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like [28] and [31], to treat multiphysics nature of the process. The overall solu-

tion algorithm along with the implemented governing equations can be summa-

rized as:

1. The volume fraction of electrolyte (α1) is computed based on

∂α1

∂t
+∇ · (α1

~U) +∇ · (α1(1− α1) ~Ur) = Ṡα, (1)

where Ṡα = α1∇ · ~U is the source term for bubble growth and the single

field formulation of velocity is represented by ~U . The third term in Eq. 1

represents the interface compression method which belongs to the alge-

braic VOF method [37], acting only in the interfacial region to render a

sharp interface based on the compressive velocity, determined as:

~Ur = Cα

∣∣∣∣∣
φ

|~Sf |

∣∣∣∣∣~n, (2)

where ~n is the unit normal to the interface, ~Sf is the area vector of the

cell face, φ is the volumetric flux which is calculated as ~U · ~Sf , and Cα

is the user defined compression factor which is usually set in the order

of unity (between values of zero and four). As Eq. 1 relies on interface

compression method which belong to the algebraic VOF (over the more

accurate sub-cell level interface reconstruction known as geometric VOF),

it produces an interface which is smeared over two-three cells [18]. Eq. 1

is solved using the semi-implicit Multidimensional Universal Limiter with

Explicit Solution (MULES) method which uses a implicit predictor and

explicit corrector steps to ensure the boundedness of α1 between zero and

unity [38]. Once α1 is computed, the volume fraction of phase 2 or bubble

(α2) is computed as α2 = 1− α1.

2. Once the interface is known at the current time step, fluid properties, like

density (ρ) and viscosity (ν), are updated based on χ = α1χ1+α2χ2 where

χ ∈ [ρ, ν]. The subscripts 1 and 2 indicate the fluid property related to

Phase 1 and 2 respectively.
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3. The driving force for interfacial mass transfer is then computed based on

the universally applicable Fick’s 1st law as

j =MiDi,1|∇Ci|, (3)

where Mi is the molar mass of hydrogen (i) and Di,1 is the diffusion

coefficient of the hydrogen in the liquid. Based on Eq. 3, the local mass

transfer rate is computed at the liquid side of the interface as

ψ0 = Njα1|∇α1|, (4)

where N is normalization factor computed as
∫
Ω
|∇α1|dV /

∫
Ω
α1|∇α1|dV .

4. In order to improve the numerical stability, ψ0 is smeared using an inho-

mogeneous Helmholtz equation as proposed by [39]:

D∆t∇2ψ = ψ − ψ0, (5)

where D∆t is the user defined term which controls the extent of smearing.

5. Using ψ, the source term for the continuity equation which accounts only

for the bubble growth, is redistributed in the region where α1 < 0.001 as

ṁ = Aα2ψ, (6)

where A is a normalization factor computed as
∫
Ω
ψ0dV /

∫
Ω
α2ψdV . This

procedure to define ṁ based on a heavyside function, is based on the

work by [40], enables the interface to get advected just by the velocity

field, without being influenced by the source term. The sink term for

the dissolved hydrogen to account for the interfacial mass transport is

computed at the liquid side of the interface as

Si = −Nα1(j|∇α1|)
Mi

, (7)

where N is the normalization factor used in Eq.4.

6. The surface tension force is computed based on Sharp Surface Force (SSF)

as implemented in [21], based on the work by [22]. The SSF model is pre-

ferred over the commonly used Continuum Surface Force (CSF) model
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(proposed by [41]) as it has been shown to reduce spurious velocities

and reliably simulate a range of surface tension dominant flow scenar-

ios [22, 21]. The pressure gradient, surface tension force computed by

SSF, gravitational force as well as volumetric flux (φ) are computed at

cell faces to ensure force balance to reduce spurious velocities due to in-

consistent discretization of these terms, as recommended by [18]. SSF,

in summary, consists of four steps: smoothening operation on α1; obtain

an initial estimate of the interfacial curvature based on the smoothed α1

which is subsequently smoothed away from the interface; then the final

curvature (κfinal) is estimated; and the surface tension force is computed

as

~Fst = σκfinal∇αsh, (8)

where αsh is the sharpened volume fraction of phase 1, equal to

αsh =
1

1− Csh

[
min

(
max

(
α1,

Csh

2

)
, 1− Csh

2

)
− Csh

2

]
, (9)

where Csh is a sharpening coefficient Csh ∈ [0, 1). It should be pointed

out that surface tension is computed explicitly as it is determined based

on the advected α1 in Eq.1.

7. Now momentum and continuity equations are solved using Pressure Im-

plicit with Splitting of Operators (PISO) algorithm [42]. This can be

briefly summarized as iterative procedure in which predicted velocity field

is corrected based on pressure correction equation [18]. The momentum

equation is

∂ρ~U

∂t
+∇· (ρ~U ~U) = −∇prgh+∇· (µ∇~U)+∇~U ·∇µ−~g ·~x∇ρ+ ~FST , (10)

where prgh, the modified pressure, is equal to p− ρ~g · ~x and ∇ · (µ∇~U) +

∇~U · ∇µ are the viscous terms of the momentum equation, see [18]. The

continuity equation is

∇ · ~U =
ṁ

ρ
, (11)

where ṁ is computed based on Eq. 6.
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8. Charge conservation is solved based on Gauss’s law as

∇ ·~i = 0, (12)

where ~i is the local current density is expressed based on Ohm’s law as

equal to

~i = −Γ∇Φ (13)

where Γ is the volume fraction weighted average electrical conductivity,

i.e. Γ = α1Γ1 + α2Γ2, and Φ is the electrical potential.

9. The transport of the dissolved hydrogen is based on the single field Com-

pressive Continuous Species Transfer model, which was proposed by [27],

:

∂Ci

∂t
+∇ · (~UCi) = ∇ ·

(
D̂i∇Ci − D̂iBCi∇α1 − Bα1α2

~UrCi

)
+ Si, (14)

where Si is computed in Eq. 7, B is equal to (1−Hei)/(α1+α2Hei), Hei

describes the interfacial jump in concentration of the dissolved gas, ~Ur is

the compressive velocity defined in Eq. 2, and D̂i is the harmonic average

of the diffusion coefficients of the phases. As the dissolved gas distribution

is of interest to simulate the bubble growth and assuming that the interface

is always saturated, Ci can be understood as the concentration of dissolved

hydrogen which is over the saturation condition [28]. Subsequently Hei

can be set to a value close to zero, see Table. 3, to reliably model the

saturation condition at the interface and simulate the transport of only

the dissolved hydrogen as shown by [28]. Electrochemical reactions which

are dependent on the local value of current density are added as boundary

conditions (further described in Section. 3.1).

10. Now the solver moves to the next time step. Adaptive time stepping is used

in the simulations to allow for computing the time step such that maximum

Courant number, which is defined by the user, is always satisfied. If a

maximum time step is defined, the solver takes the minimum of the user

defined maximum time step and the time step associated with the Courant

number [37].
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Table 1: Discretisation schemes used, see [37] for information about the schemes.

Modelling term Keyword Scheme

Time derivatives ddtSchemes Euler

Divergence term

∇ · (ρ~U ~U)

∇ · (~Uα1), ∇ · (~UCi)

∇ · ( ~Urα1(1− α1))

∇ ·
(
D̂iBCi∇α1

)

∇ ·
(
Bα1α2

~UrCi

)

vanLeerV

vanLeer

interfaceCompression

vanLeer

vanLeer

Gradient term gradSchemes linear

Laplacian term laplacianSchemes linear corrected

Other
snGradSchemes

interpolationSchemes

corrected

linear

All the variables are stored at the cell center like in a collocated arrangement

but computations are performed at the cell faces (which was initially proposed

by [43]) to prevent checkerboard type errors. The Finite Volume Method is

employed to solve the governing equations with spatial and temporal terms

discretized based on Table. 1. The discretized governing equations are solved

with iterative solvers with the relevant preconditioners/smoothers tabulated in

Table. 2. The maximum number of iterations is set such that the solution of

flow variable converges and satisfies the tolerance criterion defined in Table. 2.

A summary of the parameters used in the solution algorithm is provided in

Table. 3. Unless otherwise noted, the time step taken by the proposed solver is

based on the maximum Courant number which is set equal to 0.05.
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Table 2: Solvers used for the discretised governing equations [37].

Flow variable Linear solver Smoother/preconditioner Tolerance

prgh PCG GAMG 10−10

~U smoothSolver symGaussSeidel 10−10

α1 smoothSolver symGaussSeidel 10−10

Φ GAMG DICGaussSeidel 10−10

Ci PBiCGStab diagonal 10−10

ψ GAMG DICGaussSeidel 10−10

3. Definition of test cases

3.1. Computational domain and boundary conditions

The two-dimensional computational domain used in the simulations is a rect-

angle, of length (Le) and height (Lac) equal to 10 mm and 5 mm respectively,

as illustrated in Fig. 2. Although the simulations discussed in the paper are

two-dimensional, OpenFOAM R© requires a finite thickness with a single cell res-

olution in the third direction, represented by h, which is set to 1 µm. These

’additional’ boundaries are set to ’empty’ boundary conditions to perform a 2D

simulation. The area of each electrode, A, is computed as Le × h and the vol-

ume of the entire domain is equal to A × Lac. The left and right boundaries

are assigned zero gradient for volume fraction of liquid (α1), dissolved gas con-

centration (Ci), local mass transfer rate (ψ) and electrical potential (Φ) where

as single field velocity (~U) and modified pressure (prgh) are set as inletOutlet

(zero gradient for outflow but back flow into the domain is restricted by setting

zero velocity) and fixed value (equal to 0 Pa). The top boundary is assigned

zero gradient for α1, fixed value (equal to 0 mol/m3) for Ci, fixed value (of

0.2 V) for electrical potential (Φ), fixedFluxPressure for prgh, zero gradient for

ψ and no-slip for velocity. The bottom boundary, referred to as electrode, is

assigned zero gradient for α1 along with the static contact angle (θ) condition

at the electrode, fixed gradient (which is computed based on Faraday’s law of
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Table 3: Summary of the other settings used in the solution algorithm which is set based on

[28] and OpenFOAMR© recommendations [37].

Parameter Value Notes

nAlphaCorr 2 Number of α1 correction.

nAlphaSubCycles 1 Number of sub-cycles of α1 equation within

each time step.

cAlpha (Cα) 1 Used for interface compression in Eq.

MULESCorr yes Switches on semi-implicit MULES.

nLimiterIter 3 Number of MULES iterations over the limiter.

momentumPredictor no Controls solving of the momentum predictor.

nOuterCorrectors 1 PISO algorithm is selected by setting this pa-

rameter equal to unity in PIMPLE algorithm.

nCorrectors 3 The number of times the PISO algorithm

solves the pressure and momentum equation

in each time step.

nNonOrthogonalCorrectors 0 Used when meshes are non-orthogonal.

relaxationFactors 1 Specifies the under-relaxation factors used for

fields and equations [21].

Csh 0.3 Sharpening coefficient used in the Sharp Sur-

face Force model to simulate a sub-millimeter

bubble [44].

D∆t 10−6 Smearing of the local mass transfer rate (based

on sensitivity studies performed in [28]).

Hei 10−4 Interfacial jump condition for concentration

to simulated just the dissolved gas (based on

parametric study in [28]).

14



electrolysis2) for the dissolved gas concentration (Ci), fixed value (of 0.0 V) for

Φ, fixedFluxPressure for modified pressure, zero gradient for ψ and no-slip for

velocity. The boundary conditions of electrical potential (Φ) are chosen such

that the current density obtained from the system when bubbles are not present

in the domain is calculated from Ohm’s law, as κ1(Φtop −Φelectrode)/Lac, to be

equal to 1210.8 A/m2 which is in the practical range (between 1000-3000 A/m2)

used in commercially used alkaline electrolyzer systems, see [45].

Initialized bubbleBottom/Electrode

Top

Left Right

δ

Lac

Le

~g

Ci based on Eq.15

α1 = 1

Ci = 0

α1 = 0

Figure 2: Illustration of computational domain used in the simulations and the initial condi-

tions used in the simulations.

As Ci indicates the concentration of the dissolved gas which exceeds the

saturation condition, which for hydrogen dissolved in water under 1 atm and

25 ◦C is 0.79 mol/m3 [46], the concentration boundary layer at the electrode

is initialized based on the vertical distance from the electrode (y), as shown in

2The boundary condition for Ci at the electrode, which is computed based on Faraday’s

law of electrolysis, is ∂nCi = |~i|α1/(nFDi,1), where n is the number of electrons transferred

for the electrochemical reaction to produce hydrogen (equal to 2), F is the Faraday’s constant

(equal to 96485 As/mol) and Di,1 is the diffusion coefficient of dissolved hydrogen in the

liquid.
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Table 4: The fluid properties, based on 1atm and 25◦C, for Phase 1 (liquid/electrolyte) and

Phase 2 (hydrogen bubble) used in the simulations.

Properties Dimensions Phase 1 Phase 2

Density (ρ) kg/m3 1075.05 0.082

Viscosity (ν) m2/s 9.89×10−7 0.00011

Diffusion coefficient (Di) m2/s 4.80×10−9 1×10−5

Electrical conductivity (Γ) S/m 30.27 1×10−13

Molar mass (Mi) kg/mol 2×10−3

Surface tension (σ) N/m 0.072

Fig. 2, such that

Ci =




Ci,y=δ (when y > δ),

Ci,y=0 + (Ci,y=δ − Ci,y=0)y/δ (when y ≤ δ),

(15)

where δ is the concentration boundary layer thickness set to 0.5 mm (see Ap-

pendix D), Ci,y=0 and Ci,y=δ is the concentration at the electrode and distance

of δ (or larger) which is set equal to 125.66 mol/m3 (based on supersaturation

reported in [47]) and 0 mol/m3 (which corresponds to saturation) respectively.

It should be noted that the initialized concentration boundary layer does not

account for the depleted concentration of the dissolved gas near the bubble due

to interfacial mass transfer across the interface. The single bubble in the do-

main, which is initialized as in Fig. 2, is located such that its center is 5 mm

from the left boundary and 0 mm from the bottom boundary (yc). In the case

of two bubbles, used in coalescence studies, with radii equal to R2a and R2b, the

bubbles are initialized as semicircles such that the centers of the bubbles are a

distance of 5× 10−3 −R2a and 5× 10−3 +R2b from the left boundary. As the

electrodes are horizontal with respect to gravity, which is set as |~g| = 9.81 m2/s,

the evolution of the bubble would lead to detachment and subsequent vertical

rise due to buoyancy. The fluid properties used in the simulations is described

in Table. 4. The computational geometry is meshed by 1600×800 hexahedral

cells based on the mesh convergence study in described in Appendix B.
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3.2. Definition of parameters

Although visual comparison is a very useful tools to interpret the results, to

compare various simulations and quantify its results, it is important and easier

to use standardized parameters. The standardized parameters which are used

in the paper for analyzing the results are defined in this section.

Normalized bubble volume. The volume of the bubble at any time (V ) is cal-

culated as
∫
α2dV and the corresponding area of the bubble is equal to V/h,

where h is unit cell thickness. The normalized bubble volume is calculated as

the fraction of the computational domain occupied by the bubble (f) which is

determined as

f =
V

A× Lac
(16)

where A is the area of the electrode and Lac is the inter-electrode distance. For

the geometry used in the simulation A×Lac is equal to 5×10−11m−3, see Fig. 2.

Rise velocity. The mean velocity with which a bubble rises is computed as

Urise =

∫
~vα2dV∫
α2dV

(17)

where ~v is the vertical component of the velocity vector. The rise velocity,

computed based on Eq.17, has been been previously used in works like [48] and

[21] to study the dynamics of single rising bubble.

Bubble coverage of electrode. The fraction of the area of the electrode covered

by the bubble is computed as

Θ =

∑
α2|~S|∑ |~S|

, (18)

which is computed at the electrode boundary with |~S| representing the magni-

tude of the surface area of the individual mesh cell at the boundary and
∑ |~S|

is the area of the electrode (A), which is equal to 10−8 m2. The fraction of the

electrode area in contact with the electrolyte is equal to 1−Θ. When the bubble

has detached or when the whole electrode is in contact with the electrolyte, Θ

reduces to zero.
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Bubble detachment. Based on the temporal variation of 1 − Θ, the bubble is

considered to have detached when 1 − Θ > 0.999 and the corresponding time,

which is indicated by τd, is considered as the detachment time of the bubble.

Average current. As the proposed solver computes local current density (~i), the

current obtained from the system (I) is equal to

I =
∑

~i · ~S, (19)

which is the sum of dot product of local value of current density and cell area

vector of individual mesh at the electrode boundary. For simplicity, a normalized

average current (I/I0) is used in this paper which is determined as the ratio of

I to I0 which is the current obtained when bubbles are absent in the system3.

Bubble deformation. As the bubble detaches from the surface, it undergoes

deformation which is measured horizontally (∆x) and vertically (∆y). The hor-

izontal deformation of the bubble at any time step is calculated as the difference

between maximum and minimum x coordinates of the interface (α1 = 0.5). Sim-

ilarly ∆y is the difference between maximum and minimum y coordinates of the

interface.

4. Verification of the proposed solver

Apart from the verification of the solution with respect to analytical solu-

tion for bubble growth in supersaturated solution and qualitative analysis of

the variation in current, which is described in this section, the relevant imbal-

ance (mass of liquid/bubble and dissolved gas), mesh and temporal convergence

studies have also been performed in Appendix A, Appendix B and Appendix

C respectively.

3Theoretically the current which can be obtained for the applied potential difference is

when the system does not have any bubbles can be calculated by substituting relevant values

in I0 = Γ1A(Φtopboundary − Φelectrode)/Lac which gives I0 equal to 1.2108×10−5A.
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4.1. Bubble growth in a uniformly supersaturated solution

In order to verify the bubble growth predicted by the proposed solver, the

domain, boundary and initial conditions along with the mesh as described in

[28] is used. The fluid properties as well as the solution algorithm is based on

details summarized in Table. 3 and Table. 4 but both gravity and surface tension

effects are ignored. The computational setup describes the growth of hydrogen

bubble, with radius equal to 0.25mm, due to the uniform supersaturation of

200.64 mol/m3 in an unbounded medium. This setup allows for the verification

of the result with exact analytical results which was earlier derived by [49] as

an extension of the phenomenological work by [50] to account for the size of the

pre-existing bubble at t = 0 s. The evolution the bubble radius as it grows due

to interfacial mass transfer is given by

Rext−scriven = 2β

√√√√Di,1

(
t+

R2
0

4Di,1β2

)
, (20)

where β is the growth coefficient which was proposed by [50] and R0 is the

radius of the bubble at t = 0 s. The growth coefficient for 2D bubbles in a

0 1 2 3 4 5 6
0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

Time (s)

B
u
b
b
le

 r
a
d
iu

s
 (

m
)

a

Ficks 1st law based mass transfer model

Extended Scriven: 2D growth coefficient

0 1 2 3 4 5 6
5e-14

1e-13

1.5e-13

2e-13

2.5e-13

3e-13

3.5e-13

Time (s)

G
ro

w
th

 r
a

te
 (

k
g

/s
)

b
Ficks 1st law based mass transfer model

Extended Scriven: 2D growth coefficient

Figure 3: Comparison of the prediction of the proposed solver with the Extended-Scriven

model to predict the bubble growth from a pre-existing bubble in a uniformly supersaturated

solution: a) Bubble radius b) Growth rate.

uniformly supersaturated unbounded solution is given by

β2D =
a+

√
a2 + 4a

2
√
2

, (21)
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where a is calculated as

a =
Mi∆C

ρ2
, (22)

where ∆C is the difference between the bulk concentration of the dissolved

gas and the saturation concentration at the interface, equal to 200.64 mol/m3

for this case. The radius predicted by the proposed solved is calculated as

R =
√
V/(πh) where V is defined as in Eq. 16 and growth rate is computed

as
∫
ψ0dV . The bubble radius and growth rate predicted by the proposed

solver and the analytical solution is compared in Fig. 3. The small discrepancy

between the bubble radius predicted by the simulation and analytical solution

is the result of the lack on concentration boundary layer around the interface in

the initialized Ci used in the simulation which causes growth rate which is larger

than the corresponding analytical value. This larger growth rate occurs till the

concentration boundary layer is established and phenomena becomes diffusion

limited, see [28].

4.2. Effect of the bubble on current obtained

The current in a pure electrolyte between two parallel electrodes has verti-

cal path lines. As the bubbles are non-conductive, the current path lines are

deformed in its vicinity which causes the increase in resistance and decrease in

current under constant potential difference [51]. In a homogeneous medium, the

overall resistance is directly proportional to the l/A where l is the characteristic

length which is equal to Lac when bubbles are absent in the system. When

a bubble is present in the bulk of the electrolyte, the increased resistance is

a result of the deformed the path lines of current which causes an increase in

l. Similarly, when bubble is present on the electrode, the electrode-electrolyte

area is reduced to A(1−Θ) which results in larger resistance (if l is constant),

than when the bubble is in the bulk. Experimental works, like [52], reported a

decrease in current as the bubble grows on the electrode and an increase when

the bubble has detached.

In order to showcase the variations in current, fourteen simplified cases with

stationary circular (in bulk) and semicircular (on surface) bubbles are investi-
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Table 5: The variation of normalised current (I/I0) for various static bubble simulations with

positions of the center of the bubble denoted by xc and yc.

Case xc (m) yc (m) f ∆x (mm) ∆y (mm) 1−Θ I/I0

TC1a 0.0050 0.0000 0.0051 0.813 0.406 0.92 0.98978

TC1b 0.0050 0.0000 0.0026 0.575 0.288 0.94 0.99487

TC1c 0.0053, 0.0047 0.0000,0.0000 0.0051 1.138 0.288 0.89 0.98329

TC2a 0.0050 0.0003 0.0051 0.575 0.575 1.00 0.99148

TC2b 0.0050 0.0006 0.0051 0.575 0.575 1.00 0.99032

TC2c 0.0050 0.0009 0.0051 0.575 0.575 1.00 0.99002

TC2d 0.0050 0.0012 0.0051 0.575 0.575 1.00 0.98992

TC2e 0.0050 0.0015 0.0051 0.575 0.575 1.00 0.98987

TC2f 0.0050 0.0018 0.0051 0.575 0.575 1.00 0.98985

TC2g 0.0050 0.0021 0.0051 0.575 0.575 1.00 0.98983

TC2h 0.0050 0.0024 0.0051 0.575 0.575 1.00 0.98983

TC3a 0.0050 0.0017 0.0051 0.575 0.575 1.00 0.98986

TC3b 0.0050 0.0017 0.0051 0.578 0.549 1.00 0.98961

TC3c 0.0050 0.0017 0.0102 0.813 0.813 1.00 0.98003

gated. These simulations differ in the initial conditions of α1, which are sum-

marized in Table. 5. Except for the case of TC1c, which has two bubbles on

the surface hence two coordinates for the centers, all other cases have a single

bubble. All the boundaries are treated as described in Section. 3.1 with the

exception of electrochemical reaction at the electrode which is replaced with a

zero gradient condition to prevent addition of dissolved hydrogen to the elec-

trolyte which can result in bubble growth. Additionally, both surface tension

and gravitational forces are neglected in these simplified simulations to ensure

stationary bubbles.

The variation of the current (I/I0) when bubbles is present in the bulk, the
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smaller bubbles would indicate lesser distortion of the current path lines (giving

a smaller value of l) which results in larger current (I/I0). This is observed in

TC3a when compared to TC3c, see Table. 5. When the bubble is horizontally

deformed, which is indicated by larger ∆x and smaller vertical deformation

(∆y), when compared to TC3a, the current path lines are further distorted as

a result of the larger projected area of the bubble which reduces the current, as

observed in TC3b. Interestingly, current increases closer the detached bubble

is to the electrode but it reaches an asymptotic value near half of the inter-

electrode distance, as observed in cases TC2a-h. This dependence of current

on the location of bubble can be understood as the reduction of the effective

distance traversed by the current path lines (l) when the detached bubble is

close to the electrode and shields a part of the electrode as deformed current

path lines extends for several bubble radii [51], as seen in Fig. 4.

Figure 4: The distribution |~i| for static bubble simulations: a) TC1a b) TC2b and c) TC2d.

When the bubble is attached to the electrode, in TC1a and TC1b, increase

in the bubble footprint is observed to reduce the current as result of the covering

the electrode (represented by A(1 − Θ)) and deforming the current path lines

which has been observed in experiments like [52]. For the same equivalent vol-

ume of bubble, the presence of two bubbles, in TC1c, results in a larger fraction
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of the electrode covered by the bubble and ∆x, which results in reduction of

current when compared to TC1a. As the bubble which has detached, TC2a-h,

has the same volume as the bubble present on electrode, both TC1a and TC1c,

the detachment is observed to result in increase in the current as observed in

experimental works like [52].

5. Results and discussion

5.1. Single bubble evolution

Effect of contact angle. The contact angle is an important parameter which has

been experimentally observed to effect the bubble detachment [5]. Larger the

value of contact angle (θ), measured in the liquid, less hydrophilic the electrode

surface becomes which leads to difficulty in the bubble detachment. The wetting

condition at the electrode is investigated with three cases: SCT0, SCT1, and

SCT2 which differ by the contact angle (θ) defined at the electrode which is

equal to 15◦, 30◦ and 45◦ respectively.
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Figure 5: The evolution of the bubble (isosurface of α1 = 0.5) at 0s ( ), 5×10−4s( ),

1×10−3s( ), 1.5×10−3s( ) and 2×10−3s( ) for the various wetting condition at the

electrode: (a) 15◦ in SCT0, (b) 30◦ in SCT1, and (c) 45◦ in SCT2.

As shown in Fig. 5, the bubble detaches in the cases of SCT0 and SCT1

whereas it remains adhered to the electrode for the case of SCT2. As the ini-

tialized bubbles for all three cases are of radius equal to 400 µm, gravitational

force can be ruled out as the reason for the observed detachment. The detach-

ment, observed in the simulation, is a result of the momentum induced as a

result of deformation wave travelling at the interface due to the difference be-

tween the contact angle of the initialized bubble and the equilibrium contact
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Figure 6: Temporal change in the fraction of area of the electrode in contact with the elec-

trolyte (1−Θ) as the bubble evolves in SCT0 (θ = 15◦), SCT1 (θ = 30◦) and SCT2 (θ = 45◦).

The timesteps at which the isosurface of α1 = 0.5 is extracted to plot Fig. 5 is illustrated

using vertical dashed lines.

angle at the electrode. As all three simulations start with the same initial bubble

of radius equal to 400 µm and a contact angle of 90◦, the momentum induced

for SCT0 would be larger compared to the other two cases (as a result of larger

deviation between the initial and equilibrium conditions). In the cases of SCT0

and SCT1, the bubble is able to detach as the initial momentum causes a ’lift’

which overcomes adhesion due to surface tension. The initial momentum in

SCT2 causes the bubble to deform and lift, until around 0.0016 s which is when

1−Θ is minimum (see Fig. 6), but the bubble does not detach and subsequently

surface tension pulls the bubble down in an attempt to reach the equilibrium

shape based on the wetting condition. This dynamic process continues until the

bubble reaches an equilibrium shape which is dictated by the surface tension

and gravitational force which is observed in damping of 1 − Θ with time, ob-

served in Fig. 6. Although bubble detachment is observed for both SCT0 and

STC1, the initial momentum imparted to the bubble is larger for the former

which results in a smaller τd, see Table. 6.

For the case of SCT0, the detachment of the bubble results in its deformation
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Table 6: The variation of detachment time (τd) of the bubble from the electrode surface for

various contact angles.

SCT0 (θ = 15◦) SCT1 (θ = 30◦) SCT2 (θ = 45◦)

τd 0.00138 s 0.00169 s No detachment
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Figure 7: The temporal variation of various relevant parameters during bubble detachment

in SCT0 (θ = 15◦): a) normalized current (I/I0), b) horizontal deformation (∆x), c) vertical

deformation (∆y), d) normalized volume of bubble (f). The vertical black line indicates the

detachment time, τd, and the vertical red lines are equidistant grid line at every 0.001s to

enable comparison between the plots.
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Figure 8: The temporal variation of various relevant parameters during bubble detachment

in SCT1 (θ = 30◦): a) normalized current (I/I0), b) horizontal deformation (∆x), c) vertical

deformation (∆y), d) normalized volume of bubble (f). The vertical black line indicates the

detachment time, τd, and the vertical red lines are equidistant grid line at every 0.001s to

enable comparison between the plots.
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Figure 9: The change in the dissolved hydrogen concentration (mol/m3) as the bubble evolves

in the case of SCT0. The white line represents the interface which is plotted at α1 = 0.5. See

supplementary materials for more information.
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Figure 10: The change in the dissolved hydrogen concentration (mol/m3) as the bubble evolves

in the case of SCT1. The white line represents the interface which is plotted at α1 = 0.5. See

supplementary materials for more information.
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and growth as it rises up through the concentration boundary layer, as shown in

Fig. 5. This deformation and growth results in temporal variations of current,

see Fig. 7. Before the bubble detaches, the bubble gets lifted and vertically

elongated due to the initially imparted momentum, see Fig. 5, this results in

increasing ∆y and decreasing ∆x. The increase in current before detachment is a

direct consequence of the reduction of the electrode region covered by the bubble

(indicated by 1 − Θ) which reduces from the initial bubble diameter of 0.8mm

to nearly half at detachment, see Fig. 7c. As a result of the bubble leaving the

surface, the current increases by around 0.2% from t = 0s to the detachment.

Once the bubble detaches, the bubble shape oscillates i.e. it first gets flattened

(larger ∆x) and then gets elongated (larger ∆y), see Fig. 7b-c. These oscillations

progressively gets damped as the bubble rises up. As the bubble gets flattened,

the projection of the bubble on the electrode becomes larger which yields lower

current in contrast to vertical elongation when projection is reduced and current

increases, see Fig. 7b-c. The existence of surface oscillations as bubbles rise were

also experimentally reported in detached bubble (in the order of few hundred

micrometers) in the work by [53]. Similar trends, in the variation between

bubble deformations and current, is also visible for the bubble evolving in SCT1

(see Fig. 8). Instead of the single peak in I/I0 near detachment observed for

SCT0, SCT1 produces an additional peak around 0.002s which is a consequence

of the detached bubble staying close to the electrode for longer than SCT0 due

to the smaller rise velocity, see Fig. 11. The rise velocities of SCT0 and SCT1,

see Fig. 11, show substantial difference after detachment due stronger surface

tension force in the latter case. As a result, the bubble in SCT1 rises up mostly

due to buoyancy where as in SCT0 the momentum ’left-over’ after detachment

also aids in the evolution. Apart from the variation of current due to bubble

detachment and deformation, as the bubble rises, the current also reduces with

the vertical distance from the electrode, which agrees with the observations in

Table. 5. Although both SCT0 and SCT1 produce larger current at detachment,

when compared to the current at t = 0 s, the current reduces as a result of

increase in the ∆x and f once the bubble has detached, as well as the reduction
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in current observed in vertical distance.
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Figure 11: The temporal variation of the rise velocity for SCT0 (θ = 15◦) and SCT1 (θ =

30◦) with the detachment time (τd) represented using dashed lines (blue for SCT0 and red

for SCT1).

Due to the quick ascent of the bubble in SCT0, through the concentration

boundary layer, the increase in the volume of the bubble is larger for SCT1

when compared to SCT0, see Fig. 7d and Fig. 8d. Although the growth of the

bubble occurs when the it is within the concentration boundary layer, its effect

on current is visible only when bubble surface oscillations have damped, see

Fig.E.24a-b. Due to the larger rise velocity in SCT0 compared to SCT1, the

drag force acting on the rising bubble in the former is larger which results in

a bigger ∆x and consequently a smaller current, see Table. 7. As the bubble

detaches from the electrode surface, the convection established seems to drag

the dissolved hydrogen in the concentration boundary layer in the wake of the

rising bubble as observed in Fig. 9 and Fig. 10.

In the case of SCT2, the initially imparted momentum causes the bubble

to deform and reach an equilibrium shape which influences the current. In this

attempt to reach equilibrium shape, 1−Θ increases and the effective radius of

the bubble shielding the electrode (indicated by ∆x) effectively reduces causing

30



Table 7: Comparison of the time averaged bubble deformations and current obtained for SCT0

and SCT1.

Case ∆x (mm) ∆y (mm) I/I0

SCT0 0.586 0.537 0.98996

SCT1 0.572 0.553 0.99046

current to increase, see Fig. 12a-b. The change in the bubble size is reflected

in the transition of ∆x from to 0.8mm initially to a more elongated bubble

towards the end of the simulation, reducing ∆x. As the bubble remains within

the concentration boundary layer, in this case, its growth is larger compared to

SCT0 and SCT1 cases. Inspite of the larger growth rate in SCT2, the effect

on current is visible only towards the latter part of the simulation when the

bubble deformations has damped, see Fig. E.24c. It should be noted that in the

case of STC2, as the bubble remains on the electrode, the convection in this

case is different from SCT0 and SCT1 which is reflected in the concentration

distribution of the dissolved gases, see Fig. 13.

Effect of the initial concentration boundary layer thickness. In order to study

the influence of the concentration boundary layer thickness, set as δ = 0.5mm

in the previous simulations, three different cases which differ only by the values

of δ is used: SCT1 (δ = 0.5mm), SCT1BL- (δ = 0.3mm) and SCT1BL+ (δ =

0.8mm). The contact angle at the electrode as well as other computational

setting are set based on SCT1. The initialized distribution of the dissolved gas

concentration used in these three simulations is based on Eq. 15.

As the bubble travels through the concentration boundary layer, it grows due

to interfacial mass transfer driven by local supersaturation. As larger concen-

tration boundary layer thickness represents a greater region which is supersat-

urated, the largest growth is observed in SCT1BL+ (equal to 0.8mm) followed

by SCT1 (equal to 0.5mm) and SCT1BL- (equal to 0.3mm) with an increase in

bubble volume of around 4%, 1.5% and 0.5% of the initial bubble volume. The

effect of the increase in the bubble volume on current is only visible when the
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Figure 12: The temporal variation of a) normalized current (I/I0), b) horizontal deformation

(∆x), c) vertical deformation (∆y), d) normalized volume of bubble (f) for SCT2 (θ = 45◦)

as the bubble deforms on the electrode surface. The vertical red lines are equidistant grid line

at every 0.001s to enable comparison between the plots.

bubble deformations has damped, see Fig. 14a. Despite the increase in bubble

volume, its effect on rise velocity of the bubble and detachment time is mostly

negligible, see Fig. 14.

5.2. Coalescence driven bubble evolution

As observed in the static bubble simulations, the presence of two bubbles on

the electrode which produces a single detached bubble provides a larger increase

in current when compared to a single bubble of equivalent volume detaching,

see Table. 5. In order to investigate the dynamic effect of the coalescence of

continuum scale hydrogen bubbles, two cases, DC1 and DC2, in which bubbles

are initialized based on Table. 8 such that the xc of the bubbles are offset by
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Figure 13: The change in the dissolved hydrogen concentration (mol/m3) as the bubble evolves

in the case of SCT2. The white line represents the interface which is plotted at α1 = 0.5. See

supplementary materials for more information.
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Figure 14: Comparison of a) I/I0, b) rise velocity and c) normalized bubble volume (f), d)

1 − Θ obtained for bubble evolution with a contact angle at the electrode set at 30◦ but

the initialized concentration boundary layer thickness is varied from SCT1BL- (δ = 0.3mm

indicated with ), SCT1 (δ = 0.5mm indicated with ) and SCT1BL+ (δ = 0.8mm

indicated with ).

the radius from x =5mm. The boundary conditions are set analogous to single

bubble evolution from the electrode with θ = 45◦, i.e. SCT2.

Contrary to the single bubble in SCT2 which remained adhered to the sur-

face, both DC1 and DC2, under identical wetting conditions at the electrode,

show detachment of the coalesced bubble, see Fig. 15 and Fig. 16. Although the

difference between the initialized contact angle of the bubble and the equilib-

rium wetting condition at the electrode provides some initial momentum, like

the case of SCT2, the coalescence process of the bubbles is the driver of the bub-

ble detachment. During coalescence, the surface tension acts to minimize the

surface area of the bubbles, which results in dynamic changes in the interface
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Figure 15: The evolution of the interface and the concentration of the dissolved gas (mol/m3)

as the bubble coalescence and evolves in the case of DC1. Note the necking process (between

0s-0.4ms), propagation of deformation waves along the bubble interface which leads to the

lifting of the bubble (between 0.6ms-2ms) and detachment as well as the oscillations of the

bubble surface leading to elongation and flattening (2ms-4ms). The white line represents the

interface which is plotted at α1 = 0.5. See supplementary materials for more information.35



Figure 16: The evolution of the interface and the concentration of the dissolved gas (mol/m3)

as the bubble coalescence and evolves in the case of DC2. Note the necking process (between

0s-0.2ms), propagation of deformation waves along the bubble interface which leads to the

lifting of the bubble (between 0.4ms-1.2ms) and detachment as well as the oscillations of the

bubble surface leading to elongation and flattening (1.8ms-3ms). The white line represents

the interface which is plotted at α1 = 0.5. See supplementary materials for more information.36



Table 8: The initialized bubbles used in the coalescence simulations.

Bubble 1 Bubble 2

Case xc (mm) yc (mm) xc (mm) yc (mm) f 1−Θ

DC1 0.0046 0.0000 0.0054 0.0000 0.0101 0.84

DC2 0.0048 0.0000 0.0054 0.0000 0.0063 0.88

which can be categorized into neck formation between the bubbles, deformation

wave propagation at the interface which results in the lifting of the bubble, de-

tachment of the bubble and the oscillations in bubble shape, see Fig. 15 and

Fig. 16. These stages during coalescence has also been observed during the

in the the experimental work by [53], using two equally sized bubbles of radii

equal to 0.3mm. The deformation waves, which are qualitatively analogous to

the ones observed in the second stage of the bubble coalescence in DC1 and

DC2 in Fig. 15 and Fig. 16, are reported to be capillary waves in the work by

[53]. In DC1, as these deformation waves are symmetric about x = 5mm, see

Fig. 15, the detached bubble is also symmetric about the same axis. On the

other hand, the asymmetric propagation of the deformation wave towards the

smaller bubble in DC2, see Fig. 16, results in translation of the detached bubble

along the electrode. Interestingly the deformation induced during coalescence

in DC2 results in a quicker detachment of the final bubble compared to DC1 in

spite of the larger bubble volume in the latter, see Fig. 17 and Fig. 18. The de-

tachment of bubble in the DC1 and DC2 yields larger current when compared to

when the two bubbles where present on the electrode, see Fig. 17a and Fig. 18a.

Before detachment, as surface tension attempts to reduce the surface area of

the bubble via coalescence, ∆x reduces until detachment as shown in Fig. 15

and Fig. 16. The deformation of the detached bubble also has a substantial

impact on the current obtained i.e. larger projection of the bubble on the elec-

trode, indicated by larger ∆x, results in lower current. It should also be pointed

out that, during the coalescence driven bubble evolution in DC1 and DC2 the

bubble grew by around 0.97% and 1.34% when compared to the initial bubble
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Figure 17: The temporal variation of various relevant parameters as two equally sized bubbles

coalescence and detachment in DC1: a) normalized current (I/I0), b) horizontal deformation

(∆x), c) vertical deformation (∆y), d) normalized volume of bubble (f). The vertical black

line indicates the detachment time, τd, and the vertical red lines are equidistant grid line at

every 0.0004s to enable comparison between the plots.

volume respectively. The difference in the growth rate between the two cases

is a result of larger amount of dissolved gas which is present near the detached

bubble in DC2, see Fig. 15 and Fig. 16, due the convection established during

the coalescence and detachment.

6. Conclusion

In this paper, a new Volume of Fluid (VOF) based framework to study the

continuum scale evolution of hydrogen bubble in an electrochemical system is

presented. The proposed framework is based on the VOF framework available in

OpenFOAM R© 6, which uses an algebraic VOF method to capture the interface.
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Figure 18: The temporal variation of various relevant parameters as two unequally sized

bubbles coalescence and detachment in DC2: a) normalized current (I/I0), b) horizontal

deformation (∆x), c) vertical deformation (∆y), d) normalized volume of bubble (f). The

vertical black line indicates the detachment time, τd, and the vertical red lines are equidistant

grid line at every 0.0004s to enable comparison between the plots.
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The transport of the dissolved gas is based on the Compressive Continuous

Species Transport model [27], the driving force for interfacial mass transfer is

based on the phenomenological Fick’s 1st law and relevant source terms are

computed based on [28], charge conservation is ensured using Gauss’s law and

Ohm’s law [31] and surface tension modelled as described by [21]. The proposed

solver is verified by comparison to the analytical solution for bubble growth in

a uniformly supersaturated unbounded medium by [49] which is based on the

landmark work by [50]. Additionally the variation of the current predicted by

the solver is compared qualitatively to reported observations in experiments like

[52].

The single bubble simulations showed that the observed detachment of the

bubble is a result of the deviation between the contact angle of the initialized

bubble and the wetting condition at the horizontal electrode. In order to accu-

rately simulate the process, hybrid VOF methods like [31, 32, 33] are required to

generate larger bubbles which are consistent with the eleectrode wetting condi-

tions. Regardless, single bubble simulations showed quicker bubble detachment

with smaller contact angles as a result of the stronger hydrophilic nature of the

surface. When the bubble is present on the surface, the reduction in the area

of the bubble covering the electrode is observe to increase the current. At de-

tachment, the current obtained is larger than at the initial state of the system.

Once the bubble has detached, the surface of the bubble is observed to show

oscillations which causes the bubble to flatten and elongate analogous to the

experimental observations by [53]. These deformation of the bubble cause the

variation in the current i.e. larger horizontal deformation (∆x), which means

larger projected area of the bubble, results in lower current due to the larger

distortion of the current path lines. These distortions in the current pathlines

are observed for several bubble bubble radius as shown previously by [51]. Inter-

estingly, the current is observed to decrease as it rises up, after the detachment.

This can be explained as the result of the reducing the effective resistance by

lowering the characteristic length experienced by the current pathlines as the de-

tached bubble close to the electrode still shields part of the electrode, see Fig. 4.
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As the bubble rises up, the bubble shape is dictated by the surface tension and

drag forces which means that a bubble with higher rise velocity tends to be flat-

ter or has a larger ∆x which produces less current, see Table. 7. As the bubble

evolves, in the cases it detaches, the convection established by the rising bubble

also drags some dissolved gas up with it, see Fig. 9 and Fig. 10. Although the

bubble drags the dissolved gas as it rises up, the bubble grows predominately

within the concentration boundary layer. The effect of the bubble growth is

not visible in detachment time and rise velocity but it has a noticeable effect on

current evolution only when the bubble surface oscillations have damped, see

Fig. 14 and Fig. E.24.

The coalescence driven bubble detachment shows an increase in current as

bubble detaches and rises up, see Fig. 17 and Fig. 18, when compared to a

single bubble simulations, see Fig. 7 and Fig. 8. This larger increase in current

in coalesce driven detachment is a result of value of higher value of 1−Θ at t = 0s

when compared to single bubble simulations. In the coalescence driven case, the

current is also observed to vary with the bubble deformation, see Fig. 17 and

Fig. 18. Simulations considering the coalesce of two bubbles show three distinct

regimes: necking, propagation of the deformation waves, and detachment of the

bubble, which has also been reported in the work by [53]. The simulations also

shows the existence of travelling deformation waves at the interface, observed

by [53]. The propagation of these deformation waves is found to influence the

detachment process, as observed in the quicker detachment of the DC2 which

has a smaller bubble compared to DC1, as well as causes the translation of

the detached bubble along the electrode. The simulations suggests that the

bubble detachment, at least for continuum scale bubbles, are primarily driven

by coalescence rather than bubble growth by interfacial mass transfer.
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Appendix A. Imbalance in liquid/bubble and dissolved gas

As the proposed framework treats the growth and evolution of a bubble,

based on Eq.6, the volume of liquid should in principle remain constant in

the simulation. Fig. A.19 shows the imbalance in the liquid/bubble during

the simulation to be much lower than 0.1%. The imbalance in the amount of

dissolved gas is due to the presence of dissolved gas in the bubble, this is lower

than 0.1% of the dissolved gas in the computational domain (which is always

around 2.9×10−10 mol despite the addition of dissolved gas via electrochemical

reactions), see Fig. A.20.

Appendix B. Spatial convergence

As the proposed framework, which is based on the Finite Volume Method,

relies on the mesh to descritize the governing equations, it is important to ensure

that the solution is not independent of these errors. In order to study the mesh

convergence of the solution, for the case of SCT1, is studied using six different

meshes: 400×200, 564×282, 800×400, 1128×564, 1600×800 and 2256×1128

which represents 32, 45, 64, 90, 128 and 180 cells across the diameter of the

initialized bubble respectively. The grid convergence is studied by comparing

the bubble shape (α1 = 0.5) at 0.02s in Fig. B.21. As the variation between the

bubble shapes for the finest two meshes are negligible, 1600×800 is used in the

simulations considered in the paper. Additionally, the difference in the current

obtained between the two finest meshes, 1600×800 and 2256×1128, at 0.02s is

less than 0.01%.
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Figure A.19: Temporal variation of the mass imbalance in the system indicated as the bubble

volume obtained from the solver (equal to
∫
α2dV ) and the difference in the total volume of

the domain and the volume of liquid present in the domain which is adjusted for the liquid

lost through the boundaries.

Appendix C. Temporal convergence

As surface tension is dominant in the electrochemical bubble evolution phe-

nomena, its modelling can be influenced by the well known problem of spurious

velocities in VOF based methods [18, 20, 21]. These spurious velocities which are

numerical artifacts can result in non-physical flow velocities/deformations of the

interface can reduce the accuracy of the simulation as observed in [54, 28, 44].

These spurious velocities are generated in the proposed solver due to inaccu-

racies in the curvature calculation used in surface tension modelling, see [44].

As the surface tension is treated explicitly in the proposed solver, the spurious

current in the simulation can increase over time if an appropriate time step is

not used which would lead to a dependence of the solution on time step [18, 21].

The most commonly used time step constraint which is used to prevent the
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Figure A.20: Temporal variation of the amount of dissolved gas in the bubble which is calcu-

lated as
∫
Ciα2dV .

growth of these spurious velocities, is the one proposed by [41]:

∆t <

√
ρavg∆3

x

2πσ
, (C.1)

where ∆x is the mesh cell size and ρavg is the average density between the two

phases. In order to ensure the simulations discussed in the paper are not influ-

enced by spurious velocities, the predictions of the proposed solver for SCT1 and

SCT2 cases (due to the lower rise velocity when compared to SCT0) are com-

pared with maximum time step based on Courant number of 0.05 and Eq. C.1,

which is equal to 5.25×10−7s.

Comparison of I/I0, rise velocity, normalized bubble volume and bubble

coverage for SCT1 and SCT2, see Fig. C.22 and Fig. C.23, shows that the

time step resolution does not result in much change to these parameters for

the duration of the simulation. This can be explained by understanding the

velocity field induced by the motion of the interface to be much larger than the
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Figure B.21: The interface of the bubble at 0.02s for SCT1 for the six meshes considered in

the convergence study.

nonphysical velocity field generated by the spurious velocities. As a result, in

the case of SCT1, the time step constraint can be ignored to obtain reasonable

results and to save the computational overhead imposed Eq. C.1. For the case

of SCT2, it should be pointed out that in order to simulate the bubble reaching

equilibrium shape on the electrode, when physically the velocity in the domain

should reduce to zero, it would be necessary to suppress spurious velocities

by using more advanced surface tension modelling approaches (most probably

based on the geometric VOF [19]) and impose time step constraint to prevent

the growth of these numerical artifacts.

Appendix D. Estimation of the initial concentration boundary layer

thickness

The thickness of hydrodynamic boundary layer, for a laminar flow over a

flat plate, according to [55], is equal to

δH = 5

√
ν1x

U∞
. (D.1)
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Figure C.22: Comparison of a) I/I0, b) rise velocity and c) normalized bubble volume (f),

d) 1 − Θ obtained for bubble evolution for SCT1 (contact angle at the electrode set at 30◦)

for simulations based on time step based on Courant number ( ) and Brackbill time step

constraint ( ).

where x is the distance from the leading edge of the plate and U∞ is the free

stream flow velocity. The concentration boundary layer thickness (δC) can be

expressed in terms of δH as

δC
δH

=
( ν1
Di,1

)−1/3

= Sc−1/3, (D.2)

where Sc is the non-dimensional Schmidt number. The above equation can be

rearranged to get an expression of the concentration boundary layer thickness

as

δC =
( ν1
Di,1

)−1/3

5

√
ν1x

U∞

= 5ν
1/6
1 D

1/3
i,1 x

1/2U−1/2
∞ .

(D.3)
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Figure C.23: Comparison of a) I/I0, b) rise velocity and c) normalized bubble volume (f),

d) 1 − Θ obtained for bubble evolution for SCT2 (contact angle at the electrode set at 45◦)

for simulations based on time step based on Courant number ( ) and Brackbill time step

constraint ( ).

Eq. D.3 can be averaged over the length of the flat plate (L) to get an average

concentration boundary layer equal to

δC =
1

L

∫ L

0

5ν
1/6
1 D

1/3
i,1 x

1/2U−1/2
∞ dx (D.4)

δC =
10

3
ν
1/6
1 D

1/3
i,1 U

−1/2
∞ L1/2 (D.5)

For electrode length scale (L) equivalent to 10−2m, ν1 = 9.89 × 10−7m2/s,

Di,1 = 4.8 × 10−9m2/s and U∞ in the order of 0.1m/s gives δC in the order

of 10−4m. In order to simplify notation in the main body of the paper, δC is

written as δ.
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Appendix E. Comparison of current obtained with and without mass

transfer driven bubble growth
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Figure E.24: Comparison of the normalized current (I/I 0) for various contact angles with

( ) and without ( ) interfacial mass transfer driven bubble growth: a) SCT0, b) SCT1

and c) SCT2. The vertical red lines are equidistant grid line at every 0.001s to enable com-

parison between the plots.

In order to compare the effect of bubble growth on the current obtained,

the cases without any mass transfer is simulated by using analogous setups to

SCT0, SCT1 and SCT2 for the initial and boundary conditions except for the

electrochemical reactions which was replaced with a zero gradient condition at

the wall in addition to not initilizing a concentration boundary layer. This

prevent the growth of the bubble due to interfacial mass transfer driven by

supersaturation. The comparison of the current obtained in SCT0, SCT1 and

SCT2 with and without bubble growth is plotted in Fig. E.24.
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formation at a gas-evolving microelectrode, Langmuir 30 (43) (2014) 13065–

13074. doi:10.1021/la500234r.

[9] X. Yang, D. Baczyzmalski, C. Cierpka, G. Mutschke, K. Eckert, Marangoni

convection at electrogenerated hydrogen bubbles, Phys. Chem. Chem.

Phys. 20 (2018) 11542–11548. doi:10.1039/C8CP01050A.

[10] A. Bashkatov, S. S. Hossain, X. Yang, G. Mutschke, K. Eckert, Oscillat-

ing hydrogen bubbles at pt microelectrodes, Phys. Rev. Lett. 123 (2019)

214503. doi:10.1103/PhysRevLett.123.214503.

[11] A. Taqieddin, M. R. Allshouse, A. N. Alshawabkeh, Editors’ choice- critical

review—mathematical formulations of electrochemically gas-evolving sys-

tems, Journal of The Electrochemical Society 165 (13) (2018) E694–E711.

doi:10.1149/2.0791813jes.

[12] F. Hofbauer, I. Frank, Electrolysis of water in the diffusion layer: First-

principles molecular dynamics simulation, Chemistry – A European Journal

18 (1) (2012) 277–282. doi:10.1002/chem.201002094.
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