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“Map-making had never been a precise art on the 

Discworld. People tended to start off with good intentions 

and then get so carried away with the spouting whales, 

monsters, waves and other twiddly bits of cartographic 

furniture that they often forgot to put the boring mountains 

and rivers in at all.” 

― Terry Pratchett 

 





v 

 

Table of Contents 

Preface ............................................................................................................................ vii 

Acknowledgements ......................................................................................................... xi 

Introduction .................................................................................................................... 13 

Structure of the thesis ................................................................................................. 17 

Presentation of research papers ................................................................................... 19 

Paper I ..................................................................................................................... 19 

Paper II .................................................................................................................... 19 

Paper III ................................................................................................................... 20 

Paper IV................................................................................................................... 21 

Methodology ................................................................................................................... 23 

Background ..................................................................................................................... 29 

Geospatial big data ...................................................................................................... 29 

Event sourcing ............................................................................................................ 32 

Read projections ......................................................................................................... 37 

Vector data change detection ...................................................................................... 40 

Data conflation ............................................................................................................ 42 

Implementing an event-based pipeline ....................................................................... 45 

Results ............................................................................................................................ 49 

Transforming temporal snapshots to events ............................................................... 53 



vi 

 

Geospatial vector data change detection ................................................................. 55 

Diff creation ............................................................................................................ 57 

Event storage ............................................................................................................... 60 

Event store ............................................................................................................... 61 

Event store API ....................................................................................................... 62 

Event message bus .................................................................................................. 64 

Use of event sourced datasets ..................................................................................... 65 

Read projections ...................................................................................................... 66 

Data filtering and transformation ............................................................................ 69 

Event listeners ......................................................................................................... 71 

Data conflation ............................................................................................................ 72 

Concluding remarks ........................................................................................................ 77 

References ...................................................................................................................... 79 

Papers ............................................................................................................................. 85 

Paper I ......................................................................................................................... 87 

Paper II ...................................................................................................................... 103 

Paper III .................................................................................................................... 117 

Paper IV .................................................................................................................... 133 

 



vii 

 

Preface 

Ever since we started exploring the world, information about where things are and how 

to get there has been valuable and sought-after. The hand-drawn, and later printed, map 

provided an efficient mechanism for storing and communicating this information. While 

the digital revolution did not render maps outdated, it changed the landscape. At the core 

of this revolution lies two important changes to how we think about maps.  

First, the digital revolution established a clear boundary between the physical map and 

map data. While a printed map traditionally was the only representation of map data, it is 

now one of many representations. Digital map data, or geospatial data, is a core 

component in search engines, navigational services, and recommendation engines, and is 

extensively used in planning processes, urban development, retail, and real estate. In 

addition, geospatial data plays a major role in handling climate challenges, and current 

events have demonstrated its importance in handling a pandemic.  

Second, the digital revolution democratized the map. Surveying and cartography used to 

be complex and labour-intensive tasks, and the state usually took the role as a provider 

and maintainer of maps. While the state still values, produces, and maintains maps, this 

monopoly is a relic of the past. Private corporations provide a plethora of maps and 

location-based services and numerous businesses provide value-added services on top of 

governmental, private, and even personal map data. The rise of crowdsourced 

encyclopaedias paved the way for the crowdsourced map, where volunteers contribute 

their time and skills to map the world. Thus, geospatial data, which used to be scarce, is 

now ubiquitous and plentiful in most parts of the developed world. 
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A common denominator for much of this geospatial data is an open license. The creators 

provide the data to everyone to use, explore, enhance, and monetize. Why? The reasons 

are as varied as the actors, but a common theme is a combination of civic duty, personal 

convictions, moral sense, and cold calculation.  

Against this backdrop of abundant and freely available geospatial data, a series of 

interesting research challenges can be outlined. Namely, how do we process, store, and 

manage such vast amounts of data? And, how do we deal with issues of privacy, accuracy, 

and accountability?  

These are not just interesting research questions. They are also highly relevant issues. The 

geospatial industry is currently looking for solutions to handle geospatial data in a more 

efficient manner. This in turn drives innovation and digitization, which opens new 

possibilities. While spatial may not be that special, geospatial data is extremely relevant 

in a wide range of solutions. Enabling efficient use, re-use, and enhancement of existing 

data repositories is key for rapid product development. The winners in this race will be 

the ones who successfully consume, process, store, and manage the flow of heterogenous 

geospatial data from disparate sources, so that they can add value to the data.  

These challenges are the starting point of this thesis. We describe how an event-based 

pipeline for geospatial vector data management can be created and present a solid 

foundation for implementation. This pipeline will enable efficient updating and 

versioning of open geospatial datasets and allow access to both current and historical data, 

while enabling a storage layout that is able to scale horizontally. The individual 

components of the pipeline are either based on novel research or described using work 
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from both the geospatial industry and academia. This combination of research and re-use 

ensures both a running start and avoids re-inventing the wheel.  
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Introduction 

In principle, geographical information (GI) does not need to be handled by computers. A 

paper map is the most common example of an analogue representation of GI. However, 

a digital representation of GI is for all intents and purposes a model created and stored 

using modern digital computer technology (1). 

Thus, the advent of computer technology transformed the idea of geographical 

information. Digital geographical information could be rendered as an on-demand printed 

map, tailored to the use-case, rather than as a general-purpose map. Further advances 

meant that the map did not need to be printed at all, it could be transmitted using the 

Internet and rendered on-screen as needed (2). Rendering maps, both analogue and digital, 

is but one possibility using digital geographical information. The separation between 

geographical information and the physical map enabled services such as route calculation, 

finding nearby points of interest, automation of zoning and planning tasks, retail 

optimization, collaboration on development projects, and monitoring of environmental 

factors, to name some examples.  

The digitization of maps also brought changes to how map data is created and maintained. 

The traditionally high cost of surveying meant that map production was the domain of the 

state and large corporations. Their practice of selling physical maps to the end-user 

carried over to the digital realm.  

In an effort to “democratize the map” (3) OpenStreetMap (OSM) was created. This is an 

open-licenced, world-spanning map database, created and maintained by volunteers, 

operating using the crowdsourcing principle made popular by Wikipedia (4). Much of the 
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OSM data is created by its volunteers through means such as GPS logs and tracing of 

aerial and satellite imagery (5). This is what Goodchild termed Volunteered Geographical 

Information (VGI) (6).  

In parallel with this development, states and governmental institutions changed their 

practices. While geospatial data surveyed and maintained by the state traditionally was 

sold to third-parties, the concept of Open Data challenged and changed this practice. Open 

Data is data that can be “freely used, modified, and shared by anyone for any purpose” 

(7). An early example of open geospatial data from governments can be found in 

Denmark. In 2013, the Danish government made almost all their governmental geospatial 

data available as Open Data, expecting “a positive effect on the national economy, and 

that it will create growth and a more efficient public sector” (8). The US practice of 

keeping governmental data free and open is rooted in the Public Domain law (9), but still 

ensures that everyone can access and use geospatial data free of charge.  

Thus, due to sources such as VGI and Open Data, geospatial data is no longer a scarce 

resource. An abundance of data has replaced data scarcity. The challenge is no longer to 

get hold of data, but to handle an ever-increasing flow of both new datasets and revisions 

to existing datasets.  

Open geospatial distributors are usually using what Worboys (10) refers to as a “stage 

one” spatiotemporal system. This means that each release of a dataset represents a 

temporal snapshot of the data. New snapshots are released in bulk at regular intervals, 

even though only a fraction of the data may have changed. This problem was noted nearly 

20 years ago by Cooper and Peeled (11), who in their report to the ICA Working Group 

on Incremental Updating and Versioning concluded that «there should be no need to 
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redistribute an entire data set to its users to propagate changes that are only minor or few 

in number». This issue is still relevant today, as more geospatial data is made available, 

and the use-cases have become more varied.  

Event sourcing (12) is an interesting approach to handle this continuous flow of data. In 

a true-to-the book event-sourced system, all changes to a dataset would be recorded as 

events and distributed to consumers. This is akin to what Worboys (10) refers to as a 

“stage three” spatiotemporal system. By transforming “stage one” snapshots into “stage 

three” events as shown in Figure 1, an event-based approach to geospatial vector data 

management can be applied without being dependent on third parties having to change 

their infrastructure.  

 

Figure 1: Illustration showing how two temporal snapshots of a dataset can be transformed into 

a list of events.  

Another challenge of data abundance is the inevitable issue of identifying the “best” data. 

What data is the “best” is of course dependant on the task at hand, but usually the best 

data is a combination of data from multiple sources. With geospatial data available as 
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Open Data from national mapping agencies and other governmental sources, as 

proprietary data from commercial mapping companies, and as crowdsourced data or VGI 

(6), an important task is data consolidation or conflation. While advances in artificial 

intelligence (AI) and machine learning (ML) offers a promising trajectory, some degree 

of manual oversight is often required (13,14). 

An automated process for converting a large number of bulk-updated geospatial datasets 

into event sourced datasets is the main idea of this thesis. In addition, we examine possible 

applications of event sourced geospatial datasets, aimed both at replacing existing 

solutions and creating new ones. This process is referred to as an event-based pipeline for 

geospatial vector data management. Such a pipeline should be easy to set up, customize, 

and should handle heterogenous geospatial data from a wide selection of sources. Some 

of the pipeline components will be described and examined in detail, while others will be 

covered more in brief. Creation of the pipeline itself is not the main topic of this thesis, 

but discussion of how this can be achieved is provided where relevant.  
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Structure of the thesis 

The rest of this thesis is structured as follows. First, the individual research papers that 

constitute this thesis are presented. Their motivation and scope, as well as the candidate’s 

contributions are detailed. The methodology section provides a high-level overview of 

the methodology applied throughout the work, without repeating the content of each 

individual research paper. Following this, the background section expands on the 

introduction and provides an overview of the envisioned pipeline and its individual 

components. Relevant challenges, opportunities, and possible solutions for each 

component are presented and discussed. Some considerations about an actual 

implementation of such a pipeline are also presented. The main findings of the research 

papers are presented in the results section, which also presents an example 

implementation of the described pipeline in order to discuss each of the components. The 

work is concluded with some final remarks, pointing to the current state of development 

and possible future trajectories. The full research papers of this thesis are included at the 

end of this work.   
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Presentation of research papers 

This section presents the individual papers of this thesis individually and positions them 

in the overarching scope of the project. The candidate’s contributions to each paper are 

also presented. 

Paper I 

A. F. Sveen, ‘The Open Geospatial Data Ecosystem’, Kart og plan, vol. 77, pp. 108–

120, 2017. 

This review article was researched and written as part of an effort to obtain an overview 

of existing research and literature on open geospatial data. The article surveys the main 

sources of open geospatial data and examines the reasons for publishing such data. The 

related concepts of Volunteered Geographic Information (VGI), Participatory GIS 

(PGIS), and crowdsourcing are examined and placed into context. The term Open 

Governmental Geospatial Data (OGGD) is suggested as a description of geospatial 

datasets released by governmental agencies. Motivations for data release, formats, and 

limitations, as well as interactions with VGI data repositories such as OpenStreetMap 

(OSM) are examined.  All aspects of the paper, including motivation, research, and 

preparation, where carried out by the candidate.  

Paper II 

A. F. Sveen, A. S. S. Erichsen, and T. Midtbø, ‘Micro-tasking as a method for human 

assessment and quality control in a geospatial data import’, Cartography and 

Geographic Information Science, vol. 47, no. 2, pp. 141–152, 2019, doi: 

10.1080/15230406.2019.1659187. 
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The underlying motivation behind this paper was to investigate the relationship between 

OGGD and VGI, and to gain an understanding of how crowdsourcing principles such as 

micro-tasking can facilitate integration of data from disparate sources. Based on previous 

research, we found that OSM utilizes micro-tasking principles in order to import OGGD. 

However, no clear guidelines or recommendations on how these principles should be 

applied exists. Creating an online-experiment where volunteers carried out micro-tasking 

tasks related to a simulated building-data OSM import was pitched to Anne Sofie Strand 

Erichsen, who made this the topic of her master’s thesis (15). The results of the online 

experiment, with 164 participants was presented at a poster-session at the 2017 FOSS4G 

Conference in Boston (16). 

The results of the online experiment were further analysed and put into context in this 

paper, which concludes that while geospatial micro-tasking is still in its early stages it is 

an interesting approach for quality control and assessment when geospatial datasets are 

merged or consolidated.  

The idea and motivation behind the work was conceived by the candidate, who also acted 

as a supervisor on the master’s thesis. Data analysis and major parts of manuscript 

preparation was carried out by the candidate.  

Paper III  

A. F. Sveen, ‘Efficient storage of heterogeneous geospatial data in spatial databases’, 

Journal of Big Data, vol. 6, no. 1, pp. 1–14, Nov. 2019, doi: 10.1186/s40537-019-0262-

8. 

The rationale behind this paper was to investigate if a practice of using NoSQL principles 

to store OGGD from heterogenous data sources (17) was the best solution to the problem. 
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In order to investigate this, the Heterogenous Open Geodata Storage (HOGS) system was 

implemented and used to compare the performance of a traditional, table-based data 

storage structure and a NoSQL approach, using the PostgreSQL/PostGIS database in both 

cases 

The paper covers the implementation and test of the Heterogenous Open Geodata Storage 

(HOGS) system. This system is designed as an efficient and resilient solution for 

importing geospatial datasets from heterogenous data sources. The design of HOGS 

allowed for a comparison between a traditional, table-based data storage structure and a 

NoSQL approach, using the PostgreSQL/PostGIS database in both cases. Implementation 

of the HOGS system, benchmark execution, and analysis and manuscript preparation 

were all carried out by the candidate. 

Paper IV 

A. F. Sveen, ‘GeomDiff — an algorithm for differential geospatial vector data 

comparison’, Open Geospatial Data, Software and Standards, vol. 5, no. 1, pp. 1–11, 

Jul. 2020, doi: 10.1186/s40965-020-00076-4.  

While the HOGS system did include mechanisms for handling dataset updates, this was 

a rudimentary “temporal snapshot”-approach (10). In order to support more fine-grained 

and efficient versioning, we started looking into the use of diffing algorithms for 

geospatial vector data. While our research indicated that diffing algorithms are used in 

this manner, we found no implementations of algorithms specifically tailored to 

geospatial vector data. This was the rationale behind the implementation of GeomDiff. 

GeomDiff is an algorithm and C# implementation of diff creation, application, and 

reversion for geospatial vector data, as well as a binary storage format for such diffs.  
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The GeomDiff implementation was tested by comparing its performance with three 

general-purpose diffing algorithms adopted to geospatial vector data using pre- and post-

processing steps. The algorithms were tested using about 2.5 million OpenStreetMap 

geometries in a public cloud computing environment. While the GeomDiff algorithm 

failed to meet expectations for linestring and polygon geometries, this paper shows 

promising results that encourages further development. All aspects of the paper, including 

design, implementation, statistical analysis, and manuscript preparation, were carried out 

by the candidate.  
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Methodology 

The methodology used throughout this thesis is for the most part related to developing 

software and examining the performance of this software. Thus, in addition to the 

scientific method, principles of software engineering have been a cornerstone in this 

work. For details related to the specific methodology employed in each paper, we refer to 

the individual manuscripts. In the following section we will show how this methodology 

was applied to complete this thesis. 

Paper I is a literature review, Paper II is an online experiment with human participants, 

Paper III is a benchmark run on a single computer, and Paper IV is a benchmark run in 

parallel in a cloud computing environment. Each paper required its own approach, design, 

setup, and analysis. In the following, the different approaches taken, and considerations 

made are presented and discussed.  

Literature reviews can be carried out using either a systematic approach (18), or a more 

conventional, open-ended approach. Paper I have a clear mission; establish how the 

concept of Open Data relates to geospatial data. Early on, it became evident that while 

research on Open Geospatial Data is limited, the related terms Volunteered Geographic 

Information (VGI) and Participatory GIS (PGIS) or Public Participation GIS (PPGIS) is 

covered in great detail. This meant that these topics were naturally included in the review. 

Likewise, as we saw many connections between the free and open geospatial software 

(foss4g) movement and open geospatial data, we found it relevant to include in the 

overview. 
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Paper II examined the performance of human workers in an online experiment. 

Experiments including human participants require careful planning, execution, and post-

processing. The system under test should be quality-checked before a full scale online 

experiment is launched. In Paper II this was handled by conducting a pilot test with a 

small number of participants. The System Usability Scale questionnaire (19) was used in 

order to standardize responses. Based on this pilot, improvements were made before 

conducting the experiment. Another issue is participant recruiting. It is imperative to have 

a representative selection of participants to gain relevant insights from the experiment. 

Using social media and mailing lists available to the authors may skew the results towards 

participants with existing experience or interest in the subject. However, these are the 

same channels that would be used in order to recruit participants to an actual task. 

Papers III and IV are both focused on examining the performance of a computer program. 

The premise of a computer program or an algorithm is that it provides the same result 

given identical input. This process should theoretically take the same amount of time on 

each repetition. However, there are several factors that can influence running time. 

Hardware capabilities such as processor speed is an obvious factor. But even repeated 

measurements of the same task running on identical hardware may yield different results. 

System interrupts, processor time allocation, available memory, and network speed and 

latency are all factors that may influence running time.  

One approach to minimize these effects is to run the experiment locally on a single 

machine with as many other applications as possible deactivated. If the measurements are 

run multiple times, and the results averaged, a reasonable approximation can be found. 

However, the absolute values obtained from running on a single machine will not be 
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applicable in other configurations. Thus, it is important to focus on relative differences 

between several approaches tested on the same configuration. This approach was chosen 

for testing the two storage layouts used by the HOGS system in Paper III.  

Another approach for testing the performance of a computer system is to run the 

experiment in a public cloud computing environment. A cloud computing environment 

provides customizable and configurable access to a powerful computing environment 

with the ability for both vertical and horizontal scaling (20). This means that 

measurements will be more in line with expected real-life performance, and that we can 

run multiple measurements in parallel. However, we are not guaranteed that all executions 

will happen in isolation (21).  

The experiments in Paper IV, which compared the performance of the GeomDiff 

algorithm to three alternatives, was carried out in the Microsoft Azure cloud computing 

environment. This allowed us to handle a large volume (2.5 million geometry pairs in 

four algorithms) of operations. This experimental setup required substantial preparation 

but ensured that the experiment was run in a controllable and repeatable environment. 

The pay per use model also meant that we had no large up-front hardware investments. 

Another benefit was that the actual measurements recorded reflects typical performance 

on a public cloud platform. However, as hardware capabilities constantly increase, these 

results will quickly be outdated, and the relative difference between the different 

algorithms are still what is important. 

Papers II, III, and IV all include computer code written by the authors. In addition, several 

scripts and other supporting applications have been written during this work. The process 

of writing software for a scientific experiment or implementing algorithms that are the 
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topic of a scientific work, deserve some discussion. Throughout the work on this thesis, 

we have sought to follow existing best practices on software development. Well-

structured, readable code, with clear separation of concerns have been an important goal 

(22,23). In terms of specific programming languages, we have used the most appropriate 

language given the task at hand and have tried to avoid religiously favouring one language 

over another. Prior knowledge is of course an important factor but external dependencies, 

such as intended platform and available libraries, have also dictated language choice.  

One important decision, made early on in the process, was to release all code written as 

part of this thesis as open source software. This ensures transparency, as peers are free to 

inspect, validate, and critique the actual code written. In addition, it enables for re-use if 

the ideas presented are used as basis for further research or commercial implementation. 

The practice of releasing code as open source software also inspires to write cleaner and 

more readable code.  

Statistical analysis is an important task, no matter how an experiment is conducted. 

Knowing what kind of analyses to utilize and the requirements of each analysis is 

important, but an efficient method for running and re-running analyses are just as 

important. This is especially important when working with a large number of 

measurements. Approaching this task with the mindset and toolbox of a programmer is 

useful. We found that the Pandas (24) library for the Python programming language 

provides a great starting point for statistical analysis of large amounts of data. The library 

relies on the SciPy (25) and NumPy (26) libraries, which ensures access to a broad 

spectrum of statistical tools, as well as interoperability with a wide range of tools and 

extensions. By formalizing all calculations as code modifications can be carried out as 
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needed. The code used for calculations can also be tracked using source control systems 

and shared with reviewers and other interested parties.  
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Background 

Geospatial big data 

The Internet has changed the way data is distributed and has made map data easier to find 

than ever. New technologies and techniques for surveying, monitoring, and disseminating 

geospatial data has created a data abundance. Data from traditional sources such as 

governmental institutions are increasingly made available free of charge as Open Data, 

and new sources of data such as VGI has materialized and matured. Thus, geospatial data 

is no longer the scarce resource it used to be. 

The task of handling this increasing stream of geospatial data calls for new methods and 

techniques. In computer science, this shift is often characterized by the phrase “big data”, 

commonly defined by the three Vs; Volume, Velocity, and Variety (27). These three 

characteristics can also be applied to geospatial data, in what can be defined as “geospatial 

big data”. Here, by discussing each of the three Vs and providing examples from the 

geospatial domain, we argue that geospatial data has in fact transitioned to geospatial big 

data. 

The increase in geospatial data volume can be illustrated by an OpenStreetMap example. 

Figure 2 shows two screenshots of OSM in Dublin, Ireland. The left-hand map is the 

example Goodchild (6) used in 2007, while the right-hand map is a current (2020) map 

of the same area. Although the cartography is different, the difference in map data is 

striking. The 2007 map shows several missing street names, no coverage in areas, and a 

limited set of features mapped. In contrast, the 2020 map is almost too crowded, with 

features such as building footprints, walkways, and individual businesses mapped. 
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Figure 2: OpenStreetMap coverage in Dublin, Ireland. Left is a screenshot from Goodchild (6) 

in 2007, right is from 2020.  

Data velocity refers to the pace at which data is created or updated. Geospatial data has 

traditionally been slow data. National geospatial datasets maintained by governmental 

institutions are often released at monthly, quarterly, or even at yearly intervals. On the 

other hand, technologies such as modern sensors and the Internet of Things (IoT), are 

capable of delivering new measurements with a geospatial component every second. 

Another example of continuously updated, high-velocity geospatial data is OSM, which 

had about 3.5 million edits per day in early 2020 (28).  

In terms of data variety, geospatial data really is special (29). This manifests through 

storage formats, data schemas, and projections. There is a plethora of formats to choose 

from, as witnessed by the list of 99 geospatial vector data formats currently supported by 

the ogr2ogr tool (30). Another example is a survey of Open Geospatial Data, which found 

that some cities use as many as 12 different formats to distribute their geospatial data 

(31). In addition to a large variety in formats, there is a multitude of geographic reference 

systems to utilize, each with its strengths and weaknesses. On top of this, geospatial data 

is usually accompanied by attribute data. These attributes are either structured using 
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widely different schemas or eschew a schema altogether and apply a consensus-based 

tagging system.  

In light of this discussion we argue that geospatial data exhibits characteristics of big data, 

with an increase in both Volume, Velocity, and Variety. Just as big data requires new 

approaches, we argue that geospatial big data calls for new methodologies for handling 

this increasing stream of data.  
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Event sourcing 

Event sourcing is a pattern for data storage and management that uses events as a 

mechanism for storage (32). The pattern can be considered a variation of the commit log 

pattern used by relational database management systems (RDBMSes), and relies on an 

event store and a state machine to provide the current (or any previous) incarnation of an 

entity (33). The event sourcing pattern comes with the promise of simplified scalability 

and an efficient way to store and query historical records in a dataset.  

The event sourcing pattern is well suited for handling a stream of geospatial data with 

increasing volume and velocity. In addition, it should be capable of handling data variety 

without sacrificing consistency. Thus, a thorough review of the principles behind event 

sourcing and how they apply to geospatial data is in order.   

A fundamental building block in Event Sourcing is the event. As an example, in a system 

handling ship notifications, an event would be on the form “ship 𝑎 arrived at port 𝑥” or 

“ship 𝑏 departed from port 𝑦” (12). This approach maps well to an IoT device tracking 

sheep on pasture, which uses GPS to log sheep location every hour. An event would be 

“sheep 𝑥 moved 𝑛 meters east, 𝑚 meters north”. However, many governmental geospatial 

datasets are released in bulk as temporal snapshots (10). These snapshots are a complete 

representation of the mapped features at the current time and does not carry any 

information about what was changed from the previous snapshot.  
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Figure 3: Two representations of a plot map, showing how five plots change over time. The upper 

half of the figure shows two temporal snapshots, taken in year 1 and 2, respectively. The lower 

half is an event log, showing the creation, modification, and deletion of plots as events on a 

timeline. The timeline also indicates the points where temporal snapshots were taken. 

The simplified plot map in Figure 3 illustrates how temporal snapshots differ from events. 

Using a temporal snapshot approach, we would get the two separate maps depicted in the 

upper half of the figure, even though neither Plot c nor Plot d are changed from year 1 to 

2. The events depicted in the lower half provides us with information about when the 

individual plots were created, deleted, and modified. However, in order to realize that 

Plot a occupies A1 and B1 in year two, we need both the create event and the modify 

event.  

This situation is also illustrated in Table 1 and Table 2. Table 1 shows two temporal 

snapshots of a collection of linestrings (version 𝑛 and version 𝑛 + 1), as well as a column 
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describing what happened to the feature between versions. This table contains redundant 

information, since feature 1 is unchanged. However, a complete representation of the 

geometry is repeated for each snapshot. The change to feature 2 consists of changing the 

x-coordinate of node 2, which means that the 𝑛 + 1  version also contains redundant 

information.  

Feature Id Geometry, version 𝒏 Geometry, version 𝒏 + 𝟏 Action 

1 (1 1, 1 2, 1 3) (1 1, 1 2, 1 3) Unchanged 

2 (1 1, 2 1, 3 1) (1 1, 2 1, 4 1) Modified 

3 (4 5, 4,8) - Deleted 

4 - (5 4, 8 1, 8 2) Created 

Table 1: Example of a bulk-updated geospatial dataset in two versions, 𝑛 and 𝑛 + 1. Since the 

features have unique IDs that are consistent across versions, we can deduce whether they are 

unchanged, changed, created, or deleted from version 𝑛 to 𝑛 + 1. 

Table 2 shows the same changes to the same dataset, but this time expressed as an event 

log. First, all features in version 𝑛 are created, then the changes made in version 𝑛 + 1 

are described. In this event log, the concept of a dataset version is redundant. Each feature 

is updated independent of the other features, and a change to a small subset of features 

does not implicate a new dataset version. In order to retrieve a given version of a feature, 

the events related to that feature is played back until the required version is obtained. 
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Feature Id Timestamp Action Geometry 

1 1 Create (1 1, 1 2, 1 3) 

2 2 Create (1 1, 2 1, 3 1) 

3 4 Create (4 5, 4,8) 

2 7 Modify {2: x+1} 

3 8 Delete (4 5, 4,8) 

4 11 Create (5 4, 8 1, 8 2) 

Table 2: A series of events describing the creation and change of a spatial dataset. Note that the 

modify events only describe modifications needed to modify the existing geometry. 

An event log, similar to the example in Table 2, is at the heart of an event sourced storage 

system. When this event log is coupled with an algorithm capable of applying all events 

to a feature, the system can provide any requested version of a feature.  

As noted in Table 2, a modification to a vector feature is only denoted by a record of the 

delta of each changed node, as opposed to storing a complete representation of the 

geometry after modification. This is akin to noting “deduction of 1$” in a bank ledger, 

instead of noting “new balance 100 099$”. This approach allows for more compact 

storage, as deltas only denote what have changed. In addition, it enables us to keep track 

of what was actually changed during an event.  This concept is known as a diff in the field 

of computer science, and algorithms for effectively creating diffs for text and source code 

have been known since the 1970’s (34,35). These diffing algorithms can be used with 

geospatial vector data when combined with post- and pre-processing steps that convert to 

and from a textual representation. However, the mathematical nature of geospatial vector 

data means that faster and more compact diffs can be created using a tailored algorithm. 

Despite this, we were unable to find any examples of such algorithms in the literature. 
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This was the rationale behind the development of the GeomDiff algorithm presented in 

Paper IV. 
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Read projections 

One important consideration of the event sourcing pattern is related to performance. As 

discussed, an event sourced system builds a feature by applying all events stored in the 

event store to arrive at the most recent version of a feature. In a system with many events 

stored for a feature, this process can take considerable time. While a faster algorithm for 

diffing can improve performance, there will always be a correlation between number of 

events and running time. This problem can be overcome by applying the practice of 

rolling snapshots (32), a mechanism which avoids loading and applying all events. 

While rolling snapshots may speed up ID-based queries to match the performance of 

relational databases, they fall short when data needs to be queried in other ways. 

Geospatial queries can illustrate this. In order to perform a point-in-polygon or 

intersection query, the actual geometries need to be accessible. While optimizations, such 

as storing minimal bounding boxes along with the event, could be applied to the event 

sourcing pattern, there are other more elegant solutions. Using a spatial database as a read 

projection is one possibility.  

The idea behind read projections is rather straightforward. Instead of reading directly 

from the event source API, a system is set up in front of the API. This system consumes 

events as they occur and projects the data into a format suitable for reading. In our 

geospatial example, this format would be a spatial database. This means that users of the 

data can connect to the database as previously, without having to interact with the event 

sourced system and adopt to new APIs. One caveat is that the read projection is, as its 

name implies, a read-only data storage. If clients are used to writing data, this will have 

to be handled using other mechanisms.  
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The read-only nature of read projections brings several advantages. Since there is no need 

to propagate changes, we can easily use a number of different read projections. Data can 

also be transformed before being stored in the read projection. This means that the concept 

of a central database that conforms to the needs of all users is not required. As a 

consequence, we can avoid compromises that degrade performance and ease of use. Each 

application can use its own read projection, consisting of exactly the data it needs, 

transformed to match its usage patterns. 

While an event sourced system combined with read projections is able to provide data 

access to traditional geospatial applications such as a desktop GIS, a tile- or WMS-server, 

and traditional web APIs, it has other applications as well. An event sourced system 

enables easy access to historical data, since it by design stores all historical versions of a 

feature. With the rise in machine learning (ML) applications, training data is a valuable 

commodity. Thus, having the means to build a repository of historical, geospatial vector 

data is likely a worthwhile effort. Since an event sourced system by design tracks the 

complete history of a dataset, extraction of historical training data for statistical analysis 

and machine learning applications should be rather straightforward. 

Another application of an event sourced geospatial storage system is utilization of the 

events themselves. Since each event describes a change to a particular geospatial feature, 

an event sourced system can be used to monitor changes to an area of interest. One 

example may be a dataset calculating flooding risks. When an update to this dataset is 

converted into events, each event can be checked against a list of properties, and owners 

alerted if there is a change in their flood risk calculation.  
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These examples show that the inherent properties of event sourcing enable both 

traditional database storage of geospatial features using a read projection, as well as 

applications that would be cumbersome to develop using a traditional approach with bulk 

updated datasets.  
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Vector data change detection 

In the case of automated IoT-sensors the data stream can easily be treated as a series of 

events. A temperature sensor can trigger an event if the temperature changes above a 

given threshold. Creating an event sourced system on top of an existing stream of events 

is by far the simplest approach. However, open governmental geospatial data is rarely 

distributed as a stream of events. All the 47 nations who provide national map data as 

open geospatial data utilizes temporal snapshots, according to data from the Global Open 

Data Index (36). This means that most open geospatial data are updated in bulk at regular 

intervals. In addition, we have found no indication that institutions responsible for 

disseminating open geospatial data are considering a transition to an event based delivery 

mechanism. 

While data owners could, in the future, adopt an event-based mechanism for data 

dissemination, this is uncertain and outside our control as data users. Thus, in order to 

reap the benefits of event sourcing without having to wait for a third-party, we have to 

act. We propose to introduce a mechanism for mapping bulk updated geospatial datasets 

to event-streams. This means that we control the whole process and are not dependant on 

third-parties adopting new mechanisms.  

However, converting bulk-updated temporal snapshots of a dataset into an event log is 

not straightforward. In the example case illustrated in Table 1 and Table 2, the existence 

of object identifiers that are consistent across versions allows for a relatively simple 

conversion. Changes to a feature across dataset versions can be tracked using the object 

identifier. Unfortunately, not all bulk-updated datasets use object identifiers that are 

consistent across versions. What is needed is a robust mechanism for change detection.  
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The term “change detection” in the geospatial domain is usually associated with detecting 

changed areas in raster imagery (37). However, the term is also used more broadly in 

computer science to refer to “detecting and representing changes to data” (38) . Here, we 

adhere to this broader definition and use it to describe the process of detecting changes to 

bulk-updated geospatial vector datasets. Chawathe et al. (38) lists four key characteristics 

of a system for change detection in hierarchically structured information: 

1. Nested Information 

2. Object Identifiers not assumed 

3. Old, new version comparison 

4. High Performance 

If the requirement to handle nested (or hierarchical) information is replaced with a 

requirement to handle geospatial vector features, these requirements describes what is 

needed to convert bulk-updated geospatial vector data into an event stream. Such an 

algorithm should consider both the vector geometry and accompanying attributes of a 

feature. The development of such an algorithm is outside the scope of this work, but we 

have identified several algorithms for vector geometries that could serve as the basis for, 

and constitute the first initial steps toward, such an algorithm (39,40). 
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Data conflation 

So far, our discussion has revolved around how a single dataset can be transformed from 

temporal snapshots released in bulk to a stream of events using an automated pipeline. 

We have shown how this pipeline can be enhanced using read projections for accessing 

current and historical data, and how the events themselves can trigger actions. This means 

that event sourcing of geospatial datasets offers several new opportunities. Even more 

opportunities are presented when we start considering options for conflating several 

datasets. One can argue that this is nothing new. One of the pillars of GIS is the ability to 

superimpose different geospatial datasets in order to gain new insights.  

What is new is that several datasets mapping the same phenomena can be combined. Data 

redundancy is a natural consequence of a growth in competing sources of geospatial 

information. OpenStreetMap was started as a countermeasure to closed, governmental 

datasets (4). Many of these datasets are now becoming available as open datasets. Thus, 

we have multiple sources of geospatial information mapping the same phenomena in the 

same area. While two different surveys of an area may aim to map the same set of features, 

they are likely to end up with dissimilar results. Surveying techniques may result in 

different accuracy and level of detail of the mapped geometries, and the intention and 

goals of the survey may result in different sets of attributes being collected.  

An appropriate example is building footprints. The high-detail Norwegian topological 

governmental dataset FKB contains 5.4 million building footprints mapped using 

professional equipment and technology, according to a strict methodology and a 

formalized schema. OpenStreetMap users have also mapped building footprints in 

Norway, using satellite and aerial imagery without any strict procedure and using a tag-
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based approach (41). This process has resulted in approximately 500.000 digitized 

building footprints in Norway (as of June 2018). As a general rule of thumb, official 

datasets are often more accurate, while crowdsourced datasets exhibit a greater variety of 

data. In this specific case, the FKB data have overall finer resolution and accuracy, while 

the OSM data contains additional information. Names of businesses, retail categories, and 

links to home pages and social media are some examples. Thus, for any given application, 

the ideal building dataset in Norway may be a combination of FKB and OSM data.  

However, creating a conflated dataset is not straightforward. Deciding what to keep, what 

to reject, and what to merge is a decision that is difficult to formalize and encode in an 

algorithm. This decision is largely dependent on human judgement. This judgement stems 

from experience and human capabilities that are difficult to replicate using procedural 

algorithms or even machine learning.  

On the other hand, the lure of automation is that it enables us to process data a lot faster 

than a human is capable of. This is the reasoning behind what is known as “human in the 

loop computing”, a combined approach where algorithms handle the “easy” cases, while 

the more difficult cases are handed over to humans. The results of human judgement is 

then fed back into the system to serve as training data for the algorithm (14).  

Micro-tasking is a promising method for handling human interaction in such a system. In 

a micro-tasking scenario, a problem is partitioned and distributed to a crowd of 

individuals using the Internet. These tasks should not require extensive training and 

should be completable in minutes (42,43). Again, OpenStreetMap may serve as an 

example. Several imports of governmental open geospatial data to OSM has been carried 

out using a micro-tasking approach (44,45). Juhász and Hochmair (46) show an example 
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of a “human in the loop”-process for OSM imports, where “one part of the dataset was 

uploaded automatically, and the other one was set aside for the community to review.” 

These examples show that “human in the loop computing” and micro-tasking are 

promising techniques for dealing with geospatial conflation tasks. However, there are still 

several unanswered questions regarding this approach. How does one decide what tasks 

are easy and difficult? How should the tasks be partitioned? The examples we have found 

on OSM imports used census tracts or similar partitions. While this is an easy solution, 

we are not certain that this approach is based on anything besides ease of use and 

assumptions. More research on how micro-tasking can be applied to a geospatial 

conflation task is thus required.  
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Implementing an event-based pipeline 

Methods for handling geospatial big data, geospatial vector data change detection, 

geospatial diffing algorithms, and micro-tasking approaches to geospatial conflation tasks 

are thus important components of an event sourced pipeline for geospatial vector data 

management. Figure 4 shows an overview of such a pipeline and places the different 

components in context. 

 

Figure 4: Overview of an event-sourced pipeline for geospatial vector data. 

The actual implementation of an event-based pipeline is just as important as the individual 

components it consists of. One important issue is scalability. A pipeline such as this 

should be able to handle an increase in datasets, with loads in the range of thousands of 

datasets, each with several hundred thousand features. Fortunately, these datasets are not 

dependant on each other, so horizontal scale-out is an obvious solution. Another 

characteristic of such a pipeline is that the workload is not constant. If new versions of a 

bulk-updated dataset are released at a monthly schedule, the initial mapping to events is 
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run once a month. In these periods, we need sufficient processing power to handle the 

load quickly, but once finished this processing power is not required again until the next 

update. 

These characteristics seems indicative that a public cloud computing platform may be a 

good platform. According to the US National Institute of Standards and Technology 

(NIST) “Cloud computing is a model for enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable computing resources […] that can be 

rapidly provisioned and released with minimal management effort or service provider 

interaction.” (20). These characteristics closely line up with the needs of such a pipeline. 

There is no need for an up-front investment in hardware, and the pipeline can be scaled 

out on demand. Focus on rapid provision and release is also an important factor, as this 

affects the ability of the system to include new datasets rapidly. Thus, we see the use of 

a public cloud platform as good match for the envisioned pipeline.  

The NIST definition of cloud computing is rather broad, and further classification is often 

necessary. One option is to group cloud services by how many layers of abstractions they 

provide (47). In this scheme, Infrastructure as a service (IaaS), where the cloud provider 

“[…] provides the physical computing resources that are configured by the user to meet 

variable needs” offers the least amount of abstraction. Platform as a Service (PaaS) offers 

the users configurable software components. These components are usually databases, 

web servers, and middleware. Software as a Service (SaaS) is the next step up the 

abstraction-ladder and offers fully configured software available on-line.  

A further abstraction is known by the oxymoron “serverless computing”, or Functions as 

a Service (FaaS) (48). The idea is to provide the user with a way to run pre-defined 
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functions which does not depend on state mutation. The actual server running the 

functions are abstracted out, and all the user is left with is a function that acts on its input 

to produce a result. The functions in a FaaS architecture can receive input and return 

results through mechanisms such as HTTP requests, databases, message queues, and file 

storage repositories.  

While all these abstractions come with their strengths and weaknesses, we find that a high 

level of abstraction may be a good starting point. While a high level of abstraction usually 

means a limitation of capabilities it also allows for more rapid development. Since the 

high level of abstraction hides complexity, it allows the developer to focus on the task at 

hand, rather than supporting functionality. If a solution created using a high level of 

abstraction turns out to be less performant or scalable than required, it is always an option 

to re-create it using a lower level of abstraction. The FaaS paradigm also leans heavily on 

the concept of events (48), which is a good fit for the envisioned pipeline.  

Since all the components of the outlined pipeline seems feasible to implement using FaaS-

level abstractions, this seems like a good starting point. All the “big four” cloud platforms 

provide a FaaS offering (AWS Lambda, IBM Cloud Functions, Google Cloud Functions, 

and Azure Functions) (49). In principle, these technologies offer the same functionality, 

but there are differences in platforms, communication mechanisms, available 

programming languages, orchestration options, performance, and cost models.  
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Results 

This thesis argues that an event-based pipeline is a viable solution for management of 

large amounts of bulk-updated geospatial vector data from heterogenous sources. Figure 

5  shows an illustration of the envisioned pipeline. 

 

Figure 5: Overview of the proposed event-sourced pipeline for geospatial vector data, showing 

the distinct components needed in order to implement the required functionality. 

From this figure, the following list of components can be derived: 

• Change Detection. A method to detect changes to geospatial features from one 

version of a dataset to another.  

• Diff Creation. A method for fast, reliable, and compact calculation and 

representation of changes to a geospatial feature.  

• Event Store. A storage for events in an event-sourced system that should be able 

to store large amounts of events and retrieve them based on an object identifier. 
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• Event Store API. An implementation of the event sourcing mechanisms. This is 

where events are fetched and combined in order to retrieve the requested version 

of a feature.  

• Message Bus. A mechanism for informing other systems when events occur. 

• Read projections. A read-optimized storage for geospatial datasets. 

• Data transformers and filters. Transformers are used to apply data 

transformations to geometries and attributes, such as renaming, reprojection, 

simplifying, and linking data. Filters are used to limit what features are written to 

the read projection, based on a set of pre-defined rules. 

• Event listeners. Mechanisms for observing the event store and act when a relevant 

event occurs.  

In addition, a method for data conflation is an important aspect. This process is not 

included in Figure 5, as the figure shows a pipeline working on a single dataset. The 

conflation mechanism works on a combination of two datasets.  

These nine components form the building blocks of the event-based pipeline for 

geospatial vector data management that lies at the core of this thesis. In order to create a 

fully functioning pipeline, all these components have to be implemented and combined. 

As discussed, a public cloud computing platform is a good option for implementing this 

kind of pipeline. A combination of readily available components and custom code allows 

for a scalable system, with built in mechanisms for access control, exception handling 

and logging. In addition, existing solutions for deployment and orchestration can be 

leveraged.  



51 

 

While the actual implementation of this pipeline in a public cloud computing platform is 

outside the scope of this thesis, some work in this direction was carried out in a master’s 

thesis by Kjelsaas (50), who implemented parts of the discussed pipeline on the Microsoft 

Azure cloud computing platform. However, for the purpose of this thesis, an example 

pipeline has been implemented. This example is implemented without taking specific 

cloud provider implementations into consideration and eschews several of the 

requirements of a production-ready pipeline in favour of readability and illustration of 

concepts.  

The example implementation is written in the C# programming language on the .NET 

Core platform, and is available at https://github.com/atlefren/PhdExamplePipeline. 

Extracts from this implementation is referenced as individual listings in the following, to 

illustrate concepts and ideas. However, as the listings omit several details and examples, 

it is recommended to read through the provided source code. The unit tests are a good 

starting point. These simulates several processes of the pipeline by the use of a small 

example dataset and mocking of un-implemented components. 

The rest of this section presents and discusses each of the pipeline components. Diff 

creation, storage of heterogenous geospatial data in a spatial database, and data conflation 

using micro-tasking are the main topics of research papers IV, III, and II, respectively. 

These components are discussed in greater detail, with relevant results from the research 

papers presented in context. Vector data change detection and pipeline implementation in 

a public cloud platform have been addressed partially by master students under the 

supervision of the candidate (50,51), while the remaining components are covered in 

brief, and points to possible existing solutions. All components are however illustrated 

https://github.com/atlefren/PhdExamplePipeline
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with related excerpts from the sample implementation, in order to place them in context 

and illustrate their intended function. 

The remainder of this section is divided into four subsections. In the first subsection, the 

components required to convert a bulk-updated, temporal snapshot dataset into events are 

described. In the second subsection we examine how events are stored and distributed. 

The third subsection describes how geospatial events can be utilized, using read 

projections and event listeners. In the fourth and final subsection, we examine human-

assisted data conflation using micro-tasking, which allows us to combine data from 

disparate datasets. 

  



53 

 

Transforming temporal snapshots to events 

 

Figure 6: The change detection and diff creation components from Figure 5 shown in more detail. 

The process of transforming a bulk-updated dataset into a stream of events required for 

an event sourced system consists of three operations, as shown in Figure 6. When a new 

version (𝑛 + 1) of a dataset is delivered, the existing version (𝑛) is retrieved from the event 

store. Then, the features from the current and new version are compared, and features that 

are changed between versions are converted into diffs. These diffs are then stored in an 

event store, and a message is published on a message bus. This ensures that other systems 

and components using the data have the ability to act on the arrival of new data, and that 

all changes are properly stored.  

This process is implemented in the 𝐸𝑣𝑒𝑛𝑡𝑆𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟  class of the reference 

implementation. Relevant parts of this code are reproduced in Listing 1.  
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public async Task UpdateDataset( 
    Guid datasetId, 
    IEnumerable<Feature<TGeometry, TAttributes>> newFeatures) 
{ 
    //Get current version (version n) of the dataset 
    var oldFeatures = await _eventSourceApi.GetAggregatesAtLatestVersion(datasetId); 
 
    //Use the new and old features to generate a list of pairs  
    //with corresponding action 
    var changes = await _changeDetector.FindChanges(oldFeatures, newFeatures); 
 
    //Create a diff for each pair that is changed, created, or deleted 
    var events = _featureDiffer.GetDiffs(changes).ToList(); 
 
    await Task.WhenAll(events.Select(@event  

=> StoreEvent(datasetId, @event) 
    ).ToArray()); 
} 
 
private async Task StoreEvent(Guid datasetId, Event<FeatureDiff> @event) 
{ 
    await _eventSourceApi.SaveEvent(@event); 
    _messageBus.Publish(datasetId, @event); 
} 

 

Listing 1: Extract of the 𝐸𝑣𝑒𝑛𝑡𝑆𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟  class, which handles change detection, diff 

creation, event storage, and event messaging.   
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Geospatial vector data change detection 

When a new version of a bulk-updated dataset is received, each feature of the new version 

has to be compared to the existing data to decide what action to take. Listing 2 shows a 

C# interface describing this operation.  

public interface IChangeDetector<TGeometry, TAttributes>  
where TGeometry : IGeometry 

{ 
    public Task<IEnumerable<FeaturePair<TGeometry, TAttributes>>> FindChanges( 
        IEnumerable<Aggregate<Feature<TGeometry, TAttributes>>> existingVersion, 
        IEnumerable<Feature<TGeometry, TAttributes>> newVersion 
    ); 
} 

 

Listing 2: Interface describing a change detector for geospatial vector features. Given two lists 

of features, the 𝐹𝑖𝑛𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑠 method finds pairs of matching features and annotates them with 

the appropriate operation; Create, Delete, Modify, or NoOperation. 

A feature can be created, deleted, modified, or unchanged. In order to determine the 

correct action, we need a mechanism for change detection. In his master’s thesis Zarosa 

(51) performed a comparison of two existing algorithms for change detection: Structural 

matching (39) and Hierarchical matching (40). Both algorithms were implemented and 

tested using real-life data from OSM. The experiment found no differences in terms of 

precision, but the structural matching algorithm performed marginally better in terms of 

accuracy. Furthermore, the structural matching algorithm was found to have an average 

run time that was approximately 30% slower than the hierarchical matching algorithm. 

However, these results may be influenced by the low number of geometries included in 

the experiment, and by implementation-specific details of the experiment.  

Another aspect worth noting is that these algorithms only perform change detection on 

vector geometries. Most geospatial data also include attributes, which will have to be 
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considered in this context as well. In the pipeline described here, we envision combining 

algorithms for change detection in structured data with a change detection algorithm for 

geospatial vector data. 
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Diff creation  

Once change detection is complete, the changes to each feature-pair has to be saved as an 

event. All un-modified features are discarded, but for created, modified, and deleted 

features we need an efficient format to store the diff. We found no examples applying 

source code version control principles to geospatial vector data in the literature, but the 

industry provides several examples, such as GeoGig (52), GeoDiff (53), and Sno (54). 

An examination of existing literature did not yield any algorithms designed to take 

advantage of the mathematical properties of vector data. The commercial examples do 

not seem to be using any specialized algorithms either. The common approach is to apply 

a post- and a pre-processing step to convert geospatial vector data to a text-based or binary 

format, and use diffing algorithms designed for this type of data.   

The GeomDiff algorithm presented in Paper IV is based on the work of Myers (55), but 

takes advantage of the mathematical properties of vector data. An implementation of this 

algorithm was created in C#. This implementation was then compared to three existing 

algorithms designed to diff textual, binary, and JSON data, using the beforementioned 

pre- and post-processing steps.  

A comparison of these algorithms was carried out in a cloud computing environment, 

using 2.5 million real-life geometry pairs extracted from OpenStreetMap. As seen in 

Table 3, we found that the GeomDiff algorithm was the best choice for point geometries, 

but it suffered from performance degradation on linestring and polygon geometries when 

the vertex count approached 500. This experiment shows that a tailored algorithm for 

geospatial vector data is worth pursuing.  
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While the current GeomDiff implementation suffers from performance degradation on 

diff creation of polygon and linestring geometries, it performs very good on apply and 

undo operations, and produces patches that are small in size. Thus, finding and fixing the 

issues related to the performance degradation in the GeomDiff algorithm is an obvious 

next step when implementing the described pipeline. 

Geometry 

Type 

Algorithm Create Time (ms) Apply Time (ms) Undo Time 

(ms) 

Patch Size (b) 

  Mean St.dev Mean St.dev Mean St.dev Mean St.dev 

Point TextDiff 0.22 10.92 0.47 15.64 0.32 2.32 54.0  30.0 

JsonDiff 0.38 7.21 0.21 2.51 0.16 1.62 184.0  94.0 

BinaryDiff 190.88 272.07 67.39 131.74 - - 168.0  20.0 

GeomDiff 0.03 1.80 0.02  0.58 0.01 0.40 25.0    0.0 

  

Linestring TextDiff 9.01 58.56 1.00 10.98 1.04 4.61 623.44 1,733.22 

JsonDiff 2.27 35.96 1.12 10.08 1.06 8.23 3,064.38 9,656.37 

BinaryDiff 183.47 333.88 57.07 159.81 - - 357.16 635.37 

GeomDiff 57.83 3281.33 0.21 8.20 0.19 5.22 419.63 1,355.67 

  

Polygon TextDiff 7.53 70.12 1.08 39.82 0.92 7.22 481.37 2,023.27 

JsonDiff 3.50 76.01 1.15 20.80 0.95 10.60 2,970.73 15,035.43 

BinaryDiff 224.40 571.71 69.11 272.37 - - 301.82 684.04 

GeomDiff 118.09 5,159.74 0.39 79.77 0.25 7.02 306.00 1,397.86 

Table 3: Results from the geometry diff experiment. The time it took for the algorithm to create a 

patch, apply the patch, undo the patch, and the patch size in bytes was measured using 1,335,489 

point pairs, 813,503 linestring pairs, and 433,776 polygon pairs for the GeomDiff 

implementation, and three other approaches. The GeomDiff algorithm performs best on all 

metrics for point geometries but degrades on creation on linestring and polygons.  

As noted, when discussing change detection, the distinction between geometries and 

features is important. The GeomDiff algorithm only operates on geometries, while the 
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pipeline will operate on features. However, attribute diffing can be achieved using an 

existing algorithm designed to handle structured data, such as JSON. This was presented 

in Paper IV. An example of this is provided in Listing 3, where both GeomDiff (56) and 

JsonDiffPatchNet (57) are used to create a diff of the complete feature.  

public FeatureDiff Diff( 
    Feature<TGeometry, TAttributes> v1, 
    Feature<TGeometry, TAttributes> v2) 
    => v2 == default 
        ? default 
        : new FeatureDiff() { 
            AttributeDiff = DiffAttributes(GetAttributes(v1), v2.Attributes), 
            GeometryDiff = DiffGeometry(GetGeometry(v1), v2.Geometry) 
        }; 
 
public Feature<TGeometry, TAttributes> Patch( 
    Feature<TGeometry, TAttributes> v1, 
    FeatureDiff diff) 
    => diff == default  
        ? default  
        : new Feature<TGeometry, TAttributes>() 
        { 
                Attributes = PatchAttributes(GetAttributes(v1), diff.AttributeDiff), 
                Geometry = PatchGeometry(GetGeometry(v1), diff.GeometryDiff) 
        }; 

 

Listing 3: Relevant parts of the geospatial vector feature differ implemented in the 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐷𝑖𝑓𝑓𝑃𝑎𝑡𝑐ℎ  class. A 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐷𝑖𝑓𝑓  object consists of two separate properties, 

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐷𝑖𝑓𝑓  and 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐷𝑖𝑓𝑓 , which are handled by GeomDiff and JsonDiffPatchNet, 

respectively. 
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Event storage 

 

Figure 7: Excerpt from Figure 5, showing the components needed to store and distribute events. 

When changes between versions are detected and efficient diffs are created, the events 

need to be stored, and other systems have to be notified. This process involves the three 

components shown in Figure 7; the event store and the event store API, and the message 

bus. These components are described in the following.   
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Event store 

The event store mechanism is, at its core, a storage for events. A combination of events 

related to the same feature is referred to as an aggregate, and this aggregate has a unique 

identifier. Each event related to an aggregate has its own version number, which is 

incremented when a new event for an aggregate is stored. The event store should support 

storing an event, consisting of an aggregate identifier, a version number, and the actual 

event data (32). In our case, the event data is the feature diff created in the event differ. 

Mechanisms for storing and retrieving events are core features of the event store, as 

outlined in Listing 4. In addition, we need to ensure consistency, i.e. that every event is 

stored only once. This can be achieved using indices or locks. The event storage can be 

implemented using a traditional RDBMS, or more modern NoSQL databases. The key 

point is that we need to ensure consistency and be able to retrieve events based on version 

number and aggregate id. 

public interface IEventStorage<TEventData> 
{ 
    Task<IEnumerable<Guid>> GetAggregatesForDataset(Guid datasetId); 
    Task<IEnumerable<Event<TEventData>>> GetEventsForAggregate( 

Guid datasetId, 
Guid aggregateId 
); 

    Task StoreEvent(Guid datasetId, Event<TEventData> @event); 
} 

 

Listing 4: Interface describing an event store. This interface supports retrieving all aggregate ids 

for a dataset id, retrieving all events for an aggregate, and storing an event. The interface is 

generic, as the actual contents of 𝑇𝐸𝑣𝑒𝑛𝑡𝐷𝑎𝑡𝑎 will change depending on the data stored. 
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Event store API 

The event store API should handle retrieving features from and storing events to the event 

store. To make our pipeline work, we need at least three methods; a way to save an event, 

a way to retrieve all features in a dataset in their latest version, and a way to retrieve the 

latest version of a specific feature given its ID. Listing 5 provides a minimal interface of 

an event store API.  

public interface IEventStoreApi<TData, TDiff> 
{ 
    Task SaveEvent(Event<TDiff> @event); 
    Task<IEnumerable<Aggregate<TData>>> GetAggregatesAtLatestVersion(Guid datasetId); 
    Task<Aggregate<TData>> GetAggregateAtLatestVersion(Guid aggregateId); 
} 

 

Listing 5: The 𝐼𝐸𝑣𝑒𝑛𝑡𝑆𝑡𝑜𝑟𝑒𝐴𝑝𝑖  used in the example pipeline. The interface describes three 

asynchronous methods, for saving an event and to retrieve all features and a single feature in 

their latest version. 

This API can also be extended to include methods for retrieving features at a specific 

version, or from a specific point in time.  

The actual implementation of the event store API is responsible for applying all events 

related to a feature in sequence, in order to arrive at the requested version. This process 

is illustrated in Listing 6.  
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public async Task<Aggregate<TData>> GetAggregateAtLatestVersion( 
    Guid datasetId, 
    Guid aggregateId) 
    => (await _eventStorage.GetEventsForAggregate(datasetId, aggregateId)) 
        .OrderBy(e => e.Version) 
        .Aggregate(default(Aggregate<TData>), ApplyEvent); 
 
private Aggregate<TData> ApplyEvent( 
    Aggregate<TData> aggregate, 
    Event<TDiff> @event) 
    => new Aggregate<TData>() 
    { 
        Data = _differ.Patch(aggregate.Data, @event.EventData), 
        Id = aggregate.Id, 
        Version = @event.Version 
    }; 

 

Listing 6: The 𝐺𝑒𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝐴𝑡𝐿𝑎𝑡𝑒𝑠𝑡𝑉𝑒𝑟𝑠𝑖𝑜𝑛 method of the 𝐸𝑣𝑒𝑛𝑡𝑆𝑡𝑜𝑟𝑒𝐴𝑝𝑖 class.  

The Running time of the 𝐺𝑒𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝐴𝑡𝐿𝑎𝑡𝑒𝑠𝑡𝑉𝑒𝑟𝑠𝑖𝑜𝑛 method is given as 𝑛 ×  𝑥, where 𝑛 

is the number of events and 𝑥 running time of the 𝐴𝑝𝑝𝑙𝑦𝐸𝑣𝑒𝑛𝑡 method. In order to reduce 

the running time, rolling snapshots (32) can be utilized.  

The essence of rolling snapshot is to save the current representation of a feature at regular 

intervals. This reduces 𝑛, the number of events 𝐺𝑒𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝐴𝑡𝐿𝑎𝑡𝑒𝑠𝑡𝑉𝑒𝑟𝑠𝑖𝑜𝑛 have to loop 

trough. If a feature has 1010 stored versions, the running time would be 1010 × 𝑥. When 

using rolling snapshots at every 100 versions, the running time would be 10 × 𝑥, as we 

can retrieve the snapshot of version 1000, and apply ten events. 
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Event message bus 

In Listing 1, we note that each changed feature is distributed as a message on a message 

bus. This message bus serves as a means to communicate to other systems and users that 

an event they might be interested in has occurred.  

The 𝐼𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑢𝑠-interface presented in Listing 7 shows what we expect from a message 

bus. We need a way to publish events, and a way to subscribe to events. For the example 

pipeline, we have chosen to keep this as a simple, in-memory solution. In practice, this 

component should be a shared and scalable component that can be accessed by several 

systems. This is an offering in most cloud platforms, and using an off-the shelf component 

for this ensures a fault-tolerant and resilient system (58).  

public interface IMessageBus<TEventData> 
{ 
    void Subscribe(Guid datasetId, Action<Event<TEventData>> callback); 
 
    void Publish(Guid datasetId, IEnumerable<Event<TEventData>> events); 
 
    void Publish(Guid datasetId, Event<TEventData> @event); 
} 

 

Listing 7: 𝐼𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑢𝑠 interface describing methods an implementation of a massage bus class 

should implement. 

An important consideration is to ensure that the write to the event store and the publication 

to the message bus is executed as a two-phase commit. If not, situations where the event 

is published, but not written to storage, could occur (32). In our example, this means that 

the 𝑆𝑡𝑜𝑟𝑒𝐸𝑣𝑒𝑛𝑡 method in Listing 1 should be an all or nothing operation. If the publication 

of the message on the message bus fails, the whole operation should fail. 
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Use of event sourced datasets 

So far, we have shown how an event sourced dataset can be created and stored, and how 

other systems and components can be notified when an event occurs. But how do we use 

this data? The event store API offers methods for reading data from the event store and 

is in many cases a viable solution for retrieving data. However, by utilizing the event store 

and the message bus, several other mechanisms for using an event sourced geospatial 

dataset can be created. Read projections and event listeners are two methods for utilizing 

an event sourced dataset.  
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Read projections 

 

Figure 8: The concept of read projections, showing how the system interacts with the message 

bus and event store API in order to retrieve feature changes, apply filters and transformations to 

them, and store them in a spatial database. The figure also includes some possible uses of the 

read projections, such as a WMS server, a Desktop GIS, or a web API.  

Read projections is a method to simplify data access in an event sourced system. The 

concept allows for faster data access and enables use of traditional tools which require a 

RDBMS or specialized formats. In addition, the use of read projections enables data 

filtering and transformation, as shown in Figure 8. 

An important aspect of read projections is that a read projection is a read-only replica of 

the original dataset. In an event sourced system, the only way to update data is to dispatch 

an event.  This means that update conflicts, the main reason for avoiding data redundancy, 

does not pose a problem. Thus, an event sourced system combined with read projections 

allows for creation of several read-only copies of the data. This simplifies horizontal 

scaling, which can increase the performance and stability of the system. In addition, it 

enables us to tailor the stored data to each application, by using data filtering and 

transformation, as described in the next subsection. 
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When working with spatial data, a spatial database is a candidate for storing read 

projections. Desktop GIS and WMS or tile servers usually provide mechanisms for 

reading from spatial databases out-of-the-box. In addition, spatial databases often provide 

a set of geospatial operations that can be used to query the data. However, how feature 

attributes and geometries are stored in a spatial database can influence both usability and 

performance of the system.  

One promising technique are NoSQL (or “Not only SQL”) databases, which emerged in 

the late 2000s (59), as a way to handle “big data” challenges. Document stores is one 

class of NoSQL systems, which store records as documents with no pre-defined schema. 

In Paper III, we compared the read and write performance of a traditional, schema-based 

layout with one table per dataset and a document-store, no-schema, single store for all 

datasets using the jsonb datatype in the PostgreSQL database system.  

Storage 

layout 

Import Query –  

intersect 

Query –  

intersect + attribute 

Disk 

size 

Speed (m) SD Speed (s) SD Speed (s) SD (GB) 

Table-based 79 3.57 19 0.54 99 3.24 12.29 

Jsonb 179 4.50 25 1.00 162 3.30 17.50 

Table 4: Main findings of Paper III. The table-based layout was found to be faster both in terms 

of import speed and query speed. In addition, the storage footprint of the table-based layout was 

smaller.  

As can be seen in Table 4, we found that a one-table-per dataset layout, with explicit 

columns for each attribute, outperformed a large document-store combined with a 

geometry column, both in terms of insert and query speed, as well as in required storage 

space. 
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In light of these findings, we propose to base the read projections in the pipeline on a 

table-based layout. However, the premise of the HOGS system presented in Paper III was 

to import bulk-updated datasets from file formats. The HOGS system is implemented in 

Python, while we envision the proposed pipeline to be implemented in C#. This means 

that the HOGS system cannot be directly plugged into the pipeline, but the findings from 

the paper can be incorporated into the pipeline architecture.  

An illustration of how a read projection can be managed is given in the 

𝑅𝑒𝑎𝑑𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑊𝑟𝑖𝑡𝑒𝑟  class. Listing 8 shows the 𝐶𝑟𝑒𝑎𝑡𝑒𝑅𝑒𝑎𝑑𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛  method, which 

handles creation of a table and subscribes to the message bus in order to receive new 

events. 

public async Task CreateReadProjection(Guid datasetId) 
{ 
    var tableName = GetTableName(datasetId); 
    await _databaseEngine.CreateTable(tableName, GetColumns()); 
    await InsertExistingFeatures(datasetId, tableName); 
     
    _messageBus.Subscribe(datasetId, @event => 
    { 
        Update(datasetId, tableName, @event); 
    }); 
} 

 

Listing 8: The 𝐶𝑟𝑒𝑎𝑡𝑒𝑅𝑒𝑎𝑑𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 method of the 𝑅𝑒𝑎𝑑𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑊𝑟𝑖𝑡𝑒𝑟 class. This method 

creates a table to store data in, populates it with any existing features, and then subscribes to the 

message bus in order to receive new events. 
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Data filtering and transformation 

In many cases, we want to go further than establishing a replica. By establishing a read 

projection for each application using the data, we ensure that increased load on one 

application does not influence performance of other apps. Since each read projection is 

now used exclusively by a single application, we are free to process the incoming data to 

fit the needs of the application. This can be achieved using pre-processing steps. Filtering 

and transformation are two such pre-processing steps, both shown in the 𝑈𝑝𝑠𝑒𝑟𝑡 method 

in Listing 9. 

private async Task Upsert( 
    Guid datasetId, 
    string tableName, 
    Aggregate<Feature<TInputGeometry, TInputAttributes>> aggregate) 
{ 
    if (!await ShouldKeep(datasetId, aggregate.Data)) { 
        return; 
    } 
    var transformedFeature = _transformFeature(aggregate.Data); 
    var rowData = GetRowData(aggregate.Id, transformedFeature); 
    await _databaseEngine.Upsert(tableName, rowData); 
} 

 

Listing 9: The 𝑈𝑝𝑠𝑒𝑟𝑡  method in 𝐶𝑟𝑒𝑎𝑡𝑒𝑅𝑒𝑎𝑑𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛,  which performs filtering, 

transformation, and maps the feature to a database row, before effectuating the insert or update 

statement.  

Data filtering is a method for limiting which features are written to the read projection. 

As can be seen in Listing 9, if the 𝑆ℎ𝑜𝑢𝑙𝑑𝐾𝑒𝑒𝑝 method does not indicate that a feature 

should be kept it is skipped and will never arrive at the read projection database. The 

actual 𝑆ℎ𝑜𝑢𝑙𝑑𝐾𝑒𝑒𝑝 method is passed as a parameter to the read projection writer, which 

means that the implementation can be tailored to the dataset in question, as long as it 

matches the signature provided in Listing 10. 
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Func<Guid, Feature<TInputGeometry, TInputAttributes>, Task<bool>> _shouldKeepFeature; 
 

Listing 10: Signature of the 𝑆ℎ𝑜𝑢𝑙𝑑𝐾𝑒𝑒𝑝 method. This is an async method, which takes a dataset 

id and a feature as input and returns a Boolean, indicating if the feature should be kept or not.    

Data transformation is, as mentioned, the task of transforming the data from the event 

store before it is stored in the read projection. This is useful if there is a need to re-project 

the geometries or alter them in some other way (i.e. converting a polygon into its centroid, 

simplifying the geometry, or adding a buffer), or if the attribute schema needs to be 

changed in any way. This transformation can be implemented by passing a function to 

the 𝐶𝑟𝑒𝑎𝑡𝑒𝑅𝑒𝑎𝑑𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛  object, which then calls this function before the feature is 

written to the database. The 𝑈𝑝𝑠𝑒𝑟𝑡 method in Listing 9 shows this in context. 
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Event listeners 

To keep a read projection in sync with the event store, we subscribe to messages on a 

message bus, as seen in Figure 9. This process can be enhanced using data filtering and 

transformations.  However, the use of event listeners and a message bus to build a 

representation of the dataset that can be queried in a traditional manner is just one example 

of their usage.  

 

Figure 9: An illustration of the concept of event listeners. 

Event listeners also allow us to use the events themselves to trigger processes and actions. 

One example is to listen for events on a flood-risk dataset, and automatically notify house 

owners via e-mail when the flood-risk of their property is updated. A related example is 

to use the same events to trigger a re-calculation of insurance premiums whenever the 

underlying data is changed.  
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Data conflation 

Data conflation is the task of merging geospatial features from separate datasets which 

maps the same concepts. Level of detail, accuracy, and what features are mapped usually 

vary between datasets, depending on the purpose of the survey, and the resources 

available. Figure 10 (reproduced from Paper II) shows an aerial photograph of a building 

(left) and two building outlines (middle and right) digitized from this image. It should be 

relatively easy for a human observer to determine that the outline in the middle image 

covers the entire building, while the one in the right image follows the ridge line of the 

roof and is thus missing a section.  

 

Figure 10: Aerial imagery of a building (left) and two building outlines digitized from this image 

(middle and right). The purple digitization (right) is incomplete, as it follows the ridge line rather 

than the outline. Figure from Paper II. 

When conflating spatial features from two datasets we want to be able to select the best 

representation in each case. As illustrated, this task is usually relatively simple for a 

human, but can be difficult to achieve for an algorithm. In Paper II, we examined how to 

effectively utilize the micro-tasking approach to assist in data conflation. 

An online experiment, simulating part of an OpenStreetMap import of building footprints 

was carried out. The experiment was designed to test how and if task partitioning and 
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prior experience working with geospatial data influenced time spent on a task and task 

accuracy. The experiment ran for 8 days, with a total of 164 participants completing at 

least one task.  

  
No. of 

obs. 

Sample 

mean 

St.dev 

Total time on 6 

assessments (s) 

All 427 100.05 50.99 

Experienced 234 102.69 54.94 

Inexperienced 193 96.85 45.68 

Number of correctly 

chosen footprints  

All 427 4.93 1.03 

Experienced 234 5.02 1.02 

Inexperienced 193 4.83 1.04 

Total time on 6 

assessments (s) 

1 assessment / task 146 95.99 51.90 

3 assessments / task 144 99.79 52.80 

6 assessments / task 137 104.66 47.97 

Number of correctly 

chosen footprints  

1 assessment / task 146 4.96 0.96 

3 assessments / task 144 4.95 1.07 

6 assessments / task 137 4.89 1.08 

Table 5: Main findings of Paper II. The upper half presents results of experience level, while the 

bottom section presents effects of task partitioning. Statistical analysis found that experienced 

participants performed marginally better in terms of accuracy, while none of the other metrics 

show any statistically significant differences.  

The main findings of the experiment are summarized in Table 5. We found that prior 

experience did not affect task completion time, but participants with prior experience 

performed minimally better in terms of accuracy. When examining task partitioning, we 
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found no indication that this influenced neither completion time nor accuracy. However, 

these results show that all participants achieved a high degree of accuracy, the average 

participant identified 82% of the correct building footprints, with an average of 16 

seconds spent on each assessment.  

Figure 11: A conflation process for two geospatial datasets employing micro-tasking. 

Incorporating a micro-tasking process into an automated pipeline poses a challenge, as 

this is an asynchronous process that relies on the availability of humans (42). However, a 

cloud-based architecture using message-passing to handle long-running processing times 

(58) is a viable approach to handle the asynchronous nature of human tasks. The conflate

method outlined in Listing 11 provides an overview of how this can be achieved. This 

process is also outlined in Figure 11. 
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public IEnumerable<Feature<TGeometry, TAttributesOut>> Conflate( 
    IEnumerable<Feature<TGeometry, TAttributesA>> datasetA, 
    IEnumerable<Feature<TGeometry, TAttributesB>> datasetB) 
{ 
    var pairs = GetPairs(datasetA, datasetB); 
    var toConflate = pairs.Where(p => p.NeedsConflation()); 
    foreach (var pair in toConflate) 
    { 
        _conflatorQueue.AddConflationTask(pair.A, pair.B); 
    } 
 
    return pairs 
        .Where(p => !p.NeedsConflation()) 
        .Select(p => p.GetFeature(_mapAttributesA, _mapAttributesB)); 
} 

 

Listing 11: The conflate method in the 𝐷𝑎𝑡𝑎𝐶𝑜𝑛𝑓𝑙𝑎𝑡𝑜𝑟 class. This method receives features from 

two datasets, with possibly different attribute schemas, and returns those which does not require 

manual comparison. This filtering is done using the provided _𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠𝐶𝑜𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 methods, which 

compares two features to check if they are similar enough to warrant manual inspection. Features 

which does not require manual inspection are returned, while feature pairs which require 

conflation are added to a _𝑐𝑜𝑛𝑓𝑙𝑎𝑡𝑜𝑟𝑄𝑢𝑒𝑢𝑒 for manual inspection. 

Features from the two datasets are compared using a provided function, and those in need 

of manual inspection are returned as pairs. These feature-pairs are passed as messages to 

an asynchronous queue, which in turn can present them as tasks to a crowdsourcing-

worker. The user interface for this task and how the conflated features are returned to the 

system are omitted from the example application. 
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Concluding remarks 

This thesis argues that the principle of event sourcing is a viable and effective solution to 

many of the problems related to managing a large amount of heterogenous spatial 

datasets. By leveraging the services available through a public cloud provider, a scalable, 

resilient, and performant solution can be created. In addition, I have shown how data from 

different datasets can be combined through the use of micro-tasking, and how data can be 

used through read projections and event listeners.  

Many of the findings in this thesis is the result of applying ideas and findings from 

computer science and the software industry to the geospatial domain. These domains are 

by no means separate magisteria, as witnessed by the digitization of the map brought 

forward by the digital revolution. However, as the debate over whether spatial is special 

or not shows, there is a divide between these areas of research. This thesis is an attempt 

to build yet another bridge over this gap, and to strengthen the connection made by 

previous researchers and professionals. 

Concepts from the software industry can often be applied to geospatial problems, but they 

often require some modification to perform optimally. The GeomDiff algorithm 

presented in Paper IV is a prime example of this. The concept of diffing dates back nearly 

fifty years, but no specialized algorithms for diffing geospatial data was found in the 

literature. Thus, identifying concepts from other fields of research and adapting them to 

the problem at hand has proven an effective path towards progress.  

This thesis is not the final chapter written on event sourcing of geospatial datasets. The 

work leaves several open threads. An actual implementation of the pipeline in a public 
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cloud computing environment is an obvious next step. Another, unsolved, issue is 

geospatial vector data change detection. Some solutions do exist, but none of them are 

perfect, and none addresses the problem of identifying changes to features, as opposed to 

geometries. Since this thesis is written as part of an industrial PhD programme, these 

challenges are logical next steps for Norkart AS, who is funding this work. 

While these issues are both interesting and challenging, the scope of a thesis has to be 

limited somewhere. I hope to continue working on these issues, and that others will join 

in. Nevertheless, the results presented herein establishes that an event based pipeline is a 

viable solution to the problem of managing an increasing stream of heterogenous 

geospatial vector data.  
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Efficient storage of heterogeneous 
geospatial data in spatial databases
Atle Frenvik Sveen* 

Introduction
New sources of geospatial data, such as the Internet of Things (IoT), Volunteered Geo-
graphic Information (VGI), and Open Geospatial Data, are becoming increasingly 
popular. This shift creates a demand for new ways to collect, manage, store, and analyse 
geospatial data. These challenges are mirrored in the general computer science concept 
of big data, a term describing datasets that are too large to be managed and processed by 
traditional technologies [1].

Laney [2] characterizes big data using the 3 Vs; Volume, Velocity, and Variety. These 
properties relate to geospatial data as well. Massive geospatial datasets originating from 
sensors are characterized by both high Volume and high Velocity, and open geospatial 
datasets from disparate sources comes with a high degree of Variety. This means that 
geospatial big data can be treated as a subset of big data, and opens up the possibility 
of using big data techniques to handle geospatial data [3, 4]. NoSQL (or Not Only SQL) 
data stores is one proposed solution to some of the challenges posed by big data. These 
data stores offer ways to handle the 3 Vs utilizing new techniques and architectures.

Abstract 

The no-schema approach of NoSQL document stores is a tempting solution for import-
ing heterogenous geospatial data to a spatial database. However, this approach means 
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However, most new technology is no silver bullet. The promises of NoSQL may seem 
tempting, but there are several negative consequences of this approach as well. Chan-
dra [5] uses the acronym Basically Available, Soft state, Eventual consistency (BASE) 
to describe NoSQL databases and contrast them with the ACID principle of relational 
databases. BASE also points to some of the drawbacks of NoSQL databases, such as the 
possibility of temporary inconsistencies. Another aspect is the lack of a universal query 
language. In light of this, we want to heed the advice from Stonebraker and Hellerstein 
[6] and examine if we really need to abandon the principles of Relational Database Man-
agement Systems (RDBMSes). In particular, we want to investigate if a combination of 
automated import routines and RDBMSes can offer the same advantages as NoSQL 
solutions when it comes to management and storage of heterogenous geospatial data.

In order to achieve this, we have implemented the Heterogeneous Open Geodata Stor-
age (HOGS) system. This is a command line utility, written in Python, that leverages the 
open source GDAL/OGR geospatial library to automate imports of heterogenous geo-
spatial data to a PostgreSQL/PostGIS database. By using both a traditional relational 
database layout and a NoSQL document-store layout we are able to benchmark both the 
import and query performance of the two storage layouts.

Background

RDBMSes dates back to the 1970′s [6], and Spatial database systems has been a term for 
about 30 years [7]. Today several of the best-known RDBMSes offer spatial capabilities 
according to the OGC Simple Feature Access specification. These spatial capabilities are 
often provided through an extension, such as PostGIS for PostgreSQL or Oracle Spatial 
for Oracle. In this paradigm, data types for spatial geometries are available alongside tra-
ditional data types and special SQL operators are available for spatial queries and oper-
ations. This means that a geometry can be treated as a normal column in a relational 
database table [8].

NoSQL data stores emerged in the late 2000 along with the “Web 2.0” movement [9]. 
The rise of these “not only SQL” systems was triggered by the need to handle “big data”, 
or datasets that are too large to be managed and processed by traditional technologies 
[1]. This typically involves sacrificing or weakening the Atomicity, Consistency, Isolation, 
and Durability (ACID) principle underlining traditional RDBMSes [10].

There is no entirely agreed upon definition of NoSQL, but Cattell [9] offers six key fea-
tures of such systems:

• Horizontal scaling.
• Replication and distribution over many servers.
• Simple call interface.
• Weakening of the ACID principle.
• Distributed indexes and RAM.
• The ability to add new attributes to records dynamically.

NoSQL data stores can also be categorized by capabilities and intended uses. Ameya 
et al. [11] presents five different types of NoSQL data stores; Key-value stores, column-
oriented databases, document-stores, graph databases, and object-oriented databases.
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The most interesting NoSQL data store type in the context of collections of open geo-
spatial data is document-stores, with two well well-known examples being MongoDB 
and CouchDB. Document-stores store data as documents, reminiscent of records in a 
relational database, but without a pre-defined schema. Each document in the store has 
its own structure, and can include nested structures. A unique key is used for index-
ing the documents, which are usually stored using standard formats such as JSON 
(JavaScript Object Notation) or Extensible Markup Language (XML). The “no schema” 
approach of document-stores makes them popular to web developers. Partly due to their 
facilitation of quick integration of data from different sources, but also because they 
reduce the need for up-front database schema design [12].

These properties also make document-stores interesting for working with collections 
of open geospatial data. Such datasets originates from disparate sources and uses differ-
ent file formats, coordinate systems, and attribute schemas [13]. Collecting open geospa-
tial datasets in a traditional RDBMS requires a lot of work related to schema design and 
data import, where both attributes and geometries potentially have to be mapped, trans-
lated, and converted. The prospect of a “no schema”-solution that enable easy import 
of heterogenous datasets from a wide array of sources is intriguing. Maintaining an up-
to-date collection of open geospatial data carries a lot of potential for developing value-
added services and analyses, and the premise of NoSQL document-stores is that this can 
be achieved with less overhead. Both MongoDB and CouchDB offer spatial capabilities, 
using the JSON-based GeoJSON standard [14].

Another approach to tap into the benefits of a document-store is using an RDBMS 
that implements a document-store datatype. In these systems, a JSON or XML datatype 
with support for indexing and querying is made available to the RDBMS user. A docu-
ment-based JSON storage type is implemented by several well-known RDBMSes, such 
as MySQL, Oracle, and PostgreSQL [15, 16]. These solutions have proved comparable to 
the NoSQL data-stores. For instance, Linster [17] reports a benchmark where the Post-
greSQL document-store outperformed MongoDB on selecting, loading, and inserting a 
complex document dataset consisting of 50 million records.

Related work

Examples and benchmarks of NoSQL document-store datatypes for storing geospatial 
data are scarce in the existing literature. In the following we review the studies that most 
closely resembles the work we present.

A preliminary study by Navarro-Carrión et al. [18] examined the feasibility of using 
a NoSQL document-store to store EU land cover and land use data. In their experi-
mental set-up, they used two PostgreSQL/PostGIS instances. One implemented a 
relational model, while the other implemented a NoSQL document-store model. 
Using these instances, they evaluated the query times of a bounding box search clause 
iteratively run using varying cell sizes. Using a dataset of more than 10.4 million soil 
occupation observations for roughly 2.5 million polygon geometries, they found that 
the document-oriented model was about 19% faster than the relational model. The 
authors point out that for several workflows a document-oriented model should be 
considered, and specifically points to massive polygon retrievals. An issue worth 
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noting is that they found the query syntax for JSON queries “somewhat convoluted” 
(see Fig. 1 for an example of the syntax).

Amirian et al. [19] performed a benchmark of three different storage strategies for 
“geospatial big data” using Microsoft SQL Server 2012. Four geospatial datasets con-
taining 100,000, 1 million, 10 million, and 100 million polygons, was stored using a 
relational, a spatial, and an XML-based layout. Performance of these strategies where 
evaluated based on single feature and range query retrieval, as well as a scalability 
test. In their setup the XML document (NoSQL document-store) layout provided the 
best performance and scalability, but the authors recommend a polyglot geospatial 
data persistence approach for geospatial big data handling.

Maia et al. [20] evaluated the performance of storing VGI in the document-based 
NoSQL data store MongoDB. Their system stored geographic locations as points 
in MongoDB using the GeoJSON format. An important takeaway from their work 
is the fact that document-based NoSQL databases provide greater flexibility when 
storing heterogenous data and does not require any previous knowledge of the data 
schema. Their study also compared the performance of the NoSQL setup with a rela-
tional setup using PostgreSQL. While their results are considered preliminary, they 
“favoured the use of NoSQL in the persistence layer of a VGIS, especially when deal-
ing with large amounts of data”. It should however be noted that the read-time bench-
marks performed did not include any spatial filters.

Bartoszewski et  al. [21] compared the spatial query performance of MongoDB 
and PostgreSQL/PostGIS. Using point and polygon data, they performed point-in-
polygon-, radius-, and composite nearest neighbour and intersection queries. Their 
results show that MongoDB outperforms PostGIS in the point-in-point (3× faster) 
and compound (6× faster) queries. However, with increasing radii, PostGIS outper-
forms MongoDB by a factor of about 3× in the radius queries. The authors also note 
that NoSQL databases are lacking in terms of available geospatial operations com-
pared to RDBMSes, but postulate that this will change in the future.

Santos et  al. [22] evaluated relational (PostGIS), document-based (MongoDB), 
and graph-based (Neo4J) databases with a focus on the needs of mobile users that 
involve constant spatial data traffic. Their goal is to “highlight aspects in which differ-
ent spatial DBMS architectures behave differently”, rather than provide a benchmark. 
They defined four query sets, based on operations typically performed in mobile spa-
tial applications: Nearby Points of Interest, Map View, Urban Routing, and Position 
Tracking. For each set they defined a set of database queries. Their results show that 
PostGIS in general provides the best performance, and “provides the most spatial 

1. SELECT
2. column->>'key' as key
3. FROM
4. tablename
5. WHERE
6. column->>'key' = 'value';

Fig. 1 PostgreSQL json query example
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features”. However, they note that MongoDB outperformed PostGIS in radius and 
k-NN queries. In addition, MongoDB is easy to scale horizontally.

Methodology
This section covers the implementation of the HOGS system and the experimental setup 
for the benchmarks performed on the system. First some common terminology is pre-
sented, then the architecture and implementation of the HOGS system is presented, 
before the experimental setup is described.

In this context we consider geospatial data to be described by the atomic unit of a Fea-
ture. A feature is a geographic shape (e.g. point, linestring, or polygon) as well as a list of 
accompanying key-value attributes. An example of a feature is a building footprint rep-
resented by a vector geometry describing a polygon, accompanied by attributes such as 
address, name of the owner, the year it was built, etc. A collection of features of the same 
type is a Dataset (or Feature collection). To continue the example, all building footprints 
in a city, municipality, or country makes up a specific building footprint feature collec-
tion. All features in a dataset shares the same attribute schema. Features belonging to a 
dataset are distributed as one or more files in one of several file formats and coordinate 
systems.

The HOGS system should be able to import multiple feature collections without any 
prior knowledge about the schema apart from what can be inferred from the data itself. 
The user supplies a list of files and what target dataset they belong to, as well as infor-
mation about the database they are to be imported to. The Python programming lan-
guage was chosen to implement the system, due to its multi-platform availability and the 
integration with the open source geospatial libraries GDAL/OGR and GEOS. The use of 
existing tools for common operations ensures a reduction of complexity and allows the 
system to support a wide range of geospatial file formats.1

Three overarching guidelines was followed when designing the system. First, the sys-
tem should be simple. This is achieved by limiting the scope of the system, confining it 
to importing data. Second, the system should be fast. This is achieved by means of paral-
lelization, exploiting the data structure to split the import into smaller tasks. Third, the 
system should offer reproducibility. This means that there should be no manual steps in 
the update procedure, so subsequent imports will behave the same way. This is ensured 
by the use of a configuration file.

Storage layouts

The two different storage layouts offered by HOGS determine how features and datasets 
are stored in the database. In the traditional table-based layout we create one database 
table per dataset. Each feature is a row in this table, with a column for each attribute, a 
geometry column, and a feature id column. While this approach could allow us to spec-
ify the geometry type as well, we opted for the generic Geometry data type, as some of 
our datasets contains mixed-type geometries. An example of the table-based layout is 
provided in Fig. 2.

1 The list of supported vector formats in GDA/OGR at http://gdal.org/1.11/ogr/ogr_forma ts.html currently lists 78 for-
mats.
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In the NoSQL document-store inspired jsonb layout, we create a single database 
table that holds features for all datasets. Each row in this table is a feature, with the 
dataset id stored in a column. Geometry and feature id are also separate columns, 
similar to the table-based layout, as shown in Fig.  3. The main difference is that all 
the attributes are stored in a column of the jsonb type. The layout of the jsonb layout 
feature table is shown in Fig. 3. Another aspect of the jsonb layout is how it uses data-
base views to emulate the table-based layout. For each dataset stored in the feature 
table a database view that expose the attributes as individual columns is created. This 
is done since most GIS tools are designed to work with the traditional table-based 
layout. By hiding the underlying structure from these tools, we ensure that they still 
work as expected.

HOGS support dataset versioning by using incremental version numbers with asso-
ciated timestamps. When importing a dataset with an existing dataset id, this is con-
sidered a new version of the same dataset and the version number is increased. This 
means that an import can be run several times on the same database, but the storage 
layout of a previously initialized database cannot be changed.

Fig. 2 Illustration of the table-based layout. Each dataset has its own table, with each attribute as a separate 
column. The table name is referenced in the metadata-table

Fig. 3 Illustration of the jsonb layout. All datasets are stored in the common feature table, with their 
attributes in a jsonb-column. The dataset_sid-columns links features to a dataset in the metadata-table
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Import workflow

The actual import process consists of three phases: the initialization phase, the import 
phase, and the finalizing phase, as shown in the upper portion of Fig.  4. The content 
of these phases depends on the chosen storage layout and the previous state of the 
database.

In the initialization phase the configuration file is read and HOGS connects to the 
provided database. The first time HOGS connect to a database two metadata tables are 
created. These holds information about the stored datasets and determines the storage 
layout. If the jsonb layout is chosen, the aforementioned feature table is also created. 
The next initialization step is to parse the list of files associated with each dataset to 
be imported. The first file in each dataset is read using GDAL/OGR, to determine the 
attribute schema of the dataset. This information is stored in a metadata table. For the 
table-based layout the schema is used to create a temporary import table for each data-
set. For the jsonb layout this information is used to create or update the database views.

Fig. 4 An overview of the experimental setup. The import phase (top section) consists of three phases, and 
results in a database populated with the import dataset, using either the table-layout or the jsonb-layout, 
depending on the chosen storage strategy indicated in the config-file. The query phase is a separate process, 
which issues different queries depending on the storage layout
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In the import phase the files for each dataset is read and parsed, geometries are 
checked for errors and optionally transformed to geographic coordinates in the WGS84 
datum (EPSG:4326), and then data is written to the database using a COPY statement. 
This was found to be the fastest operation when writing a large number of rows to the 
database. The geometry is copied using the EWKB format, the jsonb-attributes as a json 
encoded string, and the other columns are copied as native data types. Since the COPY 
statement bypasses table constraints on the database the geometries are validated using 
the GEOS library before they are written to the database.

Since each file in an import is independent of the other files, this phase can be exe-
cuted in parallel. This can reduce the import time drastically and is an optimization 
worth implementing. HOGS achieve parallelization by creating a pool of import work-
ers using the Python multiprocessing module. The size of this pool is set by the user and 
should correspond to the number of available CPU cores. In principle this pool could be 
distributed on individual machines as well, with one machine acting as a master node, 
coordinating the work.

When all files belonging to a dataset is imported, the dataset import proceeds to the 
finalizing stage. The contents of this stage depend on the chosen storage layout. For the 
jsonb layout this phase consists of creating, or updating, the aforementioned views and 
updating the metadata table to point to the correct version. For the table-based layout 
the finalizing stage creates an index on the geometry column, swaps the current version 
of the table with the temporary table, and stores the previous table with an identifier 
including its version number. When all datasets have finished the finalizing phase the 
import is completed.

Experimental setup

The HOGS system implements both a NoSQL storage approach and a traditional table-
based storage layout. Therefore, we utilize HOGS in our laboratory setup to examine if 
there are any differences in import speed and query performance between the two lay-
outs. We performed a quantitative analysis consisting of a series of imports and database 
queries. Using the same collection of datasets, we measured three features of each data 
storage layout: import speed, query speed, and database size.

All benchmarks where performed using an open geospatial dataset from the Norwe-
gian Mapping authority known as N50. This is a 1:50,000 scale topological dataset of 
the Norwegian mainland, containing eight sub-datasets (feature collections), covering 
features such as area cover, transportation networks, place names, and height contours. 
Each of these sub-datasets have different attribute schemas and use different geometry 
types. The dataset is delivered in the Norwegian text-based geospatial file format SOSI, 
divided by dataset type and municipality. In total, the complete dataset contains 3415 
files, totalling 7.9 GB on disk after extraction. This corresponds to approximately 15 mil-
lion features, more specifically 2 million point features, 10 million linestring features, 
and 3 million polygon features. An overview of the N50-dataset is provided in Fig. 5.

The experimental setup consisted of a standard enterprise hardware setup, equipped 
with an Intel Core i7-4710MQ Processor, 32  GB RAM, and a 300  GB HDD, running 
Windows 10. PostgreSQL 9.6.3 with PostGIS 2.3 was installed using a Docker-image. 
The installation used the default configuration and was wiped between each run. HOGS 
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itself was run using Python 2.7 on the Windows Subsystem for Linux. This means that 
the complete experiment was run on a single machine, with no network speed and 
latency to consider.

Results
Timing from the experiments are affected by several factors. We have chosen to focus on 
the relative difference between the two storage layouts, not the elapsed time on its own. 
The results of the actual benchmarks are summarized in Table 1 and presented in detail 
in the following sections.

Import benchmark

Import speed is calculated as the time it takes from HOGS is provided with a configura-
tion file containing a list of datasets and associated files until the data in these files are 
available in the provided database in the specified layout. This is the upper portion of 
Fig. 4. In our case this means the time it takes to read the 3415 SOSI files from disk and 
store their contents in the database.

Fig. 5 Overview of the N50 dataset

Table 1 Benchmark results for the two examined storage layouts

The better results for each metric are emphasized

Import Query—intersect Query—intersect/
attribute

Disk size

Speed (m) SD Speed (s) SD Speed (s) SD (GB)

Table-based 79 3.57 19 0.54 99 3.24 12.29

Jsonb 179 4.50 25 1.00 162 3.30 17.50

Difference 100 6 63 5.21
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We relied on the built-in logging capabilities of HOGS, noting the time an import 
started and finished. The import was run five times for each storage layout, with HOGS 
presented with a new database instance on each run.

Our benchmarks show that the average import speed for the table-layout is 1 h and 
19 min, while the jsonb layout on average took 3 h. The results indicate that the table-
based layout is 56% faster than the jsonb layout with regard to the import phase.

Query benchmark

Database query optimization is complex and it is impossible to provide a benchmark 
that covers all usage patterns of a generalized geospatial data storage such as the one 
described here. However, we chose to base our query benchmarks on the usage pattern 
of a known system and use data gathered from the logs of this system.

The system in question performs a series of intersection queries using a query poly-
gon against a series of datasets in order to find areas of interest. From the query logs of 
this system we extracted 840 query geometries. These polygons cover areas in the range 
1–100 m2 on the Norwegian mainland and are distributed according to the needs of the 
users of the system. The query benchmark is depicted in the lower portion of Fig. 4, and 
is independent of the design of the import phase, as it only relates to the resulting data-
base contents and layout.

Two queries were designed to be run against each of the eight datasets in the n50 data-
set. One plain intersection query using the PostGIS ST_Intersect and one query consist-
ing of an intersection as well as an attribute query (see Figs. 6 and 7). For the attribute 
query we chose the attribute “objekttypenavn”, which is present for all our datasets, and 
for each dataset we used all the distinct values of this attribute. This means that both 
queries were executed about 7000 times. 

Each of these series of queries were run five times for each database layout, and the 
total query time for each layout was averaged. For the plain intersection queries the 
average time was 19  s for the table-based layout, and 25  s for the jsonb layout. This 

def get_intersects(self, table_name, geom):
with self.conn.cursor() as cur:

query = sql.SQL('''
SELECT * FROM {}
WHERE ST_Intersects(geom, ST_GeomFromWKB(%s, 4326))

''').format(
sql.SQL(table_name)

)

cur.execute(query, (psycopg2.Binary(geom),))
res = []
for record in cur:

res.append(record)
return res

Fig. 6 Intersect query used for benchmarking
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means that the plain intersection queries are 25% faster using the table-based layout. 
For the intersection queries with an additional attribute query the average query time 
in the table-based layout was 99  s, while the jsonb-layout took 162  s on average. This 
means that intersection queries with attribute queries are 39% faster using the table-
based layout.

Database size

This benchmark measures the actual size on disk used to store the datasets using the two 
different storage layouts. The size of the databases was measured using the PostgreSQL 
system table pg_database, and the operator pg_database_size. These numbers show that 
the table-layout database uses 12.29 GB on disk, while the jsonb-layout use 17.5 GB. This 
means that the table-based layout takes up 30% less space than the jsonb-layout.

Discussion
The performed benchmarks show that the table-based layout performs better than the 
NoSQL-inspired jsonb-layout on all metrics. Insertion speed is the metric with the larg-
est difference. Here, the table-based layout is able to insert the test-data more than twice 
as fast as the jsonb-layout. These findings contradicts similar studies found in literature 
[18, 23], which report that NoSQL document stores or data types outperform relational 
layouts.

However, many factors influence benchmark results, and while the setups in the 
related studies are similar there are several differences in design that may explain the 
difference in results. We suspect that the most important factor in our setup is table size. 
Since our two layouts are both implemented in PostgreSQL/PostGIS, and both layouts 
use the PostGIS geometry types, the main difference between them is the way attributes 
are stored, and how many tables are used. This difference holds the explanation to why 
the table-based layout performs better.

def get_intersects_with_objtype(self, table_name, geom, objtype):
with self.conn.cursor() as cur:

query = sql.SQL('''
SELECT * FROM {}
WHERE ST_Intersects(geom, ST_GeomFromWKB(%s, 4326))
AND objekttypenavn = %s

''').format(
sql.SQL(table_name)

)

cur.execute(query, (psycopg2.Binary(geom), objtype, ))
res = []
for record in cur:

res.append(record)
return res

Fig. 7 Intersect and attribute query used for benchmarking
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Both layouts use a spatial index for the geometry column. In the case of insertion, 
the way this is handled differs. For the table-based layout the index is created after data 
is inserted into the table. In the jsonb-layout this is not an option, as we are inserting 
data into a common table. This means that for the jsonb-layout, the spatial index has 
to be created in the initialization phase and updated in-place during the import, which 
is more time-consuming than creating an index after all data is added. In the case of 
data queries, the main difference is table size, with the common table in the jsonb-layout 
being larger. While this table is indexed on dataset id, it is still faster to directly query a 
table with just the relevant features than to select these using an index.

None of the examined related studies used data that could be logically segmented into 
sub-datasets, and thus the table sizes would have been similar in both cases. This may 
explain why our findings differ. However, many geospatial datasets can be segmented 
into separate datasets by partitioning on what types of features are being mapped. If this 
is the case, our results show that a table-based layout is favourable. A counterpoint is 
that the “one table per dataset” approach can be combined with the jsonb-layout as well. 
While this is technically true, a key feature of NoSQL data stores is that there is no need 
to logically separate data in tables. In order to keep with this philosophy, we chose to 
implement one common table for the jsonb-layout.

Another important aspect of a database used for managing open geospatial data is usa-
bility. Navarro-Carrión et al. [18] noted that the query syntax used for the PostgreSQL 
JSON data type is “somewhat convoluted”, an assessment we find to hold true (see Fig. 1 
for an example). In addition, we found that widely used desktop GIS packages such as 
QGIS are unable to read attributes stored as jsonb with the same ease as they read tradi-
tional tables. This was mitigated by creating database views that maps the jsonb-syntax 
to a traditional relational table-layout, with one dataset per table and one attribute per 
column.

We used the HOGS system to perform benchmarks on the Norwegian n50-dataset, 
delivered as files in the SOSI format. This does not imply that the system is limited to 
one file format. Due to the use of the GDAL/OGR library, a plethora of geospatial vector 
formats (78 at the time of writing) can be imported using HOGS. For example, we have 
successfully imported data downloaded from OpenStreetMap using HOGS.

Conclusions and further work
We have found that, for homogenous collections of spatial datasets, a traditional one-
table per-dataset layout outperforms a NoSQL document-store combined-table layout. 
The traditional layout performs better on both insertion and query speed, and it uses 
less storage space. We expected that the NoSQL approach would enable an easier inser-
tion routine, but with the HOGS system leveraging GDAL/OGR we found that the over-
head of creating individual tables for each dataset can be automated and introduces no 
extra complexity.

We also found that while a single table containing a heterogenous mix of features from 
different datasets intuitively sounds easier to work with, this kind of layout is not com-
patible with a range of off-the-shelf WMS-servers and desktop GIS packages. In prac-
tice this means that a NoSQL layout must emulate a traditional table-based layout using 
views in order to work with such applications.
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These findings differ from the other studies examined. While one explanation for 
this discrepancy may be the fact that we used data that could be segmented into sub-
datasets, this shows that further examination is required. A more thorough bench-
mark-setup, including a larger pool of datasets is a natural next step. Leveraging other 
sources of open geospatial data, such as OpenStreetMap, and European INSPIRE-
data, would enable us to verify our results on a wide selection of geometry types and 
attribute schemas. Another possible route is to enable a cloud-based lab-setup, where 
automation in used to create, run, and tear down the database and import environ-
ments between each test-run. This would enable us to exclude all possible side-effects 
of running the benchmarks on a single hardware setup, which would also allow for 
adjustment of additional parameters, such as processor speeds and available memory.

In terms of further work, a third storage layout worth examining is the so-called 
Data Lake [24]. In this concept, the data is stored “as is” in raw format, and only pro-
cessed when needed [25]. This allows for easy storage of vast amounts of data, but 
we envision this would present its own performance issues related to queries, where 
both geometries and attributes will have to be parsed and transformed. However, we 
find this concept interesting, and would like to investigate how it can be applied to 
geospatial data.

In conclusion, the results presented in this paper indicate that the NoSQL layout 
is slower, both in terms of import and query speed, when considering heterogenous 
geospatial data. In addition, the NoSQL layout does not offer any additional simpli-
fication of the import process. Based on these conclusions, we cannot recommend 
the use of the jsonb-datatype in PostgreSQL for storing geospatial data that can be 
segmented into homogenous datasets. This statement holds as long as the storage-
space requirements does not exceed the capabilities of a single database instance. 
This in turn means that relatively large amounts of open geospatial data can be effi-
ciently stored and queried using traditional RDBMS technologies. This approach is 
beneficial, as it enables the use of existing software integrations and does not require 
a weakening of the ACID-principle.
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geospatial vector data comparison
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Abstract

Diffs, a concept known from source code version control systems such as git, is interesting for geospatial, event-
based workflows. We investigate how the native mathematical structure of vector geometries can be utilized in
order to create a diffing algorithm tailored to geospatial vector data. Diffing algorithms are a well-researched area
which dates to the 1970ies; however, we find that geospatial diffing operations tends to be carried out using
generic algorithms combined with a pre- and post-processing step. We created GeomDiff, an algorithm and
storage format tailored to geospatial vector data. The creation time, apply/undo time, and patch size of GeomDiff
was compared to three other generic algorithms by running an online experiment using 2.5 million real-world
geometry pairs from OpenStreetMap. We found that the GeomDiff algorithm performs better than or on-par with
the alternatives on point-geometries, and complex geometries with a small (< 500) vertex count. We argue that
there are both computation time and storage space improvements to be gained by using a tailored diffing
algorithm for geospatial vector data. These promising first results encourages further refinement of the algorithm in
order to handle complex geometries efficiently as well.

Keywords: Geospatial data management, Diffing, Event based workflows

Introduction
In computer science, a diff1 is a set of machine-
executable instructions to transform version n of source
code or documentation into version n + 1 [1]. The con-
cept of diffs is an essential component of source code
version control systems such as git [2], one of the funda-
mental building blocks of modern software engineering.
Other application areas also take advantage of the diff
concept, enabling real-time collaborative editing tools
such as Google Docs [3]. The concept of diffs is also im-
portant when working with event-based workflows,
where messages describing changes are a core compo-
nent [4]. A recent, geospatial, application of the concept
is “Sno” [5] which uses git to apply version control to
geospatial data.

The methods used for creating a diff and the format it is
stored in will affect both creation time, storage require-
ments, and apply and undo time. These metrics affect the
overall performance and requirements of a diff-based
workflow. Using a diffing algorithm and diff storage for-
mat tailored to geospatial vector data has the possibility to
provide an efficient, performant, and reliable event-based
workflow for geospatial data management.
Diffing algorithms specifically tailored to geospatial

data are rare in the literature. Thus, we implemented
“GeomDiff”, an algorithm for geospatial diffing. Geom-
Diff takes advantage of the native mathematical proper-
ties of geospatial vector data in order to improve the
performance of geospatial event-based workflows.
We review existing literature on diffing algorithms and

formats in general and provide an overview of existing
solutions for versioning of geospatial vector data using
diffs. The concepts used to implement the GeomDiff al-
gorithm is then explained and presented.
To evaluate the proposed algorithm, we perform a

large-scale experiment using real-life data in a controlled

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

1Also known as an edit script, a changeset, a patch, or a delta
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and replicable cloud-based environment. The GeomDiff
algorithm is compared to three other approaches to diff-
ing of geospatial vector data in order to investigate how
it performs on creation time, apply/undo time, and stor-
age requirements.

Implementation
Motivation
Creating a diff is the process of finding changes between
two versions of an object and describing them. Change
detection is in itself a topic that is widely studied with
regards to Remote sensing and image processing [6], as
well as computer science [7]. The term “diff” itself was
introduced by Hunt & MacIlroy [8], which described a
program which “[…] reports differences between two
files, expressed as a minimal list of line changes to bring
either file into agreement with the other”. The GNU diff
program is based on the work carried out by Miller &
Myers [9], and Myers [10], who found that the dual
problems of finding a longest common sub-sequence of
A and B and finding a shortest edit script for transform-
ing A into B are equivalent to finding a shortest/longest
path in an edit graph.
The diff program and its iterations are focused on

comparing text files and are therefore well suited for
tracking revisions to text and computer source code.
Variations of this approach serves as a building block of
version control systems [2]. Other researchers have fo-
cused on creating systems for detecting changes in hier-
archically structured information, such as data stored in
a database [11] and binary data [12]. Dedicated diff tools
and formats have also been created for formats such as
JSON [13] and XML [14].
We did not find examples of specialised diffing al-

gorithms for geospatial data in the literature, but
some approaches from the industry was identified and
are presented in the following. The GeoDiff library
[15] aims to simplify vector data management by
“keep[ing] track of changes, calculate the differences,
merge and consolidate the differences”. However, the
library seems to focus on changes at a dataset level.
A related idea is to apply version control concepts to
geospatial vector data. This has been attempted sev-
eral times by various actors. GeoGit, later renamed
GeoGig, was released in 2014 and “allows for decen-
tralized management of versioned geospatial data”
[16]. However, an inspection of the source code does
not indicate that the project employs diffs but stores
each separate change as a new geometry. A more re-
cent approach to version control of geospatial data is
Sno, which is built on top of git [5]. This means that
this system uses a text-based differ at its core, but
presumably with some modifications.

Principles of GeomDiff
Existing diffing algorithms for textual data, binary data,
or format-specific algorithms can be applied to geospa-
tial vector data using pre- and post-processing steps.
However, geospatial geometries are natively mathematic-
ally defined as vectors in N-dimensions. By converting
them to text or some other format, we lose the ability to
utilize mathematical relations to describe changes in the
geometries. This is the main idea behind GeomDiff; to
take advantage of the opportunities presented by the
mathematical nature of vector geometries in order to
create a more efficient algorithm.
Table 1 presents a selection of example geometries

in their original and modified state, along with an ex-
ample of a change script. For point geometries we
record the operation (create, delete, or modify) as
well as the change to the coordinate expressed as a
delta. In order to support reverting a change script,
the current value before deletion is recorded in a
delete operation.
While a point consists of a single coordinate pair,

other geometry types are more complex. These con-
sists of one or more, possibly nested, ordered lists of
coordinate pairs. Linestrings are described by a single,
ordered list of coordinate pairs, where each coordin-
ate pair describes a vertex. The linestring can be both
created and deleted in a similar fashion to a point,
but a modification is more complex. Changes to each
vertex can be described using the edit script outlined
for coordinates, but we need to keep track of the in-
dices of the changed vertices as well, as illustrated in
Table 1 (id = 4).
A polygon is even more complex, as it may contain

hulls. Thus, a polygon consists of n ordered lists of
coordinates, and each of these can be added, deleted,
or modified. In addition, each of the vertices in each
list can be added, deleted, or modified. However, just
as the coordinate edit script is used to represent each
change to a linestring, a linestring change script can
describe the change to each ring of a polygon (Table
1, id = 5). Using this hierarchical pattern, multi-
geometries are handled by adding another layer;
multi-point change scripts are lists of point change
scripts, multi-linestrings and multi-polygons extends
linestring and polygon change scripts in the same
manner.
Geospatial data is in many cases represented as a

collection of features. A feature is a combination of
a geometry and a set of textual or numeric attributes
or properties. In order to create a feature patch, the
attributes must be handled as well. While this is an
important aspect of a geospatial data versioning
workflow, the GeomDiff algorithm is not designed to
work on features. However, feature attributes are
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usually simple key-value pairs that can be repre-
sented using formats such as JSON or XML. As pre-
viously discussed, specialized diffing algorithms for
these formats exists and can be used. An example of
this approach is implemented in the attached file
FeatureDiffer.cs.

GeomDiff implementation
The main principles described in the previous section
are implemented using a generic Diff class, as out-
lined in Listing 1. Here, the value is a generic prop-
erty, which means that we can represent change
scripts for all geometry types using this class. In the

case of a point, the PointDiff inherits from Diff using
the CoordinateDelta as TComponent. Describing
changes to a linestring geometry is more complex, as
we need to keep track of the vertex indices. This is
where the Index and Operation properties on the Diff
class are used, as the LineStringDiff class uses a List <
PointDiff > as TComonent. The same pattern is re-
peated for the other geometry types.
While the presented class hierarchy represents changes,

it does not describe how these changes are detected. In
the case of point geometries, the difference is expressed by
the change in each coordinate, which is a straightforward
mathematical computation. For linestrings and other

Table 1 Edits to geometries and their associated change scripts. Ids 1–3 are modification, creation, and deletion of a point, id = 4 is
modification of a linestring by inserting, modifying, and deleting vertices. Id =5 is modification of a polygon by modifying one
vertex in the shell and deleting the hull. Geometries are described using the WKT format

Id Geometry Type Original Modified Change Script

1 Point (10.53 60.10) (10.52 60.10) Modify, (-0.01 0)

2 Point Null (10.53 60.10) Create, (10.53 60.10)

3 Point (10.53 60.10) Null Delete, (10.53 60.10)

4 LineString (1 1, 2 2, 3 3, 4 4) (0 0, 1 1, 2.5 2.5, 3 3) {0: Insert, (0 0), 1: Modify, (0.5 0.5) 3: Delete, (4 4)}

5 Polygon ((0 0, 10 0, 5 10, 0 0), (1 1, 2 2, 2 1, 1 1)) ((0 0, 10 0, 6 10, 0 0)) {0: Modify, {2: (1, 0)}, 1: Delete, (1 1, 2 2, 2 1, 1 1)}
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sequences of coordinates, we employ a generalized version
of the Myers diff algorithm [10], where the input is two
lists of components and a function to compare them. By
utilizing the recursive strategy presented above, this ap-
proach works both for comparing individual vertices in a
linestring and for comparing linear rings in a polygon.
Thus, diff creation can be implemented by combining this
approach with a method for compacting diffs by merging
consequent inserts and deletes into modify operations.
Applying a diff to a geometry follows the same recur-

sive pattern. A simple mathematical operation can patch
a single coordinate. A list of components (coordinates,
linear rings, or geometries) is patched using the Patch-
List method, reproduced in Listing 2. Undo operations
use the same method, but a pre-processing step revers-
ing the diff is applied first.
Another important aspect is a storage format for the

created diffs. Serializing and deserializing the generated
C# objects is an easy solution, but this introduces an un-
necessary coupling to a specific implementation. In
addition, this is not an efficient approach in terms of
storage requirements.
Thus, we created a binary format for storing diffs, in-

spired by the WKB (Well Known Binary [17]) format. The

format consists of a header, describing the geometry type
and dimensions, and the actual diff elements. Writer and
reader implementations to convert to and from C# objects
are created as part of the implementation.

Benchmark design and implementation
The performance of the GeomDiff algorithm was
examined by performing a large number of diff creation,
apply, and undo operations on data from OpenStreet-
Map. In addition, the same operations were performed
on the same data, using three other diffing implementa-
tions. This ensures that we can perform a statistical ana-
lysis to test our hypotheses.
The benchmark was performed in a Microsoft Azure

cloud environment. This allows for easy scale-out in
order to handle high workloads in parallel. Furthermore,
it ensures consistent hardware performance at a reason-
able price. The setup consists of a virtual machine run-
ning a PostgreSQL/PostGIS database, an Azure Function
App, and an Azure storage account for message passing
and temporary storage. In addition, NodeJS and Python
scripts were developed to import test-data, orchestrate
the benchmark, and analyse the results.
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An extract from the open licensed OpenStreetMap
(OSM) dataset [18] was used as test data. A full his-
tory extract for Norway was manually downloaded
from geofabrik.de and imported to a PostGIS data-
base, using a custom-made script [19]. To prepare the
dataset for the benchmark, a series of queries was
run to identify geometry pairs. A geometry pair is de-
fined as two versions of the same geometry. In cases
where the OSM dataset had more than two versions
of a geometry, we chose the minimum and maximum
version to represent the two versions. Since the OSM
data model stores all linestring and polygon vertices
as points, and referencing them from a “ways” table,
we selected all points with at least one tag to repre-
sent points. Linestrings and polygons was created
from the ways table, based on whether they were
closed or not. This process created a benchmark
dataset consisting of 1,335,489 point-, 813,503 line-
string-, and 433,776 polygon-pairs. For each line-
string- and polygon pair the NumVertices variable
(Eq. 1) was computed and stored.

NumVertices ¼ avgðnumVertices geometryv1
� �

;

numVertices geometryv2
� �Þ

ð1Þ

The test pipeline consists of an Azure storage account
and a Function App, as depicted in Fig. 1. The data flow in
this setup is highly parallelisable and can be scaled to han-
dle increased workloads with minimal effort. The first stage
of the pipeline is a storage queue (GeometryTasks), popu-
lated by a NodeJS script. This queue contains one message
per geometry pair in the benchmark dataset, consisting of
an id and two version numbers, as well as the geometry
type. Attached to this queue is a function app (Geometry-
Handler) which fetches the corresponding geometries from
the PostGIS database and stores them in a blob store (Geo-
metryStorage). In addition, this message puts four messages
on a second queue (BenchmarkTasks), with a blob id and a
differ name. The second function app (BenchmarkFunction)
is triggered by the BenchmarkTasks queue and fetches the
geometry pair from GeometryStorage and runs the bench-
mark using the indicated algorithm. On completion the re-
sults are saved to a table storage (ResultsStorage).
The actual benchmark of the algorithms under test are

performed in the BenchmarkFunction function app. This
is a serverless instance running .NET core code [20].
The actual algorithm implementations are written to
conform to a common interface, as depicted in Listing 3,
and made available as a NuGet package, which is
imported by the BenchmarkFunction app.

Fig. 1 The Azure pipeline for running the benchmark. The GeometryTasks queue is loaded with one message per geometry pair. The GeometryHandler
processes each message, by fetching the two geometries in the pair and storing them in a blob store. It then puts four messages on the BenchmarkTasks
queue, one for each algorithm under test. This message has a reference to the blob id of the geometry pair. The benchmark function then loads the geometry
pair and executes the three operations (create, apply and, update) using the specified algorithm, while logging time usage. The results are then stored in a
table storage for later retrieval and analysis
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The algorithm implementations under test are listed in
Table 2. The three other algorithms are based on open
source implementations of three different diffing for-
mats; textual data, binary data, and JSON-data. All these
algorithms require a pre- and a post-processing step,
where the geometry is converted to the appropriate for-
mat and back. These algorithms where chosen as they
represent existing approaches to handling diffing of geo-
spatial vector data. The Bsdiff algorithm [12], used in
the BinaryDiff implementation does not support the
undo operation, but we still chose to include it in the
benchmark, as it represents another approach to diffing.
The pre- and post-processing steps use the open source
NetTopologySuite [21] library to convert the geometries
into appropriate formats. Well Known Text (WKB) [17],
Well Known Binary (WKB) [17], and GeoJSON [22] was
chosen as formats to convert to text, binary, and json,
respectively.

Results
For each of the three geometry types in the test dataset
we performed hypothesis testing on four metrics:

� Creation time: The time it takes to create a diff
given two versions of a geometry.

� Apply time: The time it takes to create version n + 1
of a geometry, given version n and a diff.

� Undo time: The time it takes to roll back to version
n of a geometry, given version n + 1 and a diff.

� Patch size: The physical size of the created diff.

We expect the GeomDiff algorithm to exhibit faster
creation-, apply- and, undo-time for point, linestring and

polygon geometries compared to the other algorithms.
In addition, we expect the GeomDiff algorithm to pro-
duce smaller patches.
The statistical testing was performed using the follow-

ing procedure, implemented as a Python script [23]. All
statistical tests were performed using a significance level
of 0.05. For each metric of each geometry type the re-
corded data for each of the four algorithms was loaded.
First, all errors were counted, recorded (see Table 6),
and then removed before further analysis. An error is ei-
ther an exception thrown by the code, or an instance
where the patch did not create the expected result.
Second, a D’Agostino and Pearson’s test [24] was ap-

plied to check each group for normal distribution. Since
none of the groups were normally distributed (p < 0.05),
a Kruskal-Wallis H-test [25] was then applied to test H0,
that the samples from all algorithms came from the
same distribution. Since H0 was rejected in all cases (p <
0.05), we continued with a post hoc test to perform pair-
wise comparisons between the four algorithms. Using
Conover’s test [26], we found that none of the pairs
where statistically similar (p < 0.05). This means that all
differences between the mean values for each algorithm
are significant.

Point geometries
For point geometries (Table 3), a total of 1,335,489
geometry pairs were checked for each algorithm. Overall,
the BinaryDiff algorithm is slower than the fastest algo-
rithm by a factor of 1000 on create and apply. The Text-
Diff and JsonDiff algorithms show comparable results,
apart from patch size. The GeomDiff algorithm produces

Table 3 Benchmark results for point geometries. Best results in each case in bold. The standard deviation of patch size for points
using the GeomDiff algorithm is 0, as a point change is described using two doubles. This means that the size of a point patch will
always be the size of two doubles and metadata of a fixed size

Algorithm Create Time (ms) Apply Time (ms) Undo Time (ms) Patch Size (b)

Mean St.dev Mean St.dev Mean St.dev Mean St.dev

TextDiff 0.22 10.92 0.47 15.64 0.32 2.32 54.0 30.0

JsonDiff 0.38 7.21 0.21 2.51 0.16 1.62 184.0 94.0

BinaryDiff 190.88 272.07 67.39 131.74 – – 168.0 20.0

GeomDiff 0.03 1.80 0.02 0.58 0.01 0.40 25.0 0.0

Table 2 Diffing algorithms used in the benchmark

Algorithm Format Library Link

TextDiff Text Diff Match Patch https://github.com/google/diff-match-patch

JsonDiff JSON jsondiffpatch.net https://github.com/wbish/jsondiffpatch.net

BinaryDiff Binary Deltaq https://github.com/jzebedee/deltaq

GeomDiff Vector Geometry GeomDiff https://github.com/atlefren/GeomDiff
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the smallest patch in the shortest time and is also the
fastest to apply and undo.

Linestring geometries
For linestring geometries (Table 4), a total of 813,503
geometry pairs were checked for each algorithm. The
mean number of vertices is 24, the 99th percentile 236.
When it comes to performance, the GeomDiff algorithm
is considerably slower to create patches, albeit with a
large standard deviation, but it is still the fastest on cre-
ate and undo time. The JsonDiff algorithm is the fastest
to create patches, but the patches created by the JsonDiff
algorithm are on average larger than patches created by
the BinaryDiff algorithm by a factor of 8.5.

Polygon geometries
For polygon geometries (Table 5), a total of 433,776
polygon pairs with a mean vertex count of 28 (99th per-
centile 299) were checked. In terms of performance, the
polygon dataset exhibits much the same trends as the
linestring data. The standard deviations are large, and
the BinaryDiff and GeomDiff algorithms are consider-
ably slower than TextDiff and JsonDiff when it comes to
create time, but at the same time they produce the smal-
lest patches.

Error counts
The error counts (Table 6) show that the GeomDiff al-
gorithm encountered 22 and 34 create errors, and 33
and 45 patch and undo errors on linestrings and poly-
gons, respectively. The TextDiff algorithm failed to undo
38,480 linestring pairs (5%) and 18,396 (4%) polygon
pairs correctly.

For point geometries the rates are close to zero (< 1
‰) for all metrics.
The create errors for the TextDiff algorithm are all

“Invalid URI: The Uri string is too long.”. This error
originates in the Diff Match Patch library, which uses
URL encoding provided by the C# standard library. This
shows that the limiting factor for string lengths, and by
extension vertex count, are the URL encoding method.
For the GeomDiff algorithm, all create errors are

“Timed out after 60000 ms”. This is a hard limit built
into the GeomDiff library to avoid long-running opera-
tions to block for an unreasonable amount of time.

Vertex number effects
For linestring and polygon geometries, the GeomDiff al-
gorithm exhibits an unusually large standard deviation
on the Create Time metric. In order to investigate pos-
sible causes for this, we identified the upper 99 percent-
ile and removed observations with values higher than
this. This is shown in Table 7. We see that by removing
1% of the observations the standard deviation is reduced
by two orders of magnitude.
One possible explanation for this is that the create

time for the GeomDiff algorithm increases as the num-
ber of geometry vertices increase. This explanation is
supported by the create failures on 22 linestring and 34
polygon geometries. In these cases, the algorithm ran for
60 s before timing out. Examining the geometries which
caused the errors, we find an average vertex count of
1677 and 1576 for linestrings and polygons, respectively.
For the top 1 (slowest) percentile, the vertex count aver-
ages were 300 and 364. These numbers are both a sub-
stantial increase from the full population, which on
average has a vertex count of 24 for linestrings and 28

Table 5 Benchmark results for polygon geometries. Best results in each case in bold

Algorithm Create Time (ms) Apply Time (ms) Undo Time (ms) Patch Size (b)

Mean St.dev Mean St.dev Mean St.dev Mean St.dev

TextDiff 7.53 70.12 1.08 39.82 0.92 7.22 481.37 2023.27

JsonDiff 3.50 76.01 1.15 20.80 0.95 10.60 2970.73 15,035.43

BinaryDiff 224.40 571.71 69.11 272.37 – – 301.82 684.04

GeomDiff 118.09 5159.74 0.39 79.77 0.25 7.02 306.00 1397.86

Table 4 Benchmark results for linestring geometries. Best results in each case in bold

Algorithm Create Time (ms) Apply Time (ms) Undo Time (ms) Patch Size (b)

Mean St.dev Mean St.dev Mean St.dev Mean St.dev

TextDiff 9.01 58.56 1.00 10.98 1.04 4.61 623.44 1733.22

JsonDiff 2.27 35.96 1.12 10.08 1.06 8.23 3064.38 9656.37

BinaryDiff 183.47 333.88 57.07 159.81 – – 357.16 635.37

GeomDiff 57.83 3281.33 0.21 8.20 0.19 5.22 419.63 1355.67
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for polygons. In other words, large vertex counts seem
to indicate long running times.
To further investigate whether the vertex count vari-

able influences create time, we calculated the Pearson
correlation coefficient [27] between creation time and
vertex count, as shown in Table 8. We see that the cor-
relation change between the whole population and the
top 1 percentile is substantial for the GeomDiff algo-
rithm (+ 0.17 / + 0.81), while it is relatively stable or de-
creasing for the other algorithms (- 0.02 / - 0.01 for the
TextDiff algorithm). Thus, we suspect that the vertex
count in linestring and polygon geometries affects the
creation time for the GeomDiff algorithm significantly,
and especially for large numbers of vertices.
By grouping the create time results by vertex count

and computing average creation time for each group
(Fig. 2 and Fig. 3), we find that all algorithms except the
BinaryDiff algorithm show an increase in creation time
with increasing number of vertices. However, for the
GeomDiff algorithm, there is a sharp increase when ex-
ceeding a vertex count of 500, for both linestrings and
polygons.

Discussion
Our data shows that the GeomDiff algorithm outper-
forms the other tested algorithms by a large margin
when working with point geometries. It creates the
smallest patches in the shortest time and is also fastest
at applying and undo patches.
When it comes to more complex geometries (Table 4

and Table 5), the results are more varied. The JsonDiff
algorithm is the fastest for creating both linestring- and

polygon-patches, while the BinaryDiff algorithm creates
the smallest patches. However, the JsonDiff algorithm
creates the largest patches, while the BinaryDiff algo-
rithm is the slowest one in both creation and apply time.
Moreover, this algorithm does not support the undo
operation.
The results for the GeomDiff algorithm with regards

to linestrings and polygons are more complex. The algo-
rithm is the fastest on both apply and undo, and it pro-
duces patches not much larger than the BinaryDiff
algorithm. However, the creation time shows a large
variance. Based on our test data, we found that this is re-
lated to number of vertices in the diffed geometries.
When this exceeds 500 vertices, we see a sharp increase
in creation time. In addition, we recorded several occur-
rences where the algorithm timed out after 60 s for some
geometries with large vertex counts.
However, both the mean and 99th percentile of vertex

counts in both linestrings and polygons are considerably
lower than 500 in the OSM test-dataset. This means
that, for datasets comparable in complexity to OSM, the
vertex issue is not likely to be major. In addition, diffs
are usually created only once, but applied and undone
multiple times. Thus, faster apply and undo speeds are
more important than creation times. Nevertheless, the
fact that the GeomDiff algorithm degrades, and some-
times fails, on geometries with a high vertex count is not
ideal. This behaviour is worth determining the cause of
and remedy before the algorithm can be considered
ready to use in a real-life situation where performance
and repeatability is essential.

Table 7 Create time for linestring and polygon geometries with
the upper 99 percentile values excluded from the analysis

Algorithm Linestring Polygon

Mean St.dev Mean St.dev

TextDiff 4.60 14.14 2.72 9.20

JsonDiff 1.12 2.46 0.99 2.33

BinaryDiff 165.05 180.63 180.43 195.48

GeomDiff 2.44 12.68 1.28 7.62

Table 8 Pearson correlation coefficient between creation time
and vertex count for the full population and the top 1
percentile

Algorithm Linestring Polygon

All Top 1% All Top 1%

TextDiff 0.50 0.48 0.45 0.44

JsonDiff 0.30 0.23 0.27 0.16

BinaryDiff 0.01 0.03 0.01 -0.01

GeomDiff 0.26 0.43 0.30 0.48

Table 6 Error counts for the tested algorithms, grouped by geometry type and operation. A create error represents a situation
where the algorithm threw an exception during execution, while apply and undo errors represents situations where applying or
undoing a diff does not produce the expected geometry

Algorithm Point Linestring Polygon

Create Patch Undo Create Patch Undo Create Patch Undo

TextDiff 0 1 4 3 3 38,480 1 1 18,396

JsonDiff 0 1 1 0 0 0 0 0 0

BinaryDiff 0 1 – 0 0 – 0 0 –

GeomDiff 0 1 1 22 33 33 34 45 45

Sveen Open Geospatial Data, Software and Standards             (2020) 5:3 Page 8 of 11

142



The error rates are low for all algorithms, except for
the TextDiff undo algorithm. One possible explanation
for these errors are floating-point issues. Since the Text-
Diff algorithm uses the text based WKT format as an
intermediary step, it is possible that some rounding er-
rors have been introduced when the undo operation is
applied. However, we have not investigated this issue
further.
One shortcoming of our experiment is that the test-

dataset did not include multi geometries. This is because
the OSM dataset does not contain multi points and
multi linestrings, and that multi polygons were consid-
ered too time-consuming to create from the OSM data
format. However, we suspect that multi-geometries will
show results similar to or worse than linestrings and
polygons. Since multi-geometries adds more layers to
the recursive hierarchy of components, more time will
be spent traversing this hierarchy.
The use of a commercial cloud platform as the testbed

for our experiment allowed us to test a large number of
operations in parallel at a reasonable price. This would

have been costly and complex to achieve using on-site
hardware. However, each execution of a function app
runs on an instance. This instance runs multiple concur-
rent executions in parallel, which mean that executions
may compete for the same CPU resource [28]. This may
affect the performance of each execution, compared to
running them in complete isolation. However, we argue
that the large amount of geometries tested will mitigate
this issue and spread the effect evenly.

Conclusions
We have shown that efficient diffing algorithms for geo-
spatial vector data can be created by taking advantage of
the native mathematical properties of the data. The
GeomDiff algorithm performs comparable to, or better
than, the three generic diffing algorithm we have com-
pared it to. However, it suffers from performance deg-
radation as the vertex count increases. In many
situations this will not pose a problem, but it is a serious
shortcoming that should be addressed.

Fig. 2 Average create time for linestring patches, grouped by vertex count
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Geospatial diffing formats have several use-cases. Stor-
age of spatiotemporal data is one example. In the “object
change” model described by Worboys [29], significant
storage reductions can be achieved by storing each
change as a diff as opposed to storing the complete,
changed version. Geospatial diffs will also be a key con-
cept when designing a system that uses the principles of
Event Sourcing [30] to handle geospatial data.
We have not found any published geospatial diffing al-

gorithms in the literature. However, we found some ex-
amples from the industry. We suspect that this indicates
that if work on this topic has been carried out, it has
been done in the industry. Another possibility is that
when the need for geospatial diffing has occurred, gen-
eric diffing algorithms have been found sufficient. In the
light of our findings we question this conclusion, as we
have shown that it is possible to create tailored algo-
rithms for geospatial diffing that outperforms generic
algorithms.
With the increasing amount of geospatial data being

collected, created, and updated we foresee an increased
demand for efficient strategies for storage and

processing. Event sourcing and object change models are
an interesting approach to this challenge. Since geospa-
tial diffing algorithms are a key aspect of these tech-
niques, we encourage more research into this field.

Availability and requirements

� Project name: GeomDiff
� Project home page: https://github.com/atlefren/

GeomDiff
� Operating system(s): Platform independent
� Programming language: C#
� Other requirements: .NET Standard 2.0

compatible .NET implementation
� License: BSD-3-Clause
� Any restrictions to use by non-academics: No

restrictions apart from those imposed by the license.

Abbreviations
JSON: JavaScript Object Notation; OSM: OpenStreetMap; WKB: Well Known
Binary; WKT: Well Known Text; XML: Extensible Markup Language

Fig. 3 Average create time for polygon patches, grouped by vertex count
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