
ISBN 978-82-471-9838-4 (printed ver.)
ISBN 978-82-471-9354-9 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2021:20

Rasmus Erlemann

Contributions to the Theory of
Goodness-of-Fit Testing and
Change Point DetectionD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2021:20
Rasm

us Erlem
ann

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e 
of

Ph
ilo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n 
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s









Preface

This thesis is submitted in partial fulfillment of the requirements for the degree

Philosophiae Doctor (PhD) at the Norwegian University of Science and Tech-

nology (NTNU). The work has mainly been carried out at the Department of

Mathematical Sciences at NTNU. Part of it was also done at Department of

Statistics and Actuarial Sciences at Simon Fraser University.

First of all, I would like to thank my main supervisor Bo Henry Lindqvist

for support and leading by example. He has played a major role in writing this

thesis and I am greatly thankful for his support.

Secondly, Richard Lockhart at SFU gave a big contribution to this thesis. I

would also like to thank my second supervisor Gunnar Taraldsen. He offered

his deep understanding in the subject and creative solutions to our mathematical

problems. The Department of Mathematical Sciences at NTNU was very help-

ful and supported the research throughout my studies. International scientific

collaboration is the product of our team work and I am very grateful for all the

work. I would like to thank my friends Lars Simon, Mads Adrian Simonsen

and Kristo Väljako for support and interesting discussions throughout the years.

I am grateful to Susan Anyosa and Hannah Elissa Conway for proof reading

this thesis. Most importantly, this thesis would have never came to be with-

out my family: Birgit, Jaanus, Robin and Linda. Their unconditional support

throughout the years has been significant.

Rasmus Erlemann

Trondheim, October 2020



4



Contents

1 Introduction 1
1.1 Conditional Distributions . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Conditional Discrete Distributions . . . . . . . . . . . 4

1.1.2 Conditional Continuous Distributions . . . . . . . . . . 5

1.2 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Goodness-of-Fit . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Conditional Test Distributions . . . . . . . . . . . . . . 12

1.4 Change Points Detection . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Asymptotic Nonparametric Change Point Detection . 16

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Conditional Monte Carlo Revisited 21

3 Conditional Goodness-of-Fit Tests for Discrete Distributions 57

4 Cramér-von Mises Tests for Changepoints 97



Contents

6



Introduction

This thesis consists of 4 chapters. The first chapter introduces the fundamental

theory used in the following articles. It is written as a graduate level text. We

assume the reader is familiar with the basics of probability theory and statistics.

We created examples which connect the introduced theory to the articles later

on. Their purpose is to support reading the papers.

The introduction consists of 5 sections. In the first section we introduce

conditional distributions and show how they can be used in hypothesis testing

and hierarchical distributions. These are connected to the first and second

paper. The next section is about hypothesis testing. We briefly introduce how

hypothesis testing rises from decision theory. In the third section we take a look

at a specific hypothesis testing problem: goodness-of-fit testing. The Cramér-

von Mises test statistic is used to illustrate it. Similar test statistics are also

considered in the second and third paper. In the end of this section, we introduce

how conditional distributions are used in goodness-of-fit testing. The fourth

section is about change point detection, which is another problem in hypothesis

testing. In change point detection we use the two-sample Cramér-von Mises

test to define a new test statistic. Later we explain how exact p-values are

calculated in this setting and also focus on its large sample theory to calculate

asymptotic p-values. In the last section, we give a summary of the introduction.

In the last 3 chapters we introduce the articles.

Vectors are denoted by a bold letter, for instance a random vector would

be denoted as X = (X1, . . . , Xn). Abbreviation IID is short for independent and

identically distributed.

R code that we used in this thesis is available at https://github.
com/rasmuserlemann

1.1 Conditional Distributions

Let X be a random variable with a sample space S. We can impose a condition

on it and study how its properties change. For example, we can condition on

SX>1 = {s ∈ S : X (s) > 1}. This means, we define a subset of S, for which X > 1
holds and it is denoted by SX>1. Let SX<2 and SX=0 also be events. How are
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Introduction

the probabilities of those events affected by conditioning?

Figure 1.1: Sample space with event subsets SX>1, SX>1∧X<2, Sx=0, SX<2.

As we can see, SX=0 ∩SX>1 = �. We can conclude that the conditional prob-

ability P (X = 0 | X > 1) = 0. In this section we look at how to calculate the

probability for more general cases, such as P (X < 2 | X > 1). We define the

conditional probability separately for continuous and discrete distributions in

the next subsections.

Conditional distributions play an important role in statistics. For example,

Bayesian statistics is built on this concept. More specifically, simulations from

conditional distributions play an important role in eliminating nuisance param-

eters, reducing variance in Monte Carlo methods etc. There are also direct

applications in other disciplines like economics [2] and finance [12].

Statistic is a function of the data x. Any statistic T (x) = t, defines a form of

data reduction or data summary. In this thesis we focus on sufficient statistics.

They capture information about the underlying parameters, while reducing the

sample size.

Definition 1.1. Let X be a vector of IID random variables with its distribution

characterized by a parameter vector θ. Statistic T is sufficient if and only if the

conditional distribution X | T (X) = t does not depend on θ.

If we condition on the sufficient statistic’s value, the resulting distribution

does not depend on the parameters any more. This property is useful in elimi-

nating underlying parameters, which we cover further on.

It is inconvenient to have to compute the conditional distribution of X given

T (X) = t to determine if it is sufficient or not. A simple check can be done by

the so-called factorization criterion.
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1.1 Conditional Distributions

Theorem 1.1 (Factorization theorem). Let X1, . . . , Xn be IID random variables
with joint density f (x1, . . . , xn | θ). A statistic T (X1, . . . , Xn) = t is sufficient if
and only if the joint density can be factorized as follows

f (x1, . . . , xn | θ) = u(x1, . . . , xn)v(T (x1, . . . , xn),θ).

Functions u and v are non-negative. The function u only depends on the whole
data x1, . . . , xn and the function v depends on the data only through T . If
the random vector X is discrete, we exchange f for the joint probability mass
function.

In this thesis we focus on both continuous and discrete conditional distribu-

tions. The main focus is on the geometric, Gamma, uniform, inverse Gaussian

and normal distributions. These distributions are widely used in practice. For

example the geometric distribution is the memoryless discrete distribution and

is the go to choice when the memoryless property is needed in modeling.

Often it is not possible to draw simulations from a conditional distribution

because the analytical form of the probability density function or cumulative dis-

tribution function is not known. Even if we have the analytical form, applying

methods such as inverse transform sampling, Metropolis-Hastings algorithm

or rejection sampling can be unsuccessful. Another option is to use the Gibbs

algorithm for drawing simulations [9]. In this thesis we also cover the naive

sampler, which is very versatile and easy to use. However the sample outcome

is only approximately from the specified distribution (in continuous case) and

the computational time might be too extensive.

Conditional distributions are also used to construct hierarchical models.

It means that there is some sort of hierarchical structure to their parameters.

This allows us to model situations where the independence property is violated,

letting samples come from the same family of distribution but with different

parameters. The sample may consist of independent clusters. Samples which

come from the same cluster will be more similar to each other than they will be

to samples from the other clusters. In this thesis we use two-stage hierarchies.

Example 1.1. Let us consider a two-stage hierarchical model where X | p ∼
Bin(n, p) and p ∼Beta(α,β). The given conditional probability mass function
is

P (X = x | p,n) =
(

n

x

)
px (1−p)1−x , x = 0,1, . . . ,n,

and the beta distribution density is

fp (y) = yα−1(1− y)β−1

B(α,β)
,

3



Introduction

where B is the beta function,

B(α,β) =
∫ 1

0
xα−1(1− t )β−1d t .

We will integrate the joint probability of X and p to find the unconditional
distribution. It is given by

P (X = x | n,α,β) =
∫ 1

0
fX ,p (x, y)d y

=
∫ 1

0
P (X = x | p = y,n) fp (y)d y

=
∫ 1

0

(
n

x

)
y x (1− y)1−x yα−1(1− y)β−1

B(α,β)
d y

=
(

n

x

)
B(α+x,β+n −x)

B(α,β)
, x = 0,1, . . . ,n.

With this we have derived the unconditional probability mass function for X ∼
betabin(n,α,β).

We use the beta-geometric distribution in the second article as an alter-

native in the likelihood ratio test statistic. It is defined analogously as the

beta-binomial distribution. Instead of the binomial distribution, there is the

geometric distribution.

1.1.1 Conditional Discrete Distributions

For discrete distributions, random variables only take up to a countable number

of values. It changes the way we find conditional distributions compared to

the continuous case. Methods for drawing simulations are also fundamentally

different.

In this thesis we focus on drawing simulations from conditional distribu-

tions, conditioned on a sufficient statistic. There are different reasons why this

can be a difficult task. The probability of the event we condition on can be

unknown. We might lack methods to draw simulations on the restricted sup-

port with given probabilities. For the discrete case, there is an algorithm that

satisfies the first two conditions. It is called the naive sampler.

Let us look at the case in which we want to draw simulations from X | T (X) =
t, where X is a vector of discrete random variables and T is a sufficient statistic.

Let us also assume we know how to draw simulations from X. We would draw

independent samples from X, with freely chosen parameters and check if the

condition T (X) = t is met. If it is met, we accept it and if it is not met, we

reject it. We propose a new method in this thesis to facilitate the fact that the

4



1.1 Conditional Distributions

naive sampler’s acceptance rate can be very low, making it a slow method. The

acceptance rate depends mostly on the value t. Some values are in a sense rarer

and they occur less often.

1.1.2 Conditional Continuous Distributions

Continuous distributions are used in cases where the random variable can take

on any real value. Given a vector of data x, in the continuous case, we assume

that each element can be any number in R. Simplest continuous distribution is

the uniform distribution. Random variable is said to be uniformly distributed

over an interval [a,b], if its density is constant over [a,b].
In the following example we calculate the analytical density for a condi-

tional continuous distribution. The naive sampler is then used to estimate the

marginal analytical density of X1. We can see that the variability of the drawn

samples depend highly on the chosen error rate.

Example 1.2. Let X1 and X2 be IID random variables from exp(λ) and λ> 0
is the rate parameter. We will find the marginal distribution fX1 | X1+X2 and
condition on X1 +X2 = 2. The joint density is

fX1,X2 (x1, x2) = 2λe−λ(x1+x2).

We can see that the joint density can be expressed through the sum x1 + x2.
Theorem 1.1 indicates that the sum is a sufficient statistic. This means the
conditional density does not depend on the rate parameter λ. Density of the
sum can be found with marginalization to be

fX1+X2 (x) =λ2xe−λx .

We can find the conditional density with the Bayes formula

fX1 | X1+X2 (x1 | x1 +x2 = x) = fX1 (x1) fX1+X2 | X1 (x | X1 = x1)

fX1+X2 (x)

= fX1 (x1) fX2 (x −x1)

fX1+X2 (x)

= e−λx1 e−λ(x−x1)

xe−λx

= 1

x
, 0 ≤ x1 ≤ 2.

We conditioned on the sum of X1 and X2 to be 2, so the conditional density be-
comes 1/2. As the conditional distribution does not depend on x1, it is uniform
over the support [0,2].

5
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For the next figure we use the naive sampler to draw conditional samples.
We chose the error rate to be ε= 10−3. We sample X1, X2 independently from
the exponential distribution with the maximum likelihood estimate as the pa-
rameter. If the drawn samples satisfy the conditioning statement within ε ball
around x = 2, we accept them as valid conditional samples. In other words, the
drawn samples x1, x2 are accepted if 2−ε≤ |x1 +x2| ≤ 2+ε. If the condition is
not met, we disregard them and draw new ones.

The following figure shows how the samples drawn by the naive sampler
approximate the analytically found density. We plot the density estimate of the
X1 marginal distribution.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 1.2: Blue line represents the naive sampler with error rate ε= 10−3 and 10000
sample points were found to construct the density. Black line represents the analytical

conditional density.
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1.2 Hypothesis Testing

The conditional density is uniform on [0,2]. The naive sampler empirial density
is approximately the same, but the error term creates the difference. We accept
samples for which the sum satisfies 2−ε < x1 + x2 < 2+ε. Depending on the
distribution, these sums are often skewed in one way. This means we might
accept more samples where x1 + x2 > 2 instead of x1 + x2 < 2, depending on
how we chose the parameters.

1.2 Hypothesis Testing

Hypothesis testing is a branch in a more general field called decision theory [7].

In hypothesis testing we formulate a hypothesis and use statistical modeling to

replicate it in a mathematical way. The general idea is that, as we are given data

and we use a statistical model to compare how unlikely the data we observed

is. For example, if we throw a coin 10 times and we get heads 9 out of 10 times.

Is that unlikely enough to say that the coin is not fair? We can calculate the

probability of observing 9 heads when throwing a fair coin. It comes out to be

less than 0.01. So, can we say that the coin is not fair based on that probability?

One wishes to decide whether or not some hypothesis that has been formu-

lated is correct. The choice lies between two decisions: accepting or rejecting

the hypothesis. The decision is based on the value of a certain random vector

X and its distribution Pθ which belongs to a class P = {Pθ : θ ∈Ω}. We want

to decide on whether to accept or reject the hypothesis based on what θ is as-

sociated with the random vector. The distributions in P can be classified to

classes for which we accept or reject the hypothesis. The resulting mutually

exclusive classes are denoted as H0 and H1 and the corresponding subsets of Ω

are ΩH0 and ΩH1 . Mathematically a hypothesis is equivalent to the statement

that Pθ is an element of H0. Analogously we call the distributions in H1 the

alternatives to H0. Let the decision of accepting or rejecting H0 be denoted by

d0 and d1 respectively. A nonrandomized test procedure assigns a decision to

each possible value x of X. This means the sample space of X can be divided

into two complementary regions: S0 for which the hypothesis is accepted and

S1 for which the hypothesis is rejected.

Definition 1.2. Significance level α is chosen to be a real number between 0
and 1. It imposes a condition that

Pθ(X ∈ S1) ≤α, θ ∈ΩH0 .

In other words, we impose a condition such that the probability of falsely

rejecting the null hypothesis is less than the chosen significance level α. Ob-

viously we want to keep the significance level as low as possible. Standard

7



Introduction

value for this is 0.01, 0.05 or 0.1. At the same time we want to maximize the

probability of correctly rejecting the null hypothesis.

Definition 1.3. The probability

β(θ) = Pθ(X ∈ S1), θ ∈ΩH1 ,

is called the power of a test against the alternative hypothesis H1.

Throughout the thesis we also mention type I and type II errors. When

performing a hypothesis test one may arrive at the correct decision or make one

of two errors: rejecting the hypothesis when it is true (error of the first kind)

or accepting it when it is false (error of the second kind). It is important to

distinguish between these two types. For example, if we tested for the presence

of a disease, incorrectly deciding on the necessity of treatment may cause the

patient discomfort or financial loss but failure to diagnose the disease may lead

to death. In practice, type I error is controlled by choosing the significance

level α and type II error is controlled by choosing the sample size. Type II error

β is closely related to the power. In fact, it is 1−β.

Instead of fixing a significance level to either accept or reject the hypothesis,

a popular method is to report the p-value, which leaves the choice to the reader.

We chose the p-value definition from [4] because in this thesis we use tests W
with the following property.

Definition 1.4. Let W (X) be a test statistic such that large values of W give

evidence that the alternative hypothesis is true. For each sample point x, the

p-value is defined as

p(x) = sup
θ∈ΘH0

Pθ(W (X) ≥W (x)).

We say the p-value is exact if the assumption of the null hypothesis is fully

met. For example, when using asymptotic results or parameter estimates we

make additional assumptions with the null hypothesis. As a result, the p-value

we calculate is not exact. We calculate exact p-values with conditioning on a

sufficient statistic. If we condition on a statistic T which is sufficient for P , the

p-value becomes

p(x) = sup
θ∈ΘH0

Pθ(W (X) ≥W (x) | T (X) = T (x)

= P (W (X) ≥W (x)) | T (X) = T (x)). (1.2.1)

We shall denote the conditional p-value with pcond and it is equal to (1.2.1).

The argument x is often omitted if we are dealing with a specific sample and it

is understood from the context.

Next, we introduce the procedure of calculating p-values via parametric

bootstrapping [14]. This procedure is iterated j = 1, . . . , M times.

8



1.2 Hypothesis Testing

1. Given data x and its parameter estimates θ̂ under the null hypothesis,

generate a new IID sample x j

θ̂
under the null hypothesis with θ̂ as param-

eters.

2. The sample is used to calculate the test statistic value W
(
x j

θ̂

)
.

The p-value is then approximated as

p ≈ 1

M

M∑
i=1

I

(
W

(
xi
θ̂

)
≥W (x)

)
.

In the following example we calculate the analytical expression of a condi-

tional p-value. It is inspired by Example 8.3.30 from [4].

Example 1.3. Let X1 and X2 be independent random variables from geometric
distributions, i.e. X1 ∼ Geom(p1) and X2 ∼ Geom(p2). Consider testing H0 :
p1 = p2 against the alternative H1 : p1 > p2. Let p denote the common value
of p1, p2, then under the null hypothesis, the joint probability mass function is

PX1,X2 (x1, x2 | p) = (1−p)x1 p(1−p)x2 p

= (1−p)x1+x2 p2.

As we can see, the joint probability can be expressed through the sum x1 + x2,
taking gp (x1 +x2) = (1−p)x1+x2 p2. Hence, X1 +X2 is sufficient under the null
hypothesis. Let us condition on X1 + X2 = t and define a test W (X1, X2) =
X2/(X1 +X2). With conditioning, the test statistic becomes X2/t . Large values
of X2 indicate that the underlying parameter of p2 is small. Also, since we are
conditioning on X1+X2 = t , as X2 increases, X1 must decrease, which suggests
p1 must increase. This explains why large values of W (X1, X2) = X2/t give
evidence for the alternative hypothesis.

We know that X2 | X1 + X2 = t is uniformly distributed (see chapter 3).
Hence the conditional p-value is

pcond = P (X2/t ≥ x2/t | X1 +X2 = t )

= P (X2 ≥ x2 | X1 +X2 = t )

=
t∑

i=x2

PX2 | X1+X2=t (i )

= t −x2 +1

t +1
, (1.2.2)

where PX2 | X1+X2=t is the conditional probability mass function of X2 | X1+X2 =
t .

We considered the following 3 cases and calculated p-values (via paramet-
ric bootstrapping), conditional p-values (via Monte Carlo simulations) and

9
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analytical conditional p-values from (1.2.2). The maximum likelihood estima-
tors for the parametric bootstrapping are given by p̂ = n/(t +n).

x1, x2 p-value conditional p-value analytical conditional p-value

2,30 0.094 0.092 0.090
3,10 0.278 0.286 0.285
2,2 0.597 0.601 0.6

Table 1.1: Comparison of different p-values. We used 105 iterations to calculate the

p-values and conditional p-values.

As we can see, the Monte Carlo error is very small between the analyti-
cal conditional p-values and conditional p-values. Parametric bootstrapping
values are also very close to the analytical conditional p-values.

1.3 Goodness-of-Fit

Goodness-of-fit tests are used to verify a statistical model. In this type of

hypothesis test, we determine whether the data fits a particular family of distri-

butions or not. The last few decades have seen a wide range of applications in

finance [10], cybersecurity [6], cosmology [15] and various other fields.

Often, the null hypothesis involves fitting a model with parameters esti-

mated from the observed data. For example, estimating the test statistic distri-

bution via parametric bootstrapping uses estimated parameters. We use condi-

tional p-values defined in the previous section, so there is no need to estimate

any parameters. We know that p-values found with conditional distributions

and parametric bootstrapping are highly correlated [8].

Let X1, . . . , Xn be IID random variables with distribution function F . We

want to test a family of distributions P = {Fθ | θ ∈∈∈ Rk } for a fit. In parametric

goodness-of-fit testing we test the null hypothesis

H0 : F ∈P

against the alternative

H1 : F ∉P .

Cramér-von Mises goodness-of-fit test statistic is one of the classical tests.

It is defined in [5] for continuous data as

W 2 = n
∫ ∞

−∞
(
Fn(x)−F (x)

)2 dF (x),

10



1.3 Goodness-of-Fit

where Fn is the empirical cumulative distribution function of the data and F is

the cumulative distribution function under the null hypothesis with maximum

likelihood estimates.

The test value describes how far the empirical distribution function is from

the theoretical cumulative distribution function, assuming the null hypothesis is

true. We are squaring the difference, which makes it a quadratic test. There are

other quadratic test statistics, such as the Anderson-Darling test statistic. From

the maximal type test statistics, there is the Kolmogorov-Smirnov test statistic.

Goodness-of-fit testing for discrete null hypotheses has been studied before

in [3] and [11]. Both articles focus on the geometric distribution.

Example 1.4. We generated two data sets. Both are size n = 50, the first one
comes from N (0,1) and the second one from Gumbel(2.5,1). Normal distribu-
tion maximum likelihood estimates for the first case were μ̂=−0.002, σ̂= 0.834
and for the second case μ̂ = 1.609, σ̂ = 1.516. The following plot shows how
well the normal distribution density curves with maximum likelihood estimators
approximate the data.
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Figure 1.3: Histogram on the left represents data from the normal distribution and on

the right from the Gumbel distribution. Black and blue lines are the normal distribution

density lines with maximum likelihood estimators.

We calculated Cramér-von Mises test statistic values for these two data sets.
These were W 2 = 0.074 for the first data set and W 2 = 0.368 for the second data
set. Parametric bootstrapping p-value for the first data set was 0.726 and 0.087
for the second one.

Calculated p-values suggest that the normal distribution does not fit the
second data set, if we set the significance level to be α= 0.1. For the first data
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Introduction

set, the p-value is higher and we can not reject the hypothesis, that the data
comes from the normal distribution.

1.3.1 Conditional Test Distributions

Suppose we have chosen the family of distributions for the null hypothesis,

we have the data and we calculated the goodness-of-fit test statistic value for

the data. In order to give a quantitative assessment of whether the fit is good

or not, we need to calculate the p-value. There are various different ways for

calculating the p-value in goodness-of-fit testing. It can be done asymptotically,

via bootstrapping or by using conditional distributions. When conditioning on

a sufficient statistic, we eliminate nuisance parameters and there is no need

to assume normality or estimate parameters, for what is the case when using

asymptotic theory or parametric bootstrapping. Conditional p-value is found

by conditioning on a sufficient statistic value of the data. Statistic is chosen

such that it is sufficient with respect to the H0 family of distributions.

Example 1.5. Let X1, . . . , Xn be IID random variables from Geom(0.5) and
Y1, . . . ,Yn are IID random variables from the discrete Weibull distribution of
type I, with a probability mass function

P (Y1 = y) = q xβ −q (x+1)β ,

for x = 0,1, . . . and the parameters are q = 0.7 and β= 0.8. Let us fix n = 100
and draw sample sets from both distributions. We used the Cramér-von Mises
test statistic for discrete distributions, it is defined [13] as

W 2 = 1

n

k∑
i=1

Ẑ 2
i p̂i ,

where Ẑk = ∑k
j=0(o j − ê j ) and o j is the observed number of values j in the

data and ê j = np̂ j is the expected number of values j . Parameter estimates p̂ j

is the probability of j in the geometric distribution with maximum likelihood
estimates calculated from the data and k = maxi=1,...,n xi . Essentially, the
Cramér-von Mises test statistic measures how far the empirical cumulative
distribution function of the data is from the theoretical cumulative distribution
function, under the null hypothesis with the maximum likelihood estimate.

The test statistic’s distribution was calculated by drawing 105 samples from
the conditional distribution and 105 parametric bootstrap samples.
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1.4 Change Points Detection
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Figure 1.4: On the left we have the test distributions for x1, . . . , x100 with t = 91 and the

maximum likelihood estimator for p is 0.518. On the right we have the test statistic’s

distribution for y1, . . . , y100 with t = 354 and the maximum likelihood estimator is

0.220. The black lines represent parametric bootstrapping, the blue lines conditional

simulations and the green lines observed values.

We can see that the test statistic’s distributions calculated with conditional
simulations and parametric bootstrapping are very similar, especially for the
second case. The green lines show clearly that a sample drawn under the null
hypothesis is much closer to the value 0 than the sample drawn from the discrete
Weibull distribution of type I, which is on the right. This is because large values
of the test statistic indicate deviation from the null hypothesis.

1.4 Change Points Detection

Change points detection has been an active research area since its launch in the

early 1950s. It has been applied in various disciplines. Some of them are eco-

nomics, finance, medicine, psychology, geology and literature. There are many

other works and several approaches in change point detection that are important

but not included in this thesis. Our approach is univariate, nonparametric and

we focus on detecting a single change point instead of multiple change points.

Let X1, . . . , Xn be independent random variables in R with continuous cumu-

lative distribution functions F1, . . . ,Fn . In nonparametric change point detection

we test the null hypothesis

H0 : F1 = . . . = Fn

against the alternative

H1 : ∃c ∈ {1, . . . ,n −1} : F1 = . . . = Fc = Fc+1 = Fc+2 = . . . = Fn .

13



Introduction

This is the so-called at most one change-point (AMOC) model. First c random

variables have one distribution function, a change happens and the remaining

n − c random variables have a different distribution function. Integer c can

be considered as known or unknown. If c is known, we have a two-sample

problem and we can test if X1, . . . , Xc and Xc+1, Xc+2, . . . , Xn come from the

same distribution. A classical test statistic for this is the Cramér-von Mises

two-sample test statistic. Let x1, . . . , xc−1, xc , xc+1, . . . , xn be the given sample

and we want to test if there is a change point at the index c. The two-sample

Cramér-von Mises test is [1] defined as

Wn(c) = c(n − c)

n2

n∑
i=1

[
Fc (xi )−Gn−c (xi )

]2 .

Function Fc is the empirical cumulative distribution function of the first c sam-

ple elements and Gn−c is of the remaining n − c.

It is one of the quadratic test statistics. It measures how far either of the

empirical cumulative distribution functions are from each other. If the test

statistic value Wn(c) is large, it implies that the samples come from different

distributions. Large values of Wn(c) give evidence to reject the null hypothesis.

If the change point c is unknown, we can use summation or maximal type

test statistics which are based on the two-sample Cramér-von Mises test statistic.

Let us define

Wmax = max
c=1,2,...,n−1

Wn(c),

W n = 1

n −1

n−1∑
c=1

Wn(c).

Change point estimator is defined as

ĉ = argmax
c=1,2,...,n−1

Wn(c).

The test statistic Wn(c) is nonparametric and its distribution under the null

hypothesis does not depend on the distribution F1. Exact p-value can be calcu-

lated by just letting the samples be IID. The test distribution only depends on

the sample size. We calculated the test statistics’ distributions by generating

sample sets from the standard uniform distribution, calculating test statistic

values for each set and finding the cumulative distribution functions FWmax and

FW n
of those values.

Given a data set x1, . . . , xn , how would we decide to reject or not to reject

the null hypothesis with significance level α? Let us find the test statistic values

of the data and denote them W obs
max and W

obs
n . Decision to reject or not can

be done by comparison against the critical values F−1
Wmax

(1−α) and F−1
W n

(1−α)

14



1.4 Change Points Detection

asymptotically. Another option is to find the p-values 1−F−1
Wmax

(
W obs

max

)
and

1−F−1
W n

(
W

obs
n

)
and compare them against the significance level. The following

example illustrates where the critical values position and how to calculate the

exact p-values.

Example 1.6. We generated a data set of size n = 100. First 30 sample points
are from N (0,1) and the remaining 70 are from N (1,1). The second data set is
all from N (0,1).
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Figure 1.5: Data represented by the black line is generated under the alternative hy-

pothesis and the blue line under the null hypothesis.

Test statistic and estimator values for the first case are

Wmax = 2.106, W n = 0.696, ĉ = 30

and for the second case

Wmax = 0.675, W n = 0.110, ĉ = 95.

Those values are displayed with the test statistic distributions. 90th and 95th
percentiles of W n are 0.265 and 0.321. For the Wmax, 0.826 and 0.963.
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Figure 1.6: W n (left) and Wmax (right) distributions for n = 100 under the null hypoth-

esis. Blue and black lines represent the test statistic values of the data sets.

The first data set was generated under the alternative hypothesis and the
tests successfully rejected the null hypothesis for significance levels α= 0.1 and
α = 0.05. Both test statistic values were higher than the critical values. The
second data set was generated under the null hypothesis. Both test statistic
values were low enough to not reject the null hypothesis. Existence of a change
point is not clearly visible for the first data set. The tests still detected the right
index and the test statistic values were high enough to reject the null hypothesis.

P-values for W n were 0.00065 for the first data set and 0.645 for the second
data set. For the test statistic Wmax, p-values were 0.00005 and 0.394.

1.4.1 Asymptotic Nonparametric Change Point Detection

The test statistics Wmax and W n are nonparametric, i.e. their distributions

do not depend on the distribution of the data. As a method of bootstrapping,

it allows us to draw sample sets from a freely chosen distribution, like the

standard uniform distribution. Then, we calculate the test statistic values of the

sample sets and these give us the test statistic’s distribution. It only has to be

done separately for each sample size n.

Another approach is to develop the large sample theory of those test statis-

tics. The theory is readily available for summation type statistics like W n . We

only touched on Wmax and the asymptotic distribution of it is still unknown.

For W n , the asymptotic distribution was found and as a result asymptotic p-

values can be calculated from it. Our test statistics are based on the two sample

Cramér-von Mises statistic and the large sample theory for it is well known [1].

The correlation of asymptotic and exact p-values was also studied. We found
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1.5 Summary

that the sample size of just n = 200 is large enough for these p-values to be

relatively similar.

1.5 Summary

In the above discussion we have given brief introductions to the topics and

main concepts that are used in this thesis. In the three papers of this thesis, we

developed methods for drawing conditional simulations from both continuous

and discrete distributions. These were then used in goodness-of-fit testing to

calculate exact p-values. For discrete null hypothesis, we defined new test

statistics which were based on the likelihood function. Next, we covered an-

other hypothesis testing problem, change point detection. We defined new test

statistics, which were based on the two-sample Cramér-von Mises test statis-

tic. Like in the previous cases, methods for calculating exact p-values were

developed. For W n we also found asymptotic p-values.

In the next 3 chapters we introduce the articles.

In the first paper we develop a new method for drawing samples from an

arbitrary conditional continuous distribution X | T (X) = t, where T is a function.

We do this by introducing an artificial parametric model, representing the con-

ditional distribution of X given T (X) = t within this new model. The key is to

provide the parameter of the artificial model by a distribution. The approach is

illustrated by several examples. For example, how to sample conditional uni-

form, normal distribution with unknown mean and two-parameter exponential

family random variables. These simulations are then compared to the naive

sampler. We also study how the conditional distribution samples can be used

in goodness-of-fit setting with some real life data.

The second paper is focused on the same problem but for discrete distri-

butions. The classical "stars and bars" framework is used in developing new

methods for drawing samples from the conditional geometric distribution. We

also define new likelihood based goodness-of-fit test statistics. The type I

Weibull and beta-geometric distributions are used as alternatives in these test

distributions. The new test statistics and some standard tests are also used with

real life data in goodness-of-fit setting.

In the last paper we define change point detection test statistics W n and

Wmax. These are closely related to goodness-of-fit testing. We study the large

sample theory of these test statistics and use it to calculate asymptotic p-values.

We also study how the asymptotic and exact p-values are connected and how

well the asymptotic techniques perform in comparison to the exact p-value.
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1 Introduction

Suppose we want to sample from the conditional distribution of a random

vectorX given T (X) = t for a function T (X) ofX. Trotter and Tukey (1956)

presented an interesting technique which they named conditional Monte Carlo.

Their idea was to determine a weight wt(X) and a modified sample Xt such

that E[φ(X)|T (X) = t] = E[φ(Xt)wt(X)] for any function φ, thus replacing

conditional expectations by ordinary expectations and allowing Monte Carlo

computation.

Although the authors were aware that the method had generalizations,

they confined themselves to rather special cases. Hammersley (1956) used

their idea in a slightly more general and flexible analytic setting, see also

Chapter 6 of the monograph by Hammersley and Handscomb (1964). Wen-

del et al. (1957) gave an alternative explanation, wherein the group-theoretic

aspect of the problem played the dominant role. Later, Dubi and Horowitz

(1979) gave an explanation of conditional Monte Carlo in terms of importance

sampling and change of variables. Their approach provides a framework by

which in principle any conditional sampling problem can be handled, and is

the survivor in textbooks (Ripley, 1987; Evans and Swartz, 2000). Condi-

tional Monte Carlo, in the form as introduced in the 1950s and the following

nearest decades, has apparently received little attention in the later literature

and has seemingly remained theoretically underdeveloped. An interesting

recent reference is Feng and Liu (2016) who exploit the change of variables

framework of conditional Monte Carlo with application to sensitivity estima-

tion for financial options.

Sampling from conditional distributions has been of particular inter-

est in statistical inference problems involving sufficient statistics (Lehmann

and Romano, 2005; Lehmann and Casella, 1998). Typical applications are

in construction of optimal estimators, nuisance parameter elimination and

goodness-of-fit testing. In some special cases one is able to derive condi-

tional distributions analytically. Typically this is not possible, however, thus

leading to the need for approximations or simulation algorithms.

Engen and Lilleg̊ard (1997) considered the general problem of Monte

Conditional Monte Carlo Revisited
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Carlo computation of conditional expectations given a sufficient statistic.

Their approach was further studied and generalized by Lindqvist and Tarald-

sen (2005), see also Lindqvist et al. (2003) and Lindqvist and Taraldsen

(2007). Further applications of the technique can be found in Schweder and

Hjort (2016), pp. 239, 250. Consider a statistical model where a random

vector X has a distribution indexed by the parameter θ, and suppose the

statistic T is sufficient for θ. The basic assumption is that there is given

a random vector U with a known distribution, such that (X,T) for a given

parameter value θ, say, can be simulated by (χ(U, θ), τ(U, θ)) for given func-

tions χ and τ . Let t be the observed value of T, and suppose that a sample

from the conditional distribution of X given T = t is wanted. Since the con-

ditional distribution by sufficiency does not depend on θ, it seems reasonable

that it can be described in some simple way in terms of the distribution of

U, and thus enabling Monte Carlo simulation based on U. The main idea

of Engen and Lilleg̊ard (1997) was to first draw U = u from its known dis-

tribution, then to determine a parameter value θ̂ such that τ(u, θ̂) = t and

finally to use χ(u, θ̂) as the desired sample. In this way one indeed gets a

sample of X with the corresponding T having the correct value t. However,

as shown by Lindqvist and Taraldsen (2005), only under a so-called pivotal

condition will this be a sample from the true conditional distribution. The

clue (Lindqvist and Taraldsen, 2005) is to let the parameter θ be given a

suitable distribution, changing it to a random vector Θ, independent of U,

and showing that the conditional distribution of X given T = t equals the

conditional distribution of χ(U,Θ) given τ(U,Θ) = t.

In the present paper, motivated by the classical approaches of conditional

Monte Carlo, we construct a method for sampling from conditional distribu-

tions of X given T ≡ T (X) = t in general, without reference to a particular

statistical model and sufficiency. As was suggested in Lindqvist and Tarald-

sen (2005), this could in principle be done by embedding the pair (X,T) in

an artificial parametric model where T is a sufficient statistic, and proceed

as above. This may, however, often not be a simple task, if practically doable

at all. While the new method is also based on the construction of an artificial

parametric statistical model, sufficiency of T is not part of this construction.
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As will be demonstrated in examples, algorithms derived from the present

approach will often be more attractive than the ones based on the sufficency

approach as described above.

The main idea of the new method is to construct an artificial statistical

model for a random vector U with distribution depending on a parameter

θ, such that a “pivot” χ(U, θ) has the same distribution as X for each θ.

Moreover, defining τ(U, θ) = T (χ(U, θ)), and considering θ as the realization

of a random Θ, it will follow that the pair (χ(U,Θ), τ(U,Θ)) has the same

distribution as (X,T). Consequently, the conditional distribution of X given

T = t equals the conditional distribution of χ(U,Θ) given τ(U,Θ) = t. This

end result similar to what was described above for the approach of Lindqvist

and Taraldsen (2005), but a crucial difference from the latter approach is

that the U and Θ are no longer independent.

As indicated above, an advantage of the new approach is that it applies to

a single distribution forX instead of a parametric model. Thus, when applied

to conditional sampling given a sufficient statistic, the method may be based

on the original model only under a conveniently chosen single parameter

value, for example using a standard exponential distribution when the model

is a two-parameter gamma model as in Section 4.2.1.

We give several examples to demonstrate the approach and illustrate dif-

ferent aspects of the theoretical derivations. In particular, the examples in-

clude a new method for sampling of uniformly distributed random variables

conditional on their sum, where the method of embedding the distribution

into a parametric family and using sufficiency is much less attractive than

the new method. Other examples consider conditional sampling given suffi-

cent statistics in the gamma and inverse Gaussian models, as well as a new

treatment of a classical example from Trotter and Tukey (1956).

The recent literature contains several other approaches to conditional

sampling. For example, Lockhart et al. (2007) and Lockhart et al. (2009)

studied the use of Gibbs sampling to generate samples from the conditional

distribution given the minimal sufficient statistic for the gamma distribution

and the von Mises distribution, respectively. Gracia-Medrano and O’Reilly

(2005) and O’Reilly and Gracia-Medrano (2006) constructed corresponding

Conditional Monte Carlo Revisited
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sampling methods based on the Rao-Blackwell theorem, while Santos and

Filho (2019) suggested a method using the Metropolis-Hastings algorithm.

An older reference for conditional sampling in the inverse Gaussian distribu-

tion is Cheng (1984).

The present paper is structured as follows. In Section 2 we explain the

main method and prove the basic results underpinning the approach. Specific

methods for simulation and computation within the approach are also briefly

described. Some further explanations and theoretical extensions are given in

Section 3. Section 4 is devoted to examples, in particular for a general two-

parameter exponential family of positive variables. Some simulation results

which indicate the correctness of the methods are given in Section 5, while an

example of goodness-of-fit testing with real data is given in Section 6. Some

final remarks are given in Section 7. The paper is concluded by an Appendix

containing two lemmas referred to earlier in the paper.

2 The main method

Let X be a random vector and let T = T (X) be a function of X. Our aim is

to sample from the conditional distribution of X given T = t. As indicated

in the Introduction, the idea is to construct a pair (U,Θ) of random vectors

and functions χ(U,Θ) and τ(U,Θ) such that this conditional distribution

equals the one of χ(U,Θ) given τ(U,Θ) = t.

Let U be a random vector with values in U and distribution Pθ depending

on a parameter θ ∈ Ω. Assume that there is a function χ(u, θ) defined for

u ∈ U , θ ∈ Ω, such that

χ(U, θ) ∼ X for each θ ∈ Ω. (1)

Here ’∼’ means ’having the same distribution as’, and U in (1) is assumed to

have the distibution Pθ. Note that χ(U, θ) is then a pivot in the statistical

model defined by U and Pθ.

The following result is basic to our approach. Let notation and assump-

tions be as above and let τ(u, θ) = T (χ(u, θ)) for u ∈ U and θ ∈ Ω.
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Theorem 1. Let Θ be a random vector taking values in Ω and let U condi-

tional on Θ = θ be distributed as Pθ. If χ satisfies (1), then the conditional

distribution of X given T = t is equal to the conditional distribution of

χ(U,Θ) given τ(U,Θ) = t.

Proof. It is enough to prove that χ(U,Θ) ∼ X. Then it will follow that

(χ(U,Θ), τ(U,Θ)) ∼ (X,T) and the result of the theorem will follow. Now,

by (1), for any bounded function φ,

E[φ(χ(U,Θ))] = E [E[φ(χ(U,Θ))|Θ] = E[φ(X)].

Since this holds for all φ, we conclude that χ(U,Θ) ∼ X.

The following result shows how U and Pθ can be constructed from a

function χ(u, θ).

Proposition 1. Let X be a random vector with density fX(x) and support

X . Let further χ(u, θ) for u ∈ U , θ ∈ Ω be such that χ(u, θ) for each fixed

θ ∈ Ω has a range that contains X , is differentiable, and is one-to-one with

a continuous inverse. Let U be a random vector taking values in U , with

distribution depending on θ ∈ Ω and given by the density

f(u | θ) = fX(χ(u, θ)) |det ∂uχ(u, θ)| . (2)

Then (1) holds.

Proof. Let φ be an arbitrary bounded function and fix a θ. Then by a

standard change of variable argument (Rudin, 1987, Theorem 7.26) we have

E[φ(χ(U, θ))] =

∫
φ(χ(u, θ))f(u | θ)du

=

∫
φ(χ(u, θ))fX(χ(u, θ)) · |det ∂uχ(u, θ)| du

=

∫
φ(x)fX(x)dx

= E[φ(X)].

The result of the proposition then holds since φ was arbitrarily chosen.

Conditional Monte Carlo Revisited

28



We now introduce the following assumption:

Assumption 1. For any u ∈ U and θ ∈ Ω, the equation τ(u, θ) = t can be

uniquely solved for θ by θ = θ̂(u, t).

In order to derive the conditional distribution of X given T (X) = t, we

will consider conditional expectations of a function φ. Under Assumption 1

we have

E[φ(X)|T (X) = t] = E[φ(χ(U,Θ))|τ(U,Θ) = t]

= E[φ(χ(U, θ̂(U, t)))|τ(U,Θ) = t], (3)

where we used the substitution principle (Bahadur et al., 1968) noting that

τ(U,Θ) = t ⇔ Θ = θ̂(U, t). In order to calculate (3) we will hence need the

conditional distribution ofU given τ(U,Θ) = t. This distribution is obtained

from a standard transformation from (U,Θ) to (U, τ(U,Θ)), which gives the

joint density h(u, t) of (U, τ(U,Θ) as

h(u, t) = f(u|θ̂(u, t))w(t,u), (4)

where t �→ w(t,u) is the density of τ(u,Θ) for fixed u. This density is given

by

w(t,u) = π(θ̂(u, t))
∣∣∣det ∂tθ̂(u, t)∣∣∣ =

∣∣∣∣ π(θ)

det ∂θτ(u, θ)

∣∣∣∣
θ=θ̂(u,t)

, (5)

where π(θ) is the density of Θ. From this we get the conditional distribution

of U given τ(U,Θ) = t as h(u|t) = h(u, t)/
∫
h(u, t)du, and we are then in

a position to complete the calculation of (3):

E[φ(X)|T = t] = E[φ(χ(U, θ̂(U, t)))|τ(U,Θ) = t]

=

∫
φ(χ(u, θ̂(u, t))h(u|t)du

=

∫
φ(χ(u, θ̂(u, t)))h(u, t)du∫

h(u, t)du
. (6)
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2.1 Methods of computation and simulation from the
conditional distribution

The integrals in (6) will usually have an intractable form. The calculation

of (6) or simulation of samples from h(u|t), may hence be done by suitable

numerical techniques. Some approaches are briefly considered below.

2.1.1 Importance sampling

Importance sampling appears to be the traditional method used in condi-

tional Monte Carlo, see for example Dubi and Horowitz (1979). Consider

the computation of (6). If U is sampled from a density g(u), then (6) can

be written

E[φ(X)|T = t] =
E[φ(χ(U, θ̂(U, t)))h(U, t)/g(U)]

E[h(U, t)/g(U)]
,

which in principle is straightforward to calculate by Monte Carlo simulation.

2.1.2 Rejection sampling

In order to obtain samples from the conditional distribution ofX givenT = t,

we need to first sample U = u from a density proportional to h(u, t), then

solve the equation τ(u, θ) = t, and finally return the conditional sample

x̂ = χ(u, θ̂(u, t)). Let h̃(u, t) be proportional to h(u, t) as a function of u.

In rejection sampling (Ripley, 1987, p. 60) one samples from a density g(u)

with support which includes the support of h̃(u, t) and for which we can find

a bound M < ∞ such that h̃/g ≤ M . One then samples u from g and a

uniform random number z ∈ [0, 1] until Mz ≤ h̃(u)/g(u).

2.1.3 Markov Chain Monte Carlo

A disadvantage of rejection sampling is the need for the bound M which may

be difficult to obtain. The Metropolis-Hastings algorithm (Hastings, 1970)

needs no such bound but, on the other hand, produces dependent samples.

We describe below an approach where proposals of the Metropolis-Hastings

algorithm are independent samples u from a density g(u), where g, as for
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the rejection sampling method, needs to have a support which includes the

support of h̃(u, t).

To initialize the algorithm one needs an initial sample u0 with h̃(u0, t) >

0. Then for each iteration k, one generates (i) a proposal u
′
from g(·) ; (ii)

a uniform random number z ∈ [0, 1]. One then accepts the proposal and let

uk+1 = u
′
if

z ≤ h̃(u
′
, t)

h̃(uk, t)
· g(u

k)

g(u′)
, (7)

and otherwise lets uk+1 = uk. It should be noted that for each new proposal

u
′
one needs to solve the equations leading to θ̂(u

′
, t). As for rejection

sampling, one obtains the desired samples x̂k = χ(uk, θ̂(uk, t)).

2.1.4 The naive sampler

In order to check algorithms for conditional sampling, a type of benchmark

might be to use a naive sampler as follows. Then x are sampled from fX(x)

and accepted if and only if |T (x)− t| < ε for an apriori chosen (small) ε > 0

and an appropriate norm | · |. The successive accepted samples x̂ are approx-

imate samples from the desired conditional distribution, see Section 4.2 for

examples.

3 Application of the method

As might be clair from the previous section, the choice of the function χ(u, θ)

and the marginal distribution for Θ are of crucial importance for the con-

struction of an efficient algorithm.

3.1 The choice of the function χ(u, θ)

The choice of χ(u, θ) will obviously depend very much on the application,

and we refer to the examples in order to give some advice here. The unique-

ness requirement of Assumption 1 of course restricts considerably the choice.

An important issue is the requirement that the range of χ(u, θ), for each θ,

should include the support of X. A further discussion on the form of the
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function χ(u, θ) is found in the concluding remarks of Section 7. In par-

ticular is considered a possible relaxation of the uniqueness requirement of

Assumption 1.

3.2 The choice of distribution of Θ

In Bayesian statistics it is well recognized that prior distributions for pa-

rameters may be chosen as improper distributions. Also, in the approach

on conditional sampling given sufficient statistics in Lindqvist and Taraldsen

(2005) it was argued that a random vector similar to our Θ may sometimes

preferably be given an improper distribution. The following argument shows,

however, that in the present approach, Θ must be given a proper distribution

(i.e., having an integrable density function π(θ)).

Suppose namely that Θ is given an improper distribution. In order to

condition on τ(U,Θ) it is necessary that its density is finite. (In Bayesian

analysis, this is the marginal density of the data which appears in the de-

nominator of Bayes’ formula.) This property implies that there is a set A

such that P (τ(U,Θ) ∈ A) < ∞, where this set clearly may be chosen so that

P (T (X) ∈ A) > 0. Now for this set A,

P (τ(U,Θ) ∈ A) =

∫
Ω

P (τ(U,Θ) ∈ A | Θ = θ)π(θ)dθ

=

∫
Ω

P (τ(U, θ) ∈ A | Θ = θ)π(θ)dθ

= P (T (X) ∈ A)

∫
Ω

π(θ)dθ,

where the last equality follows from the basic property (1). This clearly

implies that
∫
Ω
π(θ)dθ < ∞.

In the following we shall therefore always assume that Θ is given an

integrable density π(θ). (This density may of course be normalized to have

integral one, but as we shall see in our examples, the normalizing constant

is usually of no concern). Particular choices will depend on the application,

but also on certain structural issues of the problem as explained in the next

subsection.
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3.3 The “pivotal” condition

In some cases it is possible to choose the function χ(u, θ) in such a way that

τ(u, θ) depends on u only through a lower dimensionable function r(u), where

the value of r(u) can be uniquely recovered from the equation τ(u, θ) = t

for given θ and t. This means that there is a function τ̃ such that τ(u, θ) =

τ̃(r(u), θ) for all (u, θ), and a function ṽ such that τ̃(r(u), θ) = t implies

r(u) = ṽ(θ, t). The notion of “pivotal” for the present case is borrowed

from Lindqvist and Taraldsen (2005), who considered a similar condition in

which case ṽ(θ,T) is a pivotal quantity in the classical meaning of the notion.

Although the setting here is different, we shall keep calling this the pivotal

condition.

Under Assumption 1, the following equivalences hold under the pivotal

condition:

θ̂(u, t) = θ ⇔ τ(u, θ) = t ⇔ τ̃(r(u), θ) = t ⇔ r(u) = ṽ(θ, t)

We hence have the identity

r(u) = ṽ(θ̂(u, t), t) for all u, t

so that

τ(u, θ) = τ̃(ṽ(θ̂(u, t), t), θ)

and hence

det ∂θτ(u, θ) = det ∂θτ̃(ṽ(θ̂(u, t), t), θ).

Substituting θ̂(u, t) for θ it is therefore seen that

| det ∂θτ(u, θ)|θ=θ̂(u,t) = J(θ̂(u, t), t) (8)

where

J(θ, t) = |det∂θτ̃(v, θ)|v=ṽ(θ,t).

Consider first the case where J(θ̂(u, t), t) factors as K(θ̂(u, t))a(t). Suppose

also that f(u|θ) factors as

f(u|θ) = ρ(θ)f̃(u|θ).
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Then (4) and (5) suggest the choice of π(θ) proportional to ρ(θ)−1K(θ),

which simplifies the expression for h(u, t) in (4). In order to ensure that

π(θ) has a finite integral, we might in addition restrict the support of π to

some bounded set, letting for example

π(θ) = ρ(θ)−1K(θ)I(θ ∈ A),

where I(·) is the indicator function of the condition in the parantheses, and

A is such that
∫
A
ρ(θ)−1K(θ)dθ < ∞. It follows in this case that

h(u, t) ∝ f̃(u|θ̂(u, t))I(θ̂(u, t) ∈ A). (9)

For the general pivotal case, leading to (8), we would have to choose a π(·)
that depends on t, by replacing K(θ) by J(θ, t) in the above. Since t is fixed

when conditioning on T = t, it is seen that the crucial arguments will go

through also in this case, thus still leading to (9). A similar argument was

used in Lindqvist and Taraldsen (2005).

As a further refinement, it may happen that r(U) is a sufficient statistic

in the model defined by f(u|θ). Then by Neyman’s factorization criterion

(Casella and Berger, 2002, Ch. 6), we can write

f(u|θ) = p(r(u)|θ)q(u)
for appropriate functions p and q. Hence we can write

f(u|θ̂(u, t)) = p(ṽ(θ̂(u, t), t)|θ̂(u, t))q(u)
By assimilating the p(·)-part of the above into π(θ̂(u, t)) (where π(·) will now
possibly depend on t) we get

h(u, t) ∝ q(u)I(θ̂(u, t) ∈ A).

4 Examples

4.1 Two examples involving the pivotal condition

4.1.1 Conditional sampling of uniforms

Let X = (X1, X2, . . . , Xn) be an i.i.d sample from U [0, 1], the uniform distri-

bution on [0, 1], and let T (X) =
∑n

i=1 Xi. Suppose one wants to sample from
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the conditional distribution of X given T (X) = t where 0 < t < n. There ap-

pears to be no simple expression for this conditional distribution. Lindqvist

and Taraldsen (2005) considered an approach where the uniform distribution

is embedded in a parametric family involving truncated exponential distribu-

tions and utilzed the sufficiency of T (X) in this model. The resulting method

is, however, surprisingly complicated in absence of the pivotal condition of

Lindqvist and Taraldsen (2005). A Gibbs sampling method was devised by

Lindqvist and Rannestad (2011), apparently being much quicker than the

former method, and much easier to implement.

We now present a simple solution to the problem using the approach

of the previous sections and utilizing the presence of a pivotal condition as

studied in Section 3.3. An advantage as compared to the Gibbs sampling

algorithm is that the present method produces independent samples.

Let U = (U1, U2, . . . , Un) be an i.i.d. sample from U [0, θ], where θ ∈ (0, 1].

Then the Ui/θ are i.i.d. from U [0, 1], so condition (1) in Section 2 is satisfied

with

χ(u, θ) =
(u1

θ
,
u2

θ
, . . . ,

un

θ

)
. (10)

defined for u ∈ [0, 1]n and θ ∈ (0, 1].

The above is moreover in accordance with Proposition 1, which readily

gives

f(u | θ) = 1

θn
I(max

i
ui ≤ θ),

where we used that fX(x) = I(max xi ≤ 1). Note that here and below we

tacitly assume that we are working with nonnegative variables only.

Now we have

τ(u, θ) =

∑n
i=1 ui

θ
,

and hence there exists a unique solution for θ of the equation τ(u, θ) = t,

given by

θ̂(u, t) =

∑n
i=1 ui

t
. (11)

Clearly, the pivotal condition of Section 3.3 is satisfied with r(u) =
∑n

i=1 ui.

It is seen, however, that r(u) does not correspond to a sufficient statistic

for the model f(u|θ). We should therefore stick to (9), which by choosing
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A = [0, 1] gives

h(u, t) ∝ I(max
i

ui ≤ θ̂(u, t)) · I(θ̂(u, t) ≤ 1)

= I

(
max ui ≤

∑n
i=1 ui

t

)
· I
(∑n

i=1 ui

t
≤ 1

)

= I

(
t ·max

i
ui ≤

n∑
i=1

ui ≤ t

)
. (12)

Thus the conditional distribution h(u|t) is uniform on the set of u ∈ [0, 1]n

satisfying the restriction given by the indicator function in (12). We may

hence sample the ui independently from U [0, 1] and accept the sample if and

only if the restriction is satisfied. (Note that if t ≤ 1, then the left inequality

in (12) is always satisfied.) Finally, for the accepted samples we conclude

from (10) and (11) that the resulting conditional sample is

x̂ =

(
t

u1∑n
i=1 ui

, t
u2∑n
i=1 ui

, . . . , t
un∑n
i=1 ui

)
. (13)

Figure 1 shows the result of a simulation with n = 2 and t = 0.3. It

is easy to show by direct calculation that the conditional distribution of X1

(and hence also of X2) given X1 + X2 = 0.3 is uniform on [0, 0.3]. The left

panel of the figure shows the empirical cumulative distribution of X1 (and

X2) resulting from (13), which is clearly uniform on [0, 0.3] as expected. The

right panel of the figure shows, on the other hand, the empirical distribu-

tion obtained from (13) when sampling (u1, u2) i.i.d. from U [0, 1] without

ignoring the pairs (u1, u2) with u1 + u2 > 0.3 (which is required by (12)).

The discrepancy from a straight line shows that condition (12) is necessary

here. Still the algorithm is very simple, and simpler than the corresponding

algorithms of Lindqvist and Taraldsen (2005) and Lindqvist and Rannestad

(2011) that were mentioned above.

The algorithm may be slow if t is close to 0 or n. In these cases it

might be better to use importance sampling by drawing the ui from a density

g(u) = cuc−1 for c > 0, where c is small (large) if t is close to 0 (close to

n). But note that we will then need to sample from a non-uniform density

h(u|t).
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Figure 1: Empirical distribution functions for marginal distributions of con-
ditional samples of uniforms when n = 2. Left: Sampling (u1, u2) ∼ U [0, 1]
and using (12) and (13). Right: Sampling (u1, u2) ∼ U [0, 1] and using (13)
only.
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As a final remark on this example, suppose instead that we wanted to

condition on
∑n

i=1 X
r
i = t for some given r > 0. It is then straightforward to

check that only a minor modification of the above derivation is needed. As a

result, one should still sample ui from U [0, 1], but change condition (12) into

I

(
t ·max

i
ur
i ≤

n∑
i=1

ur
i ≤ t

)

and use the samples x̂ where

x̂i = t1/r
ui

(
∑n

�=1 u
r
�)

1/r
.

4.1.2 Conditional sampling of normals

The following is a classical example in conditional Monte Carlo, see e.g.

Trotter and Tukey (1956), Hammersley (1956), Granovsky (1981), Ripley

(1987). Let X = (X1, X2, . . . , Xn) be i.i.d from N(0, 1) and let T (X) =

maxi Xi − mini Xi. We wish to sample from the conditional distribution of

X, given T (X) = t for t > 0.

Now let U = (U1, U2, . . . , Un) be an i.i.d. sample from N(0, θ2). Then

condition (1) in Section 2 is clearly satisfied when χ(u, θ) is given by the

scale transformation (10) for u = (u1, u2, . . . , un) ∈ R
n and θ ∈ (0, 1]. It is

furthermore seen that the pivotal condition of Section 3.3 is satisfied with

r(u) = maxi ui−mini ui, and in a similar way as for the uniform distribution

case treated above, we arrive at

h(u, t) ∝ exp

(
− t2

2(maxi ui −mini ui)2

n∑
i=1

u2
i

)
I(max

i
ui−min

i
ui < t), (14)

by letting π(·) be supported on the interval [0, 1]. Actually, we have used

π(θ) = θn−1I(0 < θ ≤ 1).

Noting that the right hand side of (14) is less than or equal to

exp

(
−1

2

n∑
i=1

u2
i

)
I(max

i
ui −min

i
ui < t)

we can use rejection sampling (Section 2.1.2) based on sampling of i.i.d. stan-

dard normal variates. If t is small, then in order to increase the acceptance
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probability of the rejection sampling, it might be beneficial to use as the pro-

posal distribution, a mixture of a standard normal and a normal distribution

with small variance.

The resulting conditional samples are now of the form

x̂ =

(
t

u1

maxi ui −mini ui

, . . . , t
un

maxi ui −mini ui

)
.

4.2 Conditional sampling from two-parameter expo-
nential families

Suppose X = (X1, X2, . . . , Xn) is distributed as an i.i.d. sample from a two-

parameter exponential family of positive random variables, with minimal

sufficient statistic

T(X) = (T1(X), T2(X)) =

(
n∑

i=1

g1(Xi),
n∑

i=1

g2(Xi)

)
. (15)

Suppose now that t = (t1, t2) is the observed value of T(X), and that we

want to sample X = (X1, X2, . . . , Xn) conditionally on T(X) = t. By suffi-

ciency, samples from the conditional distribution of X given T(X) = t can be

obtained by choosing any density from the given family as the basic density.

Let fX(x) =
∏n

i=1 fX(xi) be the chosen density.

Let

χ(u, θ) =

((
u1

β

)α

,

(
u2

β

)α

, . . . ,

(
un

β

)α)
, (16)

where u = (u1, u2, . . . , un) is a vector of positive numbers and θ = (α, β) is a

pair of positve parameters α, β. Then, using Proposition 1, condition (1) of

Section 2 is satisfied if U for given θ has density

f(u | θ) =
n∏

i=1

α

β

(
ui

β

)α−1
fX

((
ui

β

)α)
. (17)

Assumption 1 requires that there is a unique solution for θ of the equation

τ(u, θ) = t,

which here means
n∑

i=1

g1

((
ui

β

)α)
= t1,
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n∑
i=1

g2

((
ui

β

)α)
= t2.

Assume that there is a unique solution θ̂(u, t) = (α̂(u, t), β̂(u, t)) of these

equations.

Letting π(θ) ≡ π(α, β) be the density of Θ, the density h(u, t) is found

from (4) and (5), giving

h(u, t) = f(u | θ̂(u, t))w(t,u)

=
(α̂/β̂)n (

∏n
i=1 x̂i)

1−1/α̂
(
∏n

i=1 fX(x̂i)) π(α̂, β̂)

| det ∂θτ(u, θ)|θ=θ̂(u,t)

. (18)

where

x̂i =

(
ui

β̂

)α̂

(19)

and

det ∂θτ(u, θ)|θ=θ̂(u,t) =
1

β̂(u, t)

[(
n∑

i=1

g′1(x̂i)x̂i

)(
n∑

i=1

g′2(x̂i)x̂i log(x̂i)

)

−
(

n∑
i=1

g′2(x̂i)x̂i

)(
n∑

i=1

g′1(x̂i)x̂i log(x̂i)

)]
.

When sampling from (18) by the Metropolis-Hastings algorithm (Sec-

tion 2.1.3) it seems to be a good idea to let the proposal distribution g(u)

be the distribution of the original exponential familiy with parameter values

equal to the maximum likelihood estimates based on the observation t. Then

the calculated α̂, β̂ are expected to be around 1, and we therefore suggest to

choose the distribution of Θ as π(α, β) = I(a1 ≤ α ≤ a2, b1 ≤ α ≤ b2) for

suitably chosen 0 < a1 < 1 < a2, 0 < b1 < 1 < b2, see examples in Section 5.

In a practical application one would usually also have the original data

x = (x1, . . . , xn) which led to the values t1 = T1(x), t2 = T2(x). The vector x

may then be used as the initial sample of the Metropolis-Hastings simulation,

and will give α̂ = β̂ = 1. In this case, the successively simulated accepted

conditional samples x̂ = (x̂1, . . . , x̂n) defined by (19) will have the correct

distribution, so there is no need for a burn-in period in the Metropolis-

Hastings simulations.
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4.2.1 Gamma Distribution

The gamma-distribution with shape parameter k > 0 and scale parameter

θ > 0 has density

f(x; k, θ) =
1

θkΓ(k)
xk−1e−x/θ for x > 0. (20)

We suggest using k = θ = 1 to get fX(x) = e−x. Referring to (15), we have

for the gamma model, g1(x) = x, g2(x) = log x, and hence we need to solve

the equations

n∑
i=1

(
ui

β

)α

= t1, (21)

n∑
i=1

log

(
ui

β

)α

= t2. (22)

It is shown in Lemma 1 in Appendix that there is a unique solution (α̂, θ̂)

for (α, θ). The actual solution turns out to be easily obtained via a single

equation involving α. Now (18) gives

h(u, t) =
(α̂/β̂)ne(1−1/α̂)t2e−t1π(α̂, β̂)

(1/β̂) (t1t2 − n
∑n

i=1 x̂i log x̂i)
,

which is the basis for simulation of conditional samples as outlined above.

It is easy to see, however, that the pivotal condition of Section 3.3 is not

satisfied here.

4.2.2 Inverse Gaussian Distribution

The Inverse Gaussian distribution has density which can be written as

f(x;μ, λ) =

√
λ

2πx3
exp

(
− λ

2x
− λx

2μ2
+

λ

μ

)
, x > 0. (23)

Let now fX(x) be the density obtained when μ = λ = 1, i.e.

fX(x) =

√
1

2πx3
exp

(
− 1

2x
− x

2
+ 1

)
, x > 0.
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Furthermore, for the inverse Gaussian distributions we can choose g1(x) =

x, g2(x) = 1/x (Seshadri, 2012, p. 7), and hence we obtain the equations

n∑
i=1

(
ui

β

)α

= t1,

n∑
i=1

(
ui

β

)−α
= t2.

As for the gamma case, there is a unique solution (α̂, β̂) for (α, β), see Lemma

2 in the Appendix. Now we get from (18),

h(u, t) =
(α̂/β̂)n (

∏n
i=1 x̂i)

−1/2−1/α̂
e−(1/2)(t1+t2)+nπ(α̂, β̂)

(1/β̂) (t2
∑n

i=1 x̂i log x̂i − t1
∑n

i=1 log x̂i/x̂i)
.

It was suggested above to use the parametric model itself as a proposal dis-

tribution in Metropolis-Hastings simulations, with parameters given by the

maximum likelihood estimates from the original data. Following (Seshadri,

2012, p. 7), the maximum likelihood estimates of the parameters in (23) are

given from

μ̂ = x̄, λ̂−1 =
1

n

n∑
i=1

(
1

xi

− 1

x̄

)
.

Note also that Michael et al. (1976) presented a nice method of simulating

from the inverse Gaussian distribution.

5 A simulation study

A simulation study was performed in order to illustrate the algorithms of

Section 4.2 for the gamma and inverse Gaussian distributions, respectively.

The setup of the study is summarized in Table 1.

For example, in case 1, a sample x with n = 3 was drawn from a gamma

distribution, giving the observed sufficient statistic (t1, t2) = (4.86, 1.02).

Conditional samples were then simulated using the Metropolis-Hastings al-

gorithm in the way described in Section 4.2. More precisely, the proposal

distribution was chosen to be the gamma density (20) using the maximum

likelihood estimates k̂ = 3.66, θ̂ = 0.44 as parameters. The density π(α, β)
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was chosen to be uniform over (α, β) ∈ [0.5, 1.5] × [0.5, 1.5]. In addition,

we applied the naive sampling method described in Section 2.1.4. Values

ε1, ε2 (see Table 1) were chosen so that the sampler accepts an i.i.d. sample

x′ = (x′1, x
′
2, . . . , x

′
n) from the proposal distribution if and only if

|T1(x
′)− t1| ≤ ε1 and |T2(x

′)− t2| ≤ ε2.

In case 1 were used ε1 = ε2 = 10−2. Both the Metropolis-Hastings algorithm

and the naive sampler were ran for enough iterations to produce at least 104

samples.

The description is similar for cases 2-4. Figure 2 shows, for each of the

four cases in Table 1, the simulated cumulative distribution functions for the

sampled x̂1. The closeness of the curves corresponding to the two methods is

remarkable. Considering the naive sampler as a “benchmark”, although only

approximately correct, this closeness can be taken as a confirmation that

the algorithms derived in the paper are producing samples from the correct

conditional distributions.

Case t1, t2 n Distribution Sample sizes π ε1, ε2

1 4.86, 1.02 3 Gamma 104 I[0.5,1.5]2 10−2, 10−2

2 16.49, 2.85 10 Gamma 104 I[0.5,1.5]2 10−1, 10−1

3 3.67, 6.01 3 Inverse Gaussian 104 I[0.5,1.5]2 10−1, 10−1

4 936.36, 0.59 10 Inverse Gaussian 104 I[0.5,1.5]2 10−1, 10−1

Table 1: Values used for generating examples.

6 Application to goodness-of-fit testing

As noted in the introduction, a typical use of conditional samples given suf-

ficient statistics is in goodness-of-fit testing.

Consider the null hypothesis H0 that an observation vector X comes

from a particular distribution indexed by an unknown parameter θ and such

that T = T (X) is sufficient for θ. For a test statistic W (X) we define the

conditional p-value by

pWobs = PH0(W (X) ≥ w∗|T = t)
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Figure 2: Simulated margi6al cumulative distribution functions for the sam-
pled x̂1 from the conditional samples for the cases of Table 1. Using the
Metropolis-Hastings algorithms of Section 4.2 (black); using the naive sam-
pler of Section 2.1.4 (red). Case 1: upper left. Case 2: upper right. Case 3:
lower left. Case 4: lower right.
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where w∗ is the observed value of the test statistic and t is the observed

value of the sufficient statistic. A conditional goodness-of-fit test based on

W rejects H0 at significance level α if pWobs ≤ α. Let now x̂j for j = 1, 2, . . . , k

be samples from the conditional distribution of X given T = t. Then the

observed p-values are approximated by

pWobs ≈
1

k

k∑
j=1

I(W (xj) ≥ w∗). (24)

Consider now data from Best et al. (2012), giving the precipitation from

storms in inches at the Jug bridge in Maryland, USA. The observed data are

1.01, 1.11, 1.13, 1.15, 1.16, 1.17, 1.2, 1.52, 1.54, 1.54, 1.57, 1.64,

1.73, 1.79, 2.09, 2.09, 2.57, 2.75, 2.93, 3.19, 3.54, 3.57, 5.11, 5.62

comprising the data vector x = (x1, x2, . . . , xn), where n = 24. The question

is whether the gamma or inverse Gaussian distributions fit the data. Using

the setup and notation from Section 4.2 we calculate the sufficient statistics

as

t1 =
n∑

i=1

xi = 52.72, t2 =
n∑

i=1

log xi = 15.7815

for the gamma distribution and

t1 =
n∑

i=1

xi = 52.72, t2 =
n∑

i=1

1

xi

= 13.8363

for the inverse Gaussian distribution.

Some common test statistics for goodness-of-fit testing are constructed as

follows. Let (x(1), x(2), . . . , x(n)) be the order statistic of x. Then define the

transformed values zi = F (x(i) ; θ̂1, θ̂2), where F (·; θ1, θ2) is the cumulative

distribution function of the gamma or inverse Gaussian distributions with

parameters θ1, θ2, while θ̂1, θ̂2 are the maximum likelihood estimates which

can be found from the corresponding t1 and t2.

From this setup we can write down the following test statistics:

Kolmogorov-Smirnov test (Razali et al., 2011)

D = max
1≤i≤n

(
zi − i− 1

n
,
i

n
− zi

)
.
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Test Inverse Gaussian distribution Gamma distribution

A2 0.094 0.024
ω2 0.102 0.031
D 0.217 0.061

Table 2: Conditional p-values

Anderson-Darling test (Stephens, 1970)

A2 = −n− 1

n

n∑
i=1

(2i− 1) (ln zi + ln(1− zn−i+1)) .

The Cramér-von Mises test (Stephens, 1970)

ω2 =
1

12n
+

n∑
i=1

(
zi − 2j − 1

2n

)2

.

Now let A2
∗, ω∗, D∗ denote the observed values of the test statistics as cal-

culated from the observed data x. The approximated conditional p-values

pDobs, p
A2

obs, p
ω2

obs can now be calculated from (24) for each the null hypotheses

of gamma distribution and inverse Gaussian distribution, respectively.

We simulated k = 105 samples from the conditional distributions and

obtained the results of Table 2. The calculated conditional p-values indicate

that the fit of the inverse Gaussian is marginal, which agrees with the results

of Best et al. (2012). Using significance level α = 0.05, the tests based on A2

and ω2 suggest that the gamma distribution does not fit the data.

7 Concluding remarks

7.1 Classical conditional Monte Carlo

The method of the present paper can be seen as a reformulation of the main

ideas of the classical concept of conditional Monte Carlo as introduced in the

1950s. The basic idea of conditional Monte Carlo was essentially the intro-

duction of new coordinates. Trotter and Tukey (1956) made a point of the

“skullduggery” related to such arbitrary new variables which had “nothing
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to do with the way our samples were drawn”. This “trick” was, however,

the successful ingredient of the method, and is basically also the way our

method works. The main new coordinate of our approach is represented by

a parameter in an artificial statistical model.

7.2 Comparison to Lindqvist and Taraldsen (2005)

As indicated in the Introduction, there are some basic differences between

the method of Lindqvist and Taraldsen (2005) and the present approach.

Still, the methods share several important ingredients, and we have therefore

found it useful to adopt much of the notation from Lindqvist and Taraldsen

(2005) in the present paper. With this, both methods end up with the goal

of calculating conditional distributions of certain functions χ(U,Θ) given

related functions τ(U,Θ) = t. While the role of Θ is apparently very similar

in the two methods, there is indeed a difference. As shown in Section 3.2, Θ

can in the present approach basically be given any bounded distribution, but

not an improper distribution. This is in contrast to Lindqvist and Taraldsen

(2005), where the distribution of Θ plays a role more in line with Bayesian and

fiducial statistics. The framework and methods of Lindqvist and Taraldsen

(2005), although tailored for the special situation of conditional sampling

under sufficiency, in fact also induces interesting algorithms for calculation

of Bayesian posterior distributions as well as fiducial sampling.

7.3 The roles of θ and χ(u, θ)

As we have seen, the parameter θ will normally have the same dimension

as the statistic T (X). This ensures that the number of equations to solve

for obtaining the θ̂(u, t) is the same as the number of unknowns (see As-

sumption 1). In the examples of Sections 4.1.1 and 4.1.2 we considered a

one-dimensional T (X), using the “scaling” transformation, χ(u, θ) = u/θ.

In Section 4.2 we conditioned on a two-dimensional statistic and used the

transformation χ(u, θ) = (u/β)α which is appropriate for positive variables.

This transformation would not be appropriate, however, for models where

the observations have support in all of R. In this case, the linear transforma-

47



tion (u− α)/β could be used instead. This would for example be a suitable

transformation if, in the example of Section 4.1.2, we conditioned on the

average X̄ in addition to the range maxXi −minXi.

7.4 Conditioning on T (X) with dimension k > 2

Our initial motivation for the paper came from the conditional sampling given

sufficient statistics in two-parameter models like gamma and inverse Gaussian

distributions. Still a natural question is, of course, what to do if we want to

condition on T (X) with dimension k > 2. For the i.i.d. case with Xi having

support in all of R, an obvious choice might be to let θ = (θ0, θ1, . . . , θk−1)

and

χ(u,θ) =
k−1∑
j=0

θju
j. (25)

If we put k = 2 in (25), then this is in fact equivalent to the transformation

(u− α)/β as suggested above.

In the i.i.d. case with positive Xi, a general suggestion might be to use

χ(u,θ) = exp

{
k−1∑
j=0

θju
j

}
. (26)

For k = 2 this transformation is in fact equivalent to the transformation used

for the two-parameter exponential families of positive variables in Section 4.2,

since (
u

β

)α

= exp{−α log β + α log u}.

It follows from this that, in the gamma and inverse Gaussian cases treated in

Section 4.2, we could as well have used the transformation (26) with k = 2,

and still obtained unique solutions for θ̂. In general, however, there might be

several solutions for θ in the equations τ(u,θ) = t. There would therefore

be a need for the possibility of relaxing Assumption 1 to allow more than

one solution of the equation τ(u, θ) = t. We sketch an approach below.
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7.5 Multiple solutions of the equation τ(u, θ) = t

In general it might be difficult or impossible to find a suitable function χ(u, θ)

such that Assumption 1 holds. In practice, there may be a finite number of

solutions, where the number may also depend on the values of (u, t). Define

then

Γ(u, t) = {θ̂ : τ(u, θ̂) = t}.
An extension of the arguments leading to (4), taking into account the mul-

tiplicity of the roots of the equation τ(u, θ) = t, then gives the following

expression for the joint density of (U,Θ, τ(U,Θ)),

h(u, θ̂, t) = f(u|θ̂)
∣∣∣∣ π(θ)

det ∂θτ(u, θ)

∣∣∣∣
θ=θ̂

(27)

for u, t as before, and θ̂ ∈ Γ(u, t). A similar expression was obtained in

Lindqvist and Taraldsen (2007).

The formula (6) for conditional expectations now becomes

E[φ(X)|T = t] =

∫ ∑
θ̂∈Γ(u,t) φ(χ(u, θ̂))h(u, θ̂, t)du∫ ∑

θ̂∈Γ(u,t) h(u, θ̂, t)du
,

while the Metropolis-Hastings method of Section 2.1.3 may proceed as fol-

lows. First, propose the u in the same way as in Section 2.1.3, and then

calculate the roots θ̂ ∈ Γ(u, t). One of these roots, say θ̂′, is then chosen at

random according to the conditional distribution of θ̂ given u and t, as found

from (27). A properly modified version of the criterion (7) is then used for

acceptance or non-acceptance, using h(u′, θ̂′, t) instead of h̃(u, t).

7.6 Using the pivot τ(U, θ) in statistical inference

As noted in Section 2, the random vector χ(U, θ) and hence also τ(U, θ) are

pivots in the constructed artificial statistical model. In order to study their

possible properties in a statistical inference setting, recall that for the gamma

distribution case of Section 4.2.1, we used fX(x) = e−x and the transforma-

tion (16). In this case, (17) is in fact the joint density of n i.i.d. Weibull-

distributed random variables with shape parameter α and scale parameter
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β. A curious biproduct of our method is therefore the construction of exact

confidence sets for the pair (α, β) from observed i.i.d. Weibull-distributed

data u = (u1, u2, . . . , un). The basis of the confidence sets would then be to

sample vectors x from the unit exponential distribution, calculate t1 =
∑

xi

and t2 =
∑

log xi and solve (21)-(22) for α and β with u fixed at the observed

Weibull-data. The resulting pairs (α̂, β̂) would then have a joint distribution

corresponding to a two-dimensional confidence distribution for (α, β). (This

is in some sense exactly the opposite of what we are doing in Section 4.2.1,

where t1 and t2 are fixed, and we sample the ui). For exact inference in

Weibull models based on the maximum likelihood estimators for (α, β) we

refer to Thoman et al. (1969).
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Appendix

Lemma 1. Let n ∈ N and u1, u2, . . . , un ∈ R
+, and let for some v1, v2, . . . , vn ∈

R
+,

n∑
i=1

vi = t1,

n∑
i=1

ln vi = t2.

Then the system of equations⎧⎨
⎩
∑n

i=1

(
ui

β

)α

= t1∑n
i=1 ln

(
ui

β

)α

= t2,

has a unique solution for α, β ∈ R
+.

Proof. We can transform the system into⎧⎪⎪⎨
⎪⎪⎩
∑n

i=1

(
ui

β

)α

= t1

∑n
i=1 u

α
i

(
∏n

i=1 u
α
i )

1/n = t1
exp(t2/n)

If the function

p(α) =

∑n
i=1 u

α
i

(
∏n

i=1 u
α
i )

1/n

is monotone, then there is a unique solution. The derivative is

p′(α) =

(
n∑

i=1

(
ui

(
∏n

i=1 ui)
1/n

)α)′

=
n∑

i=1

(
ui

(
∏n

i=1 ui)
1/n

)α

ln
ui

(
∏n

i=1 ui)
1/n

.

We note that limα→0+ p′(α) = 0. The second derivative is

p′′(α) =
n∑

i=1

(
ui

(
∏n

i=1 ui)
1/n

)α

ln2 ui

(
∏n

i=1 ui)
1/n

≥ 0.
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Since the second derivative is positive, the first derivative is increasing. Hence

we can conclude that the first derivative is always positive and p is increasing.

The solution exists, since

lim
α→0+

p(α) = n

and
t1

exp(t2/n)
=

∑n
i=1 vi

(
∏n

i=1 vi)
1/n

≥ n.

The last inequality holds because the arithmetic mean is always larger than

or equal to the geometric mean.

Lemma 2. Let n ∈ N and u1, u2, . . . , un ∈ R
+, and let for some v1, v2, . . . , vn ∈

R
+,

n∑
i=1

vi = t1,

n∑
i=1

v−1i = t2.

Then the system of equations⎧⎨
⎩
∑n

i=1

(
ui

β

)α

= t1∑n
i=1

(
ui

β

)−α
= t2,

has a unique solution for α, β ∈ R
+.

Proof. We can transform the system into⎧⎪⎨
⎪⎩
∑n

j=1 u
α
j

∑n
i=1 u

−α
i = t1t2

∑n
i=1

(
ui

β

)−α
= t2

If the function

p(α) =
n∑

j=1

uα
j

n∑
i=1

u−αi
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is monotone, then there is a unique solution for α. In order to prove the

monotonicity, let yij =
uj

ui
, where i, j = 1, 2, . . . , n, i �= j. The derivative is

p′(α) =

(
n∑

j=1

n∑
i=1

(
uj

ui

)α
)′

=

(
n∑

j=1

n∑
i=1

yαij

)′

=
n∑

j=1

n∑
i=1

yαij ln yij

=
∑
i<j

ln yij
(
yαij − y−αij

)
. (28)

Now, if yij > 1, then ln yij > 0 and yαij > y−αij , which means that

ln yij
(
yαij − y−αij

)
> 0.

If yij < 1, then ln yij < 0 and yαij < y−αij , which means that

ln yij
(
yαij − y−αij

)
> 0.

Hence, we can conclude that (28) is positive and the function p is increasing.

Since

lim
α→0+

p(α) = n2

and

t1t2 =
n∑

i=1

vi

n∑
i=1

v−1i ≥ n2

the solution always exists.
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Abstract

In this paper, we address the problem of testing goodness-of-fit for discrete dis-
tributions, where we focus on the geometric distribution. We define new likelihood-
based goodness-of-fit tests using the beta-geometric distribution and the type I dis-
crete Weibull distribution as alternative distributions. The tests are compared in
a simulation study, where also the classical goodness-of-fit tests are considered for
comparison. Throughout the paper we consider conditional testing given a minimal
sufficient statistic under the null hypothesis, which enables the calculation of exact p-
values. For this purpose, a new method is developed for drawing conditional samples
from the geometric distribution and the negative binomial distribution. We also ex-
plain briefly how the conditional approach can be modified for the binomial, negative
binomial and Poisson distributions. It is finally noted that the simulation method
may be extended to other discrete distributions having the same sufficient statistic,
by using the Metropolis-Hastings algorithm.
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1 Introduction

Let X1, X2, . . . , Xn be a random sample from a distribution F . Goodness-of-fit testing is

concerned with how well a family of distributions F fits the data as a probability model.

The null hypothesis is F ∈ F and the alternative hypothesis is F /∈ F . In-depth literature

on this topic includes D’Agostino and Stephens (1986). In the literature of goodness-of-fit

testing, most of the work has been focused on continuous distributions, i.e. F a family

of continuous distributions. For discrete distributions, the main interest has been in the

Poisson distribution which plays a special role in probability theory. Goodness-of-fit tests

for the Poisson distribution go at least back to Fisher (1950) and Rao and Chakravarti

(1956). More recent studies of the Poisson distribution are Spinelli and Stephens (1997)

and Rueda et al. (1991).

Common alternatives to the Poisson distribution are the negative binomial distribution

and its special case, the geometric distribution. The latter distribution is of particular

interest since it is the discrete counterpart of the exponential distribution, and is hence an

important distribution with various applications, for example in survival analysis, reliability

analysis and queuing theory. Bracquemond et al. (2002) presented a comprehensive study

of different goodness-of-fit test statistics for the geometric distribution and a comparison

between them in a simulation study. Another paper considering tests for the geometric

distribution is Ozonur et al. (2013). The present paper will mainly be concerned with

goodness-of-fit testing for the geometric distribution, although several ideas considered can

easily be modified to cover other discrete distributions.

Traditional goodness-of-fit tests, both in the continuous and discrete distribution cases,

are the Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling tests, see for exam-

ple D’Agostino and Stephens (1986). Various methods are used for finding critical values,

typically based on standard asymptotic techniques or parametric bootstrapping. There are,

however, also other methods or tricks available, often used to tailor goodness-of-fit testing

for specific models.

One such “trick”, which will be the main tool in the present paper, is to condition on

sufficient statistics under the null hypothesis model to be tested. Such approaches go back
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to the 1950s. More specifically, Fisher (1950) obtained in this way exact versions of the chi-

squared test and an alternative test based on the dispersion for the Poisson distribution,

using the fact that the sum of the observations is a sufficient statistic in this case. As

a follow-up, Rao and Chakravarti (1956) used the same idea to derive an exact test for

the Poisson case based on a likelihood ratio statistic (see Section 3.3.1). Conditioning

on sufficient statistics has also been used recently in Beltrán-Beltrán and O’Reilly (2019)

and Puig and Weiß (2020). While the just cited papers have considered models with one

unknown parameter under the null hypothesis, Heller (1986) did goodness-of-fit testing for

the two-parameter negative binomial distribution, assuming both parameters are unknown.

Then she conditioned on the sum of the observations in order to eliminate the probability

parameter and then using an asymptotic approach having only one unknown parameter.

Often, the sufficient statistic under the null model is easy to find, but still the calculation

of critical values or p-values for the conditional tests can be problematic. Usually it will

be necessary to sample from the conditional distributions given the sufficient statistic.

For goodness-of-fit testing in continuous distributions, and in particular in models where

there are more than one parameter, this may however not be straightforward. For possible

approaches, see Lindqvist and Taraldsen (2005), Lindqvist et al. (2020), Lockhart et al.

(2007).

For the most common discrete distributions, like the binomial and the Poisson distribu-

tion, it is straightforward and well known how to do conditional sampling (González-Barrios

et al., 2006). How to perform conditional sampling for the geometric distribution and the

negative binomial distribution is, apparently, less studied. González-Barrios et al. (2006)

derive the conditional distribution for this case, but does not advice a way of simulating

from it. In Section 3.1 we show how this can be done by using the so called “bars and

stars” framework of Feller (1968). It is believed that the associated algorithm is new in

goodness-of-fit studies of the geometric distribution. An extension to the negative binomial

distribution is given in the Appendix. Another way of obtaining conditional samples in

discrete distributions is suggested by Beltrán-Beltrán and O’Reilly (2019), based on the so

called Rao-Blackwell distribution.

61



The most important ingredient of a goodness-of-fit test is of course the test statistic. The

three standard tests, the Kolmogorov-Smirnov, the Cramér-von Mises and the Anderson-

Darling test, are already mentioned. These are examples of tests based on the empirical

distribution function of the data. While the Kolmogorov-Smirnov statistic considers the

maximal difference between the null model and the empirical distribution of the data, the

two other tests are based on the corresponding integrated squared difference. A well known

fact is that the Anderson-Darling statistic differs from the Cramér-von Mises statistic

in that it gives more weight to extreme values of the observations. There are in the

literature also considered other test statistics that are known to be large when the null

hypothesis model does not hold, but without connection to particular alternative models.

Examples are chi-squared tests and tests based on Fisher’s index of dispersion, which is the

ratio of the variance to the mean, and is well known to be 1 for the Poisson distribution.

Closely related to these tests are the tests derived by Kyriakoussis et al. (1998) based

on characterizations of the Poisson, binomial and negative binomial distributions by their

power-series representations (see Section 3.3.2).

The above tests are essentially not tailored for specific alternative distributions. There

might in applications be of importance, however, to have tests that are particularly powerful

for given alternative distributions. One purpose of the present paper is to investigate how

well the standard goodness-of-fit tests for the geometric distribution will do compared to

tests tailored for specific alternatives.

A classical problem is to test the Poisson distribution versus models for over-dispersion,

such as the negative binomial distribution. The above cited paper by Puig and Weiß (2020)

gives another example. These authors considered testing of the Poisson distribution versus

alternatives with log-convex probability generating functions, shown to have important

applications in biodosimetry.

Weinberg and Gladen (1986)) considered human fecundability data, using the geometric

distribution to model the number of menstrual cycles required to achieve pregnancy. It

is then reasonable to believe that the parameter p of the geometric distribution varies

between couples. The cited authors showed how to model this variation by means of
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beta distributions, which leads to counts following a so called beta-geometric distribution.

Subsequently, Paul (2005) studied goodness-of-fit testing for the geometric distribution by

testing versus the alternative being the beta-geometric distribution, using a score test and

a likelihood ratio test. We return to this in Section 3.3.2.

In reliability, a classical problem is to test the null hypothesis of an exponential distribu-

tion versus the alternative of a Weibull distribution. This may be done in a straightforward

manner using a likelihood ratio test. In the discrete case, this would mean to test the geo-

metric distribution versus some kind of discrete Weibull distribution. We will consider this

problem in Section 3.3.3, using the so called type I discrete Weibull distribution, see for

example Bracquemond and Gaudoin (2003).

As a final comment on the use of conditional testing, one might ask what is possibly

lost in power by such an approach when compared to unconditional ones. We have not

pursued this problem, but refer to Lockhart et al. (2009) who concluded from a particular

study that calculated p-values from conditional tests are highly correlated with p-values

found by parametric bootstrapping. An apparent advantage with the conditional tests is,

moreover, that these tests are exact, while the bootstrap based tests are not exact (albeit

almost so).

In the second section, we introduce how conditional tests are used in goodness-of-fit

testing with discrete null hypothesis. We also cover how the p-values and powers are

calculated with Monte Carlo methods in that setting. In the third section we present our

method for drawing conditional simulations from the geometric distribution. It is based on

the so-called stars and bars representation, introduced by Feller (1968). In the same section,

we also introduce some classical test statistics and define new likelihood based tests. In

the end of the section, there are two examples where the data is simulated from the beta-

geometric and the discrete Weibull distribution of type I and we calculate the conditional

p-values for both cases. The fourth section consists of the power study and simulated type

I errors. In the fifth section we consider a real life data set and use previously mentioned

methods to test if the geometric distribution fits the data. The sixth section consists of

conclusions and a brief outline for possible future work in this subject. The last section is
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the appendix. There are proofs, algorithm descriptions, method for the negative binomial

and parameterizations of the distributions we used. References are at the very end of this

paper.

In the following we shall let N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}. A sample of

random variables Y1, Y2, . . . , Yn is denoted shortly in its vector form by a bold letter,

Y = (Y1, Y2, . . . , Yn). Bold P is reserved for the probability function to differentiate it

from other functions. Notation for different distributions and the parametrizations are

specified in the appendix.

2 Conditional Tests in Goodness-of-Fit Testing for Dis-

crete Distributions

2.1 Calculation of Conditional p-values by Monte Carlo Simula-

tion

For illustration we focus on goodness-of-fit testing for the geometric distribution. Suppose

X = (X1, . . . , Xn) is a random sample from a population with values in N0. The null and

alternative hypotheses are as follows.

H0 : The random sample is from a population which has the geometric distribution,

H1 : The random sample is not from a population which has the geometric distribution.

Let D = D(X) be a test statistic such that large values of D are supposed to indicate

deviations from H0. Suppose that, under the null hypothesis, T = T (X) is a sufficient

statistic. Algorithm 2 in the Appendix calculates, by Monte Carlo simulation, the condi-

tional p-value of the test from the formula

pcond = P(D(X) ≥ D(xobs) | T (X) = t)

where xobs is the observed value of X and t is the observed value of T (X). For the Monte

Carlo simulation one therefore needs a way of simulating from the conditional distribution
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of X given T (X) = t. In the next Section we show how this can be done in the case of the

geometric distribution.

2.2 Calculation of Test Power of Conditional Tests

To calculate the power of a goodness-of-fit test for a given alternative distribution and for

a given significance level α, we proceed as follows. Draw a large number M data sets from

the alternative distribution. For the i-th such set, calculate the conditional p-value, pcondi

by Algorithm 2, i = 1, 2, . . . ,M . The Monte Carlo power of the test can then be calculated

as

β(α) ≈
∑M

i=1 I(p
cond
i ≤ α)

M
.

Power calculations require a large number of iterations. Let K be the number of iter-

ations used to calculate each conditional p-value. If M is the number of data sets drawn

to calculate the power, then in total we are doing M times K iterations. The number of

data sets M is chosen to be as large as possible depending on computational capabilities.

We chose M = 1000.

It should be noted that since we are dealing with discrete distributions, for a given

data set x with T (x) = t, there are only finitely many possible data sets in the conditional

distribution of X given T (X) = t. This means that, although we fix a significance level α

and are guaranteed a size of the test that is ≤ α, the size may be strictly less than α. This

problem is of course of less concern if n is large.

3 Goodness-of-fit Testing in the Geometric Distribu-

tion

3.1 Conditional Sampling from the Geometric Distribution

Let X1, X2, . . . , Xn be iid random variables, such that Xi ∼ Geom(p) for all i = 1, 2, . . . , n,

i.e.,

P(Xi = x) = p(1− p)x for x = 0, 1, 2, . . .
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Then T (X) =
∑n

i=1 Xi = t is a sufficient statistic. The conditional distribution of X given

T (X) = t is calculated as

P(X = x | T (X) = t) = P(X1 = x1, X2 = x2, . . . , Xn = xn |
n∑

i=1

Xi = t)

=
P(X1 = x1, X2 = x2, . . . , Xn = xn,

∑n
i=1 Xi = t)

P(
∑n

i=1 Xi = t)

=

⎧⎪⎨
⎪⎩

P(X1 = x1, X2 = x2, . . . , Xn = xn)

P(
∑n

i=1 Xi = t)
, if

∑n
i=1 Xi = t

0, if
∑n

i=1 Xi �= t

.

If we restrict the support to be S = {(x1, x2, . . . , xn) :
∑n

i=1 xi = t, x1, x2, . . . , xn ∈ N0},
we get

P(X = x | T (X) = t) =
pn(1− p)

∑n
i=1 xi

pn(1− p)t
(
t+n−1
n−1

)
=

1(
t+n−1
n−1

) . (1)

As the conditional probability (1) does not depend on x ∈ S, the distribution ofX | T (X) =

t) is uniform on S, i.e., on the set of all possible ways that n non-negative integers sum

to t. Feller (1968) introduced a representation of such sums through the so called “stars

and bars” framework. To construct one such sum, we lay down t stars and put n− 1 bars

between them. The sum is constructed by counting the number of stars between the bars,

letting the first element be the number of stars in front of the first bar, and letting the last

one be the number to the right of the last bar. For example, for t = 8 and n = 4, Figure 1

represents the sum 1 + 0 + 3 + 4 = 8.

Figure 1: Stars and Bars Representation

The following lemma states that the representation gives rise to any possible sum and

conversely. The proof is given in Appendix.
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Lemma 1 For t, n ∈ N, let

L1 =

{
(x1, x2, . . . , xn) :

n∑
i=1

xi = t, x1, x2, . . . , xn ∈ N0

}

and

L2 = {(k1, k2, . . . , kn−1) : k1 < k2 < . . . < kn−1 < t+ n, k1, . . . , kn−1 ∈ N} .

Define a transformation φ : L2 → L1, such that

φ(k1, k2, . . . , kn−1) =

= (k1 − 1, (k2 − 2)− (k1 − 1), . . . , (kn−1 − (n− 1))− (kn−2 − (n− 2)), t− (kn−1 − (n− 1))).

Then φ is a bijection between the sets L2 and L1.

Example 1 The kj in L2 are the positions of the bars in the stars and bars representation.

For example, the stars and bars representation of n = 4 and t = 1+0+3+4 = 8 in Figure

1, correspond to

k1 = 2, k2 = 3, k3 = 7.

Lemma 2 Let t, n ∈ N. The set{
(x1, x2, . . . , xn) :

n∑
i=1

xi = t, x1, x2, . . . , xn ∈ N0

}

has
(
t+n−1
n−1

)
elements.

The proof of Lemma 2 can be found in Feller (1968). In fact, it also follows from (1).

Algorithm RandomKSubsets from Wilf (1999) is a method for drawing the so-called

bars k1, . . . , kn−1 uniformly from L2. We have modified it by making recursive calls into

iterative ones. This allows the algorithm to be used with large values of n and t more

efficiently and there are no issues with recursion depth limitations. It is described by

Algorithm 1 in Appendix, where a proof of its correctness is also given (Lemma 3).

Algorithm 1 gives us a sample k1, . . . , kn−1 and the last step is to transform it back into

an element from L1. We use the previously defined function φ for it and

φ(k1, k2, . . . , kn−1) ∼ X | T (X) = t.
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3.2 Standard Goodness-of-fit Test Statistics for Discrete Distri-

butions

The following is a general setup for calculation of test statistics for the most common

goodness-of-fit tests, with focus on the geometric distribution. The setup essentially follows

the one of Spinelli and Stephens (1997) who in particular studied the performance for the

Poisson distribution.

Let x1, x2 . . . , xn be the observed sample and t =
∑n

i=1 xi the sufficient statistic. Maxi-

mum likelihood estimator for the geometric distribution is given by

p̂ =
n

t+ n
.

In order to avoid trivial cases, we will assume t > 0 and hence 0 < p̂ < 1. Now, define

for j = 0, 1, 2, . . .,

oj = #{i : xi = j} = observed number of values j for the sample

p̂j = p̂(1− p̂)j = probability of value j in geometric distribution

êj = np̂j = estimated expected number of values j for the sample

From this define, for k = 0, 1, 2, . . .,

Ẑk =
k∑

j=0

(oj − êj) ≡ Ok − Êk

Ĥk =
k∑

j=0

p̂j

where Ok =
∑k

j=0 oj is the observed number of values ≤ k in the sample and Êk = nĤk is

its estimated expected value.
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Further, define

Mu
0 = min{j : oj′ = 0 for all j′ > j}

Mu
1 = min{j : pj′ < 10−3/n for all j′ > j}

Mu = max{M0,M1}
M l

0 = max{j : oj′ = 0 for all j′ < j}
M l

1 = max{j : pj′ < 10−3/n for all j′ < j}
M l = min{M0,M1}

3.2.1 The Cramér-von Mises Test

The Cramér-von Mises test statistic is defined by

W 2 =
1

n

Mu∑
M l

Ẑ2
i p̂i.

3.2.2 The Anderson-Darling Test

The Anderson-Darling test statistic is defined by

A2 =
1

n

Mu∑
Ml

Ẑ2
i p̂i

Ĥi(1− Ĥi)
.

3.2.3 The Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test statistic should ideally be defined as maxk=1,2,... |Zk|. As
shown by Bracquemond et al. (2002), the maximum will always occur for a k ≤ Mu

0 , so

that we define

KS = max
k=0,1,2,...,Mu

0

|Zk|.

To see this, recall that Ẑk = Ok − Êk. Now Ok = n for k ≥ Mu
0 , while Êk < n and Êk is

increasing in k. Hence, for k ≥ M0, |Zk| = Zk and is decreasing.
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3.3 Likelihood Based Tests

In the present subsection we study tests that are derived with the aim of having high

power against given alternative distributions. The main tool is here to consider likelihood

functions.

3.3.1 Test Versus Heterogeneous Geometric Observations

In this subsection we follow the idea of Rao and Chakravarti (1956), who considered the

Poisson distribution where we consider the geometric distribution.

Suppose X1, X2, . . . , Xn are independent and geometrically distributed, but with differ-

ent parameters pi. The log likelihood for data x1, x2, . . . , xn would then be

�(p1, p2, . . . , pn) =
n∑

i=1

(log(pi) + xi log(1− pi)),

which is maximized by p̂i = 1/(1 + xi) for i = 1, 2, . . . , n. The relevant null hypothesis is

now

H0 : p1 = p2 = . . . = pn = p.

The log likelihood under the null hypothesis is then �(p, . . . , p) = n log(p) + t log(1 − p)

where t =
∑n

i=1 xi, which is maximized by p̂ = n/(n+ t).

The likelihood ratio statistic can therefore be written

�(p̂1, p̂2, . . . , p̂n)− �(p̂, . . . , p̂)

=
n∑

i=1

[
log

(
1

1 + xi

)
+ xi log

(
xi

1 + xi

)]
− n log

(
n

n+ t

)
− t log

(
t

n+ t

)

=
n∑

i=1

[xi log(xi)− (xi + 1) log(xi + 1)]− n log

(
n

n+ t

)
− t log

(
t

n+ t

)

Since we consider conditional tests given
∑n

i=1 Xi = t, we may exclude the last terms above,

which after rewriting the first sum gives the test statistic

CR =
n∑

i=1

[xi log(xi)− (xi + 1) log(xi + 1)] =

Mu
0∑

j=M l
0

oj
(
j log j − (j + 1) log(j + 1)

)

where we use 0 log 0 = 0.
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3.3.2 The Beta-Geometric Distribution

In the previous subsection we considered the alternative hypothesis that the observations

were geometrically distributed, but with possibly different parameters pi. Suppose now

that these pi are drawn independently from the beta distribution.

Thus, for a single observation X we assume that it is geometrically distributed with

parameter p, where p is generated from the beta-distribution with parameters α > 0 and

β > 0. Let B(α, β) be the beta function, defined by

B(α, β) =

∫ 1

0

pα−1(1− p)β−1dp =
Γ(α)Γ(β)

Γ(α + β)
.

Then it is seen that the unconditional distribution of X is what has been named the

beta-geometric distribution,

P(X = x) =

∫ 1

0

p(1− p)x
pα−1(1− p)β−1

B(α, β)
dp =

B(α + 1, β + x)

B(α, β)
(2)

for x = 0, 1, 2, . . .. As suggested by Paul (2005), a useful reparametrization is

π =
α

α + β
, θ =

1

α + β
. (3)

With this parametrization it is seen that θ = 0 corresponds to the geometric distribution

with p = π. Tests for the null hypothesis of geometric distribution can hence be derived

by testing

H0 : θ = 0 vs. θ > 0.

Using the reparametrization (3), we find from (2), noting that α = π/θ, β = (1− π)/θ and

using properties of the gamma function,

P(X = x) =
α
∏x

j=1(β + x− j)∏x
j=0(α + β + x− j)

=
π
∏x−1

j=0 (1− π + jθ)∏x
j=0(1 + jθ)

(4)

for x = 0, 1, . . .. (Note that the formula also holds for x = 0, giving P(X = 0) = π, since

an empty product by convention equals 1.)

The log-likelihood for data x1, x2, . . . , xn with values in N0 is hence, see also Paul (2005),

�(x; π, θ) = n log π +
n∑

i=1

xi−1∑
j=0

log(1− π + jθ)−
n∑

i=1

xi∑
j=0

log(1 + jθ) (5)
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Differentiating with respect to θ and π give, respectively,

∂�

∂θ
=

n∑
i=1

xi−1∑
j=0

j

1− π + jθ
−

n∑
i=1

xi∑
j=0

j

1 + jθ
,

∂�

∂π
=

n

π
−

n∑
i=1

xi−1∑
j=0

1

1− π + jθ
.

Letting θ = 0 in the expression for ∂�
∂θ

gives the score statistic for testing H0 : θ = 0,

namely

S =
n∑

i=1

xi−1∑
j=0

j

1− π
−

n∑
i=1

xi∑
j=0

j =
π
∑n

i=1 x
2
i − (2− π)

∑n
i=1 xi

2(1− π)
. (6)

The score test in general rejects H0 : θ = 0 for large values of |S|. Indeed, it can be

shown from the rightmost expression in (6) that, under H0 where the Xi are geometrically

distributed with probability p = π, we have E(S) = 0. Paul (2005) replaced π by the

maximum likelihood estimate p̂ under H0, and divided the expression in (6) by an estimate

of the standard deviation of S under H0, which is
√
n/p̂. The resulting statistic then has

an asymptotically standard normal distribution under H0.

Let now m1 = (1/n)
∑n

i=1 xi and m2 = (1/n)
∑n

i=1 x
2
i be the first and second empirical

moments, respectively, from the data x. Replacing π by p̂ = n/(t + n) = 1/(1 + m1) we

can write the right hand side of (6) as

n

m2

1+m1
−
(
2− 1

1+m1

)
m1

2(1− 1
1+m1

)
= n

m2 −m1 − 2m2
1

2m1

.

Since we consider conditional testing given t, or equivalently given m1, we may use the test

statistic.

SB = m2 −m1 − 2m2
1. (7)

Actually, we could also have deleted the other terms involving m1. We keep them, however,

due to the fact that the sign of SB is of some importance, as explained below.

Note now that, since θ ≥ 0 is a model restriction, the maximum of (5) may occur at

the boundary point where θ = 0. But for θ = 0, (5) is simply the log likelihood of the

geometric distribution and is hence maximized by π = p̂. Thus if SB > 0, then we know

that the maximum of (5) is not at a boundary point with θ = 0, and must hence be at a
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point (π, θ) with θ > 0. This point may hence presumably be found by using the partial

derivatives derived above. If, instead, SB < 0, then the maximum likelihood estimate is

likely to be at the point (p̂, 0).

It follows from the above that if SB < 0, then the numerical value is uninteresting,

because it corresponds to parameter values outside of the parameter set and intuitively

to parameters for which we would not reject the null hypothesis. We therefore suggest

to replace SB by SB0 = max(0, SB) and call this the score test statistic for the null

hypothesis θ = 0.

Paul (2005) considered the score test and in addition the likelihood ratio test based on

the log likelihood (5) and standard asymptotics (taking into account the fact that the null

hypothesis is on the boundary of the parameter space). He further noted that the likelihood

ratio test, as well as the score test, are rather liberal (non-conservative) as regards the size.

He therefore found that a bootstrap test might be preferable.

Singh et al. (2014) considered both maximum likelihood estimation and moment esti-

mation of α and β. The moment estimators are obtained as follows. First, define

μ1 ≡ E(X) =
β

α− 1
for α > 1,

μ2 ≡ E(X2) =
β(α + 2β)

(α− 1)(α− 2)
for α > 2.

Solving for α and β we get

α =
2(μ2 − μ2

1)

μ2 − μ1 − 2μ2
1

,

β = μ1(α− 1).

The moment estimators α̃ and β̃ for α and β are obtained by substituting the empirical mo-

ments m1 and m2 for μ1 and μ2, respectively. This leads to an estimator for the parameter

θ which can be expressed by

θ̃ = (α̃ + β̃)−1 =
m2 −m1 − 2m2

1

2m2 −m2
1 +m1m2

.

It is noticeable that the numerator of θ̃ equals SB (see (7)). Thus θ̃ and SB have the

same sign (since the denominator above is always positive). As already noted, this sign is
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of importance for maximum likelihood estimation based on (5). Note, on the other hand,

that in a conditional test using θ̂ we cannot ignore the denominator of θ̃, since it contains

m2.

As a final note in this subsection, the test statistic SB0 appears to be essentially identi-

cal to the one for the geometric distribution which is derived in Kyriakoussis et al. (1998).

These authors derived test statistics from characterizations of distributions given by power-

series distribution laws, which include Poisson, binomial, and the negative binomial distri-

bution. Their general goodness-of-fit test statistic is

ĉ =
1
n

∑n
i=1 Xi(Xi − 1)(
1
n

∑n
i=1 Xi

)2 =
m2 −m1

m2
1

(8)

and their test for the geometric distribution rejects the null hypothesis if a normalized

version of

|ĉ− 2| = |m2 −m1 − 2m2
1|

m2
1

is large, where the normalization leads to an asymptotically standard normal distribution

under H0. Since the normalization is a function of m1 only, and the denominator of (8)

can be deleted, using their statistic in a conditional testing we in fact end up with the test

statistic |SB|.

Example

Suppose we have observed the data in Table 1, which are simulated from the beta-geometric

distribution with n = 100, π = 0.4, θ = 0.125.

Using the described test statistics for testing the null hypothesis of a geometric distri-

bution, we obtained the conditional p-values given in Table 2. We note that also the three

standard tests are able to detect the deviation from the geometric distribution here, while

p-values are remarkably lower for the tests derived above that are tailored for detecting

deviations in the direction of a beta-geometric distribution. In fact, the same low p-values

are obtained for tests versus the discrete Weibull distribution that will be studied below.

Maximum likelihood estimates for π and θ in the beta-geometric distribution can be

calculated using the R-package VGAM, giving π̂ = 0.4274, θ̂ = 0.1166. These estimates are
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used to calculate the estimated expected counts in Table 1. It is remarkable that these are

much closer to the observed values than the ones estimated from the geometric distribution.

j oj êgj êbj

0 42 35.4 42.7

1 24 22.8 21.9

2 11 14.8 12.2

3 8 9.5 7.3

4 4 6.2 4.6

5 4 4.0 3.0

6 0 2.6 2.1

7 1 1.7 1.4

8 0 1.1 1.0

9 2 0.7 0.8

10 2 0.4 0.6

11 0 0.3 0.4

12 0 0.2 0.3

13 0 0.1 0.3

14 0 0.1 0.2

15 1 0.0 0.2

16 1 0.0 0.1

Table 1: Data simulated from the beta-geometric distribution with n = 100, π = 0.4, θ =

0.125. The column oj gives the number of observations xi that resulted in xi = j. The two

last columns give the estimated expected frequencies under a geometric distribution and

beta-geometric distribution, respectively.
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Statistic W 2 A2 KS CR SB SB0 θ̂ |SW | SWL SWU

pcond 0.034 0.028 0.059 0.009 0.004 0.004 0.004 0.005 0.004 0.996

Table 2: Conditional p-values obtained by simulating 10000 data sets from the conditional

distribution

3.3.3 The discrete Weibull distribution of type I

Let for x = 0, 1, 2, . . .,

P(X = x) = qx
β − q(x+1)β (9)

where 0 < q < 1 and β > 0. This is the probability distribution of the type I Weibull dis-

tribution, which was introduced by Nakagawa and Osaki (1975). We denote it by W(q, β).

The geometric distribution with parameter p is now a special case obtained when q = 1−p

and β = 1.

The R-package DiscreteWeibull contains routines for this distribution, including simu-

lation of data and estimation of parameters.

The discrete hazard rate of a random variable with values in the (nonnegative) integers

can be defined by (Barlow et al., 1963) λ(x) = P(X = x | X ≥ x). From (9) we get

λ(x) =
P(X = x)

P(X ≥ x)
=

qx
β
i − q(xi+1)β

qx
β
i

= 1− q(x+1)β−xβ

which is seen to be increasing in x if β > 1 and decreasing in x if β < 1, and constant equal

to p when β = 1, which corresponds to the geometric distribution.

Suppose now we have data x1, x2, . . . , xn with values in N0. Testing the null hypothesis

that the data come from the geometric distribution, is now equivalent to testing H0 : β = 1

vs. H1 : β �= 1, or possibly the one-sided versions of the alternative. The testing can be

done by a likelihood ratio test. It follows from (9) that the log-likelihood for the sample

x1, x2, . . . , xn from the type I Weibull distribution is given by

�(q, β) =
n∑

i=1

ln
(
qx

β
i − q(xi+1)β

)
.
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The likelihood ratio test statistic can be computed by calculating the maximum likelihood

estimates of q and β, and of p, which is the parameter under the null hypothesis model.

Details are given by Vila et al. (2019), while computations can be done using the R-package

DiscreteWeibull.

A score test can be derived in a way similar to what we did in Section 3.3.2 for the beta-

geometric distribution. First, the partial derivative with respect to β of the log-likelihood

function �, is given by

∂�

∂β
=

n∑
i=1

qx
β
i xβ

i ln(q) ln(xi)− q(xi+1)β(xi + 1)β ln(q) ln(xi + 1)

qx
β
i − q(xi+1)β

The score statistic of H0 can then be found by letting β = 1, which leads to

∂�

∂β
|β=1 =

ln(q)

1− q

n∑
i=1

(xi ln(xi)− q(xi + 1) ln(xi + 1)) . (10)

It can now be checked that if the xi are from the geometric distribution with parameter

p, the expected value of (10) is 0 (noting that q = 1 − p). The standard approach is now

to estimate q by 1− p̂ (from the geometric distribution) and divide (10) by the estimated

standard deviation, in order to obtain a test statistic which is standard normally distributed

under the null hypothesis. We shall, however, consider conditional testing, conditioning on∑n
i=1 Xi or, equivalently, on p̂, and we may hence use the test statistic

SW =
n∑

i=1

[(1− p̂)(xi + 1) ln(xi + 1)− xi ln(xi)] .

where p̂ = n/(n +
∑

i xi). If xi = 0, we shall let xi ln(xi) = 0. Note that we have changed

the order of the terms inside the sum as compared to (10). This is because ln(q) < 0 and

will lead to a statistic SW with the same sign as ∂�
∂β
|β=1. Then for the two-sided alternative,

β �= 1, we should use the statistic |SW | as the test statistic. A more powerful test can

then be defined for the two one-sided alternatives, by using SWU = SW if the alternative

is β > 1 and SWL = −SW for the alternative β < 1, and reject in both cases for high

values of the test statistic.

The resemblance between the statistics SW and CR is striking. In fact, CR is obtained

from SW by letting p̂ = 0 and switching the sign. Simulations and p-value calculations in

the following will indicate the possible difference between their merits.
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Example

Suppose we have observed the data in Table 3, which are simulated from a type I discrete

Weibull distribution with n = 50, q = 0.8, β = 1.4 using the R-package DiscreteWeibull.

Using all the tests considered so far in the paper, we obtained the conditional p-values

given in Table 4. We note that also the three standard tests are able to detect the deviation

from the discrete Weibull distribution here, while p-values are remarkably lower for the tests

|SW | and SWL, which are tailored for detecting deviations in the direction of the discrete

Weibull distribution. It should be noted, however, that the test based on CR as well as

the tests versus the beta-geometric distribution are useless for these data. The reason for

this last fact is that the beta-geometric distribution always increases the variance of the

data as compared to the geometric distribution, while the discrete Weibull with β > 1

decreases the variance (a property well known for the continuous Weibull distribution).

Thus a beta-geometric distribution would have difficulties fitting these data.

Maximum likelihood estimates for π and θ are calculated as q̂ = 0.7239, β̂ = 1.267

using the R-package DiscreteWeibull. These estimates are used to calculate the estimated

expected counts in Table 3. Again, these are much closer to the observed values than the

ones estimated from the geometric distribution.
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j oj êgj êbj

0 13 18.0 13.8

1 14 11.5 13.2

2 10 7.4 9.3

3 8 4.7 5.9

4 1 3.0 3.5

5 1 1.9 2.0

6 0 1.2 1.1

7 2 0.8 0.6

8 1 0.5 0.3

Table 3: Data simulated from a type I Weibull distribution with n = 50, q = 0.8, β = 1.4.

The column oj gives the number of observations xi that resulted in xi = j. The two last

columns give the estimated expected frequencies under a geometric distribution and type

I Weibull distribution, respectively.

Statistic W 2 A2 KS CR SB SB0 θ̂ |SW | SWL SWU

pcond 0.072 0.078 0.124 0.962 0.890 1.0 0.890 0.083 0.956 0.044

Table 4: Conditional p-values obtained by simulating 10000 data sets from the conditional

distribution. Two-sided (one-sided) testing using |SW | (SWU) means that the alternative

hypothesis is β �= 1 (β > 1). The statistics SB and SB0 can only be used to detect an

increased variance compared to the geometric distribution. Here the test statistic SB is

negative, which makes these tests meaningless.
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4 Computer Simulations

4.1 Power Study

We did a power study with various sample sizes, alternative distributions and all previously

defined test statistics with significance level α = 0.1. In some cases we disregarded sample

sizes n = 5 or n = 100 if the powers were too close to the significance level or 1. We

used 1000 iterations to calculate each conditional p-value and another 1000 iterations to

calculate the power. These numbers were chosen to make sure each power calculation takes

less than half an hour of computation time.
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Alternative Sample size W 2 A2 KS CR SB0 |SW | SWL SWU

Pois(0.5)
n = 25 0.231 0.238 0.208 0.002 0.001 0.225 0.002 0.329

n = 100 0.736 0.734 0.705 0.000 0.000 0.763 0.000 0.851

Pois(1)

n = 5 0.119 0.119 0.110 0.008 0.008 0.122 0.008 0.134

n = 25 0.613 0.605 0.543 0.000 0.001 0.618 0.000 0.730

n = 100 0.996 0.996 0.992 0.000 0.000 0.998 0.000 0.999

Pois(2)
n = 5 0.332 0.321 0.163 0.003 0.003 0.339 0.003 0.395

n = 25 0.963 0.965 0.914 0.000 0.000 0.966 0.000 0.985

Bin(5, 0.3)
n = 5 0.418 0.410 0.294 0.000 0.000 0.403 0.000 0.432

n = 25 0.986 0.985 0.972 0.000 0.000 0.990 0.000 0.996

NB(5, 0.5)
n = 5 0.531 0.466 0.434 0.000 0.001 0.538 0.000 0.672

n = 25 0.997 0.998 0.986 0.000 0.000 1.000 0.000 1.000

NB(3, 0.7)
n = 25 0.395 0.393 0.339 0.001 0.002 0.407 0.001 0.526

n = 100 0.875 0.875 0.834 0.000 0.000 0.906 0.000 0.945

BG(2, 5)
n = 5 0.161 0.170 0.137 0.267 0.269 0.158 0.274 0.025

n = 100 0.565 0.565 0.514 0.676 0.705 0.608 0.706 0.007

BG(2, 2)
n = 5 0.122 0.132 0.108 0.205 0.201 0.125 0.207 0.018

n = 25 0.558 0.570 0.504 0.705 0.688 0.611 0.717 0.001

W(0.7, 0.8)
n = 25 0.320 0.338 0.282 0.503 0.432 0.353 0.492 0.006

n = 100 0.749 0.759 0.679 0.874 0.792 0.792 0.882 0.000

W(0.5, 1.5)
n = 25 0.428 0.431 0.385 0.000 0.001 0.438 0.000 0.567

n = 100 0.948 0.943 0.937 0.000 0.000 0.960 0.000 0.984

Table 5: Conditional power calculations with significance level α = 0.1.

As usual for a wide choice of alternative distributions, there is no best test against all

alternatives. From standard tests, W 2 has slightly higher powers with small sample sizes.

For larger sample sizes, A2 and W 2 are almost identical. Maximal type test KS has slightly

lower powers than the other standard tests. Tests CR, SB, SB0, θ̂, SWL and SWU are
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sensitive to the alternative distribution the data comes from. This makes them situational

and they lack the versatility of the standard tests. For example, CR, SB, SB0, θ̂ and SWL

outperform the standard tests when the data comes from BG or W distributions. SWU

outperforms other tests for Pois, Bin and NB distributions. |SW | is more versatile and

has almost identical powers to the standard quadratic tests. Likelihood based tests need a

versatile comparative alternative distribution to perform well. Type I Weibull distribution

fits this role, as we can see from |SW | powers. Test SWL is for the case where β < 1 and

SWU for β > 1. Under those conditions, they outperform |SW |.

4.2 Type I Errors

The type I error is defined to be the probability of falsely rejecting the null hypothesis if

it is actually true. We simulated this scenario by drawing samples under the null hypoth-

esis, from the geometric distribution with parameter p for various sample sizes n. If the

conditional p-value came out lower than the significance level, we had made a type I error.

We used 1000 iterations to calculate each conditional p-value and another 1000 iterations

to calculate the type I error.
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α = 0.05

Parameter Sample size W 2 A2 KS CR SB0 |SW | SWL SWU

p = 0.25

n = 5 0.048 0.047 0.035 0.037 0.035 0.044 0.037 0.039

n = 25 0.055 0.054 0.047 0.048 0.052 0.052 0.049 0.050

n = 100 0.056 0.056 0.055 0.054 0.056 0.057 0.056 0.053

p = 0.5

n = 5 0.027 0.026 0.018 0.018 0.017 0.023 0.017 0.020

n = 25 0.066 0.065 0.056 0.050 0.048 0.064 0.051 0.055

n = 100 0.042 0.045 0.036 0.050 0.049 0.039 0.059 0.050

p = 0.75

n = 5 0.002 0.002 0.000 0.001 0.001 0.001 0.001 0.001

n = 25 0.032 0.030 0.027 0.032 0.027 0.029 0.031 0.017

n = 100 0.045 0.045 0.040 0.046 0.040 0.046 0.041 0.043

α = 0.1

p = 0.25

n = 5 0.070 0.066 0.057 0.080 0.081 0.073 0.079 0.073

n = 25 0.105 0.113 0.096 0.111 0.118 0.103 0.112 0.106

n = 100 0.101 0.092 0.087 0.104 0.101 0.103 0.097 0.107

p = 0.5

n = 5 0.042 0.040 0.038 0.035 0.037 0.039 0.035 0.038

n = 25 0.101 0.108 0.071 0.095 0.089 0.110 0.098 0.107

n = 100 0.123 0.116 0.117 0.105 0.104 0.109 0.105 0.115

p = 0.75

n = 5 0.006 0.006 0.005 0.002 0.002 0.006 0.002 0.006

n = 25 0.062 0.060 0.060 0.059 0.057 0.070 0.057 0.032

n = 100 0.101 0.102 0.090 0.097 0.095 0.095 0.098 0.078

Table 6: Type I errors for various sample sizes, parameter p-values, test statistics and

significance levels α.

Some of the type I errors are slightly above the significance level but this is explained

by Monte Carlo errors from calculating the p-value and the error. This is because of the

discreteness of the data. If the parameter is p = 0.75, the samples consist largely of 0-s

and if the sample size is small, we often get only 0-s. In that case t = 0 and it is a singular
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case.

We left out θ̂ and SB from the power study and type I error study because they had

identical powers for all alternatives and SB0 should be preferred over SB.

5 Real Life Data

In this section we use real life data from Bracquemond et al. (2002). The data consist of

numbers of inspections between discovery of defects in an industrial process. Conditional

samples are used to calculate the distribution of goodness-of-fit test statistics following the

recipe from Section 2. Conditional p-values are reported to decide if we should reject or

not reject the null hypothesis, that the data comes from the geometric distribution.

In order to have the data on the form considered in this paper, we have subtracted 1

from each observation.

Value 0 1 2 3 4 ≥ 5

Observed frequency 6 4 3 3 2 10

Expected frequency, geometric 3.9 3.3 2.9 2.5 2.1 13.3

Expected freqquency, beta-geometric 5.0 3.9 3.1 2.5 2.0 11.5

Expected frequency, discrete Weibull 6.0 3.6 2.7 2.2 1.8 11.7

Table 7: Real life data. Observed and estimated expected frequencies for three different

models.

The data is given in Table 7. Note that the data xi ≥ 5 are lumped together in the

table for illustrative purposes. The observed values for these 10 observations are 6. 8, 10,

12, 13, 16, 17, 25, 28, and are used in the simulations and calculations.

Conditional p-values for the various tests are given in Table 8, calculated with 10000

Monte Carlo samples from the conditional distribution.
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Statistic W 2 A2 KS CR SB SB0 θ̂ |SW | SWL SWU

pcond 0.107 0.117 0.315 0.042 0.134 0.134 0.134 0.110 0.047 0.953

Table 8: Conditional p-values obtained by simulating 10000 data sets from the conditional

distribution.

The standard tests as well as the tests versus beta-geometric distribution still indicate

the possibility of a geometric distribution, having p-values > 0.10, while the hypothesis of

geometric distribution is in fact rejected at 5% significance level by the CR test and the

one-sided test versus the type I discrete Weibull distribution with β < 1. This possibility

of the Weibull distribution is also indicated by the fitted expected frequencies as shown in

Table 7.

The VGLM R-package gives the maximum likelihood estimates for the beta-geometric

model given by

π̂ = 0.1772

θ̂ = 0.0502

p̂ = 0.1378 (geometric distribution)

Also, the VGLM R-package gives a p-value for a likelihood ratio test verus the beta-

geometric to be 0.3276. This is higher than the values for SB and SB0, e.g. The reason

might be that the asymptotic chi-square distribution of the likelihood ratio is not appro-

priate for these data.

The DiscreteWeibull R-package estimates a type I Weibull model giving q̂ = 0.784, β̂ =

0.794, indicating a decreasing hazard rate, which corresponds well to the above rejection

of the one-sided test versus β < 1.

6 Conclusion and Future Work

In this paper we studied goodness-of-fit tests for discrete distributions obtained by con-

ditioning on the sufficient statistic under the null hypothesis. We developed in particular
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a method to draw conditional samples from the geometric distribution. These samples

are used for calculation of p-values for various goodness-of-fit tests. In addition to con-

sidering standard goodness-of-fit tests, we derived new likelihood based test statistics for

testing of the geometric distribution versus heterogeneity, as well as versus discrete Weibull

distributions with both increasing and decreasing hazard.

A power study was conducted to check how the tests perform against data from different

alternative distributions. Our simulations suggested that the two-sided test versus the type

I discrete Weibull distributions was able to detect bad fit for data from various alternative

distributions. The power results for this test, |SW |, were in fact generally similar to the

ones obtained for the standard quadratic goodness-of-fit tests.

The tests versus heterogeneous geometric distributions, CR and SB0, are doing well

for alternatives of this kind, as one should expect, and then usually much better than

the standard tests. The tests for heterogeneity are, however, mostly inferior versus other

alternatives. The reason is presumably that heterogeneity leads to increased variance as

compared to the geometric distribution. On the other hand, Weibull distributions with

decreasing hazard lead to an increased variance.

Real life data from Bracquemond et al. (2002) was considered and it was tested whether

the geometric distribution is a good fit. The calculated p-values suggested that the geo-

metric distribution might not be a good fit according to some of the tests.

For further work, a general method could be described for the case where T (X) =∑n
i=1 Xi is sufficient for the family of distributions under the null hypothesis. This is the

case for the power series distributions where the probability distribution is of the form, see

Kyriakoussis et al. (1998) or González-Barrios et al. (2006),

P(X = x) =
a(x)θx

η(θ)
for x = 0, 1, 2, . . . (11)

where a(x) ≥ 0, θ > 0, η(θ) =
∑∞

y=0 a(y)θ
y. The Poisson, binomial, negative binomial and

geometric distributions are all of this kind. It can be shown from (11) (González-Barrios

et al., 2006) that for samples X = (X1, X2, . . . , Xn) from this distribution, we have

P(X = x | T (X) = t) ∝
n∏

i=1

a(xi) when
n∑

i=1

xi = t.
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Conditional samples with a given sum t can hence be obtained by the Metropolis-Hastings

algorithm using samples from the conditional geometric distribution as proposals.
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Appendix

Proof of Lemma 1

Proof: The function is defined correctly, because for any (k1, k2, . . . , kn−1) ∈ L2

k1−1+(k2−2)− (k1−1)+ . . .+(kn−1− (n−1))− (kn−2− (n−2))+ t− (kn−1− (n−1)) = t

and k1−1, (k2−2)−(k1−1), . . . , t−(kn−1−(n−1)) ∈ N0, as 0 < k1 < k2 < . . . < kn−1 < t+n.

Let us assume that (k1, k2, . . . , kn−1), (v1, v2, . . . , vn−1) ∈ L2, such that

φ(k1, k2, . . . , kn−1) = φ(v1, v2, . . . , vn−1).

This implies that

k1 + 1 = v1 + 1 ⇒ k1 = v1,

(k2 − 2)− (k1 − 1) = (v2 − 2)− (v1 − 1) ⇒ k2 = v2,

. . .

(kn−1 − (n− 1))− (kn−2 − (n− 2)) = (vn−1 − (n− 1))− (vn−2 − (n− 2)) ⇒ kn−1 = vn−1,

and we can conclude that φ is injective.

Let us fix an element (x1, x2, . . . , xn) ∈ L1, then

φ

(
x1 + 1, x1 + x2 + 2, . . . ,

n−1∑
i=1

xi + (n− 1)

)
= (x1, x2, . . . , xn)

and

0 < x1 + 1 < x1 + x2 + 2 < . . . <

n−1∑
i=1

xi + n− 1 < t+ n,

which implies that φ is surjective. Injectivity and surjectivity imply that φ is bijective. �

Lemma 3 Let n, t ∈ N and (k1, . . . , kn−1) ∈ L2 be an arbitrary sample drawn according to

algorithm 1. Then it is drawn uniformly, i.e.

P(k1, . . . , kn−1) =
1(

n+t−1
n−1

)
for each (k1, . . . , kn−1) ∈ L2. The probability follows from Lemma 2.
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Proof: The task is to distribute t stars and n − 1 bars randomly on the positions

1, 2, . . . , t + n − 1. We start from the right. Then the probability of placing a bar in

position t+ n− 1 is n−1
t+n−1 . Then we proceed conditionally to the left and multiply proba-

bilities of placing bars or stars in order to calculate probabilities of a given configuration.

More precisely, let (k1, k2, . . . , kn−1) be an arbitrary sample drawn according to Algo-

rithm 1. We want to calculate

P(k1, . . . , kn−1). (12)

We know that the algorithm accepted n− 1 integers (i.e., placements kj of the bars) in the

process. Also, let V denote the number of integers that were not accepted. In total the

algorithm ran V +n−1 iterations. The probability (2) is a product of V +n−1 probabilities.

Let us look at the denominator and nominator separately. In the denominator we have

(t+ n− 1) · (t+ n− 2) · . . . · (t− V − 1). (13)

In the numerator we have

(n− 1) · (n− 2) · . . . · 2 · 1 = (n− 1)! (14)

from the accepted integers. In the numerator there is also

t · (t− 1) · . . . · (t− V − 1) (15)

from the integers that were not accepted. Combining (13), (14) and (15) we get

P(k1, k2, . . . , kn−1) =
(n− 1)!t(t− 1) · · · (t− V − 1)

(t+ n− 1) · · · (t− V − 1)

=
(n− 1)!t(t− 1) · · · (t− V − 1)(t− V − 2) · · · 2 · 1
(t+ n− 1) · · · (t− V − 1)(t− V − 2) · · · 2 · 1

=
(n− 1)! t!

(t+ n− 1)!

=
1(

t+n−1
n−1

) .
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�
Data: t and n

Result: k1, . . . , kn−1

initialization;

N = 0 ; // number of accepted integers

V = 0 ; // number of not accepted integers

I = t+ n− 1 ; // integer to consider

while N < n− 1 do

Draw p ∼ U [0, 1];

if p < (n− 1−N)/(t+ n− 1−N − V ) then

kn−1−N = I ; // integer I was accepted

N = N + 1;

I = I − 1;

Continue

end

if p ≥ (n− 1−N)/(t+ n− 1−N − V ) then

V = V + 1 ; // integer I was not accepted

I = I − 1;

Continue

end

end

Algorithm 1: Draw k1, . . . , kn−1 Uniformly
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Data: Integer V , Data set x, sufficient statistic T (x) = t and test statistic D

Result: pcond

initialization;

count = 0;

for 1 to V do

Draw y ∼ X | T (X) = t ;

if D(y) ≥ D(x) then

count = count + 1;

end

end

pcond = count/V

Algorithm 2: Monte Carlo Conditional p-value

Conditional Sampling from the Negative Binomial Distribution

Let Y1 ∼ NB(r1, p), Y2 ∼ NB(r2, p), . . . , Yn ∼ NB(rn, p) be independent random variables,

where the parameters r1, . . . , rn are assumed to be known. Then T (Y) =
∑n

i=1 Yi is

a sufficient statistic for p. In this subsection, we will show how the algorithm for the

geometric distribution in Section 2.1 can be used to draw samples from the conditional

distribution Y | T (Y) = t.

Note first that an argument like the one leading to (1) gives the following expression:

P(Y1 = y1, . . . , Yn = yn|
n∑

i=1

Yi = t) =

∏n
i=1

(
yi−ri−1

yi

)
(
t+R−1

t

)
where R =

∑n
i=1 ri.

The following shows that we can sample from this conditional distribution by using the

algorithm for the geometric distriburion. Note first that we can write for i = 1, . . . , n,

Yi =

ri∑
j=1

Xij
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where Xij, i = 1, . . . , n; j = 1, . . . , ri are i.i.d. from Geom(p). Then

P(Y = y | T (Y) = t) = P(Y1 = y1, Y2 = y2, . . . , Yn = yn | T (Y1, Y2, . . . , Yn) = t)

= P

(
r1∑
j=1

X1j = y1, . . . ,
rn∑
j=1

Xnj = yn

∣∣∣ n∑
i=1

ri∑
j=1

Xij = t

)

=
∑

(xij):
∑

j x1j=y1,

,...,

,
∑

j xnj=yn

P

(
Xij = xij : i = 1, . . . , n, j = 1, . . . , ri

∣∣∣ ∑
i,j

Xij = t

)
.

It follows from this that we can use the method for drawing samples from the conditional

geometric distribution to draw condtional samples in the negative binomial case. More

precisely, we can first draw a sample x1, x2, . . . xR, where R = r1 + r2 + . . . + rn, from

the conditional distribution of X1, X2, . . . , XR | T (X) = t, where Xi ∼ Geom(p) for i =

1, 2, . . . , R and let

y1 =

r1∑
i=1

xi, y2 =

r1+r2∑
i=r1+1

xi, . . . , yn =
R∑

i=r1+...+rn−1+1

xi.

We end up with a sample y from the desired conditional distribution Y | T (Y) = t.

For simulation in practice, notice that Algorithm 1 with input t and R gives numbers

k1, k2, . . . , kR−1. Using the transformation φ in Lemma 1, it is then seen that we have

y1 = kr1 − r1

y2 = kr1+r2 − kr1 − r2
...

yi = kr1+...+ri − kr1+...+ri−1
− ri

...

yn−1 = kr1+...+rn−1 − kr1+...+rn−2 − rn−1

yn = t− kr1+...+rn−1 +R− rn.
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Some discrete distributions

X ∼ NB(r, p) P(X = x) =
(
x+r−1

x

)
(1− p)xpr, x = 0, 1, 2, . . .

X ∼ Pois(λ) P(X = x) = λxe−λ

x!
, x = 0, 1, 2, . . .

X ∼ Geom(p) P(X = x) = p(1− p)x, x = 0, 1, 2, . . .

X ∼ Bin(n, p) P(X = x) =
(
n
x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n

X ∼ Ber(p) P(X = x) = px(1− p)1−x, x = 0, 1

X ∼ W(q, β) P(X = x) = qx
β − q(x+1)β , x = 0, 1, 2, . . .

X ∼ Mult(t, π1, π2, . . . , πn) P(X = x) =
n!π

x1
1 π

x2
2 ···πxn

n

x1!x2!···xn!
,
∑n

i=1 xi = t

X ∼ BG(α, β) P(X = x) = B(α+1,x+β)
B(α,β)

, x = 0, 1, 2, . . .

Table 9: Distributions
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Abstract

We study two nonparametric tests of the hypothesis that a sequence of
independent observations is identically distributed against the alternative
that at a single change point the distribution changes. The tests are based
on the Cramér-von Mises two-sample test computed at every possible change
point. One test uses the largest such test statistic over all possible change
points; the other averages over all possible change points. Large sample
theory for the average statistic is shown to provide useful p-values much
more quickly than bootstrapping, particularly in long sequences. Power is
analyzed for contiguous alternatives. The average statistic is shown to have
limiting power larger than its level for such alternative sequences. Evidence
is presented that this is not true for the maximal statistic. Asymptotic
methods and bootstrapping are used for constructing the test distribution.
Performance of the tests is checked with a Monte Carlo power study for
various alternative distributions.

Keywords: Asymptotic Distribution; Change Point Detection; Cramér-von Mises
Two-sample Test; Nonparametric Test Statistics; Monte Carlo Simulation.
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1 Introduction

Consider a sequence of independent observations X1, . . . , Xn. We propose tests
of the null hypothesis that the Xi are independent and identically distributed
(iid) with unknown continuous distribution H against the change point alternative
that there is some (unknown) c with 1 ≤ c < n such that X1, . . . , Xc are iid
with continuous distribution F and then Xc+1, . . . , Xn are iid with some other
continuous distribution G. We will consider tests based on two sample empirical
distribution function tests for equality of distribution, focusing on the two-sample
Cramér-von Mises test.

If the time c of the potential change point were specified in advance we could
test the hypothesis that F = G = H using any two sample test for equality of two
distributions. The two-sample Cramér-von Mises test is one well known possibility.
Notation may be simpler to read if we used the shorthand d = n− c. Let

Fc(x) =
1

c

c∑
i=1

1(Xi ≤ x)

be the empirical distribution function of the first c observations and

Gd(x) =
1

d

n∑
i=c+1

1(Xi ≤ x)

be the empirical distribution function of the remaining d observations. The com-
bined empirical distribution function Hn of the entire sample is

Hn(x) =
cFc(x) + dGd(x)

n
.

The two-sample Cramér-von Mises test of the hypothesis F = G is based on the
statistic

Wn(c) =
cd

n

∫ ∞

−∞
{Fc(x)−Gd(x)}2 dHn(x).

For a thorough discussion of this nonparametric test and a simple computing
formula in terms of the ranks of the first c values of X in the whole sample see
Anderson (1962). The distribution of the test statistic does not depend on H
under the null hypothesis provided H is a continuous function.

A number of authors have suggested adapting this statistic to the change point
problem. See, for instance, Picard (1985) and Brodsky and Darkhovsky (1993)
where the two natural possible test statistics considered herein are suggested and
studied briefly. The first of these tests can be used both to assess the existence of
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a change point and to estimate the location of the change if it exists. The statistic
in question is

Wmax ≡ max
1≤c≤n−1

Wn(c).

We shall also use Wmax to define the estimated change point

ĉn = argmax
1≤c≤n−1

Wn(c);

thus ĉn is the value of c achieving the maximum. (We remark that the statistic Wn

is discrete and in small samples there is some modest probability that ĉn will not
be unique; this lack of uniqueness plays no role in the hypothesis testing problem.)

We prefer, however, the statistic

W n(X1, . . . , Xn) = W n ≡ 1

n− 1

n−1∑
c=1

Wn(c).

We offer several potential rationales for our choice:

• In many goodness-of-fit contexts quadratic statistics like ours outperform
maximal statistics. For instance, the Cramér-von Mises goodness-of-fit test is
generally more powerful than the Kolmogorov-Smirnov test; see, for instance,
Stephens (1986).

• Quadratic statistics such as we propose often have simpler large sample the-
ory than do maximal statistics like the Kolmogorov-Smirnov test. Generally
speaking the former have limiting distributions which are linear combina-
tion of chi-squares while the latter have limiting laws which are those of
the supremum of a Gaussian process. The actual laws of these suprema are
known only in special cases (although inequalities can often provide useful
upper bounds on p-values).

• The large sample theory in question often provides a more accurate ap-
proximation for quadratic statistics than it does for maximal statistics. For
example, see Mohd Razali and Yap (2011) and Büning (2002).

In Section 2 we present large sample distribution theory under the null hy-
pothesis, show how to compute p-values based on this large sample theory and
demonstrate that the asymptotic approximations are quite accurate for n ≥ 100,
particularly in the important lower tail. Section 3 presents a short power study
showing that over a wide range of alternatives the statistic W̄ is more powerful
than Wmax. Section 4 presents asymptotic power calculations against contiguous
sequences of alternatives; these permit useful approximations to the power of W̄ in
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cases where the null is not obviously false. By contrast, the limit theory for Wmax

does not lend itself to easy power calculations. We conjecture, however, that in this
context of contiguous alternatives the statistic Wmax has the defect that, unlike
W̄ , its power converges to its level. In this section we present some further Monte
Carlo studies relevant to contiguous sequences of alternatives. Finally we present
some discussion in Section 6. We give proofs and evidence for the conjecture in
the Appendix.

2 Null limit theory

Suppose that the null hypothesis holds and the X1, . . . , Xn are iid with continuous
cdf H. Then for all c we have

W (X1, . . . , Xc, Xc+1, . . . , Xn) = W (H(X1), . . . , H(Xc);H(Xc+1), . . . , H(Xn)).

Thus in computing distribution theory under the null we may, and will, assume
that H is the uniform distribution; to emphasize the point we let U1, U2, · · · be an
iid sequence of Uniform random variables; the joint law of (H(X1), . . . , H(Xn)) is
the same as that of (U1, . . . , Un).

Large sample theory for the two sample Cramér-von Mises statistic is well
known: if c depends on n in such a way that c/n → s ∈ (0, 1) (or even just
min{c, n− c} → ∞) then

Wn(c)⇒
∞∑
j=1

Z2
j

π2j2

where the Zi are iid standard normal; see Anderson (1962). (Notice that the limit
is free of s.) Our statistic has a related limit given as follows.

Theorem 1 As n→∞ we have, under the null hypothesis,

W n ⇒ W∞ ≡
∞∑
j=1

∞∑
k=1

Z2
jk

j(j + 1)π2k2

where the Zjk are iid standard normal.

The theorem is a consequence, as usual, of a suitable weak convergence result
which we now present; the Gaussian process limit we derive is mentioned in Picard
(1985); the specific weights in Theorem 1 do not seem to have been previously
described.
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We begin by defining the partial sum empirical process (van der Vaart and
Wellner, 1996, p. 225), for (s, t) ∈ [0, 1]2, by

Zn(s, t) =
1√
n

∑
1≤i≤ns

{1(Ui ≤ t)− t} .

Our statistic can be described in terms of this process. Notice that

Fc(t) =

√
n

c
Zn(c/n, t) + t

and that

Gd(t) =

√
n

d
{Zn(1, t)− Zn(c/n, t)}+ t.

Thus

Fc(t)−Gd(t) =
√
n

{
Zn(c/n, t)

c
− Zn(1, t)− Zn(c/n, t)

d

}
.

We now define a process Wn(s, t) for 0 < s < 1 and 0 ≤ t ≤ 1 by

Wn(s, t) =
√
s(1− s)

{
Zn(s, t)

s
− Zn(1, t)− Zn(s, t)

1− s

}
=

Zn(s, t)− sZn(1, t)√
s(1− s)

.

For given c our two sample test statistic is given by

Wn(c) =

∫ 1

0

{Wn(c/n, t)}2 dHn(t).

The processes Zn and Wn have well known weak limits given the in following
theorem. It will also prove useful to introduce the notation

Bn(s, t) = Zn(s, t)− sZn(1, t).

Theorem 2 Under the null hypothesis:

1. As n→∞,
Zn(s, t) � Z∞

a mean 0 Gaussian Process with covariance function

ρZ(s, t; s
′, t′) = s ∧ s′ψ(t, t′)

where ψ(t, t′) = t ∧ t′ − tt′;
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2. As n→∞,
Bn(s, t) � B∞

a mean 0 Gaussian Process with covariance function

ρB(s, t; s
′, t′) = ψ(s, s′)ψ(t, t′);

3. As n→∞,
Wn(s, t) � W∞

a mean 0 Gaussian Process with covariance function

ρW (s, t; s′, t′) = χ(s, s′)ψ(t, t′)

where

χ(s, s′) =
ψ(s, s′)√

s(1− s)s′(1− s′)
.

The process B is called a Brownian pillow by some writers or a 4 side tied down
Brownian motion; see, for instance Zhang (2014) or McKeague and Sun (1996).
The process Z is a Blum-Kiefer-Rosenblatt process ; see Blum et al. (1961).

We now record well known facts about the eigenvalues of the covariance ρW .
The covariance kernel ψ is that of a Brownian Bridge. It has eigenvalues of the form
1/(π2k2) for k = 1, 2, · · · with corresponding orthonormal eigenfunctions fψ,k(u) =√
2 sin(πku). The covariance kernel χ arises in the study of the Anderson-Darling

goodness-of-fit test. It has eigenvalues of the form 1/{j(j + 1)} for j = 1, 2, · · · .
The corresponding orthonormal eigenfunctions are associated Legendre functions.
The jth eigenfunction is

fχ,j(u) = 2

√
2j + 1

j(j + 1)

√
s(1− s)qj(2s− 1)

where the qj are polynomials of degree j − 1 defined recursively as follows:

q1(u) = 1,

q2(u) = 3u

and for j ≥ 2

qj+1(u) =
1

j
{(2j + 1)uqj(u)− (j + 1)qj−1(u)} .

It follows that the eigenvalues of ρW consist of all possible products

λjk =
1

j(j + 1)π2k2
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with corresponding eigenfunctions

fχ,j(s)fψ,k(t).

The expansion in Theorem 1 is then Parseval’s identity with

Zjk =

∫ 1

0

∫ 1

0

W(s, t)fχ,j(s)fψ,k(t) ds dt.

2.1 Numerical Work

The distribution of W∞ can be computed numerically in order to provide approx-
imate, asymptotically valid, p-values. Our desired approximation to the p-value
is

P (W n > wobs) ≈ P (W∞ > wobs)

where wobs is the value of W n observed in the data. Define

λjk =
1

π2j(j + 1)k2
.

In practice, we truncate the infinite sum defining W∞, retaining the terms with
the largest values of λjk, and replace the neglected terms by their expected value.
So we write

W∞ = WM + TM

=
∑
jk≤M

λjkZ
2
jk +

∑
jk>M

λjkZ
2
jk.

We then approximate TM by its expected value:

μM ≡
∑
jk>M

λjkE
(
Z2

jk

)
=
∑
jk>M

λjk.

Since the mean of W∞ is ∑
j,k

λjk =
1

6

the mean of TM may be computed by

1

6
−
∑
jk≤M

λjk.

Our approximation becomes

P (W n > wobs) ≈ P (WM + μM > wobs).
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The latter quantity may now be computed by using numerical Fourier inversion
following Imhof (1961). The R package CompQuadForm (see Duchesne and Lafaye de
Micheaux, 2010) implements this computation in the function imhof; we use this
software in our numerical work below.

We have evaluated the quality of our asymptotic approximation to the null
distribution of W in a small Monte Carlo study. Since this distribution does not
depend on H when the null hypothesis holds we generated N = 10, 000 samples
of size n = 200, 500, 1000. Figure 1 shows a Q-Q plot for these 10,000 values
for n = 200 to check the uniformity of their distribution. Specifically, we plot
the order statistics against the uniform plotting points 1/(N +1), . . . , N/(N +1).
Figure 2 is an enlargement of the smallest 10% of these values since the quality
of the approximation is most important for small p-values. In both cases it is
seen that the approximation is excellent. For completeness, however, we note that
the hypothesis of exact uniformity of these 10,000 p-values is rejected (P ≈ 0.01)
by the Anderson-Darling test. Applied to the smallest 1,000 p-values, rescaled
so that p-value number 1,001 from the bottom becomes 1, the Anderson-Darling
p-value is actually 0.99. We conclude the uniform approximation is very good at
reasonable sample sizes, particularly in the important lower tail. For p-values over
0.5 we believe that the truncation we must do in order to compute the limit law
is slightly off but argue that inaccuracy in the upper tail of p-values is not very
consequential.
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Figure 1: Ordered p-values plotted against uniform quantiles for 10,000 iid Monte
Carlo samples from a continuous distribution. The blue line is the uniform cumu-
lative distribution function; exact p-values have a uniform distribution; the graph
shows this approximation is good.
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Figure 2: Exploded view of Figure 1 showing the lower 10% of the distribution of
the ordered p-values plotted against uniform quantiles for 10,000 iid Monte Carlo
samples from a continuous distribution. The blue line is the uniform cumulative
distribution function; exact p-values have a uniform distribution; the graph shows
this approximation is very good in the important lower tail.

3 Monte Carlo Power approximations

We undertook a variety of Monte Carlo simulation studies to compare the power
of W n to Wmax. In Table 3 we show the percentage of samples rejected in 10,000
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trials by the two methods at the levels α = 0.05 and α = 0.1. We consider samples
of size n ∈ {20, 50, 100}. In one experiment recorded in the table we generated
data from the Gamma distributions where the parameters change at c = n/2.
In another experiment we change from the Gamma distribution to the Normal
distribution at c = n/2; in this case neither the mean nor the variance changes.
While our tests are designed to detect single change points we have included two
trials in which there are three segments which change between various Gamma
distributions. One changes from shape 1, scale 2 to shape 2, scale 1 at the 40%
point and then to shape 0.5, scale 4 at the 60% point. All three of these have
the same mean. The other changes from shape 1, scale 2 to shape 2, scale 3, and
back to shape 1, scale 2; the changes happen after 30% and then 70% of the data.
Finally we present two experiments with samples from the normal distribution; in
one the mean changes at c = n/2 and in the other the standard deviation changes
at the same point. In all these trials the parameter values in the distributions in
a given segment do not change as the sample size changes; this may be compared
with the further Monte Carlo results in Section 4.

109



α = 0.1 α = 0.05

Alternative Sample size Wmax W n Wmax W n

X1, . . . , X0.5n ∼ Gamma(1, 2),
X0.5n+1, . . . , Xn ∼ Gamma(2, 2)

n = 20 47.9 50.7 35.0 37.5
n = 50 82.3 85.7 73.9 77.4
n = 100 98.3 98.9 96.3 96.9

X1, . . . , X0.5n ∼ Gamma(1, 2),
X0.5n+1, . . . , Xn ∼ N (2, 2)

n = 20 12.9 13.7 6.9 7.2
n = 50 16.1 19.2 9.0 11.2
n = 100 22.1 31.2 13.7 19.0

X1, . . . , X0.4n ∼ Gamma(1, 2),
X0.4n+1, . . . , X0.6n ∼ Gamma(2, 1)
X0.6n+1, . . . , Xn ∼ Gamma(0.5, 4)

n = 20 17.5 16.5 10.0 9.2
n = 50 24.6 25.5 15.5 15.9
n = 100 38.3 42.8 27.3 28.5

X1, . . . , X0.3n ∼ Gamma(1, 2),
X0.3n+1, . . . , X0.7n ∼ Gamma(2, 3)
X0.7n+1, . . . , Xn ∼ Gamma(1, 2)

n = 20 29.0 20.6 15.8 7.9
n = 50 72.3 71.6 54.4 48.1
n = 100 98.3 98.6 94.1 94.6

X1, . . . , X0.5n ∼ N (0, 1),
X0.5n+1, . . . , Xn ∼ N (0, 3)

n = 20 18.2 22.0 10.8 11.3
n = 50 29.6 56.0 17.0 33.0
n = 100 66.3 93.4 45.0 81.2

X1, . . . , X0.5n ∼ Exp(1),
X0.5n+1, . . . , Xn ∼ Exp(1.5)

n = 20 15.8 16.4 9.1 9.3
n = 50 23.4 26.9 14.9 17.5
n = 100 35.8 42.7 25.0 31.0

Table 1: Powers (percentage) from various alternative distributions and signifi-
cance levels 0.1 and 0.05. Critical points were calculated with 100, 000 and Powers
by 10, 000 Monte Carlo simulations. The notation Gamma(α, β) indicates sam-
pling from a Gamma distribution with shape α and scale β. The parameters in
the normal distribution are mean and variance as usual. The parameter in the
Exponential distribution is the mean.

It will be seen that, except for very small samples, when there is a single
change point the test using W n has better power than Wmax. Since it is also far
faster to compute p-values for W n using the highly accurate asymptotic law we
recommend W over Wmax. At the same time we observe that the procedure is
specifically designed to choose between 1 change point and no change points and
not to estimate and find multiple change points. In particular, for one of the
alternatives in Table 3 with 2 change points the statistic Wmax is usually more
sensitive than W n.

The results presented here show how the powers grow with sample size when the
two distributions are fixed. Other experiments, not reported here, show that both
statistics have better power when the change is near the center of the sequence.
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More Monte Carlo power calculations are presented in Section 5 below with a focus
on contiguous alternatives.

4 Power approximations: contiguous alternatives

We now compute approximate distribution theory for W̄n when the null hypothesis
is false and the extent of the change at the change point is big enough to be
detectable but not obvious; that is, we study situations where the best possible
power in large samples stays away from 1. To do so we consider a sequence of
alternatives indexed by n and assume that these alternatives are contiguous to a
sequence for which the null hypothesis of no change holds. To be specific our null
hypothesis sequence will have Xi iid for 1 ≤ i ≤ n with density h and cdf H.
For the alternative we suppose that there is a value c0 such that for 1 ≤ i ≤ c0,
the Xi are iid with density f and that for c0 + 1 ≤ i ≤ n the Xi are iid with
density g. All of f , g, h, and the true change point c0 may depend on n but the
dependence will be hidden in our notation. Under the null hypothesis the joint
density of X1, . . . , Xn is

f0n(x1, . . . , xn) =
n∏

i=1

h(xi).

Under the alternative the joint density becomes

f1n(x1, . . . , xn) =

c0∏
i=1

f(xi)
n∏

c0+1

g(xi).

The log-likelihood ratio of these two is

Λn = ln {f1,n(X1, . . . , Xn)/f0n(X1, . . . , Xn)}

=

c0∑
i=1

ln {f(Xi)/h(Xi)}+
n∑

i=c0+1

ln {g(Xi)/h(Xi)} .

The sequence of alternatives f1n is contiguous to the null sequence f0n if, computing
under the null hypothesis, we have

Λn � N(−τ 2/2, τ 2) (1)

for some 0 ≤ τ < ∞. If we define Ui = H(Xi) then under the null hypothesis
the Ui are iid Uniform[0,1]. Under the alternative U1, . . . , Uc0 are iid with density
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f̃(u) = f(H−1(u))/h (H−1(u)) while Uc0+1, . . . , Un are iid with density g̃(u) =
g(H−1(u))/h (H−1(u)). The likelihood ratio becomes

Λ̃n =

c0∑
i=1

ln
{
f̃(Ui)

}
+

n∑
i=c0+1

ln {g̃(Ui)} .

Since our test statistics are invariant to a monotone transformation applied to each
individual data point we will take H to be Uniform[0,1] and then drop the tildes
from our notation. The quantity

Sn =

c0∑
i=1

φf (Xi)/
√
n+

n∑
i=c0+1

φg(Xi)/
√
n

is needed in our theorem.

Theorem 3 Assume

A1 There are two functions φf and φg in L2[0, 1] such that

lim
n→∞

√
n(f − 1) = φf

and
lim
n→∞

√
n(g − 1) = φg.

A2 There is a u ∈ (0, 1) such that

lim
n→∞

c0
n

= u.

Then as n→∞ we have, under the sequence of alternative hypotheses specified by
f , g, and c,

1. The log-likelihood ratio satisfies

Λn = Sn + oP (1) � N(−τ 2/2, τ 2)
where

τ 2 = u

∫ 1

0

φ2
f (t) dt+ (1− u)

∫ 1

0

φ2
g(t) dt.

2. The process Wn converges weakly to a Gaussian process with covariance ρ
and mean

μ(s, t) = μχ(s)μψ(t)

where

μχ(s) =
√

s(1− s)

{
1− u

1− s
1(s ≤ u) +

u

s
1(s > u)

}
and

μψ(t) = [E {φf (U)1(U ≤ t)} − E {φg(U)1(U ≤ t)}] .
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3. and

W n � W∞ ≡
∞∑
j=1

∞∑
k=1

(Zjk + ηjτk)
2

j(j + 1)π2k2

where the Zjk are iid standard normal,

ηj =

∫ 1

0

μχ(s)fj,χ(s) ds,

and

τk =

∫ 1

0

μψ(t)fj,ψ(t) dt.

As with the null distribution, this limiting alternative distribution for W can
be computed using the R package CompQuadForm. As an example we take f to be
standard normal and g to be normal with mean μ and standard deviation σ. The
two parameters are assumed to depend on n in such a way that

√
nμ→ γ1 and

√
n(σ − 1)→ γ2.

It is convenient to take h = f . Under the null the data X1, . . . , Xn are iid standard
normal. The functions f̃ and g̃ are then given by f̃ ≡ 0 and

g̃(u) =
φ
{

Φ−1(u)−μ
σ

)
φ {Φ−1(u)} .

Under these conditions we may check that condition A1 holds with φf = 0 and

φg(u) = γ2

[{
Φ−1(u)

}2 − 1
]
+ γ1Φ

−1(u).

5 Large sample behaviour of Wmax

The statistic Wmax is more challenging to analyze because the weak convergence
result in Theorem 2 asserts convergence in �loc∞ ((0, 1)× [0, 1]). By �loc∞ ((0, 1)× [0, 1])
we mean the space of functions on (0, 1) × [0, 1] which are bounded on compact
subsets of their domain. We give this the topology of uniform convergence on
compacts. See van der Vaart and Wellner (1996). Our proof of Theorem 1 shows
that our statistic is a continuous function on a subset of �loc∞ ((0, 1) × [0, 1]) to
which sample paths of W∞ are almost sure to belong. We are not able to establish
the corresponding result for Wmax. Traditionally this problem has been handled
either by fixing a small ε > 0 and redefining Wmax by maximizing only over {c :
ε ≤ c/n ≤ 1 − ε} or by careful analysis of the behaviour of the process and the
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Figure 3: Histograms of values of estimated change points for sample sizes n = 100
on the left and n = 500 on the right. The null hypothesis is true and 10,000 samples
were used for each histogram. The x-axis shows ĉ/n and the y-axis is a probability
density scale. The two figures have the same scales on each axis. Horizontal lines
at height 1 (blue) and 0.5 (red) are provided to help see the extent to which the
distribution on the right is more concentrated around 0 and 1 than the distribution
on the left.

test statistic for c/n close to 0 or to 1. For instance, Jaeschke (1979) considers
a weighted Kolmogorov-Smirnov test for the uniform distribution and shows that
the supremum of the weighted empirical process has, after suitable normalization,
an extreme value distribution.

We have not pursued either of these ideas but offer here some evidence that this
statistic has some important defects. First we look at a small simulation study. We
generated 10,000 samples of size 100 and 500 from the null hypothesis. In Figure 3
we plot histograms of the value ĉ which maximizes Wn(c) over 1 ≤ c ≤ n − 1.
Observe that as the sample size grows the histogram concentrates near 0 and 1
(though the convergence is slow). We can prove:

Cramér-von Mises Tests for Changepoints

114



Proposition 1 Under the null hypothesis and under any sequence of contiguous
alternatives

min

{
ĉ

n
,
n− ĉ

n

}
→ 0

in probability. Under the null hypothesis, the distribution of ĉ/n converges to a
Bernoulli(0.5) law.

This means that, even for data from detectable (but not obvious) alternatives,
our test statistic Wmax usually compares the distribution of a tiny fraction of the
data to that of the vast majority of the data even when the true change point is
in the middle of the sequence. We also conjecture:

Conjecture 1 For any sequence of contiguous alternatives the difference between
the power and the level of a test based on Wmax goes to 0 as n→∞.
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Gamma, shape=1 + b/
√
n, break at n/2

n = 10 n = 50 n = 100 n = 200 n = 500
W̄ MC 11.70 13.96 14.83 14.71 15.91

b = 2 W̄ Asym 11.79 13.59 14.61 14.67 15.70
Wmax MC 12.13 12.00 12.36 11.41 11.80
W̄ MC 18.50 25.18 26.48 27.74 29.52

b = 3 W̄ Asym 18.72 24.73 26.12 27.66 29.25
Wmax MC 18.62 22.05 21.84 21.34 21.88
W̄ MC 34.95 52.67 57.39 61.28 65.62

b = 5 W̄ Asym 35.26 51.97 57.06 61.18 65.35
Wmax MC 35.48 47.60 50.07 52.76 54.46

Gamma, shape=1 + b/
√
n, break at 3n/10

W̄ MC 9.24 11.29 11.73 11.83 13.21
b = 2 W̄ Asym 9.42 10.86 11.47 11.79 13.10

Wmax MC 10.00 10.60 10.48 9.86 10.37
W̄ MC 13.41 20.04 20.26 21.80 23.15

b = 3 W̄ Asym 13.54 19.56 19.92 21.66 22.98
Wmax MC 14.81 18.07 17.38 18.00 17.97
W̄ MC 22.42 41.53 45.54 48.59 53.34

b = 5 W̄ Asym 22.75 40.87 45.11 48.52 53.07
Wmax MC 26.43 39.44 41.36 43.09 45.72

Table 2: Powers (percentage) for change from Gamma(shape= 1+ b/
√
n, scale=1)

to Gamma(1,1) at the indicated breakpoint, n/2 in the top and 3n/10 in the
bottom. Powers are based on 10,000 samples and either use Monte Carlo critical
points (based on 100,000 samples) or asymptotic critical points as indicated by
‘MC’ or ‘Asym’. All tests are at the level α = 0.05.
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Normal, σ = 1 + b/
√
n, break at n/2

n = 10 n = 50 n = 100 n = 200 n = 500
W̄ MC 5.61 5.97 5.65 5.66 5.91

b = 2 W̄ Asym 5.69 5.77 5.40 5.61 5.83
Wmax MC 6.70 5.72 5.19 4.80 5.25

W̄ MC 6.11 7.04 6.87 6.75 7.40
b = 3 W̄ Asym 6.20 6.66 6.66 6.73 7.23

Wmax MC 7.67 6.49 5.71 5.36 5.55

W̄ MC 6.76 9.55 11.10 11.32 13.56
b = 5 W̄ Asym 6.79 9.24 10.79 11.25 13.33

Wmax MC 8.99 7.91 6.99 6.84 6.88

Normal, σ = 1 + b/
√
n, break at 0.3n/10

W̄ MC 6.26 6.49 5.80 5.63 5.76
b = 2 W̄ Asym 6.37 6.17 5.63 5.63 5.68

Wmax MC 7.12 6.08 5.72 5.22 5.42

W̄ MC 6.91 7.37 6.74 6.41 6.95
b = 3 W̄ Asym 7.09 7.10 6.51 6.39 6.80

Wmax MC 8.18 7.08 6.29 5.94 5.95

W̄ MC 7.89 9.40 9.92 9.91 11.13
b = 5 W̄ Asym 8.09 8.99 9.65 9.79 10.98

Wmax MC 9.80 8.96 8.04 7.67 7.19

Table 3: Powers (percentage) for change from Normal(0,σ = 1 + b/
√
n) to Nor-

mal(0,1) at the indicated breakpoint, namely, n/2 in the top and 3n/10 in the
bottom. Powers are based on 10,000 samples and either use Monte Carlo critical
points (based on 100,000 samples) or asymptotic critical points as indicated by
‘MC’ or ‘Asym’. All tests are at the level α = 0.05.

Here is some Monte Carlo evidence from a simulation study. In Tables 2 and 3
we study four alternatives at sample sizes n = 10, 50, 100, 200, 500. For each sample
size we draw 10,000 samples of size n. The first c observations in each sample have
some parameter of the form a+ b/

√
n and the remaining n− c have parameter a.

We used the Gamma distribution and the normal distribution and tried c = 0.5n
and c = 0.3n for each distribution. In the Gamma case we tried changing the shape
parameter with a = 1 while holding the scale parameter at 1. The tables show
the expected convergence (although we have not computed the power predicted
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by our theory in Section 4.
For the statistic Wmax the tables show, in the normal case, the power declining

towards the level (which is 5% here). For the Gamma cases studied here the power
is rising but slowly for distant alternatives (large values of b) and declining very
slowly for less distant alternatives (smaller values of b). Our experience in general
is that for more distant alternatives it requires larger sample sizes before the power
of Wmax begins to drop.

Our conjecture is motivated by an analogy with Lockhart (1991) in which it
is shown that goodness-of-fit test statistics which depend only on o(n) tail order
statistics have the property asserted in the second conjecture. In the Appendix
we prove the proposition and provide partial details showing how we would hope
to prove our conjecture, if we could.

6 Discussion

It is a general principle that procedures with optimal frequency properties are
found by searching among Bayes procedures. It is also generally the case that op-
timal Bayes procedures involve averaging rather than maximizing. These heuristics
motivate considering testing for change points by using test statistics which are av-
erages over possible change points rather than maxima. In this paper we have used
this heuristic to motivate an average two sample goodness of fit statistic when we
are concerned about general changes in distribution, rather than simple changes in
mean, in a sequence of independent data points. We have shown the resulting test
statistic has computable large sample theory which can be used to provide very
accurate p-values. Moreover we have shown that averaging over possible change
points is generally more sensitive to alternatives than maximizing over possible
change points.

The basic idea can be used in other contexts. Consider, for instance, testing
for a change in mean. We describe first the unrealistic situation in which the stan-
dard deviation is known and then how to handle estimation of that SD. Suppose
X1, . . . , Xn are independent and we wish to test the null hypothesis that they are
iid with unknown mean μ and known standard deviation σ (which we take to be
1 for notational convenience) against the alternative that the mean changes after
the data point number c. The usual Z statistic is

Tc =

(
X1 + · · ·+Xc

c
− Xc+1 + · · ·+Xn

n− c

)
/

√
1

c
+

1

n− c
.

Our proposal would be to use the two sided test

T 2 =
1

n− 1

n∑
c=1

T 2
c .
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This statistic has mean 1 under the null hypothesis of no change in mean. Argu-
ments similar to those in Section 2 show that this statistic has the same limiting
distribution, under the null, as the well known Anderson-Darling goodness-of-fit
statistic.

In the more reasonable case where the (assumed common) standard deviation
is unknown will use the statistic

T 2
s = T 2/s2

where s2 is some estimate of σ2 which is consistent under the null hypothesis. The
sample standard deviation is one possibility though this can be badly biased under
the alternative. An estimate which is rather less precise but still likely to be quite
accurate under the alternative hypothesis is

s21 =

∑n−1
i=1 (Xi+1 −Xi)

2

2(n− 1)
.

Notice that under the alternative hypothesis all but one term in this average is an
unbiased estimate of σ2; the bias in the estimator is Δ2

μ/(2n) where Δμ denotes
the change in the mean at the true change point. Under the null our estimate
is unbiased. The statistic T 2

s also has the same limiting distribution as the well
known Anderson-Darling goodness-of-fit statistic when the null holds.

Other nonparametric goodness of fit tests can be used instead of the Cramér-
von Mises test. For example a Bayesian test Labadi et al. (2014), likelihood tests
Csörgö et al. (1997) or other two-sample tests Büning (2002). Sample size, the kind
of alternative distribution from which we expect the data to come and the expected
index of the change point should likely be used to choose the best test. Finding the
asymptotic distribution for less well-known tests can be difficult. Bootstrapping
can be used instead. This deserves further research.

Appendix

Proof of Theorems 1 and 2.
The weak limit Z given below is discussed in Picard (1985) but we provide

details for completeness.
We prove Theorem 2 first. Define the partial sum empirical process (van der

Vaart and Wellner, 1996, p. 225), for (s, t) ∈ [0, 1]2, by

Zn(s, t) =
1√
n

∑
1≤i≤ns

{1(Ui ≤ t)− t} .
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Our statistic can be described in terms of this process. Notice that

Fc(t) =

√
n

c
Zn(c/n, t) + t

and that

Gd(t) =

√
n

d
{Zn(1, t)− Zn(c/n, t)}+ t.

Thus

Fc(t)−Gd(t) =
√
n

{
Zn(c/n, t)

c
− Zn(1, t)− Zn(c/n, t)

d

}
.

Now define the process Wn(s, t) for 0 < s < 1 and 0 ≤ t ≤ 1 by

Wn(s, t) =
√

s(1− s)

{
Zn(s, t)

s
− Zn(1, t)− Zn(s, t)

1− s

}
.

For given c our two sample test statistic is given by

Wn(c) =

∫ 1

0

{Wn(c/n, t)}2 dHn(t).

Let νn be the probability measure on (0, 1) putting mass 1/(n− 1) on each point
of the form c/n for 1 ≤ c ≤ n− 1. Our statistic is

W n =

∫ 1

0

∫ 1

0

{Wn(s, t)}2 dHn(t) dνn(s).

We now break the proof of our two results into steps consisting of a statement
followed by a detailed proof. In each case the assertions are intended to hold
under the null hypothesis and the assumption that the common distribution H is
continuous.

Step 1 : The process Zn converges weakly in �∞([0, 1]2) to a tight, centred, Gaussian
process Z with covariance

ρ(s, t; s′, t′) = (s ∧ s′)(t ∧ t′ − tt′).

See van der Vaart and Wellner (1996).

Step 2 : Hence the process Wn converges weakly in �loc∞ ((0, 1)× [0, 1]) to the tight
centred Gaussian process

W(s, t) =
√

s(1− s)

{
Z(s, t)

s
− Z(1, t)− Z(s, t)

1− s

}
.
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This process has continuous sample paths (on (0, 1) × [0, 1]) and the covariance
given in the statement of the theorem.

Step 3 : For any sequence cn with εn ≡ cn/n→ 0 we have{∫ εn

0

+

∫ 1

1−εn

}
{Wn(c/n, t)}2 dHn(t)dνn(s) =

∑cn
i=1 Wn(i) +

∑n
i=n+1−cn Wn(i)

n− 1
→ 0

in probability. Under the null hypothesis the mean of Wn(c) is 1/6 + 1/(6n); see
Anderson (1962). The expected value of the indicated quantity is thus

2cn
n− 1

(
1

6
+

1

6n

)
→ 0.

Step 4 : The integral

W∞ =

∫ 1

0

∫ 1

0

W
2(s, t)dt ds

is almost surely finite. Since all the variates involved are non-negative we may
compute

E(W∞) = E

(∫ 1

0

∫ 1

0

W
2(s, t)dt ds

)
=

∫ 1

0

χ(s, s) ds

∫ 1

0

ψ(t, t) dt = 1/6 <∞.

Step 5 : For any sequence εn tending to 0 as n → ∞ we have, by taking expecta-
tions, {∫ εn

0

+

∫ 1

1−εn

}∫ 1

0

W
2(s, t)dt ds→ 0

in probability.

Step 6 : The tensor product kernel

ρ = χ⊗ ψ(s, t; s′, t′) = χ(s, s′)ψ(t, t′)

is compact and has eigenvalue-eigenfunction pairs

λjk =
1

j(j + 1)

1

π2k2
, fjk(s, t) = fχ,j(s)fψ,k(t)

indexed by j, k each running from 1 to ∞. It follows as usual that the family

Zjk =
1√
λjk

∫ 1

0

∫ 1

0

W(s, t)fjk(s, t)dt ds
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defines a family of independent standard normal variables. Parseval’s identity is
then ∫ 1

0

∫ 1

0

W
2(s, t)dt ds =

∞∑
j=1

∞∑
k=1

Z2
jk

j(j + 1)π2k2
.

Step 7 : For each fixed ε > 0 we have∫ 1−ε

ε

∫ 1

0

W
2
n(s, t)dHn(t) dνn(s)− 1

n− 1

∑
nε<i<n(1−ε)

W 2
n(i)→ 0

in probability. This is an easy consequence of the fact that for i/n ≤ s < (i+1)/n

we have
∫ 1

0
W

2
n(s, t)dFn(t) = W

2
n(i).

Step 8 : For each fixed ε > 0 we have∫ 1−ε

ε

∫ 1

0

W
2
n(s, t)dHn(t) dνn(s)−

∫ 1−ε

ε

∫ 1

0

W
2
n(s, t) dt ds→ 0

Under the null hypothesis Hn converges weakly to the uniform law on the unit
interval. Moreover νn converges weakly to Lebesgue measure on the unit interval.
The weak convergence result in Step 2 above uses a topology of uniform conver-
gence on compacts such as the set [ε, 1 − ε] × [0, 1] and this implies the desired
result.

Step 9 : For each fixed ε > 0 we have∫ 1−ε

ε

∫ 1

0

W
2
n(s, t)dt ds �

∫ 1−ε

ε

∫ 1

0

W
2(s, t) dt ds.

This is a direct consequence of weak convergence using the continuous mapping
theorem.

Step 10 : There is a metric d on the set of probability measures on the real line
for which the metric topology is the topology of weak convergence. For each fixed
ε > 0 we have

d

(
L
(∫ 1−ε

ε

∫ 1

0

W
2
n(s, t)dt ds

)
,L
(∫ 1−ε

ε

∫ 1

0

W
2(s, t) dt ds

))
→ 0.

There is then a sequence εn → 0 so slowly that this convergence continues to hold
with ε replaced by εn and so that the convergences in Steps to 7 and 8 continue to
hold. Notice that by Step 5

d

(
L
(∫ 1−εn

εn

∫ 1

0

W
2(s, t) dt ds

)
,L
(∫ 1

0

∫ 1

0

W
2(s, t) dt ds

))
→ 0.
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for this sequence.

Step 11 : For the sequence chosen in Step 10 we therefore have

1

n− 1

∑
nεn<i<n(1−εn)

W 2
n(i) �

∫ 1

0

∫ 1

0

W
2(s, t) dt ds.

In view of Step 1 we see

Wn �
∫ 1

0

∫ 1

0

W
2(s, t) dt ds

The law of the limit is, by Step 6, that of

∞∑
j=1

∞∑
k=1

Z2
jk

j(j + 1)π2k2
.

This completes the proofs of Theorems 1 and 2.

Proof of Theorem 3.
This is standard so we present only an outline. Conditions A1 and A2 can be

used to prove that
Λn − Sn → 0

in probability under the null. The Lindeberg Central limit theorem then establishes
the first conclusion of the Theorem. For more detailed arguments in a similar
context see Guttorp and Lockhart (1988). Thus, under the conditions of the
theorem the sequence of alternatives is contiguous to a sequence for which the null
holds.

Contiguity implies that tightness under the null sequence extends to tightness
under the alternative sequence. This proves tightness, under the alternative, of the
sequence of processes Wn. Thus we need only compute the limiting finite dimen-
sional distributions under the alternative sequence. As usual we apply LeCam’s
Third Lemma (again similar arguments are in Guttorp and Lockhart (1988)) to
reduce the problem to studying the joint law, under the null hypothesis, of Λn

and the vector (Wn(s1, t1), . . . ,Wn(sk, tk) for an arbitrary sequence of time points
t1, . . . , tk all in [0, 1].

The null distribution theory presented above (see Step 1 in the proof of Theo-
rem 2) shows that, under the null hypothesis,

(Wn(s1, t1), . . . ,Wn(sk, tk)) � MVNk(0,RW )

where RW is the k × k matrix with i, jth entry

RWij = ρW (si, ti; sj, tj).
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The Lindeberg Central Limit Theorem may now be used to show that the vector

(Sn,Wn(s1, t1), . . . ,Wn(sk, tk))

converges in distribution to multivariate normal with mean vector (−τ 2/2, 0, . . . , 0)
and variance covariance matrix of the form[

τ 2 c�

c RW

]
.

Here the vector c is the limiting covariance which is found, after some algebra, to
be

ci = μ(si, ti) = μχ(si)μψ(ti).

This completes the proof of the second assertion of the Theorem.
The third step is standard; Guttorp and Lockhart (1988) does similar problems.

Proof of Proposition 1

Fix 0 < δ < 1/2 and let An denote the event {δ ≤ ĉ/n ≤ 1 − δ}. We will show
that

lim
n→∞

P (An) = 0.

This will prove Proposition 1. To this end fix 0 < ε < δ. Define

Mn = sup
δ≤s≤1−δ

∫ 1

0

B
2
n(s, t)

s(1− s)
dt

and

M ′
n(ε) = sup

ε≤s≤δ

∫ 1

0

B
2
n(s, t)

s(1− s)
dt.

Then
An ⊂ {M ′

n(ε) < Mn}.
Weak convergence of Bn to B guarantees that

lim sup
n→∞

P (An) ≤ lim sup
n→∞

P{M ′
n(ε) < Mn} ≤ P (M ′(ε) ≤M)

where

M = sup
δ≤s≤1−δ

∫ 1

0

B
2(s, t)

s(1− s)
dt

and

M ′(ε) = sup
ε<s≤δ

∫ 1

0

B
2(s, t)

s(1− s)
dt.
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We claim that
lim
ε→0

P (M ′(ε) ≤M) = 0 (2)

and this will prove
lim sup
n→∞

P (An) = 0

and Proposition 1.
Assertion (2) would follow from a law of the iterated logarithm (as s→ 0) for

the process

s �→
∫ 1

0
B

2(s, t) dt

s(1− s)
.

While we expect such a result to hold we have not tried to prove anything along
those lines. We will establish instead the lower bound

lim sup
s→0

∫ 1

0

π2
B
2(s, t)

2 log{log(1/s)}s(1− s)
dt ≥ 1

almost surely which is enough to imply (2). We enumerate the steps needed:

1. Let

IB(s) =

∫ 1

0

B
2(s, t)

s
dt,

and

IZ(s) =

∫ 1

0

Z
2(s, t)

s
dt.

Then∫ 1

0

B
2(s, t)

s(1− s)
dtI =

∫ 1

0

{Z(s, t)− sZ(1, t)}2
s(1− s)

dt

≥ IZ(s)

1− s
+

s

1− s

∫ 1

0

Z
2(1, t) dt− 2s

1− s

√
IZ(s)

∫ 1

0

Z2(1, t) dt.

From this we deduce that it is enough to show that

lim sup
s→0

∫ 1

0

π2
Z
2(s, t)

2 log{log(1/s)}s dt ≥ 1 (3)

almost surely.

2. For each fixed s the process

t �→ Z(s, t)√
s
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is a Brownian Bridge. If we put

W (s) =

∫ 1

0

Z
2(s, t)

s
dt

then each W (s) has the same distribution as the limit law of the usual
Cramér-von Mises statistic which is the law of

∞∑
j=1

λjZ
2
j .

In this representation the Zj are iid standard normal and the eigenvalues λj

are given, for j = 1, 2, . . ., by

λj =
1

π2j2
.

3. The process Z has independent increments in s and for each 0 < s′ < s the
process

t �→ Z(s, t)− Z(s′, t)√
s− s′

has the same law as

t �→ Z(s, t)√
s

4. Now fix s0 = 1 and some r < 1 to be chosen later. Define sn = s0r
n for

n = 1, 2, . . .. Put

Wn =

∫ 1

0

Z
2(sn, t)

sn
dt

and

W ∗
n =

∫ 1

0

{Z(sn, t)− Z(sn+1, t)}2
sn − sn+1

dt.

All of these variables have the law of W (s) described above.

5. Fix ε > 0. Let An be the event W ∗
n > 2(1−ε)λ1 log(log(1/sn)) and Bn be the

event Wn+1 ≤ 2(1 + ε)λ1 log(log(1/sn)). We will show that we can choose r
small enough so that

(a) The event that An occurs infinitely often (i.o.) has probability 1.

(b) The event that Bn occurs for all large n has probability 1.

6. So the event An ∩ Bn i.o. has probability 1.
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7. On the event An ∩ Bn we have Wn ≥ 2(1 − ε)λ1 log(log(1/sn) so that this
event occurs infinitely often.

8. This proves

P {Wn ≥ 2(1− ε)λ1 log(log(1/sn)) i.o.} = 1.

which establishes (3). The definition of contiguity is that any sequence of
events whose probability converges to 0 under the null has probability con-
verging to 0 under the alternative. This finishes the proof of Proposition 1.

Evidence for Conjecture 1

For ε > 0 we define

In(ε) = {c : 1 ≤ c ≤ nε or 1 ≤ n− c ≤ nε}.
Proposition 1 establishes that there is a sequence εn ↘ 0 such

lim
n→∞

P (ĉn ∈ In(εn)) = 1.

Thus
P [Wmax = max{Wn(c) : c ∈ In(εn)}]→ 1. (4)

We now outline the steps in our strategy for proving the conjecture before
giving some evidence for each step.

Step 1 There are constants an and bn and a random variable V such that

anWmax − bn � V

and V has a continuous limit distribution.

Step 2: So
an max{Wn(c) : c ∈ In(εn)} − bn � V.

Step 3: There are random variables W̃n(c) such that under the null hypothesis

an max{|Wn(c)− W̃n(c)| : c ∈ In(εn)} → 0

and such that for each c ∈ In(εn) the variable W̃n(c) is measurable with
respect to the σfield generated by Xc, c ∈ In(εn). To be specific we define,
for c < n/2,

W̃n(c) =

∫ 1

0

c{Fc(u)− u}2 du
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and, for c > n/2,

W̃n(c) =

∫ 1

0

d{Gd(u)− u}2 du.

(Recall the shorthand d = n− c.)

Step 4: Define

Λ̃n =
∑

nεn<c≤c0
φf (Xc)/

√
n−

∑
c0<c<n−nεn

φg(Xc)/
√
n.

The log-likelihood ratio Λn satisfies

Λn − Λ̃n → 0

in probability, under the null hypothesis.

Step 5: Since W̃max is independent of Λ̃n we may apply LeCam’s third lemma to
show that under the sequence of contiguous alternatives we have

anWmax − bn � V

Step 6: Since this limit law is the same as under the null we must power minus level
tends to 0.

For some of these steps we can fill in partial evidence.
For Step 1 we would hope to follow the ideas in Jaeschke (1979) to show that

the limit V has an extreme value distribution. In that paper the maximizer of
the usual empirical process, standardized by dividing by its standard deviation,
is shown to have an extreme value limit with constants analogous to an and bn
involving

√
log log n and log log log n.

Step 2 is a consequence of Step 1 and (4).
In Step 3 we would hope to use the closeness of Hn to the uniform distribution

to convert the dHn(u) integrals to du integrals. Then we write

cd

n

∫ 1

0

{Fc(u)−Gd(u)} 2 du

as a sum of three terms

T1 =
d

n

∫ 1

0

c {Fc(u)− u}2 du,

T2 =
c

n

∫ 1

0

d {Gd(u)− u}2 du,
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and

T3 = −2
√
cd

n

∫ 1

0

√
c {Fc(u)− u} ·

√
d {Gd(u)− u} du.

The integrals in T1 and T2 are both one sample Cramér-von Mises statistics so they
are on the order 1. For any sequence c = cn such that cn/n → 0 the coefficient
in front of T2 is o(1). So T2 is negligible relative to T1. The Cauchy-Schwarz
inequality then shows T3 is negligible relative to T2. There is a parallel argument
when cn/m→ 1.

Step 4 is not conjecture; its proof is straightforward from the assumptions of
the Conjecture. Steps 5 and 6 are exactly parallel to the arguments in Lockhart
(1991).
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