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Abstract: Short-term wave forecasts are essential for the execution of marine operations. In this
paper, an efficient and reliable physics-based machine learning (PBML) model is proposed to realize
the multi-step-ahead forecasting of wave conditions (e.g., significant wave height Hs and peak wave
period Tp). In the model, the primary variables in physics-based wave models (i.e., the wind forcing
and initial wave boundary condition) are considered as inputs. Meanwhile, a machine learning
algorithm (artificial neural network, ANN) is adopted to build an implicit relation between inputs and
forecasted outputs of wave conditions. The computational cost of this data-driven model is obviously
much lower than that of the differential-equation based physical model. A ten-year (from 2001 to
2010) dataset of every three hours at the North Sea center was used to assess the model performance
in a small domain. The result reveals high reliability for one-day-ahead H; forecasts, while that of T),
is slightly lower due to the weaker implicit relationships between the data. Overall, the PBML model
can be conceived as an efficient tool for the multi-step-ahead forecasting of wave conditions, and thus
has great potential for furthering assist decision-making during the execution of marine operations.

Keywords: wave forecasting; machine learning modeling; marine operations; uncertainty quantification

1. Introduction

Marine operations such as sea transportation, offshore crane operation and mooring
installation are complex operations which are highly weather sensitive. When planning these
operations, the response-based operational limits of the systems and equipment are determined
and used to estimate the weather window in combination with the long-term statistics of the
environmental conditions. However, during the execution phase of the operation, it is important
to make short-term forecasts of wave conditions that are characterized by significant wave height
(Hs), peak wave period (Tp) and so on. The forecasted wave conditions are compared with the
operational sea state limits to decide whether the operation should start or not as long, as the
operations last no longer than 72 h [1]. In view of the specific execution position and typical
execution duration of marine operations, reliable wave forecasting in a small area from a few
hours to several days ahead is necessary.

Currently, wave forecasting methods are generally categorized into three main types: physics-based
numerical methods, statistical methods and machine learning methods. Physics-based numerical
methods are theory-driven and mimic the behavior of wave evolution based on physical processes such
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as wave generation, propagation and dissipation. To date, the most mature physics-based wave model
is the third-generation wave model [2]. It applies the wave energy balance equation with various
source terms as inputs and uses numerical techniques to solve it. Among source terms, wind forcing is
the primary energy source, and therefore, the wind speed and direction of the past, the present and the
forecast time horizon are normally required as inputs. Based on the third-generation wave model,
different hindcast and forecast products [3-7] have been provided by various institutes, such as the
European Centre for Medium-Range Weather Forecasts (ECMWF), the Norwegian Meteorological
Institute (MET-Norway) and the National Center for Environmental Prediction (NCEP). However,
the application of numerical wave models requires a good understanding of wave theory, insights into
the potential implications of coefficient tunings [8], the proper selection of scale and resolution, etc.
More importantly, the models usually require massive amounts of computing time and archiving
resources, and this computational expense is often a major limitation of physics-based numerical
methods for ordinary use.

In contrast, the other two typical methods (statistical method and machine learning method) for
forecasting are data-driven. Instead of solving the energy balance equation by numerical techniques,
these approaches can provide forecasts by the relation directly found from the historical time series.
The former one is the conventional method used in time series wave forecasting by expressing
the future wave as an explicit function of its previous data. It does not require the input of wind
conditions. There are several commonly used models for this method, such as the autoregressive
model [9,10], the autoregressive moving average (ARMA) [10,11] and the autoregressive integrated
moving average (ARIMA) [12-14]. These models generally show limitations in modeling nonlinear
patterns [15]. The latter (machine learning method) describes a more comprehensive input-output
relationship through a large amount of historical data of both input and output. This relationship can
be a relation between data at different time steps in a single time series or a relation between
different variables with an implicit physical background. The most popular model for wave
forecasting is the artificial neural network (ANN) [16-20]. In addition to ANN, other advanced
neural networks, such as the recurrent neural network (RNN) [21,22], the convolution neural network
(CNN) [23] and the adaptive-network-based fuzzy inference system (ANFIS) [24-26], have also been
successfully applied in wave forecasting. However, due to the fluctuation and randomness of wave
conditions, most of the above studies have mainly focused on one-step-ahead forecasting of wave
conditions, while multi-step-ahead forecasting has rarely been studied. Wu et al. [27] proposed a
decomposition-ANFIS model to forecast 24-step-ahead wind and wave conditions with relatively
good performance. Similar studies [16,28-30] were also conducted with relatively fewer forecast steps.
The results indicate that the forecast performances of the adopted machine learning models decreased
significantly with the increasing forecast time horizon. This implies that although highly capable
of training on data, the complexity and randomness of the wave series still challenge the usage of
machine learning algorithms.

Under these circumstances, a physics-based machine learning (PBML) model is proposed in this
study combining the physics-based wave model with machine learning technique for wave forecasting.
Specifically, the inputs and outputs of the PBML model are first determined by the primary variables in
the physics-based wave model, and then a machine learning algorithm is adopted to train and perform
multi-step-ahead forecast. In this paper, we use ten-year three-hourly wind and wave data at the North
Sea center (from CERA-20C) [31] to assess the forecast performance of the proposed model. For the
requirements of marine operations, for example, the installation of offshore wind turbines, this study
takes one-day-ahead wave forecasts in a small spatial domain as an example.

The remainder of this paper is organized as follows: The methodology is introduced in Section 2.
Sections 2.1 and 2.2 describe physics-based wave models and machine learning algorithms, respectively.
They provide a reference for the PBML model for wave forecasting, which is presented in Section 2.3.
In addition, the error metrics utilized to evaluate forecast performance are introduced in Section 2.4.
To assess the proposed model, the multi-step-ahead forecasting of wave conditions at the North Sea
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center is conducted in Section 3. Section 3.1 presents a brief description of the case study area and
dataset. For the dataset, the model architecture is determined in detail in Section 3.2. The forecasting
results of the total wave conditions and two wave components (i.e., wind-generated waves and swells)
are investigated with a comparison to the actual hindcast data and discussed in Sections 3.3 and 3.4,
respectively. Finally, the main conclusions are summarized in Section 4.

2. Methodology

2.1. Physics-Based Wave Models

In recent decades, many physics-based wave models have been adopted in the wave forecasting
with the improvement of computational capacity, such as WAM (wave modeling) [2], WaveWatch
III [32], SWAN (simulating waves nearshore) [33] and STWAVE (steady state wave model) [34].
Among them, WAM and WaveWatch III are ocean scale models which are predominantly used for
predictions in deep water, while SWAN and STWAVE are coastal or shelf-sea models which include the
wave modifications in the nearshore area and are more oriented towards predictions in shallow water [8].
Typical forecasted wave parameters are short-term (for example, one-hour or three-hour) wave spectra,
from which significant wave height, and the spectral wave period for both wind-generated waves and
swells can be obtained. They describe the wave evolution according to the energy balance equation
(see Equation (1)) with a range of source terms.

DE
=S M
where % is a derivative operator and ¢ is the time. E is the wave energy density spectrum. S is the
source function describing different physical processes.

Components in the source item S are the key factor for different physics-based wave models.
The widely used and reliable SWAN model will be briefly introduced here to show the modeling
process and primary variables of numerical wave models. SWAN is a third-generation spectral wave
prediction model developed by the Delft University of Technology in 1999. Its source term includes
wave generation; dissipation and quadruplet wave-wave interactions; and dissipation due to bottom
friction, triad wave-wave interactions and depth-induced breaking. In this model, the action balance
equation is utilized instead of the energy balance equation since the action density N (defined as
N = E/o) is conserved during wave propagation [35]. The action balance equation in the Cartesian
coordinate system can be expressed as:

oN N 0N deyN 9N N dcoN St )
ot ox ady do a9 o

where N is an abbreviation for N(x,y,t;0,0) with respect to frequency ¢ and propagation directions 6
in space x, y and time ¢. ¢y and ¢y are the propagation velocities of wave energy in spatial x and y
space, respectively. ¢, and ¢y are the propagation velocities in spectral o and 0 space, respectively.
Stot is the source term that represents different physical processes, including both deep and shallow
water processes.

The first item on the left-hand side represents kinematic change in time, while the second and third
items denote spatial change. The last two terms depict the refraction effects and shifting of the relative
frequency, respectively. The source item, on the right-hand side, consists of six components describing
the generation, dissipation or redistribution of wave energy, which are expressed in Equation (3).

Stot = Sin + SnIB + Snl4 + Sds,w + Sds,b + Sds,br (3)

where:

e S;, denotes wave growth by the wind;
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e 5,3 denotes the nonlinear transfer of wave energy through triad wave-wave interactions;

e S, denotes the nonlinear transfer of wave energy through quadruplet wave-wave interactions;
e  S4s denotes wave dissipation due to whitecapping;

e  S4p denotes wave dissipation due to bottom friction;

e  S;s 1 denotes wave dissipation due to depth-induced wave breaking.

Regarding wave forecasting based on the SWAN model, the mean wind speed and direction
at 10 m above mean sea level are the key inputs that drive the model runs. Initial and boundary
conditions of the wave field are also needed in the spectrum form, such as JONSWAP spectra
and Pierson-Moskowitz (PM) spectra. The finite difference method is employed together with the
Gauss—Seidel technique [36] for spectral wave computation. After calculation, the wave statistics,
such as significant wave height H;, peak wave period T, and mean wave period Ty, can be derived by
integrating the wave spectrum. In addition, from the split spectrum (i.e., the wind-generated and swell
ones), wind and swell contributions can be easily revealed. It should be mentioned that the widely
used peak period T} is defined from the energetic concept and is only valid in total waves. For the
wind-generated wave or swell, only the mean period T, is available.

As shown above, a physics-based wave model (such as SWAN) can correctly describe the
phenomena of the wave formation and propagation by the key inputs and governing equations.
However, a physics-based wave model normally requires large computational and storage resources.
On one hand, the space-time evolution of the wave energy needs to be solved based on a complex
mathematical system, including differential and integral equations, parameterization schemes,
highly nonlinear empirical expressions, etc. On the other hand, modeling usually covers a large region
or global domain, which increases the storage burden of input and output information.

2.2. Machine Learning Algorithms

Recently, machine learning algorithms have drawn more attention in forecast problems as
alternative methods based only on time series due to their high cost efficiency. Regarding wave
forecasting, a popular type of machine learning method is based on the use of historical wave data only,
not relying on the input of wind conditions. Such data can be based on measurements or simulations.
It can learn the underlying behavior of a system from a large amount of historical data without having
to derive the explicit relationships between them. That is, it can provide results without a governing
equation by relying solely on the time history of wave data.

In this study, an artificial neural network (ANN), one of the most popular machine learning
algorithms, is utilized due to its ability to capture the nonlinear relations between inputs (past and
current wave data) and outputs (forecasted wave data) and to produce multiple outputs simultaneously.
It mimics the information processing mechanisms and processes of neurons in the human brain [37].
An ANN consists of three types of layers: the input layer, hidden layers and output layer. A simple
ANN with one hidden layer is shown in Figure 1.
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Feed forward process

' o

Input layer Hidden layer Output layer

Back propagation process

Figure 1. The structure of a typical ANN.

The first and last layers are called the input and output layers, respectively. They contain n and p
neurons representing the input and output variables, respectively. The middle layer connecting the
input and output layers is the hidden layer, which contains m neurons. The neuron in each layer
receives input information (from the neurons in the previous layer based on the corresponding weight,
bias parameter and activation function) and then further propagates it forward to the neurons in the
following layer. To illustrate this process more clearly, Equations (4) and (5) show the calculations of
the hidden neuron and output neuron, respectively.

n

hj = fhj[zwijxi+bj], j=1,...,m 4)
i—1

Ye = gyk[z ujch; +Ck], k=1,...,p (5)
i=1

where f and g are activation functions of the hidden and output layers, respectively. w;; and uj are
weight values from input neuron x; to hidden neuron /; and from hidden neuron %; to output neuron
Yk, respectively. bj and ¢ are the biases of the corresponding neurons /; and y.

In this study, the back propagation neural network (BPNN) [38] is adopted, which is a model that
fine-tunes the weights of a neural network based on the error rate obtained in the previous iteration.
In the training phase, the initial weight and bias parameters are selected arbitrarily. Then, they are
adjusted iteratively to reduce the error rate by an optimization algorithm (e.g., the gradient descent
method). When the overall error is within an acceptable range, the training process stops, and the
optimal neural network is determined. In the subsequent testing phase, the forecasts can be obtained
by new inputs and this optimal neural network.

Generally, machine learning is an efficient tool that can handle data flexibly. However, the lack
of a clear physical background presents a challenge to the performance and reliability of machine
learning algorithms for wave forecast using only the historical data of wave conditions.

2.3. The Physics-Based Machine Learning Model

In view of the advantages of physics-based wave models and machine learning algorithms,
a hybrid model, termed the physics-based machine learning (PBML) model, is proposed. In the model,
physical knowledge from the physics-based wave model is utilized as a guide for designing inputs and
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outputs, and the machine learning algorithm is adopted to learn the implicit relationships between
them. Afterwards, the trained model can provide wave forecasts directly with new inputs.

The physics-based wave model reveals that the corresponding wind field is the main energy
source of the wave field. Thus, wind properties such as the mean speed and direction are introduced
as the input variables in the PBML model to forecast wave conditions. In addition, wave boundary
conditions at the initial time step are added in the model as well. The wave-wave interaction and
wave dissipation effects are implicit in the learned relationship. As a result, the physics-based machine
learning (PBML) model is established as follows.

2.3.1. Input and Output Variables

For a typical forecast domain, as shown in the blue part in Figure 2, significant wave height H
and peak period T}, at the initial time step at the highlighted grid points (by the red lines) are the initial
wave boundary conditions. Wind speeds Uy, and directions D,, at all concerned grid points are the
wind forcing inputs. Similar to the physics-based wave model, the wind forcing should cover the past,
the current and the whole forecast time horizon, which can be obtained from the wind forecast models
such as numerical weather prediction (NWP) models. The future (forecasted) wave conditions (Hs and
Tp) at all grid points are the outputs.

Boundary line
Grid point

Latitude

© 0 06 06 0 060 00 000000600000 000000000 0000

Longitude

Figure 2. Illustration of the forecast domain.

2.3.2. Calculation Algorithm

Differently from the action balance equation employed in the physics-based wave model, the PBML
model provides an alternative method, directly establishing the input-output relationship through
machine learning algorithms. In this process, the computational cost can be significantly decreased
due to no need to solve partial differential equations by an iteration process. Several machine learning
algorithms are available, such as ANN, ANFIS, RNN, and SVM.

2.3.3. Creating the Forecast Model

After deciding the input and output variables and the calculation algorithm, the forecast model
can be established. To illustrate this, a forecast model of H; is shown as an example in Equation (6),
and its architecture is shown in Figure 3.

[Ha(t+N),Hsa(t+N),...,Heu(t + N)]
= th(Hsl (t)/Tpl (t)/' : '/Hsm(t>/Tpm(t)/ U (t + N)/Dul(t +N)/- sy
Upn (t +N), Dy (t +N), ..., U (t+ N=TU +1), D,y (t + N-TU 4 1),...,
Uwn(t+N=TU+1),Dyu(t + N -=TU + 1))

(6)
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where t is the current time and N is the forecast step. n and m are the number of grid points in the
forecast domain and along the boundary lines, respectively. TU is the time range of wind speeds and
directions used as wind forcing. The wind input will then include the past and the current values,
and the values of the forecast time horizon.

Hidden layer(s) Output
) )
— Hs(t -
Initial wave © voungary
condition
s TP(‘) boundary

~ ITW(H'.\v) domain
Du(t+N) domain

::__::\ <> Hs(t+N) gomain

l"w(t"'N' 1) domain

Wind forcing <«
Du(t+N-1) domain

Uw(t+tN-TU+1) domain

—Du(t+N-TU+1) gomain

CIXIITI)

N N—

Figure 3. Illustration of the PBML (Physics-Based Machine Learning) model architecture.

As displayed in Equation (6) and Figure 3, the outputs of the model are N-step-ahead H; in the
forecast domain. The input variables include the initial wave boundary conditions (H; and T) at time
t and the wind forcing (U and D,;) in the forecast domain from (t + N — TU + 1) to (¢ + N). In addition,
frn indicates the forecast system at N-step-ahead, which depends on the selected machine learning
algorithm. In this study, ANN is used.

2.3.4. Training the Established Model

Afterwards, a training process is performed using the training dataset to learn the relationship
between inputs and outputs shown in Equation (6). The training process varies according to the
selected machine learning algorithm. For instance, for ANN, the weights and bias in the model are
updated in each iteration based on the optimization algorithm (e.g., gradient descent algorithm).
This process repeats until the stopping criteria are reached.

2.3.5. Evaluating the Performance of the Trained Model

Once training is complete, the model is considered satisfactory and able to make forecasts. By using
the inputs in the testing data, the forecasts can be generated from the trained model. Then, the forecast
accuracy can be evaluated in terms of several error metrics by comparing forecasted and actual outputs.
The metrics used for evaluating the forecast performance are described in detail in Section 2.4.

2.4. Forecast Performance Evaluation

After developing a forecast model, it is important to evaluate the model performance. In this
study, conventional error measures, such as MAE (mean absolute error), RMSE (root mean square
error), bias, R? (correlation coefficient), SI (scatter index), MAPE (mean absolute percentage error) and
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a new proposed forecast error factor are used to quantify the forecasting accuracy. The expressions of
the error measures are shown in Equations (7)-(12).

MAE = @)

RMSE ®)

s = 1 g

2 _ i 1(fi ~f)ai-a) (10)
VI (-7 -

SI = | — 1[(fzﬂf)1; - —”)]2 "

MAPE = %Z aia;iﬁ'xwo (12)

where 7 is the number of data points in the testing dataset. 4; and f; are ith actual and forecasted data,
respectively. 7 and f are the mean values of the actual and forecasted data, respectively.

A new proposed error factor e\ shown in Equation (13), which is defined by the difference between
the forecasted and the actual value dividing the actual value, can reveal the forecast uncertainty at each
time step. More information on evaluating multi-step-ahead forecasts can be found in reference [27].

f(H) —a(®)
a(t)

where f(t) and a(t) are the forecasted and actual values, respectively, with a forecast time horizon of t.

em(t) = (13)

3. Data, Results and Discussion

3.1. The Case Study Area and Datasets

The North Sea is considered an area with great potential for offshore wind energy development [39].
In the present study, the North Sea center is the main focus, as highlighted in Figure 4. In this area,
various marine operations have been studied and analyzed, such as the installation of offshore wind
turbine monopiles and transition pieces [40], and single turbine blade [41-44]. Determining suitable
weather windows based on the wave forecasts is a major challenge for decision-making during the
execution of these operations.



J. Mar. Sci. Eng. 2020, 8, 992 9 of 24

Bergens &

Research site

N

North Sea
Edinburgh

ow

Denmark &

United
Kingdom

an

Figure 4. The case study area and research site (Source: Google Maps).

In this study, the detailed site-specific wave and wind hindcast data extracted from the ECWMF
CERA-20C datasets [31,45] were used. Several verification studies [31,46—48] have indicated that the
generated data from ECMWE are consistent with the measurement data and suitable for climate studies.
However, the same method can be applied when measurement data of both wind input and wave
output are available. According to the requirements of the PBML model (described in Section 2.3),
the wind direction D,, and wind speed U, at 10m height, significant wave height Hs; and peak wave
period T), are necessary.

A ten-year dataset (from 2001 to 2010) of waves and wind were extracted from CERA-20C with an
interval of 3 hours and a spatial resolution of 0.125° (about 13.7 km) in both longitude and latitude.
The first nine years of data (from 2001 to 2009) were considered as the training data for establishing and
validating the model, while the last year (2010) of data were considered the testing data for evaluating
the forecast performance of the model. Regarding the typical duration of marine operations, the aim of
this study was to perform one-day-ahead wave forecasts, that is, eight-step-ahead forecasts for the
selected data. Given that marine operations are normally carried out at a selected position, in this
study, the focus is on a small area. As shown in Figure 5, the forecast domain contains nine grid points
numbered from 1 to 9.

.
1 2. Q-4
‘Eu I z J
" | g
(ﬂ" ‘:,1 yd “
— b B 0 -
H —
<
. Q o)
/ o) 7
v

Figure 5. Illustration of a small forecast domain.
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3.2. Model Architecture Determination

It is important to determine the model architecture (including the ANN structure and the time
range of wind forcing) based on the specific dataset samples before using it. Random selection may
result in poor forecast performance. Therefore, the objective of this section is to determine the optimal
architecture for the PBML model. For a typical ANN, three key parameters, namely, the number
of hidden layers, the number of neurons in each layer and the type of activation function, need to
be carefully selected to guarantee a good performance. Regarding the optimal number of hidden
layers and neurons, there are no fixed selection formulas, but some rules of thumb are available to
determine their scope [49,50]. In the sensitivity study, five different combinations of hidden layers and
neurons are considered. In addition, three common activation functions are used for each combination,
one of which is the linear function purelin (MATLAB®), and the other two are the nonlinear functions
log-sigmoid (logsig, MATLAB®) and hyperbolic tangent sigmoid (tansig, MATLAB®). They are
displayed in Figure 6. For point 5 shown in Figure 5, the one-step-ahead forecast results of H; are
summarized in Table 1, where error metrics RMSE and R? are used to measure the model’s performance.
It should be noted that for the sake of simplicity, all results were obtained through the PBML model
with TU =1 (see Equation (6)).

Y Al Y 1 y=logsig(x) Y 1 y=tansig(x)
_________________________________________ 7,__ [ [
y=purelin(x)
0 =x 0 x= 0 x=
e T A RRREREEEEE
@) (b) ()

Figure 6. Activation functions used in the sensitivity study: (a) purelin; (b) logsig; (c) tansig.

Table 1. Performance of the PBML model with different ANN architectures (point 5).

ANN Architecture Performance
Cases Number of Number of Activation Training Dataset Testing Dataset

Hidden Layers Neurons Function RMSE R? RMSE R?
1 purelin 0.0303 0.9966 0.1426 0.9934
2 1 50 logsig 0.6496 0 2.7844 0.005
3 tansig 0.0110 0.9995 0.2115 0.9770
4 purelin 0.0302 0.9966 0.1429 0.9933
5 2 30 logsig 0.6512 0.6758 2.7851 0
6 tansig 0.0093 0.9995 0.0972 0.9976
7 purelin 0.0303 0.9966 0.1426 0.9933
8 3 20 logsig 0.6496 0.7080 2.7838 0.0141
9 tansig 0.0092 0.9996 0.0940 0.9978
10 purelin 0.0303 0.9965 0.1480 0.9925
11 4 15 logsig 0.6512 0 2.7851 0
12 tansig 0.0103 0.9995 0.1190 0.9958
13 purelin 0.0303 0.9966 0.1427 0.9933
14 5 10 logsig 0.6512 0.6005 2.7851 0
15 tansig 0.0120 0.9993 0.1134 0.9955
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It is clearly seen in Table 1 that the tansig activation function is better than the others, as the RMSE
is lower and R? is higher for all cases. However, the numbers of hidden layers and neurons have little
influence on the forecast performance in all cases with the tansig activation function. By comparison,
case 9 obtained the best result. Therefore, a neural network with three hidden layers, twenty neurons
in each layer and the tansig type activation function was adopted for the PBML model in this study.

In addition to the ANN structure discussed above, the time range of the input wind field also
deserves consideration. As shown in Equation (6), when performing the N-step-ahead forecasting,
the wind forcing from (t + N — TU + 1) to (f + N) can be used as input. To investigate the impact of
wind forcing at different time steps on H; forecasts, the ANN was developed in terms of the optimal
structure obtained above, and the TU value was selected from one to eight. When TU is equal to
1, only the wind field at the same time as the forecasted H; is considered. With the increase in TU,
an increasing number of past wind fields are taken into account for wave forecasting. The results of
the sensitivity study of the time range (TU) of input wind forcing are shown in the Figure 7.

0.1 04 T
= - ;
" i, Mk .]I]]] I‘“ = ;
S 0 . S 02 A
-0.1 . - . . 0
3 6 9 12 15 18 21 24 3 6 9 12 15 18 21 24
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£ i &
= 0.2 : 1 202
= 2
0 0
3 6 9 12 15 18 21 24 3 6 9 12 15 18 2
Lead time (hour) Lead time (hour)
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o o 1, oty W %05
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-0.05 . . . 0
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@ 0.1 1 g10
<
0 = 0
3 6 9 12 15 18 21 24 3 6 9 12 15 18
Lead time (hour) Lead time (hour)

Figure 7. Forecast errors of the PBML model with different durations of wind forcing (point 5).

As seen in Figure 7, in general, the forecast performance will increase with increasing TU values,
indicating that the wind variation should be taken into account in wave forecasting by the PBML
model. However, the level of improvement in model performance gradually decreases as the TU
increases from 2. Meanwhile, increasing the TU value will increase the number of inputs, which makes
the forecast model more complicated and requires more computational time. Therefore, TU = 2 was
chosen in the PBML model in this study. That is, the dynamic characteristics of the winds are provided
in the model by applying wind speeds and directions at two consecutive time steps.

In addition, it is interesting to see the importance of the future wind forcing. Figure 8 shows
the forecast performance of the model using wind forcing up to (t + N — TU*) when forecasting
wave conditions at (f + N), where TU* ranges from 0 to 7. From the sensitivity study, it is clear that
the forecast performance will gradually decrease as TU* increases. Therefore, in order to accurately
forecast the wave conditions at (f + N), the wind conditions at (t + N) should be included.
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Figure 8. Forecast errors of the PBML model using wind forcing up to (f + N — TU*) (point 5).

3.3. Forecast of Combined Wind-Generated and Swell Wave Conditions

3.3.1. Significant Wave Height

(1) Small domain

In this subsection, a PBML model is developed for H; in a small domain given in Figure 5.
The model architecture is set up based on the analysis in Section 3.2. Consequently, the forecast model
of H; can be expressed as follows:

[Hsl(t+N)rH52(t+N)/- --/Hs9(t+N)]
= th(Hsl (t), Tpl (t)/' . '/Hs9(t)r Tp9(t)/ le(t +N)rDul (t + N),. sy
Uyo(t+N),Dyo(t + N), Uy (t+N=1),Dy1 (t+ N =1),...,
Uw(t+N-1),Dy(t+N-1)),N=1,...,8

(14)

where Hy1(t + N), Hop(t + N), ..., Hg9(t + N) are the outputs, which are N-step-ahead forecasts of H; for
points 1 to 9. fn is the ANN model at the N-step-ahead. The inputs of f,y include the initial wave
boundary wave conditions (i.e., Hs(t) and Ty(t) at points 1, 2, 3,4, 6, 7, 8 and 9) and the wind forcing
at two consecutive time steps in the forecast domain (i.e., U, and D, for all nine points at N- and
N-1-step-ahead). Thus, it can be seen that in this case, the model for each forecast step has a total of
52 inputs and 9 outputs.

The forecast results during the testing period (one year) in the grid, point 5 (in Figure 5), are plotted
in Figure 9, in which the actual and forecasted time series are represented by black and red lines,
respectively. In addition, the forecast errors at each forecast lead time are summarized in Table 2.
To reveal the forecast performance more clearly, two short-time windows are also shown in Figure 9. Itis
visible from the windows that each forecast contains the forecasting of eight points, from one-step-ahead
to eight-step-ahead forecasts. The green and blue points represent one-step-ahead and eight-step-ahead
forecast values, respectively, which mean the beginning and end of one forecast. The next forecast
starts at the time when the previous forecast horizon ends.



J. Mar. Sci. Eng. 2020, 8,992 13 of 24

—*— Actual data ; H —*— Actual data
& Forecasted data
@ |-step-ahead forecast i 1 ’ f ' M @ l-step-a ‘ki‘d forecast
® 8-step-ahead forecast T 3 H 3F ®  8-step-ahead forecast

—— Actual data
—— Forecasted data

1000 2 2500
Time interval (3 hour)

Figure 9. Forecast results of H; based on the PBML model.

Table 2. Forecast errors of H; at each lead time based on the PBML model.

Error Lead Time (h)

Measures 3 6 9 12 15 18 21 24
m, 0.0050 —0.0039 00054 00176 00171 00158  0.0183  0.0239
std, 0.0676  0.0862  0.1008 01088 01290 0.1576 0.1618  0.1741

MAE (m) 00617 00960 01140 01303 01525 01693 0.1827  0.1961

RMSE (m) 00927 01375 01573 01828 02213 02380 02587 02727

bias (m) 0.0009 —0.0071 —0.0043 00130  0.0085  0.0047 —0.0009 —0.0008
R2 09975 09903 09866 09820 09742 09711 09646  0.9611
SI 0.0447 00665 00767 00887 01072 01155 0.1256  0.1318

MAPE (%) 4.1138 5.9599 7.2648 8.0594 9.4332  10.8368 11.5503 12.6979

Overall, a good agreement between the forecasted and actual data is observed in Figure 9,
which reveals the reliability of the PBML model. In addition, there is no significant difference in
forecast performance between the two windows. This implies that the proposed PBML model is
suitable for any time of year. In Table 2, one can see that the forecast accuracy decreases with the lead
time, which is reflected in the decrease in R? and the increase in other error metrics. Nevertheless,
all 8-step-ahead forecasts can be considered satisfactory because the corresponding errors are quite
small. For example, the RMSE and R? for all steps are less than 0.3 m and higher than 96%, respectively.
Furthermore, regarding the computational time, the PBML model can be quickly executed to train and
make forecasts extremely fast. The training process of the PBML model on a common server typically
takes few minutes.

The above results only display the forecast at the grid point 5 in the forecast domain. Figure 10
further summarizes the error measures at all nine grid points in the forecast domain done by different
colors. Little difference in all error measures can be found regardless of the grid points, which indicates
that the PBML model is suitable and reliable in a small forecast domain.
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Figure 10. Error measures of Hs for all 9 grid points in the forecast domain. (a) Error measures
(MAE, RMSE, bias). (b) Error measures (R?, SI, MAPE).

(2) Single position

As shown above, the proposed PBML model exhibits good performance for H; forecasting in a
small domain. In this subsection, the forecast performance of the PBML model for a single point is
investigated. This situation is very important to explore whether the PBML model is applicable to the
measurement data, since measurement data may only be available at limited positions. In practice,
we cannot expect detailed measured data for a large region (which are normally available in reanalysis
or hindcasting).

Since the corresponding input information is greatly reduced, the forecast model is simplified to
Equation (15). In this case, the inputs are the initial wave conditions and wind forcing at the position
of interest (point 5 in Figure 5 is selected as an example here), and the outputs are the future wave
conditions at the same position. That is, the model is simplified to have six inputs and one output.
The results of forecasted time series and forecast errors are illustrated in Figures 11 and 12, respectively.

Hs5(t + N) = thN(Hs5(t)r Tps(t), uwS(t + N)/ Du5(t + N)/ uwS(t +N - 1)1Du5(t +N - 1))/

15
N=1,...,8 (15)
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Figure 11. Forecast results of Hs based on the PBML model with one-point domain.
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Figure 12. Forecast errors of Hs based on the PBML model with one-point domain.

Compared with the results in Figure 9, the forecast accuracy is reduced to some extent for this
simple model due to the significant reduction of the input information. Nevertheless, this model is still
acceptable since it exhibits good forecast performance. By observing the forecast errors in Figure 12,
one can find that the R? and RMSE of all 8-step-ahead forecasts are higher than 94% and lower than
0.33 m, respectively. The results imply that the proposed PBML model can forecast Hs with relatively
high accuracy based on the measured data of a single position.

3.3.2. Peak Wave Period

In addition to Hs, the forecast performance of the PBML model for T, is investigated in this section.
Similarly to Equation (14), the corresponding model of T}, is expressed in Equation (16), in which the
initial wave boundary conditions and spatial wind forcing at two consecutive time steps are adopted
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as the inputs. The setting of the ANN architecture is consistent with that in Section 3.1. The forecast
results are shown in Figure 13, and the errors are summarized with respect to lead times in Table 3.

[T (t+N), Tpa(t +N), ..., Tyo(t +N)|
= ftN(Hsl (t>/Tpl(t)/‘ . '1Hs9(t)’Tp9(t)/ uwl(t +I\])/Dul(t +N)r- cey
Uwo(t+ N),Dyo(t+N), Uy (t+N-1),D,n(t+ N-=1),...,
Uy(t+N=-1),Dy(t+N-1)), N=1,...,8

T
—— Actual data —*— Actual data
—&— Forecasted data

@ |-step-ahead forecast
o ¢ _® 8-step-ahead forecast||

— Actual data
~— Forecasted data

1000 \ } 1500
Time interval (3 hour)

Figure 13. Forecast results of Tj based on the PBML model.

Table 3. Forecast errors of T, based on the PBML model.

Error Lead Time (h)
Measures 3 6 9 12 15 18 21 2
mg 0.0088  —0.0004  0.0231 0.0081 0.0335 0.0397 0.0321 0.0514
stde 0.1302 0.1347 0.1412 0.1769 0.1737 0.1868 0.1774 0.1891

MAE (s) 0.3617 0.5276 0.6151 0.7172 0.7771 0.8859 0.9136 0.9605
RMSE (s) 0.7290 0.8633 0.9498 1.1201 1.1186 1.2355 1.2351 1.3026

bias (s) -0.0038 —0.1092  0.0463 -0.1207  0.0669 0.0575 0.0157 0.1195
R? 0.9196 0.8855 0.8585 0.8043 0.7941 0.7530 0.7405 0.7125
SI 0.0964 0.1133 0.1259 0.1476 0.1496 0.1655 0.1648 0.1724

MAPE (%) 5.4973 7.6696 89811 10.3773 11.6007 13.3601 13.2666 14.1797

In general, PBML model can obtain acceptable T), forecasts, as the R? and RMSE at all lead times
are higher than 71% and lower than 1.30 s respectively. However, poor performance can normally
be observed at the points on steep gradients (e.g., data near 130 and 1200 in Figure 13), which is less
reliable than the forecast of Hs.

Significant fluctuation in T, might be the key reason for this phenomenon. Differently from H;,
T, is a wave period associated with the highest energetic waves in the total wave spectrum, and it can
be predominated by either wind-generated waves or swells. This uncertainty increases the instability
of the series of T}, and further challenges the forecast performance.

To further explore the factors that affect the performance, in Section 3.4, the total waves are
separated into wind-generated waves and swells, and the PBML model is utilized to forecast wave
conditions of these two components independently.
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3.4. Forecast of Separate Wind-Generated Wave Conditions and Swell Conditions

In general, a total wave comprises two components, i.e., the wind-generated wave and the swell.
Approximately, the spectral component is considered to be subject to forcing by the wind when the
following condition is met [51]:

1.2 % 28(u./c) cos(6 —¢) > 1 (17)

where u* is the friction velocity. ¢ = c¢(o, h) is the wave celerity, as derived from the linear theory
of waves, in which ¢ is wave frequency and & is water depth. 6 and ¢ are the wave and wind
directions, respectively.

Based on Equation (17), the wind-generated wave and swell can be separated, and the
corresponding spectra and wave statistics can be obtained.

In this part, the data of wind-generated waves and swells were also extracted from CERA-20C with
the same forecast domain, resolution and duration as those of the total waves. The extracted variables
include the significant heights of wind-generated waves Hy,, and swells H; the corresponding mean
periods Ty and Tys; and the mean wind speed Uy, and direction D,,. The forecast performances
of mean wave period (T and Tys) and significant wave height (Hs, and Hgs) are discussed in the
following subsections, respectively.

3.4.1. Mean Wave Period

The PBML models of T,y and T'y;s are similar to Equation (14), except for the initial wave condition.
In addition, the identical procedure was adopted, which utilized the data from the first nine-year and
the last year to train and test the model, respectively. The corresponding results of point 5 (in Figure 5)
are shown in Figures 14 and 15 as an example, given the similar forecast performance for all nine
points revealed in Section 3.3.1. Meanwhile, Tables 4 and 5 give the forecast errors of Ty, and Tys with
respect to the lead time, respectively.

Tmw (s)

ol

500 1000 1500 2000
Time interval (3 hour)

T — |
\{ R 1N L i g J
| W\&ﬁw WVWM%Y%W v\ : i

Figure 14. Forecast results of Ty based on the PBML model.
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Figure 15. Forecast results of T;;s based on the PBML model.

Table 4. Forecast errors of Ty, based on the PBML model.

1000
Time interval (3 hour)

2500

Error Lead Time (h)

Measures 3 6 9 12 15 18 21 2
me 0.0073 0.0027 0.0087 0.0060 0.0107 0.0051 0.0057 0.0032
std, 0.0486 0.0601 0.0653 0.0680 0.0685 0.0646 0.0691 0.0716

MAE (s) 0.1061 0.1671 0.1803 0.1938 0.1953 0.1994 0.2076 0.2203
RMSE (s) 0.1572 0.2354 0.2410 0.2551 0.2581 0.2746 0.2791 0.3054
bias (s) 0.0210  -0.0009 0.0168 0.0061 0.0221  -0.0058  0.0037 0.0003
R? 0.9944 0.9873 0.9864 0.9851 0.9849 0.9825 0.9824 0.9793

SI 0.0342 0.0517 0.0530 0.0562 0.0567 0.0600 0.0611 0.0669
MAPE (%) 2.8555 4.2903 4.6335 4.9302 4.9289 47782 5.1044 5.2865

Table 5. Forecast errors of T,,;s based on the PBML model.
Error Lead Time (h)

Measures 3 6 9 12 15 18 21 2
m, -0.0013 -0.0046 —0.0017  0.0098 0.0030 0.0171 0.0126 0.0082
std, 0.0386 0.0515 0.0625 0.0779 0.0766 0.0822 0.0901 0.0960

MAE (s) 0.1471 0.2541 0.3130 0.4186 0.4011 0.4523 0.4969 0.5340
RMSE (s) 0.3164 0.4106 0.4707 0.5595 0.5693 0.6024 0.6648 0.7136
bias (s) —-0.0153 -0.0504 -0.0386 0.0139  —-0.0095 0.0695 0.0273  —0.0070
R? 0.9713 0.9528 0.9373 0.9103 0.9033 0.8870 0.8621 0.8382

SI 0.0438 0.0565 0.0650 0.0777 0.0792 0.0833 0.0926 0.0995
MAPE (%) 2.0241 3.4833 4.3740 5.9968 5.6001 6.4784 7.0630 7.5135

Figure 14 shows good agreement between the forecasted and actual data of wind-generated waves.
The small mean (0.003) and standard deviation (0.072) of the forecast error factor shown in Table 4
further verify the high reliability of the PBML model, even at the last forecast step (8-step-ahead/24 h).
For the swells, Figure 15 presents a result with less confidence; and a slightly higher mean (0.008) and
standard deviation (0.096) of the forecast error factor at eight-steps-ahead also reveal this phenomenon
in Table 5. The weak relation between the output (swells) and inputs (wind forcing) is the main reason
for this forecast performance. To discuss this phenomenon in detail, Figure 16 shows scatter diagrams
of the mean wind speed and different wave periods (i.e., Ty, Ty and Tyys) at the same time and position.
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The data from year 2001 to 2009 were used to investigate the correlations—about 26,000 data points.
The color depicts the absolute frequencies of occurrence. Obviously, the correlation between the mean
wind speed and mean wave period for swells (Figure 16¢) and total waves (Figure 16a) is much weaker
than that for wind-generated waves (Figure 16b) since the swell stems from the propagating waves
generated far away from the focused position. The time variant propagating velocity and direction
increase the uncertainty of the swells and further increase the forecast complexity of T. In contrast,

wind-generated waves stemming from the local wind can be exactly described as the wind forcing
used as inputs.
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Figure 16. Scatter plot of wave period and mean wind speed: (a) Total waves. (b) Wind-generated
waves. (c) Swells.

3.4.2. Significant Wave Height

In line with the study of peak wave period T, significant wave height is also treated separately by
the sources of wind-generated waves (Hs;,) and swells (Hg;), to further prove the findings observed in
the forecast of wave period. The PBML models of Hy;,, and Hgs were established respectively, and the
corresponding forecast results of point 5 (in Figure 5) are shown in Figures 17 and 18. Meanwhile,
Tables 6 and 7 summarize the forecast errors of Hy, and Hjs, respectively.
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Figure 17. Forecast results of Hy;, based on the PBML model.
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Figure 18. Forecast results of Hgs based on the PBML model.

Table 6. Forecast errors of Hy,, based on the PBML model.

Error Lead Time (h)
Measures 3 6 12 15 18 21 24
m, 00730 00671 01060 00646 00417 01160 0.0618  0.0888
std, 01449 01799 01836 01562 01647 02362  0.1982  0.2320
MAE (m) 00747 00892 01001 00888 0.1095 01174 0.0910  0.1001
RMSE (m) 01027 01277 01428 01283 01782 01779 01356  0.1548
bias (m) 0.0422 00405 00558 00224 —00102 0.0028 —0.0098 —0.0036
R2 09951 09926 09900 09917 09855 09898 09919  0.9908

SI 0.0619 00810 00892 00848 01178 01173  0.0891  0.1011
MAPE (%) 109096 127095 147157 12.0080 125973 17.4128 13.5800 15.3229
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Table 7. Forecast errors of Hgs based on the PBML model.

Error Lead Time (h)
Measures 3 6 9 12 15 18 21 2
mg 0.0238 -0.0057 -0.0234  0.0440 0.0780 0.0741 0.0941 0.0919
stde 0.1552 0.1636 0.1800 0.2319 0.3136 0.3333 0.2992 0.3328

MAE (m) 0.1129 0.1342 0.1652 0.2040 0.2584 0.2846 0.2730 0.3011
RMSE (m) 0.1758 0.2008 0.2404 0.3031 0.4013 0.4450 0.3848 0.4446

bias (m) 0.0129  -0.0179 -0.0383  0.0372 0.0670 0.0685 0.0661 0.0634
R? 0.9456 0.9337 0.9087 0.8613 0.7821 0.7438 0.7573 0.7041
SI 0.1283 0.1440 0.1701 0.2156 0.2860 0.3199 0.2775 0.3228

MAPE (%) 99648  11.2799 13.1894 16.5625 20.8705 22.8518 22.6173 24.6826

Obviously, Figures 17 and 18 present similar findings to those illustrated in Figures 14 and 15,
namely, that the forecast performance of the PBML model for wind-generated waves is better than
that for swells. Specifically, the PBML model can generate Hg,, forecasts accurately and the forecast
uncertainty is quite low. For example, Table 6 shows that the RMSE and R? for all steps are less than
0.18 m and higher than 98%, respectively. In contrast, the RMSE and R? for Hy, forecasts are less than
0.45 m and higher than 70% for all steps respectively, as can be seen in Table 7.

In summary, limited knowledge on the source of swells persuaded us to stop at this stage,
since merely increasing the control area and inputs would contribute little. In view of the swell being
related to the waves propagating beyond the zones of their generation, the spatial domain of inputs
is expected to be expanded, and more related input variables such as wave direction, speed and the
distance from the position of the input to the output, are expected to be involved to improve the PBML
model for T), forecasting in future studies.

4. Conclusions

In this study, a physics-based machine learning (PBML) model was proposed and developed in
detail to do multi-step-ahead forecasting of wave conditions for marine operations. The model attempts
to combine the advantages of both physics-based wave models and machine learning algorithms.
Specifically, the PBML model takes physical background into account by applying the primary inputs
(i.e., initial wave boundary conditions and the future wind forcing) in physics-based models to design
the model structure. A machine learning algorithm (the ANN considered in this study is an example)
is employed to train the PBML model based solely on historical data.

The PBML model attempts to provide wave forecasts for marine operations, and high
computational efficiency is the primary advantage compared with widely used physics-based wave
models. On one hand, the PBML model is capable of using the wind forcing parameters in a small area
or even from a single position as input to generate forecasts of wave statistics, which do not need the
real-time simulations for large domains using directly physics-based numerical wave models. On the
other hand, the training process of machine learning is performed mainly through matrix operations
rather than solving partial differential control equations. Furthermore, once the model is trained
based on the site-specific data, making forecasts on new inputs is straightforward and extremely fast.
Based on the forecasted wave conditions and the environmental limits of a specific marine operation,
suitable weather windows can be identified, which will further assist decision-making during the
execution phase of the operation.

In this study, numerical wave models were used to generate both historical input and historical
output data for training the machine learning algorithms. The developed algorithms are very specific
for the location in consideration. However, the same methodology can be applied if the data from field
measurements or the data from other locations are used.

To assess the performance of the proposed model, three-hourly time series of wave and wind
data (such as wind direction D,,, mean wind speed Uy, significant wave height H; and peak wave
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period Tp) from 2001 to 2010 at the North Sea center from CERA-20C were used. As a new hybrid
model, the optimal architecture of the PBML model was determined first. Afterwards, eight-step-ahead
forecasts of Hs and T, were generated individually and evaluated by commonly used error measures
(MAE, RMSE, SI and R?) and the newly defined forecast error factor. The results indicate that the
forecast performance of H; is extremely good, while that of T), is slightly worse due to the weaker
implicit relationship between the selected input and output; that was further proved by forecasting
wave conditions of wind-generated waves and swells separately. Overall, the PBML model can be
conceived as an efficient calculation model for wave forecasting in a small area, which is particularly
suitable for marine operations. The forecast uncertainty of the peak period might be further decreased
by including some more related factors, such as wave direction, speed and the distance from the position
of the input to the output in the PBML model. A feature selection technique such as neighborhood
component analysis (NCA) will be adopted to select and weight the related factors. Moreover, how to
account for the effect of weather forecast uncertainty on marine operations is a key issue in practice.
A suitable method for addressing wave forecast uncertainties in the planning and execution of marine
operations can also be expected in the future publications.
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