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ABSTRACT
In this work, the flow over an elliptic cylinder near a moving wall is investigated for Reynolds numbers less than 150. Here, the ratio between
the gap (i.e., the distance between the cylinder and the wall) and the length of the semi-major axis of the elliptic cylinder varies from 0.1 to 5.
This ratio is hereafter denoted as the gap ratio. The resulting Kármán vortex street, the two-layered wake, and the secondary vortex street have
been investigated and visualized. Numerical simulations show that for the steady flow, the wake is composed of two asymmetric recirculation
vortices, while a decrease in the gap ratio suppresses the vortex shed from the lower part of the cylinder. For the unsteady flow, the wake can
be classified into four different patterns based on the wake structures (the Kármán vortex street, the two-layered wake, and the secondary
vortex street). The regions of these wake patterns are given in the gap ratio and Reynolds number space, showing that the critical Reynolds
number for the transition between different patterns increases as the gap ratio decreases. An overall increase in the mean drag coefficient with
increasing gap ratios is observed, except for a sudden drop that occurs within a small gap ratio range. Moreover, as the gap ratio increases, the
onset location of the two-layered wake first decreases due to a decrease in flow velocity in the gap and then increases due to the weakening of
the wall suppression effect.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0020818., s

I. INTRODUCTION

The wake behind an isolated circular cylinder has been studied
extensively because of its vital importance in understanding vor-
tex shedding in engineering applications, such as marine risers and
bridges. At low Reynolds numbers (based on the cylinder diame-
ter and the free-stream velocity), the flow is symmetrical around the
cylinder without flow separation. As the Reynolds number increases
to about 7, laminar separation occurs, forming a pair of counter-
rotating vortices, which are symmetrical about the centerline of the
wake,1,2 and as the Reynolds number increases further, the well-
known Kármán vortex street is formed.3,4 This vortex street exhibits
a transition to a two-layered wake farther downstream, followed
by a second transition (even farther downstream) to a secondary
vortex street with larger spatial scales than the primary ones.5 The
physical mechanism underpinning the formation of the two-layered
wake was investigated experimentally by Durgin and Karlsson6 and
Karasudani and Funakoshi.7 They measured the vertical distance (h)
between the upper and lower wake vortices and the horizontal dis-
tance (l) between two successive co-rotating vortices along the wake

and found that the ratio (h/l) between these vertical and horizon-
tal distances increases downstream. At a given downstream location,
this ratio reaches a critical value where two successive vortices shed
from the upper part of the cylinder impose the convection of vortic-
ity within the vortex shed from the lower part of the cylinder. This
vortex is located horizontally in between the two upper vortices (and
vice versa if the two successive vortices shed from the lower part
of the cylinder). As a result, this vortex starts to distort and rotate
to align with the stream-wise direction, forming the two-layered
wake.

Experiments conducted by Cimbala et al.5 showed the broad-
band frequency spectra of the vertical velocity fluctuation in the far
wake. For Reynolds numbers between 100 and 160, the broad-band
spectra contain several prominent frequencies considerably lower
than the Kármán shedding frequency. It appears to be a strong corre-
lation between these low frequencies and the secondary vortex street,
which contains vortices with spatial scales larger than the Kármán
vortices. In the view of this, Cimbala et al.5 attributed the forma-
tion for the secondary vortex street to the hydrodynamic instability
of the mean wake. This hypothesis was supported by Kumar and
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Mittal8 who conducted two-dimensional numerical simulations of
the flow around an isolated circular cylinder for a Reynolds num-
ber of 150. Here, packets of fluctuating vortices (i.e., based on the
fluctuating velocity field) with a range of spatial scales were formed
in the far wake, and these vortex packets grew stronger (i.e., con-
tained larger vorticity) through convection. On this basis, Kumar
and Mittal8 argued that the transition from the two-layered wake
to the secondary vortex street is due to the convective instability
of the mean wake flow. Matsui and Okude9 conducted experimen-
tal measurements for the flow around an isolated circular cylinder
for Reynolds numbers less than 160 and explained the formation
of the secondary vortex street in terms of merging of Kármán vor-
tices. They also found that when the wake was forced acoustically by
one-half and one-third of the Kármán shedding frequency, two and
three of vortices merged into a large secondary vortex, respectively.
The explanation of this behavior, as demonstrated by Williamson
and Prasad10 in their experiments for Reynolds numbers less than
170, is that the far wake flow is sensitive to the perturbation of the
free-stream velocity. A very small perturbation of the free-stream
velocity can lead to visible spectral peaks with the perturbation fre-
quency and with the frequency difference between the Kármán shed-
ding and the perturbation. Recently, Jiang and Cheng11 investigated
unforced (uniform inlet velocity without perturbations) cylinder
wakes using two-dimensional numerical simulations and found two
formation mechanisms for the secondary vortex street: (i) the merg-
ing of two co-rotating vortices for Reynolds numbers ranging from
200 to 300 and (ii) the pairing of two counter-rotating vortices, fol-
lowed by the merging of these paired vortices for Reynolds numbers
ranging from 400 to 1000.

Wakes behind other bluff bodies such as square12,13 and ellip-
tic cylinders have been investigated due to the practical impact on
submarines14 and heat exchangers.15 For elliptic cylinders, the flow
depends on both the aspect ratio (AR) of the elliptic cylinder (defined
by the ratio of the semi-minor to semi-major axis length) and the
incident angle (defined by the angle between the inlet flow direc-
tion and the semi-minor axis) in addition to the Reynolds number
based on the free-stream velocity and the semi-major axis length.
Johnson et al.16 used two-dimensional numerical simulations to
investigate the flow around an isolated elliptic cylinder of aspect
ratios ranging from 0.01 to 1 (i.e., from a flat plate to a circular
cylinder) for Reynolds numbers up to 200 at zero incident angle.
They found that for an aspect ratio of 0.5, the flow is steady for a
Reynolds number of 40, while Kármán vortex shedding exists for a
Reynolds number of 75. As the Reynolds number increases further
to 125, the Kármán vortex street is followed by a two-layered wake
(farther downstream); as the Reynolds number increases even fur-
ther to 150, the secondary vortex street is formed in the far wake.
This secondary vortex street moves upstream and becomes more
irregular as the Reynolds number increases up to 200. The criti-
cal Reynolds number for the onset of the Kármán vortex street,
the two-layered wake, and the secondary vortex street in the wake
increases as the aspect ratio increases. Johnson et al.17 investigated
the power spectrum numerically of the vertical velocity along the
horizontal centerline downstream of the cylinder, revealing the pres-
ence of secondary and tertiary frequencies in the far wake. These
frequencies are lower than the Kármán shedding frequency. The
peaks of the power spectrum at these low frequencies become larger
farther downstream, triggering the transition from the two-layered

wake to the secondary vortex street. Raman et al.18 conducted two-
dimensional simulations for the flow around an elliptic cylinder with
aspect ratios from 1 to 10 for Reynolds numbers from 50 to 500.
They found that the vortex shedding can be suppressed by increas-
ing the aspect ratio for a given Reynolds number. Yoon et al.19 and
Paul et al.20 found that the critical Reynolds number for the vortex
shedding suppression decreases as the angle of attack increases from
0○ to 90○. Subburaj et al.21 used the immersed boundary method and
the level set method to investigate the two-dimensional flow around
the elliptic cylinder with aspect ratios of 0.25 and 0.5 near a free sur-
face for a Reynolds number of 180 with different angles of attack,
showing that for a submergence depth of 0.096, the vortex shed-
ding is suppressed at the angle of attack of 45○, while metastable
states appear at −45○, and at 90○, vortex shedding is partially
suppressed.

Transitional movements of bluff bodies near a stationary plane
wall are both important in academic research and engineering appli-
cations, such as submarines or AUV (Autonomous Underwater
Vehicle) moving near a seabed. The latter is of great importance
for inspections of subsea structures as well as for mapping of the
ocean bathymetry and collection of both physical data (e.g., of wave-
induced velocities, current velocities, and sediment concentration)
and biological data (e.g., fish larvae, plankton, and contamination).
Taneda22 and Zdravkovich23 towed a circular cylinder along a plane
wall in a water tank for Reynolds numbers of 170 and 3550 and
found alternating vortices shed from the upper and lower parts of
the cylinder with a gap-to-diameter ratio of 0.6. When the same
experiment was conducted for a gap-to-diameter ratio of 0.1, only
a single row of vortices was shed from the upper part of the cylinder.
Huang and Sung24 conducted two-dimensional numerical simula-
tions, finding that for a Reynolds number of 300, the flow exhibits
(i) a Kármán-like vortex shedding at a gap-to-diameter ratio of 0.6;
(ii) a pair-wise vortex shedding, where the lift and drag forces fluc-
tuate with the same frequency at a gap-to-diameter ratio of 0.2; and
(iii) a single row of vortex shedding from the upper part of the cylin-
der at a gap-to-diameter ratio of 0.1. The drag force increases as
the gap-to-diameter ratio increases (for a given Reynolds number)
up to a critical value (i.e., at the onset of the Kármán-like vortex
shedding) where the drag force reaches its maximum value. As the
gap-to-diameter ratio increases further, the drag force decreases. It
appears that the drag force is closely correlated with the base pres-
sure25 (i.e., the lowest pressure located at the downstream side of
the cylinder). As the gap-to-diameter ratio increases up to the crit-
ical value, the vortices behind the cylinder become stronger due to
the weakening of the wall suppression effect, thus drawing in fluid
at a higher rate26 resulting in a lower base pressure and a larger
drag force. As the gap-to-diameter ratio increases beyond this criti-
cal value, stronger vortices are shed from the bottom of the cylinder,
resulting in an enhanced interaction with the vortices shed from the
top of the cylinder, causing a higher vortex shedding frequency. This
implies a shorter time interval for the vortices to grow before they
move downstream, resulting in weaker vortices, which again cause
a larger base pressure and a smaller drag force.25 Moreover, as the
gap-to-diameter ratio decreases (for a given Reynolds number), the
stagnation point at the front of the cylinder moves downward along
the cylinder, causing a more asymmetric flow distribution around
the cylinder, resulting in a larger lift force.25 Jiang et al.27 conducted
a comprehensive set of numerical investigations of the two- and
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three-dimensional wake transitions for Reynolds numbers up to 300
at gap-to-diameter ratios between 0.1 and 19.5. They found that for
flow in the two-dimensional regime, the critical Reynolds number
for the onset of the vortex shedding increases as the gap-to-diameter
ratio decreases. This behavior further confirms that the presence of
the wall weakens the interaction between the vortices shed from
the top and bottom parts of the cylinder, thus delaying the vortex
shedding.

The development of the Kármán vortex street, the two-layered
wake, and the secondary vortex street behind isolated cylinders has
been investigated previously for a wide range of Reynolds numbers
and aspect ratios. Paul et al.20 showed that the critical Reynolds
number for the onset of the flow separation and the Kármán vor-
tex shedding decreases with the decreasing aspect ratios. Johnson
et al.16 found that the critical Reynolds number for the onset of the
two-layered wake and the secondary vortex street decreases with the
decreasing gap ratio. Thompson et al.28 found that an increase in
Reynolds number for a given gap ratio or a decrease in gap ratios
for a given Reynolds numbers results in the onset location of the
two-layered wake and the secondary vortex street (which becomes
more irregular) being closer to the cylinder. Moreover, Jiang et al.27

showed that the presence of a moving wall has a significant effect
on the flow around a near-wall circular cylinder, e.g., suppressing
the Kármán vortex shedding and changing the lift and drag coef-
ficients by varying the gap ratio. However, the effect of a moving
wall on the two-layered wake and the secondary vortex street behind
a near-wall elliptic cylinder with an aspect ratio less than 1 has
not been investigated previously. This is presented in the present
work, together with the resulting forces on the elliptic cylinder
itself.

Specifically, the flow over an elliptic cylinder with the aspect
ratio of 0.4 near a moving wall is investigated for Reynolds num-
bers less than 150. Here, the ratio between the gap (i.e., the distance
between the cylinder and the wall) and the length of the semi-major
axis of the elliptic cylinder varies from 0.1 to 5. The resulting Kármán
vortex street, the two-layered wake, and the secondary vortex street
have been investigated and visualized. Numerical simulations show
that for the steady flow, the wake is composed of either two asym-
metric recirculation vortices or one recirculation vortex behind the
cylinder; for the unsteady flow, the wake can be classified into four
different patterns based on the wake structures. These wake patterns
are mapped out in the gap ratio and Reynolds number space, and
a detailed analysis of the near-wall effect (i.e., the effect of the gap
ratios) on the lift and drag coefficients as well as on the onset location
of the two-layered wake is presented.

II. PROBLEM DEFINITION
AND GOVERNING EQUATIONS

The current paper addresses the flow around an elliptic cylinder
moving parallel to a wall with a constant velocity. It is convenient for
numerical simulations to use a uniformly translating frame of refer-
ence fixed on the cylinder such that the cylinder is stationary, while
the wall and the fluid move toward the right at a uniform speed, as
shown in Fig. 1. The aspect ratio (AR) of the cylinder is defined by
the minor (a) to major (D) axis length ratio, i.e., AR = a/D. The gap
ratio is given by G/D, where G is the gap between the moving wall
and the cylinder, and the Reynolds number is based on the major

FIG. 1. Definition of relevant dimensions for the flow around an elliptic cylinder
near a moving wall.

axis, i.e., Re = UD/ν, where ν is the kinematic viscosity. Here, the
incompressible flow with a constant density ρ is governed by the
dimensionless two-dimensional Navier–Stokes equations given as

∂ui
∂xi
= 0, (1)

∂ui
∂t

+
∂uiuj
∂xj

= −
∂p
∂xi

+
1
Re

∂2ui
∂xj∂xj

, (2)

where the Einstein notation using the repeated indices is applied.
Here, ui = (u, v) and xi = (x, y) for i = 1 and 2 indicate the velocity and
Cartesian coordinates, respectively, while t and p denote the time
and pressure, respectively. The velocity, time, pressure, and length
are scaled by U, D/U, ρU2, and D, respectively.

III. NUMERICAL METHODS
A projection method is used for solving Eqs. (1) and (2). The

convective terms and the diffusive terms are discretized by Adams–
Bashforth and Crank–Nicolson schemes, respectively. The spatial
derivatives are discretized with a second-order centered finite dif-
ference scheme on a staggered grid arrangement. The Poisson equa-
tion for pressure correction is solved using a biconjugate gradient
stabilized method (BiCGSTAB)29 with a Jacobi preconditioner.

The cylinder geometry is taken into account by a direct-forcing
immersed boundary method.30 Figure 2 shows the treatment of the
Cartesian grid and the immersed boundary. A grid cell is blocked
out of the simulation if its corresponding variable (velocity or pres-
sure) lies within the immersed boundary. Then, the velocity point
at the cell face between a blocked cell and an unblocked cell is set
as an inactive velocity (∎), which are updated by interpolation using
the physical boundary condition at the immersed boundary point
(◯) and the active velocity point (◽) within the fluid. Here, weighted
one-dimensional, cubic Lagrange interpolation schemes are applied
as follows:

f (x) =
3

∑
k=1

βk(x)fk + β(xΓ)fΓ, (3)

where x and xΓ denote the locations of the inactive point and
the immersed boundary, respectively, while f (x), f k, and f Γ
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FIG. 2. Definition of the inactive velocity points (∎), immersed boundary points
(◯), and active velocity points (◽).

represent the velocity values at the inactive points, the active velocity
points, and the immersed boundary, respectively. Here, the Lagrange
coefficients βk(x) and β(xΓ) can be obtained by

βk(x) =
⎛

⎝

3

∏
j=1,j≠k

(x − xj)
(xk − xj)

⎞

⎠

x − xΓ
xk − xΓ

, (4)

β(xΓ) =
⎛

⎝

3

∏
j=1

(x − xj)
(xΓ − xj)

⎞

⎠
, (5)

where xj denote the location of the jth active point.

If an inactive velocity point can be interpolated from two
directions, each direction is multiplied by a weighting factor as
follows:

f (x) = λxf x + λyf y, (6)

where the superscripts x and y denote the interpolation in the x
and y directions, respectively, and the weighting factors λx and λy
are given as

λx =
1

1 + ( lxly )
2

and λy =
1

1 + ( lylx )
2

, (7)

where lx and ly are the distances between the inactive point and
the immersed boundary in the x and y directions, respectively, as
shown in Fig. 2. Moreover, a Neumann condition for the pressure
correction is applied at the inactive velocity points.

IV. VALIDATION AGAINST PREVIOUS NUMERICAL
AND EXPERIMENTAL RESULTS

Numerical investigations of the two-dimensional flow around
an isolated circular cylinder are conducted for Re = 40, 100, and 200.
A dimensionless free-stream velocity U = 1 is specified at the inlet
boundary, while a Neumann condition is imposed for the velocity at
the outlet and lateral boundaries. A no-slip condition is applied at
the cylinder. The pressure is set to be zero at the outlet, and a Neu-
mann condition for the pressure correction is imposed at the other
boundaries. A spin-up time of t = t∗U/D = 200 (where t∗ is the phys-
ical time) was found to be sufficient to obtain a fully developed flow
for all the cases. For Re = 40, the flow reaches a steady state where
two counter-rotating vortices, which are symmetrical about the cen-
terline of the wake, are formed [see Fig. 3(a)]; for Re = 100 and 200,
the flow exhibits an unsteady state where periodic alternating vortex
shedding (Kármán vortices) occurs as visualized by the streamlines
in Figs. 3(b) and 3(c), respectively.

FIG. 3. Streamlines for the flow over a
cylinder at Re = (a) 40, (b) 100, and (c)
200 as well as the nomenclature used
in Table I. Separation angle θ, wake
length Lw , horizontal distance a between
the rear stagnation point of the cylinder
and the recirculation center, and verti-
cal distance b between the symmetric
recirculation centers.
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TABLE I. The physical parameters obtained by the present numerical method and
previous works for the flow around a circular cylinder at Re = 40; the superscript ∗
denotes that the results were obtained by experiments. The front stagnation point is
located at θ = 180○.

CD θ (deg) Lw a b

∗Coutanceau and Bouard31 53.8 2.13 0.76 0.59
Linnick and Fasel32 1.54 53.6 2.28 0.72 0.60
Fornberg33 1.50 55.6 2.24
Patil and Lakshmisa34 1.56 52.7 2.14
Taira and Colonius35 1.54 53.7 2.30 0.73 0.60
Berthelsen and Faltinsen36 1.59 53.9 2.29 0.72 0.60
Coarse mesh (0.02) 1.57 52.5 2.26 0.72 0.60
Fine mesh (0.01) 1.59 53.1 2.26 0.72 0.60

The inlet is located 8 cylinder diameters upstream of the cylin-
der center, the outlet is located 20 diameters downstream of the
cylinder center, while the top and bottom boundaries are located
10 diameters away from the cylinder center. A fine uniform grid
(Δx = Δy = 0.01, where Δx and Δy represent the length and the
width of a grid cell, respectively) is applied in a small square region
around the cylinder (i.e., −0.7 ≤ x ≤ 0.7 and −0.7 ≤ y ≤ 0.7). From
the edges of this region, the grid is stretched (using geometric series)
in both the horizontal and vertical directions using stretch ratios less
than 1.05.

Table I shows comparisons between the results obtained in the
present work and the available results obtained from experiments31

and numerical simulations for Re = 40.32–36 Here, CD is the drag
coefficient; θ, Lw, a, and b (as shown in Fig. 3) denote the separa-
tion angle, wake length, the horizontal distance between the rear
stagnation point of the cylinder and the recirculation center, and
the vertical distance between the symmetric recirculation centers,
respectively. The drag coefficient CD is defined as CD = 2Fd/(ρU2D),
where Fd is the drag force acting on the cylinder in the x direction.
The wake parameters Lw, a, and b are scaled by the diameter of the
cylinder. Table I shows that a good agreement is obtained with the
previous experimental31 and numerical32–36 results.

Table II shows comparisons between the present results and
the available results obtained from the experiments37 and the
numerical simulations36,38–41 for Re = 100 and 200. The quanti-
ties that are compared are the time-averaged drag coefficient (CD),
the Strouhal number St = Df /U (where f represents the vortex
shedding frequency), the lift coefficient amplitude [Cl ,a, where Cl
= 2Fl/(ρU2D), with Fl being the lift force], and the drag coefficient
amplitude (CD ,a). The present results are in good agreement with
those obtained by Berthelsen and Faltinsen36 who used an immersed
boundary method similar to the present method. Overall, the present
results are in fair to good agreement with those presented in
Table II.

A grid refinement test was conducted using a coarse grid
(Δx = Δy = 0.02) in the small rectangular domain around the cylin-
der, and then stretching the grid vertically and horizontally from the
edges of this domain. The deviation from the results obtained with
the fine grid was less than 1.2% for the quantities given in Tables I
and II.

V. RESULTS AND DISCUSSION
Numerical investigations of the flow around an elliptic cylin-

der with an aspect ratio AR = 0.4 near a moving wall have been
conducted for Re ranging from 30 to 150 for gap ratios G/D rang-
ing from 0.1 to 5. Figure 4 shows the computational domain, the
location of the cylinder, and the boundary conditions. The inlet and
top boundaries are located 20D away from the cylinder center, the
outlet is located 50D downstream of the cylinder center, and the bot-
tom boundary is located (G/D + 0.5)D from the cylinder center. A
dimensionless velocity u = 1 is set at the inlet, and a Neumann con-
dition is imposed for the velocity at the top and outlet boundaries.
A no-slip condition is applied at the cylinder and the bottom wall,
which moves toward the right at u = 1. The pressure is equal to zero
at the outlet, and a Neumann condition for the pressure correction
is imposed at other boundaries.

A uniform grid (Δx = Δy = 0.02) is applied to a region (marked
by a blue rectangle in Fig. 4) around the cylinder. The edges of this
region are located 0.7D away from the cylinder center. The grid is
stretched from the top and left edges of this edge using constant
stretch ratios less than 1.02. From the right edge, the grid is stretched

TABLE II. Comparisons between present results and previous numerical and experimental results: Strouhal number St, lift
coefficient amplitude Cl ,a, drag coefficient CD, and amplitude CD ,a for the uniform flow around a circular cylinder at Re = 100
and 200; the superscript ∗ denotes that the results were obtained by experiments.

Re = 100 Re = 200

CD St Cl ,a CD ,a CD St Cl ,a CD ,a

∗Williamson37 . . . 0.164 . . . . . . . . . 0.197 . . . . . .
Calhoun38 1.33 0.175 0.298 0.014 1.17 0.202 0.668 0.058
Russel and Wang39 1.38 0.169 0.300 0.007 1.29 0.195 0.500 0.022
Xu and Wang40 1.42 0.171 0.340 0.013 1.42 0.202 0.660 0.040
Berthelsen and Faltinsen36 1.38 0.169 0.340 0.010 1.37 0.200 0.700 0.046
Wang et al.41 1.38 0.170 0.357 . . . 1.26 0.195 0.708 . . .
Coarse mesh (0.02) 1.36 0.170 0.323 0.010 1.35 0.200 0.707 0.047
Fine mesh (0.01) 1.37 0.171 0.337 0.012 1.36 0.200 0.706 0.048
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FIG. 4. Sketch of the computational
domain and the boundary conditions for
the flow around an elliptic cylinder near a
moving wall.

over the next 10D downstream (using a stretch ratio of 1.01) until
Δx = 0.1, which is held constant over the rest of the downstream
region. For gap ratios less than 1, the grids between the cylinder bot-
tom and the bottom wall have the same vertical size, i.e., Δy = 0.02.
For gap ratios larger than 1, the grid is stretched symmetrically from
the bottom wall and from the cylinder bottom to the center position
between them using a stretching ratio less than 1.01. Figure 5 shows
the complete grid for the whole computational domain and a close-
up of the uniform grid around the cylinder for G/D = 0.2. For all
the simulations conducted in this study, a spin-up time of t = 400
was found to be sufficient to obtain a fully developed flow where the
fluctuation amplitude and the period of CD and Cl are fully devel-
oped, as exemplified in Fig. 6, showing the time history of CD and
Cl for Re = 150 with G/D = 0.2 and 2. This was checked for each
simulation.

To test grid independence, numerical simulations were con-
ducted using the coarse grid resolution and the fine grid res-
olution, as given in Table III for the largest Reynolds number
Re = 150 and the smallest gap ratio G/D = 0.1. Table III shows St,
CD, and Cl obtained by the two grid resolutions, showing devia-
tions of 0.9%, 0.6%, and 2.7%, respectively, from those obtained with
the coarse grid. Thus, the coarse grid is sufficient to obtain the grid
independent results.

A. Steady state
The flow around an isolated elliptic cylinder with AR = 0.4 is

in the steady regime for Re = 30, while the vortex shedding occurs
for Re = 40, as visualized by vorticity and streamline contours in
Figs. 7(a) and 7(b), respectively. Here, the critical Reynolds number

FIG. 5. Grid for the whole computational
domain and a close-up of the uniform
grid around the cylinder at G/D = 0.2.
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FIG. 6. Time history of CD (upper two curves) and Cl (lower two curves) for
Re = 150 with G/D = 0.2 and 2.

TABLE III. Comparisons of the St, CD, and Cl obtained by the computation domain
2 with the uniform mesh sizes Δx = Δy = 0.02 and 0.01 for Re = 150 and G/D = 0.1.

Mesh size St CD Cl

Coarse (Δx = Δy = 0.02) 0.105 1.66 0.36
Fine (Δx = Δy = 0.01) 0.106 1.67 0.35

Rec for the onset of the vortex shedding is 35 ± 5, which is smaller
than the critical Reynolds number for a circular cylinder (AR = 1)
and ranges from 45 to 49;3,4,42 a decrease in AR leads to a decrease
in Rec. The effect of the aspect ratio on the critical Reynolds num-
ber has been investigated numerically by Thompson et al.28 and
Paul et al.,20 finding that Rec decreases from 47.2 to 31.6 and from
48.5 ± 0.5 to 23.5 ± 0.5, respectively, as AR decreases from 1 to 0.1.
Thompson et al. obtained a larger Rec for AR = 0.1 than Paul et al.
This is mainly because the blockage ratio of the grid system used by
Thompson et al. is 1%, which is much smaller than 6.25% used by
Paul et al.

Figures 7(c) and 7(d) show the vorticity and streamline con-
tours for Re = 40 at G/D = 0.4 and 0.2, respectively. The flow reaches
a steady state (i.e., no vortex shedding) at G/D = 0.4 [Fig. 7(c)],
while at the same Re, the flow exhibits vortex shedding for the iso-
lated cylinder [Fig. 7(b)]. This is because the shear layer (negative
vorticity) generated near the moving wall weakens the shear layer
beneath the bottom of the cylinder (positive vorticity), thus delay-
ing the onset of vortex shedding. This is the same mechanism as
has been previously observed for a circular cylinder near a moving
wall.27,43,44 As G/D decreases further to 0.2, the lower recirculation
vortex as observed in Fig. 7(c) vanishes. The impact of G/D on the
front stagnation point for a circular cylinder near a moving wall
was investigated by Jiang et al.27 using two-dimensional numerical
simulations, showing that the front stagnation point moves down-
ward along the cylinder as G/D decreases. This behavior is also
observed in the present studies and is visualized by the streamlines
in Figs. 7(c) and 7(d). It appears that more fluid moves upward
along the cylinder due to the enhanced blockage effect in the gap
[as can be seen by the downward movement of the front stag-
nation point in Figs. 7(c) and 7(d)] caused by decreasing G/D,
forming a larger recirculation vortex for G/D = 0.2 than for G/D
= 0.4. This behavior is qualitatively similar to the observation by
Jiang et al.27 for the flow around a circular cylinder near a moving
wall.

Figure 8(a) shows the recirculation vortex centers for Re rang-
ing from 30 to 70 at G/D = 0.2 and 0.4, i.e., in the parameter range
where the flow is steady. The upper recirculation vortex is formed for
all the values of Re and G/D considered here, while the lower recir-
culation vortex disappears for Re ≤ 40 at G/D = 0.2. It appears that
the lower recirculation vortex center is located closer to the cylin-
der than the upper recirculation vortex center, and this difference is
larger for G/D = 0.2 than for G/D = 0.4 due to the stronger wall sup-
pression effect on the lower recirculation vortex. For G/D = 0.4, an
increase in Re leads to a smaller difference since thinner shear lay-
ers are formed, resulting in a weaker interaction between the shear
layers beneath the cylinder bottom and near the wall. For G/D = 0.2,
however, an increase in Re does not affect the bottom vortex much
due to the wall suppression effect.

FIG. 7. Vorticity contours and stream-
lines (black solid lines) for the flow
around an isolated elliptic cylinder of AR
= 0.4 for (a) Re = 30 and (b) Re = 40, and
for the flow around an elliptic cylinder of
AR = 0.4 for Re = 40 at (c) G/D = 0.4 and
(d) G/D = 0.2.
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FIG. 8. (a) Locations of the vortex center behind the cylinder; (b) the drag (CD) and lift (Cl ) coefficient for Re from 30 to 70 and for G/D = 0.2 and 0.4; and (c) and (d) show
the pressure (Px ) and skin friction drag (Fx ) coefficients, respectively, for Re from 30 to 70 and for G/D = 0.2 and 0.4.

Figure 8(b) shows CD and Cl against Re in the steady flow
regime, i.e., for Re ∈ [30, 100] at G/D = 0.2 and 0.4. For a given Re, CD
and Cl are larger for G/D = 0.2 than for G/D = 0.4. For a given gap
ratio, CD and Cl decrease almost linearly as Re increases in the log–
log scale. This is in qualitative agreement with the results observed
previously by Rao et al.43,44 (for the steady flow regime, i.e., no vortex
shedding) for a fixed and a rotating circular cylinder near a moving
wall for G/D ranging from 0.05 to 4. Figures 8(c) and 8(d) show the
drag force due to the pressure (Px) and due to the skin friction (Fx)
against Re for G/D = 0.2 and 0.4, respectively. It appears that G/D
has a weaker effect on Fx than on Px, implying that the G/D affects
the cylinder friction less than the pressure distribution around the
cylinder as previously demonstrated by Sumer and Fredsøe25 for a
circular cylinder.

B. Unsteady state
1. Wake patterns

Figure 9 shows the vorticity contours of the flow around an iso-
lated elliptic cylinder with AR = 0.4 for Re = 130. The three different
wake structures (separated by vertical dashed lines) can be classified
into three different flow regimes:11,28 (i) the near wake where clock-
wise and anti-clockwise vortices are alternately shed from the upper
and lower parts of the cylinder, forming the Kármán vortex street;
(ii) further downstream, the Kármán vortex street breaks down and
develops into a two-layered wake;6,7,28 and (iii) the far wake where
the hydrodynamic instability of the two-layered wake8,17 leads to
a secondary vortex street characterized by larger scales and lower
frequencies than the Kármán vortex street.

FIG. 9. Vorticity contours for the flow around an isolated elliptic cylinder of AR = 0.4 with Re = 130.
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FIG. 10. Instantaneous vorticity contours for the flow around an elliptic cylinder of AR = 0.4 near a moving wall with Re = 130 and G/D = 2, 0.8, 0.2, and 0.1.

Figure 10 shows the instantaneous vorticity contours for the
flow around an elliptic cylinder near a moving wall for Re = 130
and for G/D = 2, 0.8, 0.2, and 0.1. For G/D = 2 [Fig. 10(a)], the
wake structure is composed of the Kármán vortex street, the two-
layered wake, and the secondary vortex street. This flow structure is
qualitatively similar to that of an isolated elliptic cylinder (Fig. 9).
Moreover, it is worth noting that the onset location of the two lay-
ered wake is nearly the same (this will be further discussed in Sec. V
B 3), while the secondary vortex occurs farther downstream for G/D
= 2 than for the isolated cylinder. The bottom wall shear layer is a
result of the vortex (with positive vorticity) shed from the cylinder
bottom, a region with negative vorticity occurs between the vortex
and the wall. This result is valid for a vortex in the vicinity of a wall
as first predicted by Peace and Riley,45 observed experimentally by
Walker et al.46 and Allen and Chong,47 and shown by Ovando et al.48

and Zhu et al.49 using numerical simulations. This flow is denoted
as wake pattern A. Figure 11 shows the amplitude va of the ver-
tical velocity fluctuation along the downstream cylinder centerline
for the isolated cylinder and for G/D = 2 and 0.8. In the near-wake
region, va decreases downstream [which is consistent with the decay

of the Kármán vortex street and the transition to the two-layered
wake where a calm region is formed between the two vortex layers;
see Figs. 9, 10(a), and 10(b)]. Then, va grows farther downstream
for the isolated cylinder and for G/D = 2, which coincides with the
transition from the two-layered wake to the secondary vortex street

FIG. 11. Amplitude of the vertical velocity fluctuation along the wake centerline for
the isolated cylinder and for G/D = 0.8 and 2 at Re = 130.
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[see Figs. 9 and 10(a)]. Furthermore, Fig. 11 shows that the pres-
ence of the moving wall leads to a significant reduction in va in the
far-wake region, consistent with the delayed onset of the secondary
vortex street for G/D = 2; the secondary vortex street appears farther
downstream for G/D = 2 [Fig. 10(a)] than for the isolated cylinder
(Fig. 9).

As G/D decreases to 0.8 [Fig. 10(b)], the secondary vortex street
disappears in the far wake region, which is present for G/D = 2
[Fig. 10(a)] and for the isolated cylinder (Fig. 9). This is consistent
with the observation that va remains almost zero in the far wake
region (Fig. 11), i.e., the vertical fluctuations are further suppressed
as the wall is approached. Thus, the wake structure here is com-
posed of the Kármán vortex street and the two-layered wake; this
flow is denoted as wake pattern B. Here, the onset location of the
two-layered wake for G/D = 0.8 is closer to the cylinder than for G/D
= 2. This will be further discussed and quantified in Sec. V B 3.

As G/D decreases to 0.2 [Fig. 10(c)], the lower vortex (behind
the bottom of the cylinder) is shed immediately following the upper
one (behind the top of the cylinder), forming a vortex pair mov-
ing downstream and deflecting away from the wall. This pair-wise
vortex shedding destroys the geometric arrangement of the vor-
tices required for the transition to the two-layered wake. Thus,
the Kármán vortex street and the two-layered wake break down
simultaneously; this flow is denoted as wake pattern C.

For G/D = 0.1 [Fig. 10(d)], the upper shear layer (behind the
top of the cylinder) becomes more elongated than for G/D = 0.2 and

FIG. 12. Distribution of wake patterns, i.e., wake pattern A (◽), wake pattern B (∎),
wake pattern C (◯), wake pattern D (●), and the steady state ( ⃟ ) within (G/D,
Re)-space.

rolls down at a downstream location of x ≈ 5. The shear layer near
the wall rolls up when meeting the rolled-down shear layer at x ≈ 15,
forming a new vortex pair moving downstream and deflecting away
from the wall. This behavior is qualitatively similar to that observed
for G/D = 0.2, except for the existence of a quasi-steady near-wake
region (x < 5), where the drag and lift coefficients are almost con-
stant, as will be discussed in Sec. V B 2; this flow is denoted as wake
pattern D.

Figure 12 shows the distribution of the wake patterns A, B, C,
and D as well as the steady state flow (i.e., no vortex shedding occurs)

FIG. 13. Time history of CD and Cl for the flow around an elliptic cylinder of AR = 0.4 near a moving wall with Re = 130 and G/D = 2, 0.8, 0.2, and 0.1.
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in the (G/D, Re)-space. Wake pattern D only exists at G/D = 0.1
for Re = 130. For Re ≤ 110, wake pattern A does not exist (i.e., the
secondary vortex street does not appear), and the steady state flow
appears only at small values of G/D and Re. Overall, it appears that
as G/D decreases (for a given Re), the flow undergoes a transition
sequence from wake pattern A→ wake pattern B→ wake pattern C.
Moreover, as Re increases (for a given G/D), the critical gap ratio
G/Dc for the transition between two wake patterns (except wake
pattern D) decreases. This critical gap ratio G/Dc denotes a thresh-
old value where one wake pattern exists and below which another
wake pattern appears. For example, the transition between wake
patterns B and C occurs for G/D ∈ [0.36, 0.4] (where G/Dc = 0.38
± 0.02) for Re = 110 and for G/D ∈ [0.3, 0.32] (where G/Dc = 0.31
± 0.01) for Re = 130. This might be explained by that an increase
in Re leads to an enhanced growth of the secondary instability (i.e.,
the transition of wake patterns B to A) as well as the vortex shed-
ding behind the bottom of the cylinder (i.e., the transition from the
steady state flow to wake pattern C). Conversely, a decrease in G/D
suppresses the growth of va (i.e., the secondary instability) in the far-
wake region (Fig. 11) and the Kármán vortex shedding. Therefore, a
smaller G/D is required for a higher Re to maintain the same wake
pattern.

2. Hydrodynamic forces
Figure 13 shows the time history of the drag coefficient CD and

the lift coefficient Cl for the flow around an elliptic cylinder near a
moving wall for Re = 130 at G/D = 2, 0.8, 0.2, and 0.1, i.e., corre-
sponding to the flow shown in Fig. 10. For both G/D = 2 and G/D
= 0.8, it is observed that every second crest value of CD is larger
than the crest values in between; this effect is strongest for G/D
= 0.8. The smaller crest values are caused by the vortex shed from the
bottom part of the cylinder, while the larger crest values are caused
by the vortex shed from the top of the cylinder.24,50 It is observed
that the lift coefficient Cl oscillates with half the frequency of CD
both for G/D = 2 and G/D = 0.8 since two vortices with opposite
sign are shed from the top and bottom of the cylinder within each
oscillation period and CD is not sensitive to the sign of the vortex.51

For G/D = 0.2, the upper and lower vortices are not shed alternately;
the lower vortex is shed and follows the upper vortex immediately,
forming a vortex pair moving downstream [as previously shown in
Fig. 10(c)]. Consequently, the small crest caused by the alternately
shedding lower vortex [see, e.g., Figs. 10(b) and 13 for G/D = 0.8]
disappears, resulting in a constant crest value of CD and the same
oscillating frequency but with different phases for CD and Cl. A sim-
ilar explanation was also found by Huang and Sung24 for the flow
around a circular cylinder near a moving wall with G/D = 0.2 and Re
= 300. As G/D decreases further to 0.1, the oscillations of CD and Cl
vanish since the vortex shedding near the cylinder is suppressed as
shown in Fig. 10(d).

Figure 14(a) shows the time-averaged drag coefficient (CD), the
time-averaged drag coefficients due to the pressure (Px) and due to
the skin friction (Fx) against G/D for Re = 150. Here, CD = Px + Fx.
The value of CD increases gradually for G/D ∈ [0.1, 1.4], except for
a sudden drop at G/D ∈ [0.24, 0.3], which will be further explained
below. For G/D larger than 1.4, CD remains nearly constant. A simi-
lar behavior is observed for Px, while Fx is hardly affected by G/D at
all. The overall increase in CD as G/D increases is mainly due to the
time-averaged pressure difference over the cylinder, which is closely

FIG. 14. (a) Variations of the time-averaged drag coefficient (CD), viscous (Fx ),
and pressure (Px ) drag coefficients at various G/D for Re = 150. (b) Time history
of the CD for Re = 150 and for G/D = 0.2, 0.24, 0.3, and 0.36. Here, T is the vortex
shedding period, which is different for different G/D.

related to the growth of the vortex attached to the backside of the
cylinder, as shown in Fig. 15; a stronger attached vortex draws in
fluid more rapidly from the base region behind the cylinder during
its growth, leading to a smaller pressure behind the cylinder and thus
a larger pressure difference over the cylinder, leading to larger values
of Px and thus of CD.

FIG. 15. Vorticity contours for the flow around an elliptic cylinder near a moving
wall with G/D = 0.2, 0.24, 0.3, and 0.36 at instants A, B, C, and D, respectively,
marked in Fig. 14; for contours with values from −5.5 to 5.5, the difference in
value between two adjacent contour lines is 1. Dashed and solid lines indicate the
negative and positive values, respectively.
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Here, the increase in CD for G/D ∈ [0.2, 0.24] and G/D ∈ [0.3,
0.36] observed in Fig. 14(a) is investigated; the decay of CD for G/D
∈ [0.24, 0.3] will be discussed in the paragraph below. The time-
history of CD at G/D = 0.2, 0.24, 0.3, and 0.36 for Re = 150 during
one dimensionless vortex shedding cycle is shown in Fig. 14(b).
Here, the largest value of CD is smaller for G/D = 0.2 than for G/D
= 0.24 (marked as A and B, respectively). This coincides with the
occurrence of the lower vortex behind the bottom of the cylinder
shown in Figs. 15(a) and 15(b), which shows that the lower vor-
tex becomes stronger (i.e., the vorticity increases) as G/D increases
from 0.2 to 0.24. This is because an increase in G/D weakens the
effect of the bottom-wall shear layer on the vortex shedding, thus
contributing to the formation of the stronger lower vortex,27 i.e.,
the wall suppression effect on the lower vortex shedding becomes
weaker. Thus, an increase in G/D enhances the dimensionless vor-
tex shedding frequency here represented by the Strouhal number
St as shown in Fig. 16(a) for the moving wall (the case of apply-
ing the slip wall condition will be discussed below). Figure 14(b)
shows that CD is smaller for G/D = 0.3 than for G/D = 0.36 at the
instants C and D, coinciding with the occurrence of the upper vor-
tex, which is weaker for G/D = 0.3 than for G/D = 0.36 as shown
in Figs. 15(c) and 15(d), respectively. This is because the circula-
tion generated at the front of the cylinder is injected into the upper
vortex over the cylinder top with lower frequency for G/D = 0.3
than for G/D = 0.36 [consistent with the variation of St as shown
in Fig. 16(a) for a moving wall]. This behavior can be quantified
by the cycle-averaged circulation Γtop(= − 1

T ∫
T
0 (∫

2
G/D+1uωzdy)dt) and

Γgap(= 1
T ∫

T
0 (∫

G/D
0 uωzdy)dt) (will be discussed below), which repre-

sent the rate of the circulation generated at the front of the cylinder
injected into the upper and lower vortices shed from the cylinder,
respectively. Figure 16(b) shows a smaller Γtop for G/D = 0.3 than
for G/D = 0.36, leading to a weaker upper vortex for G/D = 0.3 than
for G/D = 0.36, thus resulting in a smaller CD for G/D = 0.3 than
for G/D = 0.36. This behavior is also observed as G/D increases from
0.2 to 0.24 [Fig. 16(b)], which is consistent with a slightly larger CD
for G/D = 0.24 than for G/D = 0.2 during the growth phases of the
upper vortex (i.e., at instants C and D) shown in Fig. 14(b). Over-
all, it appears that for G/D ∈ [0.2, 0.24] and G/D ∈ [0.3, 0.36] an
increase in G/D weakens the wall suppression effect on the vortex
shedding behind the cylinder, thus forming a stronger lower vortex
behind the cylinder, while the circulation is injected over the top of
the cylinder with higher frequency, contributing to a stronger upper
vortex.

Now, the sudden drop of CD for G/D ∈ [0.24, 0.3] observed
in Fig. 14(a) is discussed. As shown in Fig. 14(b), the value of CD
is smaller for G/D = 0.3 than for G/D = 0.24 during the entire

shedding cycle. This implies that both the upper and lower vortices
are weaker for G/D = 0.3 than for G/D = 0.24. The formation of
the weaker upper and lower vortices for G/D = 0.3 relative to G/D
= 0.24 is consistent with the decrease in Γtop and Γgap asG/D increases
from 0.24 to 0.3 as shown in Fig. 16(b). It should be noted that the
vortex shedding frequency ( 1

T ) is almost the same for G/D = 0.24
and 0.3 (which will be further explained in the following paragraph)
shown in Fig. 16(b). Hence, the decrease in both Γtop and Γgap is
determined by the total circulation convecting into the vortices from
the top of the cylinder [Γtop = −∫T0 (∫2G/D+1uωzdy)dt] and through the

gap [Γgap = ∫T0 (∫
G/D
0 uωzdy)dt] during one vortex shedding cycle. The

decrease in Γtop as G/D increases from 0.24 to 0.3 is due to less fluid
moving upward along the cylinder since the front stagnation point
moves upward along the cylinder as G/D increases, as depicted in
Figs. 7(c) and 7(d); the decrease in Γgap is due to the decrease in the
gap velocity as G/D increases. However, the wall suppression effect
is weaker for G/D = 0.3 than for G/D = 0.24, which (as an isolated
effect) would lead to an increase in CD from G/D = 0.24 to G/D
= 0.3. It appears that for G/D ∈ [0.24, 0.3], the total vortex strength
(i.e., from the upper and lower vortices) is stronger affected by the
circulation injection rate than by the wall suppression effect. This
is in contrast to the case of G/D ∈ [0.2, 0.24], where Γgap decreases,
while Γtop increases, resulting in thatCD increases, indicating that the
lower vortex strength here is stronger affected by the wall suppres-
sion than by the circulation generated at the front of the cylinder.
Moreover, it is worth noting that Γgap(= Γgap/T) also keeps decreas-
ing as G/D increases, which is different from Γtop and CD, as shown
in Figs. 16(b) and 14(a), respectively. It appears that the decrease in
T induced by increasing G/D does not compensate the simultaneous
decrease in Γgap due to the decrease in flow velocity in the gap caused
by increasing G/D.

Now, the nearly constant value of St for G/D ∈ [0.24, 0.3] for
Re = 150 [Fig. 16(a), the moving wall where the no-slip conditions
u = 1 and v = 0 are imposed] is discussed. For a given Re, the vor-
tex shedding frequency is mainly affected by the wall suppression
effect and the bottom-wall shear layer. The effect of these shear layers
can be eliminated by conducting simulations with a slip condition
(∂u
∂y = 0, v = 0) imposed on the bottom wall. At large gap ratios,

e.g., for G/D > 0.3 [Fig. 16(a)], St is almost equal for the two bound-
ary conditions because the shedding vortices are weakly affected by
the bottom-wall shear layers. Here, St increases as G/D increases
due to the weakening of the wall suppression effect. For G/D ∈ [0.2,
0.24], the vortex suppression effect is larger than for G/D > 0.3, but
in this gap ratio range, the bottom-wall shear layers cause the vor-
tex shed from the cylinder bottom to roll up such that it is located
closer to the vortex shed from the cylinder top. This results in an

FIG. 16. (a) The Strouhal number St and (b) the injection
rate Γtop of the circulation into the upper vortex over the top
of the cylinder and the injection rate Γgap of the circulation
into the lower vortex through the gap for Re = 150 with G/D
= 0.2, 0.24, 0.3, and 0.36.

Phys. Fluids 32, 093607 (2020); doi: 10.1063/5.0020818 32, 093607-12

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 17. (a) The time-averaged drag
coefficient CD and (b) the Strouhal num-
ber St for the flow around an elliptic cylin-
der near a moving wall for Re = 100 and
130 with G/D from 0.2 to 0.5.

FIG. 18. The mean lift coefficient Cl against G/D for Re = 150.

enhancement of the vortex shedding frequency (St) for G/D ∈ [0.2,
0.24], which compensates the decrease in St induced by the strength-
ening of the wall suppression effect (as G/D decreases from 0.3 to
0.24), thus resulting in the nearly equal St for G/D ∈ [0.24, 0.3].
Moreover, for G/D ∈ [0.2, 0.24], St increases as G/D increases but
is larger than for the case of applying the slip condition, as shown in
Fig. 16(a).

Figure 17(a) shows the time-averaged drag coefficient CD (a)
and the Strouhal number St (b) for Re = 100 and 130. For Re = 130,
CD exhibits a qualitatively similar behavior as for Re = 150 [shown in
Fig. 14(a)], showing an overall increase in CD as G/D increases from
0.2 to 0.3 with a sudden drop for G/D ∈ [0.3, 0.32]. However, the sud-
den drop of CD does not occur for Re = 100. This is because here the
bottom-wall shear layer becomes weaker, thus reducing its effect on
the vortex shedding frequency at small G/D, i.e., as G/D increases the
vortex shedding frequency increases smoothly as shown in Fig. 17(b)
without a nearly constant region similar to that for Re = 130. Hence,

the circulation is injected into the vortex with higher frequency as
G/D increases, contributing to a stronger vortex shedding, i.e., a
smooth growth of CD.

Figure 18 shows the time-averaged lift coefficient (Cl) against
G/D for Re = 150. The non-zero Cl is caused by the asymmetric flow
distribution around the stream-wise centerline of the cylinder due to
the presence of the moving wall. As G/D increases, the flow tends to
be less asymmetric, leading to a decrease inCl. A qualitatively similar
behavior was also found for the flow around a circular cylinder near
a moving wall for Re < 500.24,27,43

3. The onset location of the two-layered wake
As previously proposed by Jiang and Cheng,11 the onset loca-

tion of the two-layered wake behind the isolated elliptic cylinder
(for AR = 0.4 and for Re = 130) can be identified by the location
of the positive and negative local maxima of the time-averaged ver-
tical velocity contours [i.e., the vertical dashed line in Fig. 19(a)].
A snapshot of the instantaneous vorticity contours is shown in
Fig. 19(b) depicting the Kármán vortex and the two-layered wake
farther downstream. Figure 20 shows the time-averaged vertical
velocity contours (left column) and the instantaneous vorticity con-
tours (right column) for Re = 130 at G/D = 2 and 0.8. Here, the distri-
bution of the time-averaged velocity becomes asymmetric about the
horizontal centerline of the cylinder; the positive local maximum is
slightly farther away from the cylinder than the negative maximum.
Thus, the transition to the two-layered wake occurs farther down-
stream for the upper part than for the lower part of the cylinder. This
is because the lower vortex behind the cylinder is weaker than the
upper vortex due to the wall suppression effect, and thus, the upper
vortex induces a stronger vorticity convection within the lower vor-
tex.6,7 Consequently, the lower vortex distorts and rotates to align
with the stream-wise direction at a location closer to the cylinder
than the horizontal upper vortex. Here, the negative maximum is

FIG. 19. (a) Time-averaged vertical velocity field and (b)
instantaneous vorticity contours for the flow around an iso-
lated cylinder for Re = 130. The black dashed line denotes
the transition location for the two-layered wake.
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FIG. 20. Time-averaged vertical velocity field (left column)
and instantaneous vorticity contours (right column) for the
flow around an elliptic cylinder near a moving wall for
Re = 130 with G/D = 2 and 0.8.

FIG. 21. (a) Definition of the spacing ratio h/l of the Kármán
vortices, where l denotes the distance between two same
sign vortices (V1 and V2), while h represents the distance
between the positive vortex (V3) and the line connecting V1
and V2. (b) Variations of the threshold value of the spacing
ratio h/l against G/D for Re = 130.

used to identify the onset location of the two-layered flow for G/D
= 2 and 0.8 [Figs. 20(a) and 20(c), respectively]. As G/D decreases
from 2 to 0.8, the distance (xloc) between the onset location of the
two-layered wake and the cylinder center decreases. This behavior
can be further explained by the spacing ratio h/l of the Kármán vor-
tices6,7 [Fig. 21(a)], where l denotes the distance between two same-
sign (here negative) vortices (V1 and V2), while h represents the
distance between the vortex (V3) with opposite sign (here positive)
and the line connecting V1 and V2. This spacing ratio h/l increases
as the Kármán vortices move downstream and then reaches a thresh-
old value at xloc, where the transition of the two-layered wake
occurs.

The threshold value of h/l is here determined by the center of
the V3 vortex being located at the dashed line [determined by the
time-averaged vertical velocity, Fig. 20(a)]. Here, the threshold val-
ues are 0.453, 0.45, and 0.449 for the isolated elliptic cylinder with
AR = 0.4 and Re = 100, 130, and 150, respectively. This is in qualita-
tive agreement with the results obtained by Durgin and Karlsson6

and Karasudani and Funakoshi7 for an isolated circular cylinder,
reporting the threshold values in the range of 0.45–0.5 for Re rang-
ing from 80 to 150. It appears that the threshold value does not vary
much with AR and Re in the absence of the wall; the threshold value
is dominated by the wall. The wall suppression effect leads to the
V1 and V2 vortices being stronger than the V3 vortex, thus caus-
ing a stronger vorticity convection within the V3 vortex than that

for the isolated cylinder where these three vortices are of almost
equal strength.6 Consequently, the V3 vortex distorts and rotates
closer to the cylinder as G/D decreases (i.e., as the wall suppres-
sion effect becomes stronger), forming the two-layered wake, i.e.,
xloc decreases as G/D decreases, as shown in Fig. 22. This coincides
with the behavior for the threshold value of h/l, which decreases with
decreasing G/D, as shown in Fig. 21(b) for Re = 130. In contrast, xloc
increases as G/D decreases from 0.6 to 0.5 for Re = 100 and from

FIG. 22. The distance (xloc) between the onset location of the two-layered wake
and the cylinder center for G/D from 3 to 0.2 and for Re = 100, 130, and
150.
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FIG. 23. The vorticity contours for the flow around an elliptic cylinder near a moving
wall for Re = 130 with G/D = 0.4 and 0.5; for contours with values from −5.5 to 5.5,
the difference in value between two adjacent contour lines is 1. Black dashed and
solid lines indicate the negative and positive values, respectively, while the red and
blue dashed lines denote a reference line at x = 1.4 and the onset location of the
two-layered wake, respectively.

0.5 to 0.4 for Re = 130. It appears that an increase in the low veloc-
ity in the gap with decreasing G/D leads to the lower shear layer
beneath the cylinder rolling up slightly farther downstream for G/D
= 0.4 [Fig. 23(a)] than for G/D = 0.5 [Fig. 23(b)], thus resulting in a
larger xloc.

Thompson et al.28 investigated the effect of Re on xloc for the
flow around an isolated elliptic cylinder for AR ∈ [0.25, 1] and found
that xloc decreases as Re increases from 100 to 150. This is because an
increase in Re leads to a stronger increase in h/l downstream, result-
ing in the threshold value of h/l being achieved closer to the cylinder.
This behavior is qualitatively similar to that observed in Fig. 22 for a
given G/D. Moreover, xloc is less sensitive to G/D when G/D > 1.4 for
Re = 100 and G/D > 1 for Re = 130 and 150. This can be explained by
that a decrease in Re forms a thicker shear layer on the bottom of the
cylinder, which starts to interact with the bottom-wall shear layer at
a relatively large G/D for low Re.52

VI. SUMMARY AND CONCLUSIONS
In this work, the flow over an elliptic cylinder near a mov-

ing wall is investigated for Reynolds numbers less than 150. Here,
the ratio between the gap (i.e., the distance between the cylinder
and the wall) and the length of the semi-major axis of the ellip-
tic cylinder varies from 0.1 to 5. This ratio is hereafter denoted as
the gap ratio. The resulting Kármán vortex street, the two-layered
wake, and the secondary vortex street have been investigated and
visualized.

In the steady flow regime, the wake contains two asymmet-
ric counter-rotating recirculation vortices attached to the cylinder.
Here, the lower vortex center is located closer to the cylinder than
the upper vortex center. This difference increases as the gap ratio
decreases (for a given Reynolds number) due to the stronger wall
suppression effect on the lower vortex for lower gap ratios. As the
Reynolds number increases (for a given gap ratio), this difference
decreases since thinner shear layers are formed, resulting in a weaker
interaction between the shear layers beneath the cylinder bottom
and above the wall. Moreover, as the gap ratio decreases (for a given
Reynolds number), the time-averaged drag coefficient decreases,
while the time-averaged lift coefficient increases; as the Reynolds
number increases (for a given gap ratio), the drag and lift coefficients
decrease almost linearly in the log–log scale.

In the unsteady flow regime, four different wake patterns have
been classified: (i) at relatively large gap ratios, the flow, which is
denoted as wake pattern A, contains the Kármán vortex street, the
two-layered wake, and the secondary vortex street; (ii) a decrease
in the gap ratio leads to the suppression of the vertical fluctuations
in the far-wake region, resulting in the disappearance of the sec-
ondary vortex street; this represents wake pattern B; (iii) a further
decrease in the gap ratio leads to the break-down of the Kármán
vortex, resulting in a pair-wise vortex shedding (denoted as wake
pattern C); or (iv) forming a quasi-steady near-wake region (with
constant lift and drag coefficients) and a pair-wise vortex shedding
farther downstream, which is denoted as wake pattern D. Moreover,
an increase in the Reynolds number (for a given gap ratio) enhances
the vortex shedding behind the cylinder, thus triggering the transi-
tion between two different wake patterns. Therefore, a smaller gap
ratio is required for a higher Reynolds number to maintain the
same wake pattern, i.e., a smaller critical gap ratio is required for
the transition between two different wake patterns (except for wake
pattern D).

The time-averaged drag coefficient increases gradually as the
gap ratio increases (for a given Reynolds number) due to the decay
of the wall suppression effect. A sudden drop of the time-averaged
drag coefficient is observed as the gap ratio increases from 0.3 to
0.32 and from 0.24 to 0.3 for Reynolds numbers of 130 and 150,
respectively, where the vortex shedding frequency remains nearly
constant. It appears that the vortex strength here is determined by
the total circulation injected into the wake from the top and the
bottom of the cylinder. This total circulation decreases as the gap
ratio increases due to less fluid moving upward along the cylinder
and a decrease in the flow velocity. Consequently, weaker upper
and lower vortices are formed for larger gap ratios, resulting in a
sudden drop of the time-averaged drag coefficient. Moreover, the
time-averaged lift coefficient increases as the gap ratio decreases (for
a given Reynolds number) due to more asymmetric flow distribution
around the cylinder.

A stronger wall suppression effect for smaller gap ratios leads
to the upper vortex being stronger than the lower vortices, thus
enhancing the convection of the vorticity within the lower vortex.
Consequently, the lower vortex distorts and rotates to align with the
stream-wise direction at a location closer to the cylinder than the
horizontal upper vortex, showing that the onset location of the two-
layered wake moves closer to the cylinder as the gap ratio decreases
(for a given Reynolds number).

Overall, the present work gives some insight into the physical
process of transitional movements of bluff bodies near a stationary
plane wall (including the far-wake dynamics), which is relevant for
engineering and geophysical applications, such as an AUV moving
over the seabed. In future studies, the effects of the aspect ratio and
the angle of attack, as well as the effect of turbulence on this physical
process (i.e., on wake patterns and drag and lift coefficients) should
be addressed.
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