
On Orbital Stabilization as an alternative to Reference
Tracking Control

Christian Fredrik Sætre1 Anton Shiriaev1

Abstract

With the purpose of highlighting the concept of orbital stabilization as an alternative to the reference tracking
control methodology, this paper considers simple, informative examples in relation to motion control of an one-
degree-of-freedom, double integrator system. In this regard, the notions of (excessive) transverse coordinates,
projections operators and the transverse linearization are introduced, and it is illustrated how these can be used
both for the design and analysis of orbitally stabilizing feedback controllers.
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I. INTRODUCTION

For certain motion control tasks, it is the closeness to the desired motion in the state space of the
system which is of paramount importance, whereas the timing of the motion, that is, having the system
in specific configurations at specific time instants, is of less importance (if important at all). For such
tasks, the reference tracking control-methodology, in which the desired motion is represented by a
time-varying reference signal which is to be tracked, may not be well suited. Indeed, since the timing-
property necessarily will be an inherent part of any such control scheme, it follows that even if just
slightly delayed, the system might be momentarily driven away from the nominal motion in order to
instead “catch-up in time”.

For example, consider a particle q ∈ R of unit mass, whose time-evolution is governed by the
second-order equation

q̈ = u. (1)

Here u ∈ R is a control input and q̇ = d
dt
q. Suppose we want the particle to move in a sinusoidal

fashion with amplitude a and frequency ω, that is,

q∗(t) = a sin(ωt), (2)

where the subscript “∗” denotes the nominal, desired behaviour. Towards this end, we could define
the tracking error e(t) := q(t) − a sin(ωt) and utilize some regular reference tracking controller; for
example, taking

uPD = −aω2 sin(ωt)− kpe− kdė (3)

results in the error dynamics ë = −kpe− kdė, which are stable for any kp, kd > 0.
However, the controller (3) has an explicit dependence on time due to the reference signal r(t) =

a sin(ωt) appearing in the computations of the error, e, its time derivative, as well as in the feedforward
term. That is, the closed-loop system is time-varying, not autonomous. As a consequence, if we for
instance start the system with, say, the initial conditions (q0, q̇0) = (0,−aω) the system will experience
a “catch-up” effect as the initial velocity error is ė0 = −2aω even though it starts directly on the desired
orbit, defined by

η∗ = {(q, q̇) = (a sin(ωt), aω cos(ωt)), t ∈ [0, 2π/ω)} . (4)

Indeed, as the analogy considered in [1] of a car driving on a curvy mountain road illustrates, this
effect can potentially have serious consequences, as in its pursuit of catching-up in time from a delay,
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a tracking controller might actually end up cutting a corner and taking the car off the road! Thus, if
our main concern is the convergence of the system’s states to the orbit η∗ rather than to a specific time
instant along it, a tracking controller might not necessarily be the best choice.

As an alternative to reference tracking, we can instead try to find a completely state-dependent
controller, i.e. u = u(q, q̇), resulting in the corresponding autonomous closed-loop system admitting the
periodic orbit η∗ as an asymptotically stable limit cycle. Such a controller is said to be an orbitally
stabilizing controller as it stabilizes the desired orbit (the set of all states along the nominal solution)
as a whole, not just a particular time-leaf (moving) along it.

Although the concept of orbital stabilization has been well known for several decades,1 its use in
motion control is not wide spread at present. Recently, however, some methods have appeared in the
literature which try to make it a more viable option for common robotics tasks. These include immersion
and invariance-based approaches [3] and transverse linearization-based approaches [4], [5]. We will in
this paper focus on the latter type of approach.

In this regard, orbital stabilization of periodic motions of a fully actuated robot manipulator was
considered in [4] by stabilizing an excessive set of so-called transverse coordinates. This approach
has recently been further extended in [5], [6] to underactuated systems, with the additional relaxation
that the so-called projection operators – mappings recovering the current “position” along the nominal
motion – only have to be state-dependent and not strictly configuration-based as in [4]. Moreover, new
insights were there provided in regards to a useful tool for orbitally stabilizing feedback design, as well
as for general analysis of orbital (in-)stability in the large: the transverse linearization.

In this paper, we consider the approach and analysis tools outlined [5], [6] in relation to the particle
system (13). The simplicity of this system allows for constructive- and illustrative examples, both
highlighting some advantageous and disadvantageous of orbitally stabilizing controllers in comparison
to basic (PD+feedforward-) reference tracking controllers. Furthermore, it facilitates the demonstration
of how analysis- and construction of new types orbitally stabilizing feedback controllers can be achieved
using the transverse linearization-based tools provided in [5], [6].

A brief outline of the paper follows. In Section II we propose two novel (nonlinear) controllers for
orbital stabilization of periodic oscillations of the particle system (see Propositions 1 and 2). A detailed
analysis of the transverse linearization of an excessive set of transverse coordinates, eventually resulting
in the proof of Proposition 2, is in then given in Section III. We then briefly demonstrate that orbital
stabilization is not limited to only periodic motions in Section IV, before we end with some concluding
remarks.

II. ORBITALLY STABILIZING FEEDBACK DESIGN

A. A single transverse coordinate

We begin by noting that the desired trajectory (2) is the solution to the following initial value problem
(IVP):

q̈ = −ω2q, (q(0), q̇(0)) = (0, aω).

Thus, using the well-known identity 2q̈ = ∂q̇2/∂q, we can integrate the above IVP and rearrange it in
order to obtain that the function I : R2 → R, defined as

I(q, q̇) :=
1

2
q̇2 +

1

2
ω2(q2 − a2), (5)

must be invariant along the solution. In fact, I(·) is a so-called transverse coordinate: it it vanishes on
the orbit (4), i.e. I(q∗, q̇∗) ≡ 0, is non-zero away from it, and its gradient, DI = [ω2q, q̇], evaluated along
the orbit can be seen to be orthogonal to the orbit’s nominal flow. As a consequence, if we stabilize its
origin, we simultaneously stabilize the orbit!

1The general notion of orbital (Poincaré) stability we consider here of course dates back to Poincaré [2] over a century ago.



Indeed, the following statement can be used in this regard.
Proposition 1: Given some Lipschitz continuous mapping f : R → R, let w(t) = w(t+ T ), T > 0,

be the (bounded) periodic solution of the initial value problem

ẅ = f(w), (w(0), ẇ(0)) = (q0, q̇0), (6)

satisfying |f(w(t))|2 + |ẇ(t)|2 > 0 for all t ∈ [0, T ). Then for all (q, q̇) within the orbit

η∗ := {(q, q̇) = (w(t), ẇ(t)), t ∈ [0, T )},
the scalar function I = I(q, q̇), defined by

I :=
1

2
q̇2 − 1

2
q̇20 −

∫ q

q0

f(σ)dσ, (7)

vanishes. Moreover, taking in (1) u = uI , with

uI := f(q)− kIsgn+(q̇)I, sgn+(q̇) =

{
1 if q̇ ≥ 0

−1 if q̇ < 0
, (8)

for some kI > 0, renders q∗(t) = w(t) an asymptotically stable solution of the particle system (1) in
the orbital sense.

Proof: If the controller is taken according to (8), straightforward computations show that İ =
−kI |q̇|I . Defining the C1 Lyapunov function candidate VI := 1

2
I2, we therefore obtain V̇I = −kI |q̇|I2 ≤

0, which is negative definite as long as |q̇| 6= 0. From the relation |f(w(t))|2 + |ẇ(t)|2 > 0 and the
continuity of f(·), it follows that there exists some nonzero neighbourhood of the orbit η∗ in which
|q̈| > 0 whenever q̇ ≡ 0. Indeed, if q̇ ≡ 0 and q is in η∗, then q̈ = f(q) + ki(

1
2
q̇20 +

∫ q
q0
f(σ)dσ) =

q̈∗(t) + kI
2
q̇∗(t). Hence, by LaSalle’s invariance principle, we can conclude that the origin of I is locally

asymptotically stable, which again implies that the orbit η∗ is asymptotically stable.
Whilst this approach of using the coordinate I and the controller (8) will indeed orbitally stabilize the

periodic orbit within some non-zero neighbourhood, it is very case specific. That is to say, the system,
in addition to being scalar, is both fully actuated and has trivial dynamics. We therefore present a more
general approach utilizing an excessive number of transverse coordinates next.

B. Excessive transverse coordinates
Let us begin by observing that the nominal trajectory (2) can be reparameterized on the following

form:
q∗(s) = a sin(s) =: φ(s),

q̇∗(s) = a cos(s)ω=: φ′(s)ṡ∗,

ṡ∗(s) = ω =: ζ(s).

(9)

The scalar variable, s ∈ S := [0, 2π), is referred to as the motion generator (MG), and is simply a
re-scaling of time along η∗, i.e. s = ωt. More importantly, as s−atan2(ωq∗, q̇∗) ≡ 0, it can be recovered
by a projection of the system’s states down upon the orbit using the projection operator

s = P (q, q̇) := atan2(ωq, q̇), (10)

with atan2(·) denoting the four-quadrant arctangent function.
With this parameterization, one has several natural candidates for transverse coordinates of which to

stabilize:

y = q − φ(s), (11a)
ẏ = q̇ − φ′(s)ṡ, (11b)
z = q̇ − φ′(s)ζ(s), (11c)
ξ = ṡ− ζ(s). (11d)



So which should we pick? Or just as importantly, how many of them do we need to consider? That is, if
x⊥ is the vector of transverse coordinates, whose origin we want to stabilize, what should its dimension
be? By simple reasoning, as the system has two states, (q, q̇), and since we have one none-vanishing
coordinate uniquely parameterizing the orbit, i.e. the MG s, it is implied that x⊥ has to be of unit
dimension for there to exist a well defined (local) diffeomorphism (q, q̇) 7→ (s, x⊥). Hence, there exists
at most one independent transverse coordinate at any given time.

The only candidate always satisfying this among the possible coordinates in (11) is ξ, which takes the
place of the coordinate I defined in the previous section; that is Î = 1

2
(ṡ+ ζ(s))ξ. However, note that

it is dependent upon the velocity, ṡ, of the MG, which can be non-trivial to find as it will be dependent
on q̈; indeed, ṡ = ∂P

∂q
q̇ + ∂P

∂q̇
q̈.

Thus, suppose we instead take2 x⊥ = (y, z)T, that is, an excessive number of coordinates, which
then only depends on the states and the MG, not its velocity ṡ. It is clear that, even though the triplet
(s, y, z) can have at most two independent elements at any given time, if we stabilize the origin of the
excessive coordinates x⊥, we simultaneously stabilize the nominal trajectory in the orbital sense.

The following statement demonstrates this fact.
Proposition 2: For any two constants ky, kz ∈ R with kz > 0, the controller

u = −ω2a sin(s)− kyy − kzz, (12)

exponentially orbitally stabilizes the desired trajectory (2).
The proof of Proposition 2, as well as further analysis in regards to excessive transverse coordinates

for this example, is given in Section III. The analysis there is based on a transverse linearization, that
is, the linearization of the dynamics of the coordinates (y, z) along the solution. Thus the above stability
result is of course only local. Nevertheless, it is quite surprising that it is true regardless of the value
of ky. Taking ky > 0 is however likely advantageous in terms of the convergence rate.

It is also important to note that even though the structure of the controller (12) is reminiscent of
the reference tracking controller (3), it is an inherently nonlinear controller due to the definition of the
projection operator (10).

C. Simulation: Reference tracking vs. orbital stabilization

Consider again the scalar particle example (1), but suppose its true mass is in fact 1.5 kg and that it
is also subject to an unknown dry friction term:

3

2
q̈ = u− 2sgn(q̇). (13)

The task is as before to converge to the periodic orbit (4). Towards this end, we compared the following
three controllers: the uPD-controller (3) with (kp, kd) = (4, 4); the controller (8) taken as uI = −ω2q−
sgn+(q̇)I with I given by (5); and the uyz-controller (12) with (ky, kz) = (4, 4).3

Figure 1 shows the obtained phase portraits and control inputs from numerically simulating the system
(13) when starting at (q0, q̇0) = (0,−3aω/2) with a = π/2, ω = π and with white noise added to the
measurements. It is clear that, whereas the orbitally stabilizing controllers uI and uyz quite quickly
converge close to the orbit in a quite natural way, the reference tracking (feedforward+PD)-controller
takes a much more aggressive action and a significant detour corresponding to the previously mentioned
“catch-up”-effect, before eventually converging to a somewhat perturbed orbit.

Although this simple example provides some experimental evidence for the uyz-controller based on
the excessive transverse coordinates indeed being orbitally stabilizing for the system here considered,

2Taking ẏ as one of the coordinates instead of z would also be a valid choice but again requires knowledge of ṡ, which, as stated, can
be nontrivial to find and which can be highly sensitive to model uncertainty.

3The controller gains are here picked rather arbitrary in order to best illustrate the concept of orbital stabilization compared to reference
tracking, and are therefore not chosen towards the goal of optimizing performance.
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Fig. 1. Phase portrait and control input from the comparison between a reference tracking PD-controller (–) and two orbitally stabilizing
controllers using, respectively, one (-·-) and two (- -) transverse coordinates. The green, dotted line (· · · ) corresponds to the nominal orbit.

we have yet to prove Proposition 2. Therefore, in the next section, we will give such such a proof
by first deriving the linearization of the dynamics of the excessive transverse coordinates along the
trajectory, a so-called transverse linearization, and in doing so, provide further insight into this form of
linearization.

III. A USEFUL TOOL: THE TRANSVERSE LINEARIZATION

A. Deriving the Linearized Transverse Dynamics

Let x = [q, q̇]T ∈ R2 denote the states of (1), and suppose we know a feasible trajectory parameterized
on the form

xs(s) =

[
φ(s)

φ′(s)ζ(s)

]
, s ∈ S, (14)

given some known scalar, C2-smooth function φ, with φ′(s) = d
ds
φ(s), and where the C1-function

ζ : S → R>0 recovers the nominal velocity of s along the orbit, i.e. ṡ∗(t) = ζ(s∗(t)). Further suppose
that we know a smooth projection operator P : R2 → S, that is s = P (x), which is well defined in a
tubular neighbourhood of the trajectory. We will denote by DP (x) = [∂P

∂q
(x), ∂P

∂q̇
(x)] its gradient and

by DDP (x) = ∂2P
∂x2

(x) its symmetric Hessian matrix.
As q̈∗(s) = u∗(s), it follows from the parameterization (14) that the nominal control input along η∗

is given by
u∗(s) = [φ′′(s)ζ(s) + φ′(s)ζ ′(s)] ζ(s). (15)

Thus suppose we take4 u = u∗(s) + v for some v ∈ R to be defined. Recalling the definitions of (y, z)
in (11), it is not difficult to show that the dynamics of the system then can be rewritten on the following
equivalent form:

ẋ = x′s(s)ζ(s) +

[
1
0

]
z +

[
0
1

]
v. (16)

4Rather than taking u∗(s) in (15) directly, on can instead take any smooth function υ : R2 × S → R satisfying υ(xs(s), s) ≡ u∗(s)
for all s ∈ S; see [6]. Although note that this could alter the subsequent analysis somewhat.



Now, let x⊥ := x − xs(s) be a vector of the transverse coordinates corresponding to the pair (y, z)
as defined in (11). Defining the Jacobian matrix function

Ω(x) := I2 − x′s(s)DP (x) (17)

such that ẋ⊥ = Ω(x)ẋ, we thus find, using (16), that

ẋ⊥ = Ω(x)

(
x′s(s)ζ(s) +

[
1
0

]
z +

[
0
1

]
v

)
(18)

which are the dynamics of the excessive transverse coordinates, also referred to simply as the transverse
dynamics.

Our goal will now be to linearize these transverse dynamics along the orbit, that is, perform a so-called
transverse linearization. Towards this end, using the subscript notation DPs(s) := DP (xs(s)), it follows
from the definitions of P (·) and ζ(·) that P (xs(s)) = s, or equivalently ζ(s) = DPs(s)x

′
s(s)ζ(s), which

again implies the relation
DPs(s)x

′
s(s) ≡ 1 (19)

holding for all s ∈ S . As a consequence, the matrix function Ωs(s) := Ω(xs(s)) has x′s(s) as a right
annihilator, while DPs(s) is its left annihilator (see also [5, Lemma 3]).

Consider now the first-order Taylor expansion of DP (·):

DP (x) = DPs(s) + xT⊥DDPs(s) +O(‖x⊥‖2).
By defining B := [0, 1]T, as well as the matrix function

A⊥(s) := Ωs(s)

[
0 1
0 0

]
− x′s(s)x′s

T
(s)DDPs(s)ζ(s),

it follows that we can rewrite the transverse dynamics (18) on the following equivalent form:

ẋ⊥ = A⊥(s)x⊥ + Ω(x)Bv +O(‖x⊥‖2).
Similarly, by defining ψ :=

∫ t
0
(ṡ(τ)− ζ(s(τ))dτ and

A‖(s) := DPs(s)

[
0 1
0 0

]
+ x′s

T
(s)DDPs(s)ζ(s),

as well as using the fact that ṡ = DP (x)ẋ, we obtain

ψ̇ = A‖(s)x⊥ +DP (x)Bv +O(‖x⊥‖2). (20)

Letting B⊥(s) := Ωs(s)B, it therefore follows that the first approximation (variational system) of the
transverse dynamics (18) along the solution (14) is given by the constrained (differential-algebraic)
linear periodic system

d

dt
δx⊥ = A⊥(s)δx⊥ +B⊥(s)v, DPs(s)δx⊥ = 0; (21)

whereas the first approximation of (20) is
d

dt
δψ = A‖(s)δx⊥ +DPs(s)Bv, DPs(s)δx⊥ = 0. (22)

We can here infer from (22) that if the origin of (21) is asymptotically (exponentially) stable, then δψ
approaches some constant number; hence ṡ→ ζ(s) if x⊥ → 0. Indeed, this observation just corresponds
to the well-known fact that a shift in the phase along a periodic orbit does not influence its stability
[7], letting us simply discard (22) in the sequel.

It is here also important to note that the latter condition in (21), that is DPs(s)δx⊥ ≡ 0, is necessary in
order to restrict the solutions to the transverse plane. Indeed, it is not difficult to show that Ω2

s(s) = Ωs(s),
and as δx⊥ = Ωs(s)δx, we must therefore have δx⊥ = Ωs(s)δx⊥, from which the condition follows.
We further demonstrate its necessity next.



B. Necessity of the transversality condition
From the two properties DPs(s)Ωs(s) ≡ 0 and δx⊥ = Ωs(s)δx⊥, it follows that we can readily take

Â⊥(s) := Ωs(s)A(s)Ωs(s)− x′s(s)x′s(s)
T
DDPs(s)ζ(s)

instead of A⊥ in (21). Here the matrix A(·), given by

A(s) :=

([
0 1
0 0

]
+

[
0

u′∗(s)

]
DPs(s)

)
,

corresponds to the variational system of (16) evaluated along the orbit, that is d
dt
δx = A(s)δx + Bv.

Moreover, from the definition of the matrix function Ωs(·) in (17), we can also rewrite A(s) as A(s) =
A(s)Ωs(s) + A(s)x′s(s)DPs(s).

Thus, let us for a moment consider the system

ẇ =
[
Â⊥(s) + Ωs(s)A(s)x′s(s)DPs(s)

]
w +B⊥(s)v, (23)

which if we added the constraint DPs(s)w ≡ 0 would be equivalent to (21). We will demonstrate that
without this condition, however, the origin of (23) can never be asymptotically stable, regardless of
the control law v. Moreover, we will show that this also implies that (21) without the transversality
condition cannot be stabilizable either.

Towards this end, let p⊥ : S → R2 denote a smooth unitary basis of the kernel of DPs(s), i.e.
DPs(s)p⊥(s) ≡ 0 and ‖p⊥‖ = ‖p⊥‖2 = 1. It is not difficult to show that

ṗ⊥(s) =
(
I2 − p⊥(s)pT⊥(s)

)
A⊥(s)p⊥(s).

Similarly, denote by p̂⊥ : S → R2 a smooth normalized basis of the kernel of (x′s(s))
T.

Consider now the following change of coordinates:

w = U(s)ξ, U(s) :=
[

x′s(s)
‖x′s(s)‖

p⊥(s)
]
, (24)

in which one can note that by defining p†⊥ := (p̂T⊥p⊥)−1p̂T⊥, one can take U−1 = [DPT
s ‖x′s‖, (p

†
⊥)T]T.

Moreover, as

d

dt

(
x′s
‖x′s‖

)
=

(
I2 −

x′sx
′
s
T

‖x′s‖2

)
A

x′s
‖x′s‖

,

where we have dropped the s-argument for readability, it follows that

U̇ =

[(
I2 −

x′sx
′
s
T

‖x′s‖2

)
Ax′sDPs +

(
I2 − p⊥pT⊥

)
A⊥Ωs

]
U.

Straightforward computations then show that the dynamics of ξ = [ξ‖, ξ⊥]T with ξ‖, ξ⊥ ∈ R are given
by

ξ̇‖ =

(
x′s

T

‖x′s‖
A

x′s
‖x′s‖

− ζ ′
)
ξ‖, (25a)

ξ̇⊥ = pT⊥A⊥p⊥ξ⊥ + p†⊥Bv. (25b)

As here
∫ t
0

(
x′s

T

‖x′s‖
A x′s
‖x′s‖
− ζ ′

)
dt = ln ‖x′s(s(t))‖ − ln ‖x′s(s0)‖, it is clear that ξ‖(t) = c‖x′s(s(t))‖ for

some c ∈ R. Therefore, from (24), we can conclude that x′s(s) must always be a solution of (23)
regardless of the control input; while, moreover, it follows that the stability of (21) corresponds to that
of the one-dimensional subsystem (25b).



With this in mind, suppose there exists a smooth stabilizing feedback controller for (21) of the form
v = K(s)δx⊥. We can then write the state transition matrix of (25) as

Ξ(t, t0) =

[‖x′s(s(t))‖
‖x′s(s0)‖

0

0 Ξ⊥(t, t0)

]
(26)

where Ξ⊥(t, t0) is the state transition matrix of (25b) with v = K(s)p⊥(s)ξ⊥, that is, ξ⊥(t) =
Ξ⊥(t, t0)ξ⊥(t0).

So what happens if we remove the (ΩsAx
′
sDPs)-part in (23) such that it would correspond to (21)

if we added transversality condition DPs(s)w ≡ 0? It turns out that the dynamics of ξ‖ then stay the
same, whereas (25b) becomes

d

dt
ξ̂⊥ = pT⊥A⊥p⊥ξ̂⊥ + p†⊥(Bv − Ax′sξ̂‖(t0)). (27)

So for ξ̂‖(t0) ≡ 0 it has the same solution ξ∗⊥(t) as (25b), but this is not true whenever ξ̂‖(t0) 6= 0.
Indeed, the state transition matrix is then instead given by

Ξ̂(t, t0) =

[
‖x′s(s(t))‖
‖x′s(s0)‖

0∫ t
t0

Ξ⊥(t0, τ)p†⊥ (BK − A)x′sdt Ξ⊥(t, t0)

]
.

Nevertheless, as clearly

det Ξ̂(t, t0) =
‖x′s(s(t))‖
‖x′s(s0)‖

det Ξ⊥(t, t0) = det Ξ(t, t0),

it is implied by Liouville’s formula that the sum of their characteristic exponents are the same (see e.g.
[8, Def. 10]). Moreover, as (25b) and (27) share the solution ξ∗⊥(t), we can conclude that the condition
DPs(s)δx⊥ = 0 in (21) is vital, as without it the system would always have a non-vanishing (zero
characteristic exponent) solution and thus would never be stabilizable. We will use this fact in the
following section.

C. Proof of Proposition 2
Let us again consider the task of stabilizing sinusoidal oscillations of the particle system. That is, we

consider φ(s) = a sin(s) in (14), but rather than just taking ζ = ω will we for now consider the more
general case of some arbitrary smooth, periodic function ζ : S → R>0.

In order to find the motion generator s in this case, we consider the implicit equation h(q, q̇, s) =

s−atan2
(
qζ(s)
q̇

)
which clearly vanishes on the nominal orbit, letting us utilize Proposition 2 in [6]. That

is, we can use the implicit function theorem in order to find the projection operator in a neighbourhood
of the orbit, as well as to obtain that

DP (x) =
ζ(s)

ζ2(s)q2 + q̇2 − qq̇ζ ′(s)
[
q̇ −q

]
;

which, when evaluated along the orbit, becomes

DPs(s) =

[
cos(s)ζ(s) − sin(s)

]
aζ(s)− aζ ′(s) sin(s) cos(s)

. (28)

Consider now the controller
u = u∗(s) +Kx⊥ (29)

for some constant vector K = [ky, kz]. The linearized transverse dynamics (21) thus become

d

dt
δx⊥ = Acl⊥(s)δx⊥, DPs(s)δx⊥ = 0,



in which, by utilizing that Ωs(s)δx⊥ = δx⊥, we have

Acl⊥ := Ωs (A+BK) Ωs − x′sx′s
T
DDPsζ.

Our aim will now be to derive a condition for the exponential stability of the origin of this system.
For this purpose, we recall that for a regular linear system χ̇ = M(t)χ (e.g. M(·) is constant or periodic)
the sum of its characteristic exponents is given by the formula

σ(M) := lim inf
t→∞

1

t

∫ t

0

Tr M(τ)dτ

where Tr M denotes the trace of M [8]. Thus, as the system here considered is of dimension two,
and we have already demonstrated that it has one solution with zero characteristic exponent, we can
conclude the following statement, which has strong ties to the classical Poincaré test [9, Thm. 5.5].

Lemma 1: A periodic, non-vanishing solution of the particle system (1) under the controller (29) is
exponentially orbitally stable if and only if σ(Acl⊥) < 0.

We will now find conditions on K such that Lemma 1 is satisfied. In this regard, we have

σ(Acl⊥) = lim inf
t→∞

1

t

∫ s

s0

1

ζ
Tr Ωs (A+BK) Ωsdτ

− lim inf
t→∞

1

t

∫ s

s0

Tr x′sx
′
s
T
DDPsdτ.

Utilizing the properties of the trace and the fact that the system is 2π-periodic, the latter part simplifies
as follows:

lim inf
t→∞

1

t

∫ s

s0

Tr x′sx
′
s
T
DDPsdτ =

1

2π

∫ 2π

0

x′s
T
DDPsx

′
sdτ.

Thus we can utilize that the following relation here holds:∫ 2π

0

x′s(τ)TDDPs(τ)x′s(τ)dτ ≡ 0. (30)

Indeed, differentiating DPs(s)x
′
s(s) = 1 from (19) we obtain x′s

TDDPsx
′
s = −DPsx′′s . Thus by (28)

and (9),

DPs(s)x
′′
s(s) =

2aζ ′(s) sin(s)2 − aζ ′′(s) sin(s) cos(s)

aζ(s)− aζ ′(s) sin(s) cos(s)

=
d
ds

(ζ(s)− ζ ′(s) sin(s) cos(s))

ζ(s)− ζ ′(s) sin(s) cos(s)
.

Hence, due to the 2π-periodicity of ζ(·), (30) evaluates to [ln(ζ(s)− ζ ′(s) sin(s) cos(s))−1]2π0 ≡ 0.
Coming back to computing σ(Acl⊥), by the above relation and using the cyclic property of the trace,

it follows that ∫ 2π

0

1

ζ(τ)
Tr Ωs(τ) (A(τ) +BKΩs(τ)) dτ

=

∫ 2π

0

1

ζ
Tr (A+BKΩs) dτ −

∫ 2π

0

1

ζ
DPsAx

′
sdτ.

Using that x′′sζ+x′sζ
′ = Ax′s together with (30), we have DPsAx′s = DPsx

′′
sζ+ζ ′ = −x′s

TDDPsx
′
s+ζ ′;

hence

σ(Acl⊥) =
1

2π

∫ 2π

0

1

ζ(τ)
Tr (A(τ) +BKΩs(τ)) dτ. (31)



It is here interesting to note that this is simply equivalent to the sum of the characteristic exponents of
the original first approximation system under the controller (29), that is d

dt
δx = (A(s) +BKΩs(s))δx,

thus further solidifying the connection between the (planar) Poincaré test [9, Thm. 5.5] and Lemma 1,
which then also readily follows from the Andronov–Vitt theorem [4, Thm. 1].

With the above in place, let us finally compute σ(Acl⊥) for the case considered in Sec. II-B, that
is ζ(s) ≡ ω. As then DPs(s) = [ω cos(s),− sin(s)]/(aω) and x′s(s) = [a cos(s),−aω sin(s)]T, it is
straightforward to show that

Tr [(A(s) +BK)Ωs(s)] = kz cos2(s) +
sin(2s)

2ω

(
ω2 + ky

)
.

Hence by (31) we obtain σ(Acl⊥) = kz/(2ω), such that we can conclude by Lemma 1 that Proposition 2
indeed holds.

IV. ORBITAL STABILIZATION OF NON-PERIODIC MOTION

In the example we have considered so far, we assumed the motion we were to stabilize was periodic.
However, orbital stabilization is not restricted just to periodic motions, but rather to any motion defined
over a finite time interval. Indeed, (asymptotic) orbital stability of some trajectory x∗(t) = x∗(t, x0),
x∗(t0) = x0, defined over the finite interval [t0, tf ], just means (asymptotic) stability of the orbit

η∗ := {x = x∗(t), t ∈ [t0, tf ]} . (32)

As an example, consider a smooth dynamical system

ẋ = f(x) + g(x)u (33)

with state x ∈ Rn and control input u ∈ Rm. Let x∗(t) be a known, bounded trajectory of the unforced
system, i.e. ẋ∗(t) = f(x∗(t)), beginning and terminating at two equilibrium states, denoted x0 and
xf , respectively. Suppose we know a smooth, regular reparametrization xs(s) with s ∈ S := [s0, sf ]
such that xs(s0) = x0 and xs(sf ) = xf . Moreover, assume some projection operator P : Rn → S is
known, which is well defined within some region X ⊂ Rn containing η∗, and which, by defining the
hypersurface Γŝ := {x ∈ X : P (x) = ŝ}, is smooth within {Γŝ, ŝ ∈ (s0, sf )}.

Thus, if we can design some feedback u = K(s)x⊥ which along the orbit ensures contraction of the
transverse coordinates, x⊥ = x−xs(s), towards their origin, then consequently there will be some tubular
subset of ΓS :=

⋃
s∈S Γs, containing η∗, in which we also have contraction to the orbit. If, in addition,

the controller is such that for se ∈ {s0, sf}, the constant matrix
[
∂f
∂x

(xs(s)) + g(xs(s))K(s)
]∣∣
s=se

is
Hurwitz, then the controller renders the orbit (32) asymptotically stable. A geometrical illustration of
this orbital stabilization scheme for point-to-point motions can be seen in Figure 2.

As a practical example, let us again consider the particle system (1) with the objective of restating
the following motion control problem as an orbital stabilization problem.

Problem 1: Find a control input u : [t0, tf ] → R with u(t0) = u(tf ) = 0, such that by starting the
system at rest from q(t0) = q0, the system is driven to (q(tf ), q̇(tf )) = (qf , 0) for some qf > q0.

Taking for simplicity t0 = 0, and using the procedure outlined in Sec. 5.5.1 in [10], we can easily
find one possible solution to this problem on the form of a quintic polynomial:

q∗(t) = q0 +
5∑
i=1

ait
i (34)

for some constant coefficient ai ∈ R. Moreover, as u∗(t) = q̈∗(t), a simple reference tracking
(feedforward+PD) controller similar to (3) considered in the introduction, that is u = u∗(t)−kpe−kdė,
can of course then be utilized, but would again result in a non-autonomous closed-loop system.

While there are many possible way of generating an orbitally stabilizing controller for solving Problem
1 without the explicit timing aspect, we will here utilize the fact that q̇∗ ≥ 0 in order to allow us to use
(34) for this purpose. More specifically, we take s = satqfq0 (q), where satqfq0 (·) is the saturation function



xs(s)
Γŝ

ŝ

x0 xf

Fig. 2. Illustration of the hypersurface Γŝ travelling along the nominal trajectory xs(s). Suppose the space corresponding to the union
of the blue shaded tube that encloses the orbit and the two ellipsoids is made an invariant (and contracting) set by some control action.
If in addition the Jacobian linearization evaluated at both the initial and final equilibrium states, x0 and xf , have regions of attractions
containing the red- and blue shaded ellipsoids, respectively, then an estimate of the region of attraction of the orbit under this orbitally
stabilizing control action is contained within the union of the blue-shaded tube and the darkly shaded semi-ellipsoids.
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Fig. 3. Reference tracking PD-control (blue) vs the orbitally stabilizing controller (red) when starting at q(0) = 1.

with lower- and upper bound q0 and qf , respectively, such that s ≡ q for q ∈ [q0, qf ]. This allows us
to readily use (34), together with its first- and second derivatives, to find the nominal control input
as a function of s, that is us∗ : [q0, qf ] → R, as well as the function ζ : [q0, qf ] → R≥0 such that
q̇∗(t) ≡ ζ(q∗(t)) and with the reparametrization regular: ‖x′s(s)‖ 6= 0 for all s ∈ [q0, qf ].

We again compared the reference tracking controller uPD = u∗(t) − kpe − kdė and the orbitally
stabilizing controller uyz = us∗(s) − kyy − kzz in relation to Problem 1 on the particle system with
uncertainties given by (13), for (q0, qf ) = (0, 10) and (t0, tf ) = (0, 5). We used the same gains as
in Sec. II-C and added white noise to the controller measurements. Notice here that y ≡ 0 whenever
q ∈ [q0, qf ].

The results from starting the system at q(0) = 1 and q(0) = −1 can be seen in Figures 3 and
4, respectively. It is clear from Figure 3 that when starting inside the interval [q0, qf ], the orbitally
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Fig. 4. Reference tracking PD-control (blue) vs the orbitally stabilizing controller (red) when starting at q(0) = −1.

stabilizing controller, uyz, drives the system quickly to the goal states, whereas the reference tracking
controller initially reverses the motion in order to maintain the “timing” given by time-varying reference
signal. On the other hand, when starting outside this interval, as seen in Figure 4, the system is driven
by the orbitally stabilizing controller to the goal state with quite a significant delay.

V. DISCUSSION AND CONCLUDING REMARKS

Through the simple example of an one-degree-of-freedom particle system, we have demonstrated that
orbital stabilization can be a feasible alternative to reference tracking controllers, especially for motion
control tasks in which the importance of the timing of the motion is secondary to the closeness to the
nominal orbit in state space.

Some comments and observations on the presented results and examples which are of particular
interest are stated next.

Implications of Proposition 2: The fact that the controller proposed in Proposition 2 is stabilizing
even if it only depends on the coordinate z is quite surprising, as the map x 7→ (s, z) is not everywhere
a well-defined diffeomorphism. Checking the possibility of generalizing this property to more complex
(periodic) trajectories and to higher dimensional systems is therefore an interesting topic for further
study.

Transverse linearization and the Poincaré test: As was previously stated, the analysis carried out in
Section III, in particular Lemma 1, can in many ways be seen as equivalent (or at least as an alternative)
to the well-known Poincaré test [9, Theorem 5.5] in relation to testing orbital stability of planar systems.
The aforementioned connection with the Andronov–Vitt theorem is also quite interesting in this regard.
Indeed, this type of (transverse) linearization is evidently a useful tool not only for control design, but
also for (in-)stability analysis in the large (see also [5], [9]).

Orbital stabilization of non-period motion: It was demonstrated how orbitally stabilizing controllers
also could be used for stabilization of certain non-periodic trajectories. Indeed, the presented approach



can be extended to orbital stabilization of point-to-point motions of higher dimensional underactuated
systems, in which a single controller then can be used to solve the well-known “swing-up and balance”
problem without the need for any control switching.

Yet in the example considered, some limitations were also revealed. More specifically, it was
demonstrated that when starting sufficiently far away from the orbit, an orbitally stabilizing controller
might lead to unsatisfactory performance and delays if it is not complemented by some additional
method correcting for this deviation. Possible candidates includes replanning the path from the initial
state, or some higher level heuristic which modifies the velocity of the motion generator along the path
on-line, e.g. in a similar manner to the “timing-law” in certain types of path following schemes; see
e.g. [11] and the references therein.
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[11] A. P. Aguiar, J. P. Hespanha, and P. V. Kokotović, “Performance limitations in reference tracking and path following for nonlinear

systems,” Automatica, vol. 44, no. 3, pp. 598–610, 2008.


