
 

 

Inger Helene Hamborg 

 

 

 

 

 

 

 

HIGH-LEVEL MOBILITY  

IN ADULTS WITH TRAUMATIC BRAIN INJURY  

AND ADULTS BORN WITH VERY LOW BIRTH WEIGHT  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BEV3901 Master Thesis 

Human Movement Science Programme 

Norwegian University of Science and Technology (NTNU) 

Trondheim, May 2012 

  



 

 

Acknowledgements 

 

First of all, I wish to thank all the participants in this study. Not only did they partake in motor 

examination, but hours of testing in the larger study as well. 

Further, I would like to thank my eminent supervisors Beatrix Vereijken and Kari 

Anne Indredavik Evensen for invaluable help and guidance throughout the process of writing 

my thesis. You should know that our discussions always motivated me for further work. In 

addition, little Tiril deserves a thank you for affirmative sighs and mirthful moments during 

our meetings. For her, no decision seemed to be complicated. 

I wish to thank everyone involved with “Hodeskadeprosjektet” for all direct and 

indirect help. 

I also owe a great thank you to my fellow students for both scientific and “non-

scientific” support in our reading room, and to my dear friends elsewhere, for making me 

leave it once in a while. 

Finally, I would like to thank my parents for taking me to our peaceful holiday home 

during intense writing periods, and thus providing me with a quiet and calm environment, 

perfect for long hours of research and writing. 

 



i 

 

Contents 

 

Abbreviations ............................................................................................................................. 1 

Abstract ...................................................................................................................................... 2 

1. Introduction ........................................................................................................................ 4 

2. Methods and Material ......................................................................................................... 8 

2.1 Design .......................................................................................................................... 8 

2.2 Participants .................................................................................................................. 8 

2.2.1 TBI group ............................................................................................................. 8 

2.2.2 TBI control group ................................................................................................. 8 

2.2.3 VLBW group ........................................................................................................ 9 

2.2.4 VLBW control group ............................................................................................ 9 

2.3 Background variables .................................................................................................. 9 

2.4 Group-specific variables ............................................................................................ 10 

2.4.1 TBI ..................................................................................................................... 10 

2.4.2 VLBW ................................................................................................................ 10 

2.5 Mobility assessment – High-level Mobility Assessment Tool (HiMAT) .................. 11 

2.6 Procedure ................................................................................................................... 12 

2.7 Examiners .................................................................................................................. 12 

2.8 Ethics ......................................................................................................................... 13 

2.9 Data and statistical analysis ....................................................................................... 13 

3. Results .............................................................................................................................. 15 

3.1 Group characteristics ................................................................................................. 15 

3.1.1 TBI ..................................................................................................................... 15 

3.1.2 VLBW ................................................................................................................ 17 

3.1.3 Control groups .................................................................................................... 18 

3.2 High-level mobility .................................................................................................... 18 

3.2.1 High-level mobility in TBI ................................................................................. 18 

3.2.2 High-level mobility in VLBW ........................................................................... 20 

3.2.3 Comparing high-level mobility in participants with TBI and VLBW ............... 21 



ii 

 

4. Discussion ........................................................................................................................ 23 

4.1 Methodological considerations .................................................................................. 23 

4.2 High-level mobility outcome in adults with TBI ....................................................... 27 

4.3 High-level mobility outcome in adults with VLBW ................................................. 30 

4.4 Comparing adults with TBI and adults with VLBW ................................................. 31 

4.5 Clinical implications .................................................................................................. 34 

5. Implications for future research ....................................................................................... 35 

6. Conclusion ........................................................................................................................ 36 

7. References ........................................................................................................................ 37 

Appendix 1 ............................................................................................................................... 43 

Appendix 2 ............................................................................................................................... 44 

Appendix 3 ............................................................................................................................... 47 

Appendix 4 ............................................................................................................................... 51 

 

 



1 

 

    Abbreviations 

CI   Confidence Interval 

CNS  Central nervous system 

CP   Cerebral palsy 

DAI  Diffuse axonal injury 

EEG  Electroencephalography 

GCS  Glasgow Coma Scale  

GOSE  Glasgow Outcome Scale Extended 

HiMAT High-level Mobility Assessment Tool 

HISS  Head Injury Severity Scale 

MRI  Magnetic resonance imaging 

NICU  Neonatal intensive care unit 

OR   Odds ratio 

PVL  Periventricular leukomalacia 

PTA  Posttraumatic amnesia 

SES  Socioeconomic status 

SD   Standard deviation 

TBI  Traumatic brain injury 

VLBW  Very low birth weight 

 



2 

 

Abstract 

Background and aim: Persons sustaining different types of brain injury may experience 

difficulties with advanced mobility. Both persons with traumatic brain injury (TBI) and 

persons born with very low birth weight (VLBW) have similar brain abnormalities, such as 

reduced white matter and connectivity, and may thus experience similar mobility problems. 

However, few studies have assessed advanced motor abilities, and none have compared 

mobility functions in adult TBI and VLBW populations. Our aim was to investigate high level 

mobility functions in adults with TBI and VLBW adults compared to matched controls, and to 

compare high-level mobility in TBI and VLBW adults. 

 

Methods: Participants consisted of 22 subjects (mean age 22.9 ± 2.0 yrs) with chronic 

traumatic brain injury, and 35 subjects (mean age 22.5 ± 0.7 yrs) born preterm with birth 

weight (below 1500 grams). Two TBI participants were not able to complete all test items due 

to pain. The VLBW group included three subjects with cerebral palsy (CP). Each group was 

matched with its own control group, consisting of 24 subjects each from the same 

geographical area matched by age and sex. Mean age in the control group was 23.3 ± 1.8 yrs 

for TBI and 22.8 ± 0.5 yrs for VLBW. Advanced mobility functions were assessed by the 

High-level Mobility Assessment Tool (HiMAT), which consists of 13 timed mobility tasks, 

with a maximum total HiMAT score of 54. 

 

Results: Mean total HiMAT score in the TBI group was 47.0 ± 7.7 compared to 50.3 ± 3.9 for 

the controls (U=193, p=0.116). Three of 13 mobility tasks differed significantly from the 

control group: ‘walking’, ‘walk over obstacle’ and ‘bound non-affected leg’. When the two 

subjects who reported pain were excluded from the analysis, mean total HiMAT score was 

48.9 ± 4.9 (U=193, p=0.264), with ‘walking’ and ‘walk over obstacle’ remaining significantly 

different from the control group. In the TBI group, nine (40.9%) participants performed at or 

below the 5
th

 percentile compared to 6 (25%) of the TBI controls. Mean total HiMAT score in 

the VLBW group was 45.1 ± 7.8 compared to 49.9 ± 3.5 in its control group (U = 256, 

p=0.011). Five of the 13 mobility task scores were significantly different from the control 

group: ‘walking backwards’, ‘running’, ‘hop affected leg’, ‘bound affected leg’, and ‘bound 

non-affected leg’. When the three subjects with CP were excluded, mean total HiMAT score 

was 46.8 ± 5.5 in the VLBW group (U=256, p=0.033) and three mobility task scores remained 

significantly different from the controls: ‘walking backwards’, ‘hop affected leg’ and ‘bound 
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non-affected leg’. In the VLBW group, 17 (48.6%) participants performed at or below the 5
th

 

percentile compared to 4 (16.7%) of the VLBW controls. When directly compared to the 

VLBW group, the TBI group had (OR 0.733, CI 0.249 – 2.154) lower risk for performing at 

or below the 5
th

 percentile, although not significant. 

 

Conclusions: Compared to controls, adults with TBI had reduced high-level mobility in 

specific tasks. Adults born with VLBW had reduced overall high level mobility. Furthermore, 

the HiMAT seems to be a valuable tool for assessing high-level mobility in VLBW 

populations, and should be formally tested for further use. 

 

Keywords: High-level mobility, high-level mobility assessment tool, traumatic brain injury, 

very low birth weight 
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1. Introduction 

Independent mobility is an essential part of daily life functioning and has substantial 

consequences for social participation, academic performance, work capacity, leisure activities, 

and quality of life. Advanced mobility refers to gross locomotor abilities important for 

accomplishment in essential daily life tasks, such as running, hopping, and skipping (Williams 

and Morris, 2009, Williams et al., 2004). Although there exists a wide variety of mobility 

forms, research has mainly focused on kinematic, kinetic, and EMG characteristics of 

unobstructed, straight-line walking (Sutherland et al., 1980). Gait development in children and 

gait alterations seen in the elderly population have been the most important  in research 

(Wollacott and Horak, 1992). Other forms of mobility are more rarely reported, and there is a 

noticeable gap in the literature concerning advanced mobility function in young adults. 

Mobility is likely to be influenced by brain damage. Consequently, the experience of a 

brain injury may result in a range of sequelae, such as cognitive, attentional, and socialization 

deficits, as well as life-long motor and behavioral impairments. (Khan et al., 2003, Volpe, 

2009b, Yeates et al., 2005). Furthermore, brain injuries can occur at different stages of life, 

such as pre- and perinatal injuries, or as a trauma at later ages. Due to different injury 

mechanisms, early or late occurring brain injuries can result in differences in mobility 

outcome, but also important common features may appear as well.  

Depending on when the brain injury occurs, the central nervous system may have 

different strategies available to allow for recovery from the injury. The perinatal brain has the 

advantage of enhanced neuronal plasticity mechanisms in the first years of life when the brain 

is still developing (Johnston, 2009). Functional and structural changes due to adaptive 

plasticity are beneficial to improve function, and reorganization of the brain’s motor and 

sensory maps, in addition to activity-dependent plasticity across synapses, is the principal 

mechanism for adaptive plasticity after brain injury. Furthermore, activation across synapses 

is determined by the frequency and strength at which the synapses are being used (Johnston, 

2009). In brain injuries occurring as a trauma at later stages of life, cortical reorganization is 

an important recovery mechanism from neural damage (Kimberley et al., 2010, Ramanathan 

et al., 2006). Reorganization may occur as formation of new synapses, or as increased activity 

in existing synapses (Brodal, 2007). Recent studies highlight both synaptic neurotransmission 

and non-synaptic activity to have substantial importance in recovery from traumatic brain 

injury (TBI) (Bach-y-Rita, 2003). Both recovery mechanisms in the premature young brain 
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and in the older mature brain seem to be beneficial, but the effects of early versus late brain 

injury with respect to long-term mobility outcome are largely unknown.  

A common form of brain damage among young adults is TBI, which is defined as “an 

alteration in brain function, or other evidence of brain pathology, caused by an external 

force” (Menon et al., 2010, p 1637) e.g. hitting the head in a traffic accident or fall. The 

incidence of TBI in Europe is 235/100 000 per year, including both hospitalized and fatal TBI 

(Tagliaferri et al., 2006). In Oslo, the incidence is found to be 83/100 000 per year (Andelic et 

al., 2008). However, due to non-reported TBI and the existence of a variety of criteria used to 

estimate incidence, the exact annual incidence rate of TBI is not well documented (Andelic et 

al., 2008).  

TBI can be either diffuse, focal, or a combination of the two mechanisms. Diffuse 

axonal injury (DAI) is the most common type of injury, and occurs most commonly in corpus 

callosum, brain stem, and cortical white matter (Arfanakis et al., 2002). DAI is described as a 

shear-strained deformation of the brain causing a change in the brain’s shape (Arfanakis et al., 

2002), due to acceleration, deceleration, or rotation of the brain (Caeyenberghs et al., 2011). 

Depending on the presence and level of consciousness after the trauma, a TBI may be 

characterized as mild, moderate or severe (Skandsen et al., 2010).  

Various motor-related deficits, and short and long term impairments are reported 

across all degrees of TBI. Sosnoff et al. (2008) reported impaired balance and postural 

control, in addition to increased reaction time in persons with mild TBI 24 hours post-injury. 

Andelic et al. (2010) reported less independency in motor function and activity one year after 

injury in 26% of their adult TBI group (16-55 yrs), suffering from moderate to severe TBI. 

Furthermore, examining adult TBI patients with mild, moderate, and severe injury, Hillier et 

al. (1997) detected upper limb deficit (30%), gait alterations (24%), and impaired balance 

(34%) five years after trauma. In TBI patients at 30-52 years of age, Chou et al. (2004) found 

shorter stride length, decreased walking speed, and increased sideways sway in all severities 

of TBI, two to 15 years post injury. The increased sideways sway reflects difficulties 

maintaining dynamic balance, which is a symptom often reported by TBI patients even a long 

time after injury (Chou et al., 2004).  

In infants, a common cause of brain injury is related to being born with very low birth 

weight (VLBW) (Volpe, 2009a). These infants are born before the 37
th

 week of gestation with 

a birth weight below 1500g. VLBW constitutes 1% of all live births in Norway (Medical Birth 

Registry of Norway, 2009), and the number of preterm survivors has increased over the past 

decades due to advanced neonatal care (Balakrishnan et al., 2011, Evensen, 2010).  
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Periventricular leukomalacia (PVL) refers to focal or diffuse cerebral white matter 

damage (Volpe, 2009a), and is the most common type of brain injury in prematurely born 

infants (Inder et al., 1999, Nagae et al., 2007). Brain injury and developmental problems are 

highly common among VLBW survivors, and problems are often related to cognitive, 

behavioral, attentional, and perceptual deficits, and motor disability (Skranes et al., 2005, 

Volpe, 2003, Volpe, 2009a). Cerebral palsy (CP) is known as the most severe motor sequelae 

(Anderson et al., 2005), occurring in 5-10% of children born with VLBW (Volpe, 2009a). 

Furthermore, Evensen (2010) reported less severe motor deficits in one out of every five 

VLBW children. 

VLBW populations consistently demonstrate motor delay during the first months and 

years of life. Furthermore, motor problems such as reduced balance, manual dexterity, and 

ball skills have been persistently reported in both VLBW children and adolescents (Evensen, 

2010). In a recent meta-analysis by de Kieviet and colleagues (2009), poor fine and gross 

motor skills were found in a total of 23 studies in VLBW children at six to 36 months of age. 

The same meta-analysis reported poorer balance, ball skills, and manual dexterity than 

controls in four studies on VLBW children five to eight years of age, using the Movement 

Assessment Battery for Children (Movement ABC) (de Kieviet et al., 2009). Furthermore, 

using the Bruiniks-Oseretsky Test of Motor Proficiency (BOTMP), a total of 37 studies 

reported poorer overall motor function in persons born with VLBW compared to controls 

born at term (de Kieviet et al., 2009). The BOTMP subscales include tasks assessing running 

speed and agility, balance, bilateral coordination, strength, upper limb coordination, response 

speed, visual motor control, and upper limb speed and dexterity.  

Although individuals with TBI or VLBW suffer from different injury mechanisms, 

injury type and outcome can show remarkable resemblance. Both groups show white matter 

damage (Skandsen et al., 2010, Vangberg et al., 2006), which may imply reduced connectivity 

in the brain and lead to motor problems in executing tasks requiring fine and/or gross motor 

function. Furthermore, reduced fine and gross motor functions are frequently reported in both 

groups, and deficits related to balance and postural control are the most prevailing gross 

motor impairment in both groups. For both persons with TBI or VLBW, returning to work or 

studies, participation in sports and leisure activities, and social activities will depend on 

recovery from the brain injury, as regaining of advanced mobility function is important for 

accomplishment of daily life activities. In VLBW populations, there is an evident lack of 

appropriate tests to examine advanced mobility function. For TBI populations, the most 
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frequently used mobility outcome measures often fail to challenge high-level mobility, which 

is required in order to return to pre-injury activities (Williams et al., 2004). 

The current study focuses on advanced mobility in young adults with possible late or 

early brain damage. There are very few tools available to test advanced mobility in adults, but 

the recently developed High-level Mobility Assessment Tool (HiMAT) (Williams et al., 

2005b) is considered a valuable contribution. The HiMAT includes tasks such as fast walking, 

running, walking in stairs, walking backwards and on toes, the ability to negotiate an obstacle, 

as well as hopping, skipping, and jumping forward from one foot to the other. The HiMAT 

was developed specifically to assess high-level mobility in persons with TBI and is 

recognized as a valid tool in this group (Williams et al., 2006, Williams et al., 2005b), but has 

not yet been used as an assessment tool in persons born with VLBW. However, Williams 

(2004) argues that the HiMAT might be a suitable tool for other neurological conditions in 

adults as well, such as stroke or Parkinson’s disease.  

Due to the above-mentioned similarities in injury type and injury outcome, it is of 

emerging interest to explore high-level mobility functions in young adults with possible early 

versus late brain injury. To the best of my knowledge, this is the first study that assesses high-

level mobility in adults with TBI and adults born with VLBW, and compares this to controls.  

The current study focuses on the following research questions:  

- Do persons with TBI and VLBW have reduced overall high-level mobility? 

- Do persons with TBI and VLBW have different problems related to high-level 

mobility? 
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2. Methods and Material 

2.1 Design 

This double case control study is based on two larger longitudinal follow-up studies: 

“Advanced MRI for diagnosis and outcome assessment in patients with traumatic brain injury 

(TBI)” and “Low birth weight in a lifetime perspective” (Indredavik et al., 2004, Evensen et 

al., 2004) at the Faculty of Medicine, NTNU. The present study involves an adult group with 

TBI and an adult group born with VLBW, each matched with its own control group. Data 

included in the present study were collected between June 2009 and September 2010.  

 

2.2 Participants 

From the larger data sets, young adults between 21 and 25 years of age were included as 

participants in the present study. In the original larger studies, control groups for VLBW and 

for TBI were matched on different variables. Therefore, the control groups are described and 

analyzed separately.  

 

2.2.1 TBI group 

The TBI group consisted originally of 70 participants, age ranging from 16 to 65, with chronic 

traumatic brain injury admitted to St. Olav’s Hospital from October 2004 to October 2007. 

The participants were examined with a neuropsychological test battery three, six and twelve 

months after injury, and MRI examinations were performed within the first four weeks, and at 

three and twelve months after injury. For the current study, 22 participants (15 men and 7 

women), were examined in the chronic phase (one year or more after injury). See Table 1 for 

age, anthropometrical measures, and general background variables at follow-up. 

 

2.2.2 TBI control group 

The TBI control group consisted originally of 65 healthy participants from the same 

geographical area matched by age, sex and education. Controls were recruited among family 

and social networks of the TBI participants and hospital employees, and by contacting 

suitable work places for educational matching. Age was matched within five year intervals. To 

control for socioeconomic status, highest completed education was chosen. Twenty-four 

healthy controls (18 men and 6 women) were included (Table 1). Of these, 12 controls were 
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originally recruited to function as controls for both TBI and VLBW participants, but since this 

study involves both groups, they were included only in the TBI control group in the present 

study.  

 

2.2.3 VLBW group 

The VLBW group consisted of 35 participants (14 men and 21 women), born before 37
th

 

week of gestation with birth weight below 1500 grams (Table1). The group included three 

participants with CP, of which two males had diplegia and one female had hemiplegia. 

Participants had been admitted to the neonatal intensive care unit at St. Olav’s Hospital 

between 1986 and 1988, and participated in the larger longitudinal follow-up study.  

 

2.2.4 VLBW control group 

The VLBW control group consisted of 36 participants from the same geographical area 

(Trondheim) matched to the VLBW group by age and sex. The controls were term-born and 

participated in the same follow-up study as the VLBW participants. They were born to 

mothers enrolled before week 20 of their pregnancy in a study on causes and consequences of 

intrauterine growth restriction (Vik et al., 1997). Since 12 of these participants were also part 

of the control group for TBI in the larger study, they were excluded from the VLBW control 

group in the current study. The remaining 24 participants, 6 men and 18 women, are described 

in Table 1.  

2.3 Background variables 

Prior to testing, anthropometric measures were taken and basic background variables were 

registered in a brief structured interview (Appendix 1). Weight was measured on an electronic 

scale (to nearest 10 grams). Height was self-reported or measured with measure tape. From 

these two measures body mass index (kg/m2) was calculated. Head circumference was 

measured to the nearest 0.1 cm.  

Education was registered in years and dichotomized into < 12 years and ≥ 12 years. 

Current illnesses and injuries that could affect test results were also reported. Pain was 

reported with VAS (Visual Analogue Scale) on a scale from 0 (no pain) to 10 (worst pain 

imaginable) (Appendix 1).  
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2.4 Group-specific variables 

2.4.1  TBI 

Glasgow Coma Scale (GCS) was used to assess initial level of consciousness by evaluating 

eye, motor and verbal response into a range of 3-15 points. The results from GCS were 

categorized into mild (≥13 points), moderate (9-12 points) and severe TBI (≤8 points). An 

extended version of the GCS, Glasgow Outcome Scale Extended (GOSE), was used to 

evaluate ability to cooperate during functional magnetic resonance imaging (fMRI). GOSE 

was registered three, six, and 12 months after injury. 

The Head Injury Severity scale (HISS) is based on the GCS scores and defines the 

injury as ‘minor’ (minimal, mild, moderate) or ‘serious’ (severe and critical). In the present 

study, HISS was dichotomized into ‘moderate’ and ‘severe’ head injury.  

Length of stay (LOS) in acute hospital was registered and dichotomized into short (<9 

days) and long (≥ 9 days) LOS.  

Post traumatic amnesia (PTA) was dichotomized into short (≤ 7 days) and long (> 7 

days) PTA.  

Diffuse axonal injury (DAI), number of contusions, and bilateral brain stem injury 

were identified by MRI scans within four weeks after injury. Injury type and injury velocity 

were also registered. 

 

2.4.2 VLBW 

Birth weight was measured on an electronic scale to the nearest gram in VLBW participants 

and to the nearest 10 grams in controls. Birth length and head circumference in both groups 

were measured to the nearest 0.1 cm.  

The Apgar score evaluates the health status of the newborn on a scale from 0 to 10 

based on heart rate, respiration, muscle tone, reactions, and skin color. Apgar was measured 

one and five minutes after birth.  

CP was diagnosed by neurological examination at ages five and 14, and classified as 

diplegia, hemiplegia, or quadriplegia.  

Full scale IQ was assessed at 20 years of age using Wechsler Adult Intelligence Scale, 

third edition (WAIS-III) (Wechsler, 1997). 
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Socioeconomic status was based on parents’ education and occupation when the 

children were 14 years of age, and calculated in accordance to Hollingshead’s Two Factor 

Index of Social Position (Hollingshead, 1958, Indredavik et al., 2004). 

 

2.5 Mobility assessment – High-level Mobility Assessment Tool (HiMAT) 

Advanced mobility function was assessed by the HiMAT. The HiMAT is a novel assessment 

tool specifically developed to examine high-level mobility function in persons with mild brain 

injury, and is considered valid and reliable for this population (Williams et al., 2005a, 

Williams et al., 2006). Due to similarities within injury characteristics and mobility outcome 

in adults with TBI and VLBW, and lack of alternative suitable tests for the latter group, we 

considered it of interest to apply the HiMAT to describe high-level mobility in the VLBW 

participants. The HiMAT was recently translated to Norwegian by Moen and Kleffelgård 

(Moen, 2011b), and the Norwegian version was used in the current study (Appendix 2).  

The HiMAT consists of 13 timed mobility tasks such as walk, walk backwards, walk 

on toes, walk over obstacle, run, skip, hop forward, bound on both affected and non-affected 

leg, and negotiating stairs. For participants with no motor affection of legs, they were asked to 

indicate their preferred leg. If unknown, participants were asked to perform a single leg 

stance. The chosen leg was considered non-affected. Most items required the participant to 

move along a 20 meters hallway while performing the task in question. The middle 10 meters 

were timed, excluding the acceleration and deceleration phases in the first and last five 

meters. ‘Walk’, ‘walk backwards’ and ‘walk on toes’ were to be performed as fast as possible 

with one foot on the ground at all times. The ‘walk on toes’ task did not allow participant’s 

heel to touch the floor. ‘Walk over obstacle’ involved stepping over a regular house brick. The 

‘skip’ task involved moving by performing one hop on alternating feet forming a rhythmical 

pattern. ‘Hop’ required continuously hopping on the affected leg for the middle 10 meters of 

the hallway. ‘Bound’ was performed by standing on one leg and jumping forward landing on 

the other leg. ‘Bound affected leg’ indicates standing on the non-affected leg and landing on 

the affected leg. While walking up and down stairs, presence of a reciprocal pattern was 

registered in addition to whether or not the railing was used for support.  

All items included a practice trial prior to testing. Participants were asked to complete 

each test item as fast as safely possible, except for bound items (as far as possible), and 

walking on stairs (as you would normally do). The items were scored in seconds and 

centimeters and transformed to item scores. Each item score varies on a scale from 0 to 4 
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points, except for stair tasks that are scored from 0 to 5. Furthermore, the stair items were 

classified as ‘dependent’ or ‘independent’ on the basis of use of railings for support. 

Participants walking without railings (independent) achieved the highest score on the 

dependent item score, in addition to a score on the independent item according to speed, while 

participants walking with the support of railings achieved the lowest on the independent item 

score, in addition to an item score on the dependent item according to their actual 

performance. The maximum total HiMAT score (the sum of all item scores) is 54 points, and a 

higher score indicates better mobility performance (Williams et al., 2005b). If a participant 

failed to complete a test item, the lowest possible score (0) was registered. 

The HiMAT requires that the participant is able to walk 20 meters independently 

without gait aids (orthoses are permitted). Assessment of the test requires a stopwatch, tape 

measure, a brick, 20 m hallway and a staircase of 14 steps. In this study, a 12 step stair was 

used, and scores were therefore calculated according to the manual (measured time x 14/12). 

Duration of testing was approximately 10 minutes. 

High-level mobility problems were defined as a total HiMAT score at or below the 5
th

 

percentile according to published sex-specific norms derived from an Australian population of 

healthy university students (Williams, 2009). 

 

2.6 Procedure 

All participants were asked to avoid being under the influence of any kind of caffeine, 

tobacco, or alcohol during testing. On the day of testing, participants were guided to a room to 

complete a questionnaire concerning cognitive function, psychological health, and quality of 

life. By random selection participants were subsequently taken to MRI, EEG and motor 

examinations during the day. On breaks between examinations, participants carried on with 

the questionnaire. They were also recommended to get some rest between examinations. MRI 

and EEG examinations lasted for 60 minutes each. Motor examinations lasted for 30-40 

minutes and consisted of a structured interview (Appendix 1) and anthropometrical measures 

prior to several fine and gross motor tests. Depending on the number of participants meeting 

for testing that day, participants usually finished all assessments within 6 hours.  

 

2.7 Examiners 

Three examiners were responsible for motor testing and interviews, two of which were 

physiotherapists and one a master student in human movement science (author of this thesis). 
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Prior to data collection, examiners were trained by a physiotherapist with comprehensive 

knowledge about the HiMAT. All examiners were blinded to group adherence in the TBI 

study. In the VLBW study, examiners were blinded to neonatal history.  

 

2.8 Ethics 

The Regional Committee for Medical Research Ethics has approved both “Advanced MRI for 

diagnosis and outcome assessment in patients with traumatic brain injury (TBI)” (REK 

number 4.2009.1019) and “Low birth weight in a lifetime perspective” (REK number 

4.2005.2605). Participants received information about participation (Appendix 3) in the study 

prior to examination, and written and oral informed consent was obtained from all participants 

on the day of testing (Appendix 4). Participants were informed that they could refuse any test 

item they considered unsafe or too difficult. All methods were non-invasive, and considered 

safe, and the mobility test was easy to use in clinical settings. Participants received 1000 NOK 

for participation.  

 

2.9 Data and statistical analysis 

Predictive Analytic SoftWare (PASW) Statistics for Windows, version 19.0 (SPSS Inc., 

Chicago, IL), was used for statistical analysis in this study. P-values less than 0.05 were 

considered statistically significant. 

To compare proportions between groups, the chi-square test or the Fisher Exact test 

(when minimum expected count was less than 5) were used. The Kolmogorov-Smirnov test 

was used for the assessment of normality. For normally distributed data, group comparisons 

were performed by the Kolmogorov-Smirnov Z test (reported by Z-value).  The Mann-

Whitney U test (reported by U-value) is the non-parametric equivalent, and was used for 

group comparisons on background variables that deviated significantly from a normal 

distribution, and on the non-parametric data of the HiMAT. The test assumes that data are 

ordinal, but not normally distributed, and thus applicable to the HiMAT data. 

Odds ratio (OR) with 95% confidence interval (CI) was calculated to estimate the 

relative risk for participants with TBI or VLBW to obtain a total HiMAT score at or below the 

5
th

 percentile compared to controls. Thus, the OR gives an estimated measure of the 

prevalence of poor high-level mobility in adults with TBI and VLBW compared to controls. 

In case-control studies, OR is considered valid when conditions are rare, and is therefore 

suitable for assessing the risk of having mobility problems in both TBI and VLBW 
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populations. Cut-off values for the 5
th

 percentile were chosen in accordance to normative 

values published by Williams and colleagues (Williams, 2009). The values are calculated for 

both sexes in participants between 18 and 25 years of age, and are therefore considered 

appropriate for the participants in the present study.  

Correlation analyses were performed to investigate possible relationships between 

background variables and HiMAT results. Correlations were calculated using Spearman’s rho, 

and p-values were set to <0.05. Variables that showed significant correlations with both the 

independent variable (group) and dependent variables (total HiMAT score and the 5
th

 

percentile of the total HiMAT score) were subsequently included in a logistic regression 

analysis as potential confounders. A reduction of the OR of at least 10% was considered of 

significant importance.  

Two TBI participants were not able to complete all test items. Thus, in accordance 

with the manual, they were given a score of 0 for these tasks.  

All group analyses were done both with and without pain participants in the TBI 

group, and with and without participants with CP in the VLBW group.  
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3. Results 

3.1 Group characteristics 

3.1.1 TBI 

Background characteristics for the TBI group are presented in Table 1. Chi-square tests, 

Kolmogorov-Smirnov Z-tests and Mann-Whitney U-tests revealed no statistical differences in 

anthropometric measures, except from BMI which was lower in TBI participants compared to 

controls (Z=1.394, p=0.041). None of the matched variables (Sex: Fisher’s Exact test, 

p=0.746; Age: Z=0.808, p=0.530; Education: Fisher’s Exact test, p=1.000) differed 

significantly between participants with TBI and their control group, indicating successful 

matching. Exclusion of two pain participants did not change the results noteworthy. TBI 

participants and their controls did not show any differences in variables such as exercise, 

recent injury, recent illness, medication, or pain. ‘Number of activities’ was statistically 

different between the TBI group and the control group (Z=1.360 p=0.049), reflecting a higher 

amount of activities among controls. ‘Number of activities’ was still significant between 

groups after exclusion of two pain participants. 

Table 1. Age, anthropometrical measures, and general background variables in the very low birth weight 

(VLBW) group, traumatic brain injury (TBI) group, and the two control groups. 

 Age, anthropometrics 

TBI 

(N=22) 

Mean (SD) 

Control TBI 

(N=24) 

Mean (SD) 

VLBW 

(N=35) 

Mean (SD) 

Control VLBW 

(N=24) 

Mean (SD) 

Age (years) 22.9 (2.0) 23.3 (1.8) 22.5 (0.7) 22.8 (0.5) 

Height (cm) 179.3 (8.5) 178.9 (8.4) 169.0 (9.5) 170.5 (9.6) 

Weight (kg) 76.6 (13.9) 81.7 (13.2) 67.1 (13.9) 69.0 (14.8) 

Body mass index (kg/m
2
) 23.8 (2.9) 25.5 (3.3) 23.4 (4.2) 23.6 (3.8) 

Head circumference (cm) 57.8 (1.9) 58.3 (1.5) 55.9 (1.9) 56.8 (1.5) 

 

Background variables 

 

    

Exercise (number of activities) 1.7 (1.1) 2.5 (1.5) 1.7 (1.1) 2.3 (1.4) 

Pain (Visual analogue scale, cm) 0.7 (1.5) 0.7 (1.9) 1.0 (2.5) 1.2 (2.4) 

 Background variables (yes/no) 

TBI 

(N=22) 

Number 

Control TBI 

(N=24) 

Number 

VLBW 

(N=35) 

Number 

Control VLBW 

(N=24) 

Number 

Education completed (≥12yrs/<12yrs)  11/11 13/11
 

20/13
a
 21/3 

Exercise (yes/no) 18/4 21/3 26/9  20/4 

Recent injury (yes/no) 7/15 6/15
b 

10/25 8/18 

Recent illness (yes/no) 0/22 2/22 9/26 8/16 

On medication (yes/no) 4/18 4/19
c 

8/26
d 

8/16 

SD = Standard deviation. 
a
 n=33, 

b
 n=21, 

c
 n=23, 

d
 n=34. 
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Group-specific variables for the TBI group are shown in Table 2. Traffic accidents was the 

most common injury mechanism occurring in 13 of 24 participants (59.1%). Other injury 

mechanisms in this group were falls in five participants (22.7%), one ski accident (4.5%), and 

‘unknown’ in three participants (13.6%). All traffic accidents were defined as ‘high velocity 

injuries’, whereas fall, ski, and unknown accidents were defined as ‘low velocity injuries’. Of 

the participants recovering from traffic accidents, nine stayed in hospital for nine days or 

more while the remaining 13 were discharged before nine days.  

Table 2. Group-specific variables for the traumatic brain injury (TBI) group. 

Group-specific variables TBI (N=22)  

Mean (SD) 

GOSE 3 months after injury 6.2 (1.5)
a 

GOSE 6 months after injury 7.0 (1.3) 

GOSE 12 months after injury 7.2 (1.0) 

 
TBI (N=22) 

Number 

Contusions (none/one/two or more) 8/3/10
b 

GOSE 12 months after injury (moderate disability/good recovery) 5/17 

Glasgow coma scale (mild-moderate/severe TBI) 10/12 

Head injury severity scale (moderate/severe) 10/12 

Length of stay (short/long) 13/9 

Post traumatic amnesia (short/long) 14/7
b 

Diffuse axonal injury (yes/no) 17/4
b 

Diffuse axonal injury in brainstem (yes/no) 2/19
b 

Injury velocity (high/low) 13/9 

SD = Standard deviation. GOSE = Glasgow outcome scale extended. 
a
 n=14, 

b
 n=21. 

 
 

According to the Glasgow Coma Scale (GCS), 10 participants (45.5%) had mild to moderate 

TBI while 12 (54.5%) suffered from severe TBI. A total of 17 TBI participants (77.3%) were 

diagnosed with DAI, of these two (9.1%) had DAI in the brainstem. Only one participant had 

bilateral brainstem injury, whereas one had missing information on this variable. Among the 

TBI participants, three (13.6%) had experienced one contusion, and 10 (45.5%) reported two 

or more. Eight TBI participants (36.4%) did not report any contusions. GOSE at three, six, 

and 12 months after injury showed a trend towards an increased GOSE score with increased 

time after injury, indicating increased recovery. 

The two pain participants had good recovery according to the dichotomized GOSE 12 

score, both had mild to moderate TBI based on GCS and HISS scores, and long LOS. One 
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had long PTA, while the other one had missing information on this variable. DAI was found 

in both pain participants, but did not involve the brainstem. Both suffered from a high velocity 

injury, but neither one reported any contusions. Exclusion of the two pain participants did not 

result in notable differences in GOSE three, six or 12 months post injury. 

 

3.1.2 VLBW 

Background characteristics for the VLBW group are presented in Table 1. Kolmogorov-

Smirnov Z tests, Mann-Whitney U tests, and chi-square test revealed no statistical differences 

between the VLBW group and the VLBW control group on matched variables (sex: Fisher’s 

Exact test, p=0.273; Age: Z=1.096, p=0.181), indicating successful matching. Statistical 

comparisons discovered no significant differences anthropometrical measures or background 

variables, such as recent injury, recent illness, pain, medication, socioeconomic status, or 

whether the participants exercised or not, between the VLBW group and controls. The VLBW 

participants were engaged in fewer activities (U=290.5, p=0.039), and a higher proportion had 

less than 12 years of education (Fisher’s Exact test, p=0.037) compared to the VLBW 

controls. Exclusion of three CP participants did not change these results, except from a 

decrease in significance for ‘number of activities’ (U=277, p=0.068). 

Group-specific variables are presented in Table 3. Statistical comparisons confirmed 

that at birth, participants born with VLBW were shorter and lighter and had smaller head 

circumference compared to term-born controls. Obviously, they also had significantly 

younger gestational age compared to the control group. Apgar scores at 1 and 5 minutes after 

birth were significantly poorer in VLBW participants. At 20 years of age, VLBW adults 

showed significantly lower IQ compared to controls. Exclusion of the three participants with 

CP showed similar results. Full scale IQ was significantly different between the VLBW group 

and the control group (Z=2.169, p=0.000). One of the three participants with CP had missing 

information on full scale IQ, and exclusion of the two remaining CP participants only changed 

the results slightly (Z=1.979, p=0.001). Days in NICU ranged from 25 to 386. In the VLBW 

group, 12 participants had registered information about cerebral ultrasound (CUL) findings. 

Eleven of these reflected normal findings, while one participant with diplegic CP had 

asymmetrical dilation of the ventricular system.  
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Table 3. Group-specific variables in participants with very low birth weight (VLBW) and controls at time of 

birth. Full scale IQ was measured at 20 years of age. 

Group-specific variables 
VLBW 

N = 35 

Mean (SD) 

VLBW excl. CP 

N = 32 

Mean (SD) 

Controls 

N = 24 

Mean (SD) 

Birth weight (grams) 1200.7 (252.8)** 1236.7 (216.1)** 3594.0 (375.6) 

Birth head circumference (cm)
a
 27.0 (2.4)**

 
27.3 (2.3)**

 
35.1 (1.3)

 

Maternal age (years) 28.9 (5.6) 29.2 (5.5) 29.8 (4.4) 

Gestational age (weeks) 29.1 (2.7)** 29.3 (2.6)** 39.4 (1.0) 

Apgar 1 score
b
 6.7 (1.9)** 6.8 (1.9)** 8.8 (0.6)

 

Apgar 5 score
b
 8.4 (1.6)** 8.4 (1.7)** 9.9 (0.3)

 

NICU (days)
c 

80.8 (64.2)
 

75.5 (62.9)
 

- 

Days in ventilator
c
 5.4 (13.1)

 
3.9 (8.6)

 
- 

Full scale IQ
d
 85.5 (13.4)** 86.9 (12.3)* 102.8 (10.5) 

Socioeconomic status
e 

3.5 (1.1) 3.4 (1.2) 4.0 (1.0) 

** p<.001, * p<.05 between VLBW groups and control group. SD = Standard deviation. NICU = Neonatal 

intensive care unit. 
a
27 VLBW / 25 VLBW 

ex. CP
 / 22 controls, 

b
 23 controls, 

c 
34 VLBW / 31 VLBW 

ex. CP
, 

d 
31 

VLBW / 28 VLBW 
ex. CP

 / 21 controls, 
e
 22 controls 

 

3.1.3 Control groups  

Kolmogorov-Smirnov Z tests and chi-square tests revealed statistical differences between the 

TBI control group and the VLBW control group on anthropometrical measures and 

background variables. The VLBW control group had a significantly lower proportion of males 

(Fisher’s Exact test, p=0.001), and the VLBW participants were shorter (Z=1.588, p=0.013), 

lighter (Z=1.876, p=0.002), and a higher proportion had 12 or more years of education 

(Fisher’s Exact test, p=0.024), than the TBI control group. These results confirm the need for 

two separate control groups.  

 

3.2 High-level mobility 

3.2.1 High-level mobility in TBI 

Total HiMAT score and all subscores for the TBI group and TBI controls are presented in 

Table 4. Mean total HiMAT score was 47.0 ± 7.7 compared to 50.3 ± 3.9 for the controls 

(U=193, p=0.116). Three of 13 mobility tasks differed significantly between the TBI and the 

control groups; ‘walk’, ‘walk over obstacle’, and ‘bound non-affected leg’. When the two 

participants who reported pain were excluded from the analysis, mean total HiMAT score for 
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the TBI group changed to 48.9 ± 4.9 (U=193, p=0.264), with ‘walk’ and ‘walk over obstacle’ 

remaining significantly different from the control group. 

Table 4. Total HiMAT score and item scores in the traumatic brain injury (TBI) group compared to controls. 

 

HiMAT Item 
TBI (N=22) 

Mean (SD) 

Controls (N=24) 

Mean (SD) 
U P 

Walk 3.50 (0.6) 3.88 (0.3) 175.5 0.013 

Walk backwards 3.77 (0.4) 3.96 (0.2) 215 0.065 

Walk on toes 3.68 (0.5) 3.88 (0.3) 213 0.117 

Walk over obstacle 3.36 (0.7) 3.88 (0.3) 160.5 0.005 

Run 3.00 (1.2) 3.67 (0.6) 188.5 0.057 

Skip 2.86 (1.5) 3.42 (1.1) 210 0.180 

Hop affected leg 3.18 (1.3) 3.79 (0.5) 195 0.055 

Bound affected leg 3.32 (1.2) 3.83 (0.4) 196 0.057 

Bound non-affected leg 3.41 (1.2) 3.92 (0.3) 200 0.041 

Up stairs independent 3.36 (0.8) 2.96 (1.4) 235 0.477 

Up stairs dependent 5.00 (0.0) 4.88 (0.3) 231 0.090 

Down stairs independent 3.55 (0.7) 3.33 (1.2) 255 0.811 

Down stairs dependent 5.00 (0.0) 4.92 (0.3) 242 0.171 

Total HiMAT score 47.00 (7.7) 50.29 (3.9) 193 0.116 

U and P values from Mann-Whitney U test. SD = Standard deviation. 

 
 

In the TBI group, nine participants (40.9%) had a total HiMAT score at or below the 5
th

 

percentile compared to six participants in the control group (25%). The OR showed that TBI 

participants had a double risk of having high-level mobility problems, although not significant 

(Table 5). Both pain participants had total HiMAT scores at or below the 5
th

 percentile. Thus, 

exclusion of these two pain participants reduced the OR (OR 1.6, CI 0.4 – 5.9).  

Table 5. Odds ratio (OR) for having a total HiMAT score at or below the 5
th

 percentile in the traumatic brain 

injury (TBI) group compared to the control group. 

 
≤ 5

th
 

percentile 

n 

Crude OR 

(95% CI) 

Adjusted OR* 

(95% CI) 

TBI (N=22) 9 2.077 (0.6 – 7.3) 1.641 (0.4 – 6.1) 

Controls (N=24) 6 1.0  

* adjusted for ‘number of activities’. CI = Confidence interval.  

 

 

Of the background variables, only ‘number of activities’ showed borderline correlation with 

both group (r=0.288, p=0.052) and a HiMAT score at or below the 5
th

 percentile (r=0.273, 
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p=0.066). When we adjusted for this variable, the OR was reduced (Table 5).  Exclusion of 

two pain participants did not change this result.  

 

3.2.2 High-level mobility in VLBW 

In the VLBW group, mean total HiMAT score was 45.1 ± 7.8 compared to 49.9 ± 3.5 in its 

control group (U=256, p=0.011) (Table 6). Five of the 13 mobility item scores were 

significantly different from the control group; ‘walk backwards’, ‘run’, ‘hop affected leg’, 

‘bound affected leg’, and ‘bound non-affected leg’. When the three participants with CP were 

excluded, mean total HiMAT score was to 46.8 ± 5.5 in the VLBW group, still significantly 

different from the control group (U=256, p=0.033). Furthermore, three mobility task scores 

remained significantly different from the controls; ‘walk backwards’, ‘hop affected leg’ and 

‘bound non-affected leg’.  

  Table 6.  HiMAT total score and item scores in very low birth weight (VLBW) participants and controls. 

Participants with CP included. 

HiMAT item 
VLBW( N=35) 

Mean (SD) 

Controls (N =24) 

Mean (SD) 
U P 

Walk 3.66 (0.5) 3.67 (0.5) 416 0.939 

Walk backwards 3.49 (0.7) 3.92 (0.3) 283 0.007 

Walk on toes 3.51 (1.0) 3.79 (0.4) 370.5 0.324 

Walk over obstacle 3.57 (0.6) 3.75 (0.4) 363 0.281 

Run 2.97 (0.9) 3.46 (0.6) 298.5 0.045 

Skip 2.86 (1.3) 3.38 (1.0) 321 0.098 

Hop affected leg 2.97 (1.1) 3.71 (0.6) 259.5 0.006 

Bound affected leg 3.20 (0.9) 3.71 (0.5) 285 0.019 

Bound non-affected leg 3.20 (0.9) 3.83 (0.4) 258 0.004 

Up stairs independent 2.77 (1.1) 3.25 (0.7) 312 0.078 

Up stairs dependent 4.94 (0.2) 5.00 (0.0) 396 0.237 

Down stairs independent 3.09 (1.3) 3.50 (1.0) 347.5 0.195 

Down stairs dependent 4.91 (0.3) 4.96 (0.2) 401.5 0.512 

Total HiMAT score 45.14 (7.8) 49.91 (3.5) 256 0.011 

U and P values for Mann Whitney U Test. SD= Standard deviation. 
 

When the three subjects with CP were excluded from analysis, the differences remained 

mainly the same, except for ‘run’ which was non-significant (U=297.5, p=0.122). ‘Bound 

non-affected leg’ decreased to borderline statistical significance (U=285, p=0.059).  
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Among VLBW participants, 17 (48.6%) had a total HiMAT score at or below the 5
th

 

percentile, compared to only 4 participants (16.7%) in the control group. The OR from the 

logistic regression analysis showed that participants in the VLBW group were 4.7 times more 

likely to have high-level mobility problems compared to the control group (Table 7). All CP 

participants had high-level mobility problems. Exclusion of the three participants with CP 

showed a decreased, but still statistically significant OR (Table 7).  

Table 7. Odds ratio (OR) for having a total HiMAT score at or below the 5
th
 percentile in the very low birth 

weight (VLBW) group compared to the control group. 

 ≤ 5
th 

percentile 

(n) 

Crude OR 

(95% CI) 

Adjusted OR* 

(95% CI) 

VLBW (N=35) 17 4.722 (1.3 – 16.7) 3.967 (1.1 – 14.6) 

VLBW CP excl. (N=32) 14 3.889 (1.1 – 14.0) 3.363 (0.9 – 12.5) 

Controls (N=24) 4 1.0  

* adjusted for ‘number of activities’. CI = Confidence interval. CP = Cerebral palsy. 

 

 

When performing a correlation analysis, only ‘number of activities’ correlated with both 

group (r=0.271, p=0.038), total HiMAT score (r=0.285, p=0.029), and a HiMAT score at or 

below the 5
th

 percentile (r=0.300, p=0.021). When we adjusted for this variable in the logistic 

regression analysis, the OR was reduced by 24.5%. This indicates that high-level mobility 

problems in the VLBW group were affected by the number of activities, but the analysis also 

demonstrate that significant problems still were present among participants born VLBW 

compared to their control group after adjusting for the variable (Table 7).  

 

3.2.3  Comparing high-level mobility in participants with TBI and VLBW 

Differences in age, anthropometric measures and background variables between participants 

born with VLBW and participants with TBI were investigated performing Kolmogorov-

Smirnov Z tests, chi-square tests, and Mann-Whitney U tests. The VLBW participants were 

shorter (Z=1.484, p=0.024), and had smaller head circumference (Z=1.475, p=0.026) than the 

TBI participants. In addition, a higher proportion of the VLBW participants reported recent 

illness (Fisher’s Exact test=0.009). The sex distribution between the two groups was 

borderline significantly different, with a higher proportion of females in the VLBW group 

(Fisher’s Exact test=0.057). The TBI participants were slightly older than VLBW participants 

(Z=1.356, p=0.51). No differences were found between groups in weight, BMI, pain, recent 

injury, medications, exercise, number of activities, or education. These differences did not 

change noteworthy when TBI participants with pain and VLBW participants with CP were 
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excluded, except from no significant difference in age between groups, and weight showing 

borderline lower weight in the VLBW group (Z=1.338, p=0.056). 

The Mann-Whitney U test showed no difference in total HiMAT scores between the 

VLBW and the TBI groups. Only one item, ‘up stairs independent’, differed significantly 

between the two groups (U=262, p=0.033), due to a lower mean subscore in the VLBW 

group. When participants with pain and CP were excluded, the difference was borderline 

significant (U=225, p=0.058). A logistic regression analysis was performed to estimate the 

risk for having a HiMAT score at or below the 5
th

 percentile in the TBI group compared to the 

VLBW group. The result of the analysis shows that, compared to the VLBW group, TBI 

participants had lower risk for having high-level mobility problems (Table 8). This is 

consistent with the results from the separate analyses for each group, which showed a higher 

proportion of high-level mobility problems in the VLBW group compared to its controls, than 

in the TBI group compared to its controls. Exclusion of two participants with pain from the 

TBI group, and three participants with CP from the VLBW group did not change the results 

(OR 0.692, CI 0.218 – 2.196). 

  

Table 8. Odds ratio (OR) for having a total HiMAT score at or below the 5
th

 percentile in the traumatic brain 

injury (TBI) group compared to the very low birth weight (VLBW) group. CP and pain participants included. 

 ≤ 5
th

 

percentile 

n 

Crude OR 

(95% CI) 

TBI (N=22) 9  0.733 (0.249 – 2.154) 

VLBW (N=35) 17 1.0 

CI = Confidence interval.  
 

A correlation analysis showed that the variables ‘height’  and ‘head circumference’ correlated 

with both group and total HiMAT score, with r’s varying between -.435 and -.481, and p’s 

varying between 0.000 and 0.002. None of the correlating variables reduced the crude OR.  
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4. Discussion 

In this study, we found that both adults suffering from TBI and adults born with VLBW had 

reduced high-level mobility compared to controls. Furthermore, the two groups showed 

problems in different high-level mobility tasks. These were ‘walk backwards’, ‘run’, ‘hop 

affected leg’, ‘bound affected leg’, ‘bound non-affected leg’, and ‘total HiMAT score’ in the 

VLBW group, and ‘walk’, ‘walk over obstacle’ and ‘bound non-affected leg’ in the TBI 

group. High-level mobility problems persisted when excluding TBI participants reporting pain 

and VLBW participants with CP from the analyses. The TBI participants had a lower, but 

non-significant, risk for having high-level mobility problems compared to adults born with 

VLBW. Logistic regression analyses indicated that TBI participants had a double risk for 

having high-level mobility problems compared to controls, although this finding was not 

significant. In the VLBW group, the risk was fourfold after adjustment for possible 

confounding by number of activities, and statistically significant compared to controls.  

In the following sections, methodological considerations will be discussed first to 

outline methodological strengths and limitations for the present study. Subsequently, 

consistency of the current findings with earlier investigations will be discussed, and finally, 

aspects of high-level mobility in adults with TBI or VLBW will be addressed and discussed, 

followed by conclusions and suggestions for further research. 

 

4.1 Methodological considerations 

HiMAT - standardization 

The HiMAT is specifically developed, and considered valid, for a TBI population. 

Furthermore, the normative cut-off values used in the present study are in accordance with the 

HiMAT manual (Williams, 2009). They are calculated for both sexes between 18 and 25 years 

of age, thus considered suitable for the age span in the present study.  However, the cut-off 

values are based on university students from physiotherapy and rehabilitation and 

occupational therapy studies (Williams, 2009), which may involve students whose lifestyle is 

more active and healthier than the general population, from which our control groups were 

drawn. Furthermore, higher education is associated with higher physical activity levels (Pan et 

al., 2009, Smith et al., 2009). Combined, these conditions may have resulted in cut-off values 

too strict for the general population. In our TBI control group, as much as 25% of the 

participants had a total HiMAT score at or below the 5
th

 percentile, and 17% in the VLBW 

control group, compared to the expected 5%. This indicates that our control groups had poorer 
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high-level mobility compared to the sample used to construct the cut-off values, which may 

have undermined the group comparisons. In addition, our TBI group showed better HiMAT 

scores than the TBI group in the original study, making it more difficult to find group 

differences. 

In both participants with TBI or VLBW, cognitive impairments can be present. 

Unfortunately, it was not possible to investigate the degree of cognitive impairment in the TBI 

group in this study. However, as a GOSE score below five was an exclusion criterion in the 

larger study, this should imply that TBI participants with the most impaired cognitive 

outcome were excluded. We did find that the VLBW participants had lower IQ than their 

controls. Nonetheless, the HiMAT is considered not discriminative regarding cognitive 

abilities (Williams et al., 2005b), and thus cognitive impairments are not expected to have 

affected the results. 

 

Separate control groups 

The controls in this study were recruited from two larger studies. There are several reasons for 

using two separate control groups in the present study rather than a single group functioning 

as control group for both the TBI and VLBW groups. Firstly, the controls in the larger studies 

were recruited based on different matching criteria, namely age, sex, and education in the TBI 

control group, and age and sex in the VLBW control group. In addition, both control groups 

were recruited from the same geographical area as the case groups. Furthermore, the original 

VLBW controls were recruited over 20 years ago, when their pregnant mothers enrolled in the 

study on causes and consequences of intrauterine growth restriction. Statistical comparisons 

indicated that the two control groups were significantly different from each other with respect 

to sex distribution, height, weight, and education, and therefore considered not suitable to be 

treated as a single control group. 

 

Robustness of findings 

There is always a possibility that research results can occur by chance. The p-value indicates 

the probability of obtaining an observed difference in a study sample, if the null-hypothesis is 

true. The p-values in this study were set to be below 0.05. Given this criterion, only three 

subscores were significantly different between TBI participants and TBI controls, with p-

values ranging from 0.005 to 0.041. However, the likelihood of obtaining significant results 

increases with sample size. Some of the subscores showed borderline significance, which may 
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indicate true differences between TBI participants and controls, given the small sample size. 

Thus, it is important to consider the non-significant findings with caution. Nevertheless, the 

observed differences between the VLBW group and controls were supported by overall highly 

significant p-values, therefore indicating robust findings. 

To ensure high validity of a study, the selection of participants is important. Even 

though the participants in this study were originally recruited in the two larger studies, it is 

important to have in mind that participants not willing to participate in the follow-up might 

have had reasons related to e.g. mobility, which might lead to selection bias. Participation 

primarily for economic reasons might also be an aspect of selection bias, as remuneration was 

given to every participant in the study. If selection biases are present in this study, they will 

most likely have been in the direction of better mobility function, which in turn could have led 

to an underestimation of high-level mobility problems in our study groups.  

The recruitment of TBI controls among TBI cases’ families and social networks can be 

a threat to the internal validity of a study. According to Grimes and Schultz (2005), cases tend 

to introduce controls with similar education and socioeconomic status. Furthermore, Kaplan et 

al. (1998) found that controls recruited from cases’ friends often were somewhat more 

“acceptable” (e.g. more educated) than the cases themselves, which might introduce 

overmatching. However, the controls were matched on education, and thus biases related to 

the recruitment of controls are not likely to have occurred. 

All three examiners were blinded to group assignment in the TBI group, but not in the 

VLBW group. However, the examiners were blinded to results of previous examinations in 

the VLBW and its control group, and this should reduce the risk of information bias.  

 According to the HiMAT manual, a 14-step staircase is required. In the current study, a 

12-step staircase was used due to not having a 14-step staircase available, and thus the score 

for the stair tasks had to be estimated from a shorter staircase. However, all participants in 

both case and control groups underwent this procedure, and this should therefore not 

constitute any bias between the groups.  

 

Confounding factors 

Confounding occurs when variables other than those examined affect the outcome variable, 

and thus contribute to reduced internal validity of a study. In this study, we used three 

different strategies in order to control for possible confounding factors; matching, logistic 

regression analysis, and partial exclusions.  
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Controls were matched on age, sex, and geographical area, thus, these variables should 

not be confounding factors. Furthermore, age ranged from 20 to 25 years in all groups. This is 

a relatively narrow range, and age-related differences regarding mobility outcome within this 

range are unlikely, further supporting that age is unlikely to be a confounding factor. 

Even though TBI and VLBW participants were matched by sex, sex distribution 

differed between TBI and VLBW groups. This may have influenced the comparison on the 

raw scores, but should not affect the OR, since the normative cut-off values are sex-specific.  

TBI cases and controls were also matched on educational level, reducing the risk of 

education as a confounder for physical activity levels, as higher educational levels are 

associated with higher levels of physical activity. In the VLBW group, socioeconomic status 

could be a corresponding potential confounder for physical activity level. However, 

socioeconomic status did not differ significantly between VLBW participants and controls, 

and the confounding effect should therefore be minimal. 

Of the different background variables, only ‘number of activities’ was identified as a 

potential confounder, and subsequently included in the logistic regression analysis. It may be 

difficult to determine whether participation in several activities is a result of having better 

high-level mobility, or whether having better high-level mobility is a result of engagement in 

multiple activities. However, the risk of having mobility problems in the TBI and VLBW 

group compared with controls remained after adjusting for this variable, although only 

significant between VLBW participants and controls. In the comparison between the TBI and 

the VLBW group, ‘height’ and ‘head circumference’ were identified as potential confounders, 

but did not affect the OR.  

Because of the high prevalence of motor problems associated with CP, it could be 

expected that the three participants with CP in the present study contributed 

disproportionately to the high-level mobility problems in the VLBW group. However, when 

excluding the participants with CP from the statistical analyses, the VLBW group still showed 

increased risk of having high-level mobility problems. Thus, the presence of participants with 

CP could not explain the association between very low birth weight and poor HiMAT scores. 

Furthermore, there is debate whether CP should be considered as a confounding factor, or as 

one of factors in the causal chain between low birth weight and functional outcome.   
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4.2 High-level mobility outcome in adults with TBI 

In participants with TBI, ‘walk’, ‘walk over obstacle’ and ‘bound non-affected leg’ were 

significantly different from TBI controls. Surprisingly, the TBI participants demonstrated 

more difficulties walking as fast as they could, while in some of the seemingly more complex 

task, they did not perform worse than controls. As an example, walking and running are 

mobility tasks showing similarities regarding movement pattern, but running involves higher 

requirements regarding strength and balance (Shumway-Cook and Wollacot, 2012). However, 

earlier investigations are consistent with the current findings. In patients with extremely 

severe TBI, Williams and colleagues (2009) reported reduced self-selected walking speed 

mainly due to shorter stride length, which in turn was due to reduced cadence. McFadyen et 

al. (2003) reported similar findings in eight high-functioning TBI adults in unobstructed and 

obstructed walking, and attributed the reduced walking speed to shorter stride length and 

general instability, rather than reduced cadence. The latter interpretation is supported by Chou 

et al.  (2004), who also attributed the reduced walking speed to shorter stride length. 

Furthermore, Williams et al. (2009) found that the TBI patients with slow walking speed had 

reduced push-off, or a stiff-legged gait pattern, and considered this a more likely explanation 

for the reduced gait speed. Although the TBI population in Williams’ study had on average a 

more severe injury than our participants, it is likely that walking speed is affected by the same 

variables, although perhaps to a lesser extent with less severe injury. However, none of these 

studies used the HiMAT to measure walking speed, and therefore, comparisons with these 

studies might be limited on this variable. 

The TBI group also scored significantly lower in the ‘walk over obstacle’ task. The 

abovementioned study by McFadyen and colleagues (2003) reported reduced walking speed 

among the TBI patients when compared to healthy controls in obstructed as well as 

unobstructed walking. As the subjects were asked to walk at their natural speed, McFadyen’s 

study is not comparable to our study regarding walking speed, but the decrease in walking 

speed in tasks requiring negotiating an obstacle is in accordance with the poor performance in 

our study. Furthermore, McCulloch et al. (2010) used the HiMAT in their study on balance 

and dual-task performance, and the associations with falls after the onset of injury, in 24 

subjects (mean age 39.4 years) with acquired brain injury. They reported motor slowing in 

dual tasks, and suggested this was due to an adaptive strategy for safe accomplishment of the 

tasks (McCulloch et al., 2010). In our study, a similar strategy might be reflected in the poor 
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performance in the ‘walk over obstacle’ tasks, as the task involves requirements of both 

walking and negotiation of an obstacle.  

The ‘bound non-affected leg’ task suggests that TBI participants have more difficulties 

standing on the affected leg and landing on the non-affected leg than the other way around, 

standing on the non-affected leg and landing on the affected leg. The lower score compared to 

controls in this task can be caused by reduced strength and balance in the affected leg. The 

‘bound affected leg’ task, which was not significantly different from controls, requires the 

participant to land on the affected leg. The expectancy was that landing on the affected leg 

should involve higher requirements for strength and balance, and also be influenced by 

cautiousness, than landing on the non-affected leg.  However, this does not seem to be the 

case with performance being poorer when starting on the affected leg. Poor balance (Sosnoff 

et al., 2008, Hillier et al., 1997) and poor postural control (Sosnoff et al., 2008) are well-

known impairments in persons suffering from TBI and presumably important factors 

regarding the bounding tasks, as the latter requires the ability to balance one’s body weight on 

one limb, which is particularly challenging when that side of the body is affected by an injury. 

The study by McCulloch et al. (2010) also found a trend that subjects reporting no falls 

obtained higher HiMAT scores than fallers, suggesting that fallers may have had more 

impaired balance.  

In addition, poor planning might also be an aspect underlying the findings, as the 

obstructed task requires some degree of planning to be completed successfully. The frontal 

lobe administers planning, execution and evaluation of motor output, (Kolb and Whishaw, 

2001), and focal injury to this area might induce impairments related to the planning (Brodal, 

2007) of passing an object during walking. McFadyen et al. (2003) also mention the 

possibility that reduced obstructed walking speed in their group of TBI participants was 

caused by caution. A review by van Reekum et al. (2005) supports this suggestion, giving 

compelling evidence for anxiety disorders after mild TBI. 

One might also consider the possibility that the obstacle negotiation itself is not the 

problem. The task requires the participant to walk as fast as he or she can, and because the 

TBI participants show reduced walking speed in the ‘walking’ task, it is possible that the poor 

performance in the ‘walk over obstacle’ task was primarily due to reduced walking speed. 

Unfortunately, the HiMAT only measures each task as a whole, and does not define during 

which part of the task the participants slow down their walking speed. Further studies could 

combine HiMAT measurements with motion capture, thereby allowing separation of walking 

speed during different parts of the task. 
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In the larger TBI study, from which the present sample is selected, Moen (2011a)  

reported the HiMAT results for 69 TBI participants, aged 16 to 65 years. Moen found 

significantly lower total HiMAT scores in persons with TBI compared to controls. 

Furthermore, 51 of 69 TBI participants (76.1%) had a score at or below the 5
th

 percentile, 

compared to 32 of 76 controls (43.8%) controls. Of the 13 HiMAT sub items, Moen reported 

significant differences between TBI participants and controls in as much as ten sub items 

(only ‘up stairs dependent/independent’, and ‘down stairs dependent’ were non-significant). 

The higher proportion of significant subscores in the larger study compared to the present 

study might be due to Moen’s larger sample and the higher proportion of female participants. 

While it is unclear whether sex affects mobility outcome after TBI (Slewa-Younan et al., 

2008a, Slewa-Younan et al., 2004, Slewa-Younan et al., 2008b), healthy women do  have 

poorer HiMAT scores (Williams, 2009) and thus, a higher proportion of female participants 

are likely to result in overall poorer HiMAT scores. 

Motor outcome and recovery from TBI depend on the severity of the injury. Although 

the majority of the TBI participants in this study were diagnosed with DAI, two thirds had 

short PTA, and nearly half of the participants were characterized with mild to moderate TBI. 

Additionally, the majority showed good recovery 12 months after injury measured with 

GOSE. An overall low injury severity, combined with good recovery, might have contributed 

to the limited significant differences in high-level mobility in the TBI group compared to its 

control group.  

In their studies using HiMAT to assess high-level mobility in TBI patients (Williams et 

al., 2009, Williams et al., 2010, Williams et al., 2006, Williams et al., 2005b), Williams and 

his colleagues have used populations that are quite different from ours. The majority of the 

TBI participants in these studies suffered from extremely severe TBI, and in one of the studies 

nearly half of their patients had also sustained at least one leg fracture (Williams et al., 

2005b). The severity of TBI in these patients was determined by length of PTA, which varied 

from 21.5 to 71.75 days. In contrast, the persons in our TBI group had less severe TBI and 14 

out of 21 participants had less than 7 days of PTA.  Due to the substantial differences in injury 

severity, our results cannot be directly compared to the results from Williams et al.’s studies.  

Because of the exclusion of TBI participants with a GOSE score below five in the 

larger TBI study, we have probably excluded the TBI participants with the worst mobility 

outcome, meaning that the TBI group in our study was characterized by overall good 

recovery. Another aspect that is likely to have influenced the reduced differences in mobility 
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between TBI participants and controls in the current study is that our control group had poorer 

high-level mobility outcomes than the controls used to construct the cut-off values.  

 

4.3 High-level mobility outcome in adults with VLBW 

In the VLBW group, the results demonstrate difficulties in a substantial range of the HiMAT 

tasks. ‘Walk backwards’, ‘run’, ‘hop affected leg’, ‘bound affected leg’, and ‘bound non-

affected leg’ were significantly different from controls. Combined, these tasks lead to a 

significantly reduced total HiMAT score in the VLBW group compared to their controls. 

As participants cannot see in the direction they are speeding in the ‘walk backwards’ 

task, it might be affected negatively by anxiety and uncertainty in the VLBW group. In fact, 

Indredavik et al. (2004), have reported higher prevalence of anxiety in this VLBW population 

compared to controls.  

The VLBW group also had significantly lower scores in ‘bound affected leg’, ‘bound 

non-affected leg’ and ‘hop affected leg’. ‘Hop affected leg’ and ‘bound non-affected leg’ both 

required starting in a standing position on the affected/non-dominant leg, and it is likely that 

balance-related problems increase when the task requires balancing on the poorest leg. The 

affected/non-dominant leg is likely to have reduced strength, balance and stability. On the 

other hand, significant difficulties were also apparent in the ‘bound non-affected leg’ task, 

suggesting that e.g. balance impairments also are likely to affect mobility tasks performed on 

the better leg, or in this case the dominant leg. Impaired balance characteristics in VLBW 

children and adolescents are well-known, and supported by several studies (Evensen, 2010, de 

Kieviet et al., 2009). The cerebellum is the main area for control of locomotion and whole-

body posture (Coffman et al., 2011), and is not fully developed until the last months of 

pregnancy (Volpe, 2009b). Being born before the 37
th

 week of gestation with concomitant 

decreased cerebral volume may therefore have contributed to the poor balance seen in VLBW 

group.  

Bound is described as a strong predictor for running (Williams and Goldie, 2001) and 

might reflect the difficulties also seen in the ‘run’ task. Studies using the Bruiniks-Oseretsky 

Test of Motor Proficiency (BOTMP) have also reported poor running performance in VLBW 

children (Wocadlo and Rieger, 2008) and children born with extremely low birth weight (birth 

weight ≤ 800 grams) (Holsti et al., 2002). Unfortunately, these studies only reported reduced 

gross motor performance based on the total BOTMP score, and not performance on the 

running task in particular. 



31 

 

After the exclusion of participants with CP, the ‘run’ task was no longer significantly 

different and ‘bound non-affected leg’ only borderline significantly different from controls. 

Although participants with CP did not explain the risk of having mobility problems in the 

VLBW group, these findings indicate that reduced running speed and problems with hopping 

onto the non-affected/dominant leg are difficulties primarily associated with CP.  

The current study is the first to use the HiMAT in VLBW participants. As a 

consequence, caution must be carried out when interpreting the results. Nearly half of the 

VLBW participants had a total HiMAT score at or below the 5
th

 percentile when using the cut-

off values of Williams et al (Williams, 2009). By way of comparison, only four of 24 VLBW 

controls obtained similar low total HiMAT scores. Thus, the HiMAT is sensitive enough to 

detect high-level mobility problems in young adults born with VLBW. Results from the 

current study should encourage further development of the HiMAT for specific use in VLBW 

populations, including formal tests of validity and reliability. 

Although no other study has used the HiMAT in adults with VLBW, our findings of 

mobility problems in adults born with VLBW are consistent with existing literature based on 

younger populations. Although previous studies have used other outcome measures, e.g. 

Movement ABC and BOTMP, they have likewise shown that motor problems in VLBW are 

persistent into adolescence (Evensen et al., 2004). The findings of our study further indicate 

that problems with advanced mobility persist into early adulthood as well.  

Consequently, this highlights the importance of further research on high-level mobility 

in adulthood, using comparable mobility outcome measures. Furthermore, the evidently 

reduced motor and mobility outcomes from early infancy to early adulthood in persons born 

with VLBW indicate that brain injuries occurring at early stages of life persist into older ages. 

 

4.4 Comparing adults with TBI and adults with VLBW 

Although there are obvious limitations when wishing to directly compare the HiMAT results 

in the TBI and the VLBW group, it is still of valuable interest with respect to understanding 

long-term high-level mobility outcome in these two groups. The results of this study suggest 

that both adults with TBI or VLBW have mobility problems, and that ‘number of activities’ 

may play an important role for the presence of high-level mobility problems in both groups. 

The main difference in the results between the TBI group compared to controls, and the 

VLBW group compared to controls, was that the two groups demonstrated problems in 

different high-level mobility items. However, it is worth noting that many of the items that 
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were significantly different between the VLBW group and their controls, namely ‘run’, ‘hop 

affected leg’, and ‘bound affected leg’, showed borderline significance in the TBI group as 

well. Given that the TBI group in the current study had relatively mild TBI, this might 

indicate that high-level mobility problems in TBI and VLBW participants are rather similar, 

although in the current study only significant in the VLBW group. The non-significant 

differences between TBI participants and controls could further be due to the small sample 

size, or to the relatively poor high-level mobility performance in the control group.  

Most stair tasks were non-significant in both groups. As the participants were asked to 

walk the stairs as they normally would, examiners observed a wide variety of strategies to 

complete the task during testing. While some participants walked the stairs at a leisurely pace, 

others ran the stairs two by two. In addition, because of ethical reasons related to safety, the 

test does not require the participants to walk the stairs as fast as they can. From the current 

results, it is difficult to determine whether TBI and VLBW participants did not have 

difficulties walking on stairs, or whether the stair tasks were not sensitive enough to detect 

difficulties in the participants. This raises the question as to what extent the stair tasks with 

the current instructions are suitable to investigate high-level mobility. 

Tasks such as ‘walking backwards’ and ‘hop affected leg’ are likely to represent 

activities that are seldomly practiced in the majority of a healthy population, and probably 

even more seldomly in a VLBW or a TBI population. According to Johnston (2009), 

improvement in motor function depends on an increment of the frequency and strength at 

which synapses are being used. If a certain motor skill depends on repetition and practice of 

the actual skill, this may explain some of the poor HiMAT scores in the case groups. In 

addition, low participation in leisure time physical activities are reported in both VLBW 

(Kaseva et al., 2012) and TBI (Wise et al., 2010) populations, further reducing the amount of 

experience with high level mobility tasks.  

In both groups, difficulties in several tasks seem to be associated to balance. In 

addition, strength might also be an important aspect related to the ability to accelerate and 

maintain speed, although reduced muscular strength is a less commonly reported impairment 

in both groups. The only task in which both case groups performed significantly worse than 

control groups was the ‘bound non-affected leg’ task. As this task involves balancing on the 

participant’s most affected leg, and requires strength to jump as long as possible before 

landing, it introduces high demands to both balance and strength. Although this was the only 

task that presented significant problems for both case groups, many of the other HiMAT tasks 

seem to require a certain level of both balance and strength as well. As balance is crucial for 
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successful mobility (Frank and Patla, 2003) and the most prevailing gross motor impairment 

in both groups, it is likely that poor balance is an important factor for many of the 

significantly lower scores. Furthermore, all tasks are timed and therefore related to speed, 

which is another reported impairment in both TBI and VLBW participants (de Kieviet et al., 

2009, Chou et al., 2004).  

Somewhat unexpected, there were no strong indications that adults with TBI or 

VLBW experienced increasing mobility problems as the complexity of the mobility task 

increased, particularly not in TBI participants. This might suggest that both TBI and VLBW 

participants have difficulties performing specific motor tasks, rather than that the motor 

problems increase as the complexity of the task increases.  

A significantly reduced total HiMAT score and a higher amount of significant items in 

the VLBW group suggests an overall reduced high-level mobility in this group, while in the 

TBI group, the problems may seem more specific. In TBI, one of the most commonly affected 

injury site is the corpus callosum (Arfanakis et al., 2002), while brain injury caused by being 

born with VLBW is often more widespread and located in several cites of the brain, among 

them the corpus callosum (Skranes et al., 2005). The corpus callosum is the area in which the 

two hemispheres communicate (Brodal, 2007), and injury in this region is found to be 

associated with poorer gait in elderly (Srikanth et al., 2010). Thus, the reduced walking speed 

detected in some of the HiMAT tasks in this study might reflect the effect of the corpus 

callosum being a common injury site in both TBI and VLBW populations. 

In addition, both PVL and DAI are characterized by white matter damage and reduced 

connectivity. The prevalence of problems in tasks related to e.g. speed is reflected by 

alterations in connectivity, and thereby a possible contribution to the reduced speed in many 

of the HiMAT tasks investigated in this study. 

On basis of the current study, we cannot say that either TBI or VLBW participants had 

the better high-level mobility outcome. There were no significant differences in total HiMAT 

score between TBI and VLBW participants, nor did the TBI group had significantly lower risk 

of having high-level mobility problems compared with the VLBW group. Thus, even though 

our results may suggest better advanced mobility outcomes after TBI, in terms of fewer 

significant findings compared to its control group, caution must be made regarding non-

significant findings due to the small sample size. There might also be additional background- 

and group-specific variables not examined in this study, that may be important factors 

regarding the understanding of high-level mobility in the two groups. Furthermore, the 

merging of two separate studies, in which participants were selected by different criteria and 
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matching variables, require caution when comparing across case groups. Most importantly, 

one should keep in mind that, despite many similarities regarding injury type and outcome, 

there are very different mechanisms that caused the injuries.  

In conclusion, persons with TBI and VLBW show similar problems related to high-

level mobility. Furthermore, the difficulties related to mobility persist into early adulthood in 

the VLBW group and, to a lesser extent, also in adults suffering from TBI. This demonstrates 

the importance of clinical support and attention regarding evaluation and rehabilitation of 

common difficulties with advanced mobility in these populations. Finally, the results of this 

study motivate further investigation of high-level mobility in adult VLBW and TBI 

populations. 

 

4.5 Clinical implications  

The results of this study may contribute to increasing the understanding among health workers 

regarding advanced mobility problems in both adults with TBI and adults born with VLBW. 

Young adults increasingly experience academic and work-related demands and consequently, 

the HiMAT may be used to determine whether persons with TBI or VLBW have the required 

high-level mobility skills for returning to work, sports and social activities. Furthermore, the 

HiMAT can be used to provide goals for rehabilitation to achieve pre-injury mobility level in 

TBI patients. 

If further studies likewise indicate that the HiMAT indeed can be used in adults born 

with VLBW, the current study will be an important contribution in expanding the knowledge 

of mobility problems in this growing population.  

Mobility problems related to balance seem to be a general problem in both TBI and 

VLBW participants. This highlights the importance of early detection of balance impairments 

in children with VLBW, and also early implementation of rehabilitation after TBI. Retraining 

and rehabilitation in both VLBW and TBI populations should focus on balance in relation to 

attainment of mobility skills beyond walking.  

 

  



35 

 

5. Implications for future research 

Firstly, as Williams (2004) suggests that the HiMAT might be a suitable tool for other 

neurological conditions than TBI in young adults, this study should inspire the formal 

investigation of the applicability of the HiMAT in VLBW populations. This would entail 

further development and testing of appropriate cut-off values, and preferably, also for 

populations beyond the currently validated age range. Secondly, because this study is the first 

of its kind to demonstrate that high-level mobility problems in both VLBW and TBI 

populations persist into young adulthood, future investigations of high-level mobility 

problems in further adulthood in these populations should be implemented. Finally, the design 

of the current study is not appropriate for identifying cause and effect relationships, but the 

findings may stimulate further investigations regarding etiology of high-level mobility in TBI 

and VLBW populations. 
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6. Conclusion 

Our study is one of few to report high-level mobility problems assessed by the HiMAT in 

adults with TBI, and the first to apply the HiMAT in a VLBW population. It is also the first 

study to compare high-level mobility problems in these two groups of possible brain injury. 

The current study found that significant high-level mobility problems were present in 

adults with TBI, although the total HiMAT score was not significantly different from the 

control group. In addition, adults with TBI had a twofold risk of having high-level mobility 

problems compared to controls. When adjusted for number of activities the risk estimate was 

somewhat reduced, but still higher in the TBI group compared to controls. 

The VLBW group had significantly reduced high-level mobility problems compared to 

controls, and was found to have an estimated risk for high-level mobility problems more than 

four times that for controls. Adjusted for number of activities, the risk was still fourfold for 

the VLBW group compared to controls.  

When the TBI group was compared directly to the VLBW group, adults suffering from 

TBI had reduced risk of high-level mobility problems, although not significantly. Strength and 

balance in particular seem to be important factors for high-level mobility problems in both 

groups.  

Our study shows that there is a wealth of information to be gained when investigating 

mobility beyond straightforward, level and unobstructed walking, e.g. jumping, hopping, 

bounding, and backwards walking. Our study also indicates that there exist high-level 

mobility problems in adult TBI and VLBW populations. Combined, these results motivate to 

further investigate advanced mobility in both these and other populations at risk of mobility 

problems.  
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