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A B S T R A C T   

Optimization in buildings has been increasingly popular due to its growing availability and documented ability 
to improve the performance of building designs following specified targets. However, the quality and robustness 
of optimized solutions may be dependent on how the optimization problem is formulated, and few studies have 
investigated the impact of modelling choices or optimization strategies. This study presents a simulation-based 
investigation of the impact of problem formulation in building design optimization using the case study of a PV 
integrated shading device (PVSD) and an evolutionary algorithm. For this, we modify both the size of the so
lution space and how it is searched using three different approaches to define the objective function(s): single- 
objective optimization, bi-objective optimization, and tri-objective optimization. The results show that 
increasing the size of the solution space provided better designs compared to both a full factorial parametric 
analysis and an optimized but more rigid model, regardless of the nature and number of objectives. The findings 
support the idea that exploring the impact of problem formulation may be an important part of the process of 
optimization in buildings and allows obtaining more insight into the tradeoffs at play and the workings of a 
selected optimization study.   

1. Introduction 

The use of numerical optimization to design buildings and energy 
systems has become an increasingly popular topic in recent years with 
many algorithms available to researchers wishing to use optimization 
[1–5]. Nevertheless, this diversity of approaches also means that mod
ellers still face difficult choices in setting up optimization problems that 
satisfy their needs and face tradeoffs such as accuracy vs simplicity, 
capability vs usability, flexibility vs visualization, or efficiency vs cost 
[4]. As pointed out by Machairas et al. [1] “the understanding of optimi
zation method’s strengths and weaknesses is crucial in order for them to be 
used effectively in related design problems”. 

Ideally, modellers should run sensitivity analysis before they start 
their optimization both to identify parameters and their value ranges [6, 
7], and to test the settings used in the algorithm selected [8]. However, 
often, for computationally slow simulations based on 
physico-mathematical models such as raytracing, there is little time 
available to run multiple analysis before time-expensive optimization 
runs, and modellers must make several assumptions. This means they 
may not have time to consider how the phrasing of their problem will 

impact their search. 
While extensive work has been done on benchmarking different 

optimization algorithms for building design [9–11], to the knowledge of 
the authors, only a handful of studies [12–16] have considered the 
impact of the phrasing of the optimization problem on the resulting 
optimal designs. This results in a situation in which there are few 
guidelines available for researchers to understand what an adequate 
problem formulation is. By problem formulation, we mean how the 
optimization problem is set up in terms of the nature and number of 
parameters being optimized, the nature and number of objectives, and 
the settings selected for the type of algorithm used. These elements 
impact the dimension of the solution space and how it will be searched 
for solutions. We distinguish two aspects of problem formulation 
referred to as “soft” and “hard”. 

“Soft” problem formulation includes:  

• The size of the solution space according to the number of variables 
used as parameters in the optimization  

• The choice of the objectives both in terms of the number of objectives 
and whether they are formulated independently or as a combination 
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“Hard” problem formulation includes:  

• The physico-mathematical complexity of the model used. This relates 
to the level of abstraction used to model the object of the 
optimization  

• The choice of the algorithm itself and the mathematical equations 
implemented in it. This also includes parameter tuning within the 
algorithm, such as investigating the effect of population size, number 
of generations, crossover rates and mutation rates. 

Both elements of problem formulation are important in building 
optimization. However, the impact of soft problem formulation has been 
investigated in a disproportionally lower number of studies compared to 
some of the aspects of hard problem formulation. For this reason, this 
study focuses on exploring the impact of soft problem formulation using 
the case study of the design of a fixed external louvred shading device 
with integrated PV (PVSD). PVSDs are “classic” optimization problems 
that must balance multiple competing objectives through different 
properties and geometric configurations. To ensure that our study is 
consistent and robust, following the concept of “No Free lunch Theo
rems” [17] or “no free lunch in optimization”, we limit our investigation 
to search with an evolutionary algorithm implementing aspects of ge
netic algorithms. The NFL theorems “establish that for any algorithm, any 
elevated performance over one class of problems is offset by performance over 
another class” [17]. 

To explore the impact of problem formulation, we use two different 
models of a PVSD with different levels of flexibility in the design. We 
also use different optimization strategies in terms of the number and 
nature of the objectives set. This allows addressing the following 
research questions: 

• What are the tradeoffs associated with increasing the size of the so
lutions space in the optimization of a shading device? This concerns 
the cost-benefit relationship between adding flexibility to the system 
design and possibly unnecessarily increasing the length and 
complexity of the optimization, versus simplifying the task of the 
algorithm by reducing the solution space  

• How do the number and the nature of the objectives direct the search 
of the algorithm within the solution space? 

• How do problem formulation studies help improve our understand
ing of optimization as a technique to explore interactions between 
physical parameters and building design targets? 

The remainder of this article has the following structure: in section 2, 
we review guidelines for hard aspects of problem formulation given in 
the field of building design and data science. Previous works of shading 
device optimization are also reviewed in terms of problem formulation 
choices. In section 3, we present the methodology used in the study and 
the benchmark optimization problem used. Section 4 contains the re
sults of the study and a discussion of the findings. The conclusions and 
future outlooks of the study are given in section 5. 

2. Theoretical background 

2.1. Building optimization problems 

Radford & Gero [18] stated in 1980 that “Design in architecture is a 
goal-directed activity in which decisions are taken about the physical form of 
buildings and their components in order to ensure their fitness for intended 
purposes. In order to take those decisions, the architect needs information on 
the relationship between his goals and the means at his disposal for achieving 
them.” Since then, many studies have aimed at investigating these re
lationships in building design through optimization. A large number of 
these studies have focused on the building envelope and considered 
parameters related to its shape, orientation, and window to wall ratio as 
reviewed by Ref. [2,19]. Fewer studies considered optimizing 
daylighting parameters in buildings due to the associated algorithmic 
overheard, i.e. the computationally intensive task of running detailed 
daylighting simulations. 

According to the literature, most of the studies in the building design 
optimization field have been carried out using genetic algorithms (GAs), 
which were first introduced by John Holland in 1975 [20]. This is 
because of the higher ability of GAs to solve building optimization 
problems [3,10]. However, their superiority to other algorithms for all 
problems has been questioned recently [9]. GAs are a subcategory of 
evolutionary algorithms, which are based on principles of evolution and 
biology. They are population-based algorithms, meaning that they 
search a solution space by creating increasingly better sets of solutions, 
one after the other. This is done using mechanisms of mating and a 
combination of two genetic operators, namely crossover and mutation. 
The performance of the algorithm both in terms of quality of the solu
tions and speed of convergence is affected by the value settings for some 
of these parameters. For GAs, these are mainly the population size, the 
number of generations, the crossover rate, and the mutation rate. 

Despite GAs being more efficient than parametric analysis or random 
search when the solution space is large, the computational overhead 
associated with using GAs is sometimes prohibitive. For this reason, 
ideally, a GA should be set up to explore the design space without 
converging too early on a local optimal, but still, converge fast enough 
that unnecessary computational resource use is avoided. It should also 
be set up with a large enough solution space so that non-intuitive so
lutions can emerge from the process. To ensure maximum output value 
from an optimization, one should understand how problem formulation 
impacts the results. This means understanding the size of the problem 
space one wants to explore, the complexity of the problem, and selecting 
appropriate optimization settings accordingly. 

2.2. “Soft” problem formulation in building design optimization 

Only a few studies in the literature have considered the impact of 
different soft problem formulations on building design optimization 
problems. 

Lu et al. [12] investigated the impact of using single versus 
multi-objective optimization for renewable energy systems considering 
two scenarios. They concluded that both optimizations outperformed 
the baselines but that while the single-objective optimization could find 
the optimal solution directly, the multi-objective optimization allowed 
obtaining more insight into the relationship between the parameters. 

Li et al. [13] investigated the impact of using different combinations 

Nomenclature 

cDA Continuous Daylight Autonomy [%] 
UDI Useful Daylight Illuminance [%] 
EC Annual cooling energy demand [kWh/m2] 
EH Annual heating energy demand [kWh/m2] 
EL Annual lighting energy demand [kWh/m2] 
EPV Annual PV-converted energy [kWh/m2] 
ETOT Annual net energy demand [kWh/m2] 

Acronyms 
PV Photovoltaic 
PVSD Photovoltaic Shading Device 
GA Genetic Algorithm 
B3O Base model with 3 objectives 
F1O Flexible model with 1 objective 
F2O Flexible model with 2 objectives 
F3O Flexible model with 3 objectives 
PA Parametric analysis  
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of objective functions for robust building envelope design of zero/low 
energy buildings in subtropical regions. Three objectives were consid
ered following a review of design indicators in other fields. The authors 
found that one of the objectives turned out not to be appropriate for their 
building design problem. This indicates that exploring the formulation 
of the objectives was important to ensure the meaningfulness of the 
optimization. 

Méndez Echenagucia et al. [14] used an integrated approach to 
obtain details about the relationship between building envelope con
figurations and energy efficiency in early design stages. Using GAs, they 
investigated several parameters of the building envelope in two different 
cases. They plotted the statistic distribution of the parameter values of 
Pareto solutions to highlight their variability. This was done to gain an 
understanding of which parameters had very small ranges of values and 
from this, deduce which parameters were useful to include in an opti
mization. Although the authors carried out this analysis after completing 
the optimization, they pointed out the fact that sensitivity analysis of 
parameter value ranges was a valuable step before using optimization. 
Indeed, reducing the range of values for each parameter narrows the 
solution space and helps focus the search of the algorithm. 

Hou et al. [15] investigated the use of a two-step optimization 
approach, in which different variables were optimized at separate times. 
They found that compared to a traditional approach, the two-step 
method yielded solutions with less diversity in terms of parameter 
values, but these solutions were, in fact, closer to true optimum designs. 

Delgarm et al. [16] studied a building design problem using three 
objectives which were first formulated in three separate single-objective 
runs and then combined in a tri-objective optimization. They found that, 
compared to a baseline, none of the single-objective optimizations could 
improve the performance of the building. For the tri-objective optimi
zation, even though the algorithm couldn’t find a solution that improved 
the performance considering all three objectives, selecting solutions that 
improved the performance of two objectives at a time was sufficient to 
improve the performance of the design compared to the baseline. For 
this reason, the authors inferred that multi-objective optimizations 
might be more interesting than single-objective optimizations. 

2.3. General guidelines for “hard” problem formulation for GAs in the 
literature 

Just like there is “no free lunch in optimization” regarding algorithm 
choices, optimal parameters in optimization problems also vary from 
problem to problem. However, there is an intuitive and accepted belief 
that in GAs, for example, some parameters can be set proportionally to 
the problem’s size and difficulty [21]. Following the expressed scope of 
our study, we review guidelines and rules of thumb described in the 
literature to improve problem formulation for optimizations with GAs 
and allowing to define population sizes, number of simulations, and 
genetic operators. 

Previous studies were able to outline trends such as the fact that if the 
number of parameters in the optimization problem is low, the impact of 
operator values is less, but this was no longer true when the problems 
became more complex [22]. Other studies have found that high muta
tion and crossover values are more efficient in small populations, but 
that too high mutation rates will lead to a random search problem [23]. 
In problems with large populations, low mutation rates were preferred. 
Many studies agree on the superiority of approaches in which these 
parameters are not static but either follow a predefined variation [24] or 
are even self-adapting [25]. However, these approaches are not yet 
standard in building optimization studies. 

Magnier & Haghighat [26] point out that to reduce computational 
time, modellers tend to revert to two potentially harmful approaches: 
the first one is to simplify the models as much as possible, with the risk of 
oversimplifying the optimization problem; and the second one, is to 
select very small population sizes in the GA or only run a very small 
number of generations, which may lead to premature convergence and 

non-optimal solutions [23]. 
Two studies have proposed using parameter values based on 

benchmark problems and statistics from previous work [27,28]. This 
approach is promising but requires that knowledgeable optimization 
researchers be transparent in their work and provide a given level of 
certainty that the values are appropriate for the problem. In the litera
ture, some guidelines related to hard aspects of problem formulation are 
provided, both for building design problems specifically and more 
general problems. These are reported and presented in Table 1. Note that 
some of these guidelines also introduce a dependency of the GA settings 
on the number of variables (parameters) in the problem. 

The findings from the literature about the relationships between 
population size, mutation probability, and crossover rates can be sum
marized as such: problems with small population sizes can lead to 
inadequate solutions; larger populations provided better solutions as 
there is an increased chance that a good solution or an optimal is present 
within the population. This can, to some extent, be addressed by 
following the recommendation of Hamdy et al. [11] regarding popula
tion sizes. Optimizations with smaller populations (20–60 individuals) 
should be combined with higher mutation rates to increase diversity and 
avoid premature convergence. Conversely, problems with large pop
ulations should have low mutation rates and higher crossover rates to 
behold better solutions from their already diverse population. 

To ensure that the optimization algorithm and the settings used are 
appropriate, it is also recommended in the literature that the optimi
zation procedures be repeated a number of times. Waibel et al. [32] 
repeated the procedure three times while Cubukcuoglu et al. repeated it 

Table 1 
Overview of guidelines and recommendations in the literature for parameter 
settings of genetic algorithms.  

Reference Parameter 
setting 

Value Condition 

Li et al. (2017) 
[29] 

Population size <50 Number of 
parameters <16 

Mutation rate 0.1 Number of 
parameters <21 

Crossover rate 0.5 Number of 
parameters <21 

Maximum 
generation 

<1000 Number of 
parameters <21 

Hamdy et al. 
(2016) [11] 

Population size 2 to 4 times the 
number of parameters 

1400 - 1800 
simulation in 
total 

De Jong 
(1975) [30] 

Population size 50 to 100  
Mutation rate 0.001 
Crossover rate 0.6 

Grefenstette 
(1986) [23] 

Mutation rate Maximum 0.01 
otherwise the problem 
becomes a random 
search regardless of 
other parameters. 
Values above 0.05 are 
typically harmful  

Settings for small 
populations 
(20–60 
individuals) 

High crossover rate 
and low mutation rate  
Low crossover and 
high mutation rate 

Mühlenbein 
et al. (1993) 
[31] 

GA parameters The mutation rate is 
given by 1/N 

N is the number 
of parameters or 
the size of the 
problem 

Mutation rates are 
more important in 
small populations to 
introduce diversity 
and avoid premature 
convergence 
Crossover rates 
depend on population 
size and are more 
important in large 
populations  
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five times [33]. 

2.4. Trends for problem formulation for optimization of shading devices 
in literature 

An overview of soft and hard problem formulation details used in 
previous studies of optimal shading devices is presented in Table 2. This 
table provides insight on trends in problem formulation choices in 
studies based on evolutionary algorithms. It is possible to see that the 
variability of parameters used is large and that they are sometimes only 
partially communicated in the publications. Some disparities can also be 
noticed, for example, at an equal number of parameters, some authors 
ran up to six times the amount of simulations. Few studies used many 
parameters (<10), but these studies generally used the most simulation 
runs. In more recent years, there is also a general trend of running more 
simulations, likely because of the increase in the availability of 

computational power. It is also worth noting that there are no studies 
that investigated different numbers of parameters or objectives for the 
optimization of shading device design. 

3. Methodology 

3.1. Case study 

This study is a simulation-based investigation of the impact of soft 
problem formulation on the design of external photovoltaic louvre 
shading systems (PVSD). The general approach used to augment PVSD 
performance is to investigate how the geometry can be modified to 
improve the ability of the system to balance competing parameters. 
These are daylight availability, solar gains, and electricity conversion on 
the surface of the louvres. In this study, the PVSD is modelled with the 
parametric software Rhinoceros [55] and the plug-in Grasshopper [56]. 

Table 2 
Overview of previously published studies on the topic of optimization of shading devices. NC: not communicated in publication. Nb: number.  

Reference Object of 
optimization 

Nb. of 
objectives 

Algorithm 
name(s) or type 

Nb. of 
parameters 

Population 
size 

Nb. of 
generations 

Total nb. of 
simulations 

Additional notes 

Rapone et al. 
(2013) [34] 

Ext. louvres 2 Self-developed 
in Matlab 

5 40 15 600  

Gadelhak (2013) 
[35] 

Light shelf 1 SPEA2 in 
Octopus 

6 NC 26  The authors indicated that the 
second study was not a completed 
full optimization 

Solar screen 1 3 NC 20 

Manzan et al. 
(2014) [36] 

Ext. louvres 1 ModeFrontier 4 16 100 1600  

Shan (2014) [37] Fixed shading 
structure of 
variable depth 

4 Self-developed 3 12 7 84 The authors ran the optimization 
several times 

Gonzales et al. 
(2015) [38] 

Ext. louvres 1 Galapagos 3 10 10 100  

Khoroshitlseva 
et al. (2016) 
[39] 

Static shading 
device above 
window 

4 Harmony 
search 

12 30 50 1500  

Zani et al. (2016) 
[40] 

Concrete static 
shading 

4 SPEA2 in 
Octopus 

4 NC NC 1300  

Mahdavinejad 
et al. (2016) 
[41] 

Fixed shading 
device 

2 SPEA2 in 
Octopus 

3 100 10 1000  

Manzan et al. 
(2017) [42] 

Exterior louvres 1 ModeFrontier 3 16 100 1600  

Lavin et al. (2017) 
[43] 

Perforated 
shading screens 

1 Galapagos 4 10 10 100  

Vera et al. (2017) 
[44] 

Ext. louvres 2 GenOpt 3 10 10 1000  

Toutou et al. 
(2018) [45] 

Ext. horizontal 
shading device 

2 SPEA2 in 
Octopus 

7 50 6 300  

Sghiouri et al. 
(2018) [46] 

Overhang 
shading devices 

1 JEplus + EA 
(NSGA II) 

4 150 8 1200  

Mangkuto et al. 
(2018) [47] 

Light shelf 2 SPEA2 in 
Octopus 

4 20 30 600  

Yun Kyu Yi (2019) 
[48] 

Ext. louvres 3 NSGA II 4 40 100 4000 The authors ran tests using Matlab 
to define the parameters and the 
optimization problem converged 
before reaching 100 generations in 
every test run 

Kirimtat et al. 
(2019) [49] 

Amorphous 
shading device 

2 NSGA II 25 100 50 5000 A second optimization was run in 
parallel using a surrogate modelling 
approach 

Ho Jeong (2019) 
[50] 

Surround-Type 
Shade 

3 SPEA2 in 
Octopus 

4 100 NC NC  

Taveres-Cachat 
et al. (2019) 
[51] 

PVSD 3 SPEA2 in 
Octopus 

20 to 36 100 20 2000 Four different cases were 
investigated 

Taveres-Cachat 
et al. (2019) 
[52] 

PVSD 2 SPEA2 in 
Octopus 

30 100 20 2000 Four cases were investigated – 
computational time was an issue 39 100 20 2000 

48 100 10 1000 
57 100 16 1600 

Samadi et al. 
(2019) [53] 

Ext. louvres 1 Galapagos 8 NC 17 NC  

Settino et al. 
(2020) [54] 

PVSD 4 SPEA2 in 
Octopus 

5 NC NC NC   
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The performance simulation of the system is done using the environ
mental analysis plug-in Ladybug tools [57]. The optimization procedure 
used the plug-in Octopus [58]. The PVSD is scripted following a highly 
flexible parametric methodology previously described in Ref. [51] and 
validated in Ref. [59]. The validation procedure of this modelling 
approach was based on a full-scale experimental analysis of the thermal 
and the daylighting of several eclectic configurations of the external 
louvred shading device using a test cell. These configurations included 
several setups with unevenly spaced and individually tilted louvres and 
shading devices with two different reflectance values. 

The reference building geometry used in this study is based on the 
Bestest case 600 [60] with an epw weather file for the location Oslo in 
Norway. The Bestest case 600 geometry is a 48 m2 rectangular room (6 
m × 8 m x 2.7 m) with two large south-facing windows (3 m × 2 m) that 
are equipped with the PVSD for this study. The building envelope 
properties, building operation schedules, and internal loads were 

defined to comply with the Norwegian technical standards NS3031 and 
NS3701 [61]. The HVAC parameters were modelled as ideal air loads 
and the energy source for the case study was assumed to be a heat pump 
(COP heating = 3, COP cooling = 5). More details are provided in 
Table 3. 

The daylighting simulations were carried out using the Honeybee 
legacy plug-in based on Daysim. The daylighting level was measured 
using the continuous daylight autonomy (cDA) with a threshold of 500 
lux on a work plan located 0.8 m above floor level. The radiance pa
rameters for the daylighting simulations were set to the following: 
ambient bounce value of 3, ambient divisions value of 1000, ambient 
sampling value of 100, ambient accuracy value of 0.1, and an ambient 
resolution value of 300. For the details on these settings and the choice 

of the metric used, we refer to the full description of the methodology 
presented in Ref. [51]. 

The performance of the system was assessed using the following 
metrics:  

• The total net energy demand in kWh/m2 or ETOT, calculated as: 

ETOT =EH +Ec +EL − EPV
[
kWh

/
m2]

where EH is the heating energy demand, EC the cooling energy demand 
and EL the energy demand for artificial lighting.  

• The continuous daylight autonomy or cDA expressed as a percentage 
of hours during working hours where the illuminance level on a work 
plan is above a threshold of 500 lux 

• The energy converted by the PV surfaces in kWh/m2 or EPV, calcu
lated as:  

Note that the energy demand for artificial lighting is tied to the 
daylight availability via a proportional control strategy and a minimum 
dimming of 20% when the illuminance is below the threshold as 
described below: 

EL =max
(

1 −
measured illuminance

500lux threshold
, 0.2

)

× installed power  

Table 3 
Characteristics of the benchmark building used.  

Component Value Note 

U-value external 
wall 

0.18 W/ 
(m2K) 

Below the maximum value from NS3031 

U-value roof 0.10 W/ 
(m2K) 

Slightly above the recommended value from 
NS3701 

U-value external 
floor 

0.10 W/ 
(m2K) 

Slightly above the recommended value from 
NS3701 

U-value window (3 
panes) 

0.8 W/ 
(m2K) 

Maximum value according to NS3701 

g value 0.54 N/A 
Air tightness 0.6 h− 1 Maximum value at 50Pa according to 

NS3701 
HVAC system  Ideal air load 
Mechanical 

ventilation 
5.2 m3/h 
per person 

Ventilation load calculated for 4 people 
during occupation hours in addition to base 
flow rate for materials and VOC emissions 0.5 m3/h. 

m2 

Internal load lighting 9.6 W/m2 During occupation hours. Proportional 
artificial lighting control schedule to 
maintain 500 lx on work plane at 0.8 m from 
the floor 

Maximum Internal 
load occupants 

382 W Variable according to schedules defined in 
NS3031 

Maximum internal 
load equipment 

21 W/m2 Variable according to schedules defined in 
NS3031 

COP heating system 3 Heat pump 
COP cooling system 5 Heat pump 
Setpoints (heating- 

cooling) 
20–24  

Occupation hours 7–18 Weekdays  

Table 4 
Overview of the different parameters of in the base and flexible models of the 
PVSD.  

Parameter Parametric 
analysis model 

Base model Flexible model 

Number of 
louvres 

[10:16] Predefined for each 
case 

[10:22] louvres 

Tilt angle [0; 15; 30,45] ◦

from horizontal 
but same angle for 
all louvres 

[0; 15; 30,45] ◦

from horizontal 
[0; 15; 30,45] ◦ from 
horizontal 

Louvre 
coating 
reflectance 

Photovoltaic Always 
photovoltaic 

Reflective or 
photovoltaic 

R = 0.10 for PV 
material in both 
thermal and 
daylighting 
simulations 

R = 0.10 in 
daylighting 
simulation 

R = 0.10 for PV 
material in both 
thermal and 
daylighting 
simulations  

R = 0.2 (default) in 
thermal simulation 

R = 0.65 for 
reflective material in 
both daylighting and 
thermal simulations. 
Corresponds to 
aluminium 

Louvre size [100:200] mm 
with a 50 mm step 
but all louvres 
have the same 
width 

105 mm [100:200] mm with 
a 10 mm step 

Vertical 
distribution 
of louvres 

Equally spaced 
louvres, no 
vertical 
movement 

Limited freedom - 
within a predefined 
fixed interval based 
on number of 
louvres 

Extended freedom - 
within a 
recalculated interval  

EPV =
Radiation received on geometry × cell efficiency × area of louvre with PV material

Floor area
[
kWh

/
m2]
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3.2. Description of the PVSD models 

In this study, three different models are used to carry out the 
investigation: a reference model used in a parametric analysis, a base 
model, and a flexible model with a larger number of parameters. These 
are described in Table 4. 

The parametric analysis is used to create a reference case when 
comparing the results of the different problem formulations. It included 
3 different possible louvre sizes, 4 tilt-angles, and 7 different densities of 
louvres. This resulted in 84 possible combinations. The main differences 
between the base and the flexible model can be summarized as follows. 
In the base model, the louvres have a fixed width of 105 mm, whereas, in 
the flexible model, the width of the louvres could be controlled for each 
one of them separately. The vertical distribution of the louvres was also 
scripted with different approaches in the two models. In the base model, 
the louvres could only move vertically within precalculated height in
tervals centered around the positions of equally spaced louvres. In the 
flexible model, the number of louvres was controlled by the algorithm. 
This means the vertical distribution of the louvres was also much freer, 
and the only constraint to avoid louvres overlapping was to respect a 
safety interspace recalculated for each case. 

Finally, in the base model, every louvre was considered to have PV 
material on its upper surface and otherwise be built of aluminium. The 
reflectance of these materials was, however, only considered in the 
daylighting simulation. This means that they had a constant reflectance 
equal to 0.2 for the thermal model. This was not the case for the flexible 
model, where not only were reflectances carried over in the thermal 
model, but the coating of the louvres could also be selected to be 
photovoltaic or light-reflecting. This allowed the creation of hybrid 
systems like the ones described in Ref. [52]. 

3.3. Impact of soft problem formulation 

The problem formulation investigated in this study is used to eval
uate three aspects. 

First, we consider the impact of increasing the solution space by 
adding flexibility to the PVSD model. This is investigated using the 
characteristics of the different models described previously in section 
3.2. 

Second, we evaluate the impact of the strategy used in terms of 
objective formulation and the resulting relative performance of Pareto 
solutions obtained. This is done by comparing the results of multiple 
optimization runs in which three separate possible formulations of the 
objectives are used: single-objective optimization, bi-objective optimi
zation, and tri-objective optimization. The different simulation proced
ures used in this study are reported in Table 5. It is worth highlighting 
that in all problems investigated, the elements that make up the objec
tives are always present, and the different objective functions simply 
consider them either explicitly or implicitly. 

Third, we evaluate the impact of different problem formulations on 
the resulting phenotypes of optimal PVSD designs. For this, we analyze 
the statistical variability of the parameter values in Pareto solutions 
obtained with the different problem formulations. Studying the pheno
types of optimal solutions is interesting because, in building design, 
there may be more value in identifying robust improved designs rather 
than identifying a single mathematical global optimal solution to a 
problem. 

3.4. Hard problem formulation settings 

The optimizations were run using the same algorithm (Octopus). 
Octopus is a multi-objective optimization algorithm based on the 
evolutionary algorithm SPEA2 but implements a hypervolume indicator 
(HI) to overcome some of the weaknesses of the SPEA2 algorithm [62]. 
The size of the population, the number of generations, and the values of 
the genetic operators were kept constant between cases for each model 

version, but these numbers were adjusted between the base and the 
flexible model to reflect the increase in complexity of the problem. 
Increasing the size of the population allows having more genetic di
versity in the solutions and maintain it for each generation (cf. section 
2). The stopping criteria for each simulation run was defined by the total 
number of function evaluations. The details about the optimization 
settings are given in Table 6. 

The simulations in this study were run on Dell computer Intel® 
Core™ i7-8700 @ 3.20 GHz and a 32 GB RAM, which can be considered 
a conventional business desktop designed for everyday commercial 
needs. 

4. Results and discussion 

4.1. Results of the parametric analysis 

The first step of the study was to run a parametric analysis of the 
PVSD to create a reference; the results of the 84 possible combinations 
are presented in Fig. 1. The results of the parametric analysis were also 
used to run a simple analysis of variance (ANOVA) to check whether 
certain parameters could be eliminated due to not having any influence. 
The results showed that all parameters mattered equally and the P-value 
for all the parameters, that is the number of louvres, the tilt angle and 
the louvre size, was the same and equal to 0. This means that the ANOVA 
analysis could not identify inputs that could be eliminated to reduce the 
number of parameters based on the relationship between the inputs and 
the outputs. 

Five reference configurations are selected among the results of the 
parametric analysis (PA) for the further analysis as baseline points with 
the following criteria: the solution which provided the highest cDA, the 
solution that provided the lowest ETOT, the solutions that provided the 

Table 5 
Description of the 5 cases investigated with the optimization algorithm. NA: not 
applicable.  

Case study name Input parameter type Objectives 

PA - Initial parametric analysis for 
reference 

Number of louvres N.A. 
Equally spaced 
louvres 
Single tilt angle for 
all louvres 
Single width for all 
louvres 

B3O- Base model with 3 objectives 
(fixed number of louvres) 

Louvre tilt angles Maximize the cDA 
[%] 

Vertical position of 
louvre 

Minimize ETOT 

[kWh/m2]  
Maximize EPV 

[kWh/m2] 
F1O- Flexible model with 1 objective Number of louvres Minimize ETOT 

[kWh/m2] Louvre tilt angles 
Vertical position of 
louvre 
Louvre size 
Louvre reflectance 

F2O- Flexible model with 2 objectives Number of louvres Maximize the cDA 
[%] 
Minimize ETOT 

[kWh/m2] 

Louvre tilt angles 
Vertical position of 
louvre 
Louvre size 
Louvre reflectance 

F3O- Flexible model with 3 objectives Number of louvres Maximize the cDA 
[%] 

Louvre tilt angles Minimize ETOT 

[kWh/m2] 
Vertical position of 
louvre 

Maximize EPV 

[kWh/m2] 
Louvre size  
Louvre reflectance   
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highest EPV, the solution that provided the lowest ETOT with a cDA above 
50%, and the solution that provided the best balance. These solutions 
are highlighted in purple in Fig. 1, and their characteristics are detailed 
in Fig. 2. 

4.2. Results of the investigation of soft problem formulation on the 
performance of the PVSD 

The results of the different optimization runs are presented in 
Table 7. Because the base model uses a predefined number of louvres, 

Table 6 
Overview of the genetic operator settings, population and generation settings used in the study.  

Case study name Number of parameters Population size Nb. generations Elitism Mutation Crossover probability 

B3O 2 per louvre 80 25 0.5 Rate 0.5 0.8 
Probability 0.1 

F10 4 per louvre 100 100 0.5 Rate 0.5 0.8 
Probability 0.06 

F20 4 per louvre 100 100 0.5 Rate 0.5 0.8 
Probability 0.06 

F30 4 per louvre 100 100 0.5 Rate 0.5 0.8 
Probability 0.06  

Fig. 1. Results of the parametric analysis projected in a 2D view. The points selected in purple are the points analyzed in Fig. 2. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. Results of the parametric analysis of the PVSD.  
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two different simulation runs were used with 10 and 13 louvres. The 
number of louvres selected for these two cases is based on the findings of 
[51] and the results of the parametric analysis. 

To compare the effect of having a different number of objectives, the 
Pareto points from the different simulation runs were combined in and 
plotted as 2D charts. To provide a bigger picture of the single-objective 
optimization, the nine dominated solutions were plotted in addition to 
the best solution that emerged from the optimization. 

In Fig. 3, it is possible to see that the combination of the solutions 
from the flexible models formed a complete Pareto front that out
performed any solution obtained by the parametric analysis or by the 
base model optimization. The optimization with F3O provided the 
largest amount of Pareto solutions and provided the most solutions in 
the middle of the Pareto front, meaning they represent better-balanced 
solutions in terms of tradeoffs. Most noticeably, the solution with the 
lowest ETOT and a cDA value above 50% reduced energy demand by 15% 
compared to the best solution from the parametric analysis with this 
same criteria. The results of the optimization with F2O were located at 
the top of the front meaning they provided better-performing solutions 
with regard to daylight than any other optimization run and a large 
number of solutions that improved both daylight and energy compared 
to the B3O and the PA. The results of F1O yielded solutions that visually 
seem to extend the Pareto front with a natural preference for reducing 
ETOT, but the optimal solution performed no better than F3O. 

The results of the optimization with B3O - 10 louvres allowed finding 
solutions that were intermediate between the results of the PA and F2O. 
They also outperformed PA 2 without increasing energy use. For the 
optimization with B3O - 13 louvres, the solutions given in the Pareto 
front provided some improvement compared to the results of the PA and 
were more oriented towards reducing ETOT than B3O − 10 louvre 
solutions. 

When considering the cDA vs EPV in Fig. 4, it is possible to see once 

more that the results from F3O performed uncontestably better than all 
the other models, providing many non-dominated solutions. The solu
tions of F2O, here again, prolong the Pareto front from F3O and perform 
better than all B3O results, as do the F1O results. In this case, the from 
the B3O − 10 louvres were better compared to PA 5 and PA 2, but with if 
cutoff at cDA≥ 50% is used, then PA 4 provided a better solution. 
Interestingly, the results of B3O – 13 louvres are very similar to PA 4 and 
can only improve one or the other objective at a time. Note that in these 
figures EPV is marked with a negative sign, this was to illustrate that it is 
energy discounted from the energy demand and differentiate it from 
ETOT which is the net energy demand. 

Fig. 5 shows the 2D plot of the Pareto points of all the models 
considering ETOT and EPV. An important observation that can be made 
about this plot is that it is not a Pareto front, which indicates that this 
was a degenerate Pareto problem when ETOT and EPV were used as ob
jectives. The relationship between the objectives seems to have been 
linear for the problem set with the base model with 10 louvres, F2O and 

Table 7 
Simulation run-time and number of non-dominated solutions for all optimiza
tion cases.  

Case Average time per 
simulation 

Nb. of non-dominated 
solutions 

Total nb. of 
simulations 

B3O – 10 
louvres 

Ca. 280 s 86 2000 

B3O – 13 
louvres 

Ca. 280 s 95 2000 

F3O Ca. 280 s 110 10 000 
F2O Ca. 280 s 53 10 000 
F1O Ca. 280 s 1 10 000  

Fig. 3. Summary plot of all optimization runs with a 2D projection of the 
fitness of the Pareto front solutions and selected results from the parametric 
analysis for the tradeoffs cDA versus total net energy demand (ETOT). 

Fig. 4. Summary plot of all optimization runs with a 2D projection of the 
fitness of the Pareto front solutions and selected results from the parametric 
analysis for the tradeoffs energy converted by PV (EPV) versus cDA. Note that 
EPV is represented as negative to illustrate that this energy is discounted from 
the base energy demand. 

Fig. 5. Summary plot of all optimization runs with a 2D projection of the 
fitness of the Pareto front solutions and selected results from the parametric 
analysis for the tradeoffs energy converted by PV (EPV) versus total net energy 
demand (ETOT). Note that EPV is represented as negative to illustrate that this 
energy is discounted from the base energy demand. 
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F1O. However, in solutions of F3O and B3O - 13 louvres, the relationship 
was not linear and had a polynomial V shape; with multiple solutions 
having the same ETOT but different values of EPV. This highlights that a 
balance could be found between letting light into the zone and 
increasing daylight, versus using it for electricity and compensating for 
the added heating and artificial lighting load. In this case, we can also 
see that only solutions from F3O and F1O could outperform PA 1, but the 
improvement was relatively significant. Here again, one may notice that 
the results of B3O – 10 louvres were always close to PA 5 while the 
results of B3O – 13 louvres resembled those of PA 4. 

4.3. Results of the impact of soft problem formulation on the design of the 
PVSD and parameter values 

For the rest of this section, the phenotypes of the Pareto points given 
by the flexible models only are investigated more in detail to understand 
how the problem formulation impacted the type of designs contained in 
Pareto solutions. The outcomes of this analysis are presented in Fig. 6 
and Fig. 7. For the F2O optimization, all the Pareto solutions had 10 
louvres except for two solutions. The F3O optimization had 45/110 
Pareto points with 10 louvres, and the rest had 11. For the sake of 
comparability, the results presented below are calculated based on 
configurations with 10 louvres for F2O and F3O. The results of the best 
solution for the F1O optimization had 11 louvres, but the results are still 
shown in parallel for comparison. Note that regardless of the problem 
formulation, none of the Pareto solutions had louvres with light- 
reflecting material, meaning that the coating of the louvres was al
ways PV material, and therefore this parameter variation is not pre
sented. This, in addition to the fact that Pareto solutions all have 10 or 
11 louvres, indicates that the problem formulation could have been 
improved and the solution space may have been possible to reduce. 
However, this problem can never be eliminated in optimization without 
taking the risk of exploring a solution space that is too small or excludes 
some solutions. It can only, at best, be minimized through problem 
formulation studies. 

In the F3O optimization, the bottom louvre was almost always as 

large as possible. Narrower louvres followed and then slowly grew wider 
again for louvres at the top of the window in positions 9 and 10. The 
analysis of the width of the louvres in the optimization with F2O pro
vides slightly different results. Multiple, large louvres appear at the 
bottom of the window, followed by gradually narrower louvres from just 
below mid-way up the window at louvre in position 6 and upwards. The 
results of the F1O optimization form a much more erratic pattern, and 
the only conclusion possible to make seems to be that the louvres in the 
solution were on average wider. 

For the analysis of the tilt angle of the louvres, the F3O optimization 
provides a statistical trend in which the louvres at the lower part of the 
window were tilted as much as possible - except for louvre 4. The louvres 
at the top of the window were, on the other hand, horizontal. This trend 
is also visible for the F2O optimization, but the trend was more abrupt, 
and the upper louvres were consistently horizontal with no variability. 
For the F1O optimization, the angulation of the louvres followed a 
somewhat similar pattern, but the louvres were tilted at 15◦ rather than 
being horizontal. 

The vertical distribution of the louvres shows a trend common to all 
three optimizations and previously outlined in Ref. [51]. This creates a 
design in which the louvres at the bottom part of the window are tightly 
spaced compared to a system with equally spaced louvres (reported in 
red on the figure), and then gradually space out more and more. Because 
the louvres at the top of the window were also horizontal, this created 
openings for the sunlight to enter and contribute to increasing the illu
minance in the zone. The presence of this trend in the F1O optimization 
scenario, further shows that the tradeoffs associated with too low or too 
high solar gains – which in turn increased energy demand - were dealt 
with having a larger amount of light enter the room at the top of the 
window. It is also interesting to note that the position of the individual 
louvres in the F3O optimization only varied within a remarkably small 
interval compared to the F2O optimization, and in general, the vari
ability of the parameters was contained within a smaller range. This is 
likely due to the additional constraint of the 3rd objective. This is also 
interesting since, to some extent, using EPV as an objective created 
redundancy and acted in a similar way to weighting objectives. 

Fig. 6. Statistical analysis of the parameters making up the in Pareto solutions.  
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4.4. Limitations and implications of the study 

The focus of this study was to explore the impact of the aspects tied to 
soft problem formulation on optimization studies using a specific case 
technology. Because we did not simultaneously consider hard aspects of 
problem formulation, the results of the work presented here may be 
incomplete as these may influence each other and are dependent on the 
assumptions made in the benchmark problem used. Additionally, while 
it seems intuitive that the parameters used for soft aspects of problem 
formulation should be defined before selecting the algorithm and the 
parameters associated, the process may not be linear. This work did not 
either consider the option of using constraints in the optimization pro
cedure, which could help narrow the search in some problems. Recently, 
there have been discussions in the literature regarding the formulation 
of objectives, the need for multi-objective searches, and whether using 
constraints instead of objectives may be more useful in some problem 
sets [63]. 

In a conventional optimization-based design process, where clear 
performance goals or statutory requirements are well defined, these 
constrains can be used to reduce the domain of the search and increase 
the efficiency of the optimization by simply giving the problem less 
freedom. In such a context, a well designed process can often benefit 
from a two-step approach, where a larger domain is initially investigated 
with a limited number of simulations (either through parametric 
searches or though optimization algorithms), and then a second round of 
simulations is carried out in a more limited area of the original domain 
which appeared to be more promising one according to the results of the 
first step. However, because of the nature of this study, which aimed at 
being exploratory and at investigating the impact of different choices 
and variables, we decided to avoid constraining the problems or using a 
succession of steps. The chosen approach might have made the use of the 
optimization procedure less efficient computationally speaking, but was 
consciously considered a better tradeoff in balancing the aims of the 
research and the resources available – a tradeoff that might be different 
when real building projects are involved. 

Finally, although the specific findings of this study cannot be 

extended to any façade design beyond shading systems, the procedure 
described in this work contributes to fostering awareness about the 
impacts of problem formulation. The results outlined in this work shed 
light on several relationships between design parameter, decisions var
iables, and optimal PVSD design. Optimization may not always be used 
to find designs that correspond to a mathematical global optimal, but 
near-optimal designs should also be robust and understood by modellers. 
Optimization is also a tool that can allow gaining insight into design 
tradeoffs, in a similar way that parametric analysis is used, but it can be 
applied with a larger number of strategies and a more refined approach 
to investigate a more extensive solution space. Lobo et al. [21] 
mentioned that part of a challenge of defining optimization procedures 
is that they should be based on problem difficulty, but “problem difficulty 
is very hard to estimate for real-world problems, […]”. Approaches such as 
the one described here aim at giving modellers a sense of the difficulty of 
the problem they wish to optimize. 

5. Conclusions and future outlooks 

This study investigated the soft aspects of problem formulation in GA 
optimization problems related to PV integrated external shading sys
tems. These relate to two elements. The first one is the impact of 
changing the size of the solution space by increasing the number of 
parameters optimized by adding flexibility to the model. The second 
element concerns how the solution space is searched regarding the 
number and nature of the objectives, formulated either implicitly or 
explicitly. This was done by considering different combinations of ob
jectives tied to daylight, total net energy demand, and energy converted 
by PV surfaces. 

The model with more flexibility - which was obtained by allowing 
the louvres of the system to have variable sizes, and a higher degree of 
freedom in the geometric configuration – consistently outperformed 
both the base model and the results of a preliminary parametric analysis. 
This was true regardless of the number and nature of the objectives. On 
the other hand, the results of the base model could only bring on 
moderate improvement compared to the parametric analysis in most 

Fig. 7. Statistical analysis of the vertical distribution of the louvres in Pareto solutions. In red: height of equally spaced louvres as in the parametric analysis. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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cases. When considering the impact of the objectives in the flexible 
model, the optimization with 2 objectives (daylight and net energy de
mand) provided more solutions with higher amounts of daylight, but 
this came at the cost of increasing energy demand. The optimization 
with 3 objectives provided the largest number of Pareto solutions, which 
was expected. However, it also yielded solutions that had better trade
offs than any other optimization despite having a partially degenerate 
Pareto front and performed as well or better than the optimal solution 
yielded by the single-objective optimization. 

Problem formulation also influenced the resulting statistical values 
for parameters in the different cases investigated. The optimization with 
2 and 3 objectives in the flexible model allowed highlighting common 
trends that were hard to identify in the single-objective optimization. 
Certain elements did set apart the geometries, but these were typically in 
line with what may be expected when considering the shape of the 
Pareto fronts. Overall, it was found that multi-objective optimizations 
have more value for designers wishing to understand how the different 
tradeoffs in PVSD design play out and can allow identifying new types of 
designs based on the optimal trends. 

Future work on the topic should investigate hard aspects of problem 
formulation, including choices relating to algorithms themselves but 
also levels of abstractions in models. As optimization studies become 
more popular, there is a need to gather more insight on problem 
formulation to help modellers use optimization more efficiently and 
uncover not only improved designs but also more robust ones. For 
studies with high computational overhead, there are also many benefits 
to be gained by developing options allowing to batch simulations and 
use cloud computing to overcome limitations associated with compu
tational time. 
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