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Abstract: A novel graphene H-waveguide is proposed for active terahertz components. A graphene
film illuminated by strong pumping light shorts the parallel conductor plates. The terahertz modes
propagating along this film are amplified at certain conditions. A rigorous electromagnetic (EM)
quasi-linear method of analytical calculations of TEy and TMy eigenmodes is used in this paper
to select these conditions. Among them is the use of bound TEy modes interacting with graphene
plasmons at frequencies of negative graphene resistance, minimizing conductor loss associated with
parallel plates, and excluding the current-crowding effect from the waveguide design. The limitations
of the used theory are considered, and the applications of this waveguide are proposed.
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1. Introduction

Today much attention is paid to two-dimensional materials and electronic components. Graphene
is the first one consisting of carbon atoms and composing a flexible and stretchable honeycomb crystal
lattice discovered by Geim and Novoselov [1]. The theory of this material is based on quantum physics,
and it is rather complicated. For instance, the electricity motion is described with oscillation of electron
plasma. Excited plasmons are coupled to electromagnetic (EM) waves, and even a single sheet or
strip of graphene has waveguiding properties [2]. For electronic applications, a convenient parameter
describing graphene is its conductivity σg, for which several approximate formulas are known [3–8].

The graphene sheets or strips can be placed over a dielectric substrate surface and combined with
conductors forming the waveguides [2]. The EM mathematical analytical and numerical models of
graphene transmission lines are published in many contributions, and they use the field-matching [7,8],
transverse resonance [9], integral equation [10], and finite-difference or finite element methods [2,11].

A part of graphene’s unique properties is its controllability by electric, magnetic, light fields,
and chemical doping [12,13]. The high electron mobility of graphene allows developing transistors
of terahertz frequencies, including the components sensitive to optical irradiation. At a substantial
incident EM field, graphene shows moderate nonlinearity of its conductivity, and the terahertz
parametric amplifiers, modulators, etc. are known [14–17].

Interesting techniques are when the real part of graphene complex conductivity σg is negative,
and it is realized in the terahertz range by optical pumping or charge injection [18–20]. These graphene
effects and the reached gain in order of 1000 cm−1 are confirmed by measurements or/and EM
numerical simulations in several graphene-based structures. Among them are the graphene film
or graphene strips over a dielectric sheet [5], metal/graphene strips over a dielectric substrate [21],
conductor-backed graphene-slot waveguide [22], a dielectric cylinder covered by graphene [23],
and hybrid graphene-dielectric microtube waveguides [24].

The effectiveness of optically induced or charge injection lasing can be enhanced using the
multilayered graphene [22,25]. For instance, it allows decreasing the required intensity of light or
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shifting the negative conductivity towards the millimeter-wave frequencies with an overall increase in
permitted currents in graphene [26]. The graphene-based components’ properties can be enhanced
further by integrating the graphene layers with the semiconductor heterostructures [27–30].

The nearest competitors to the graphene-based devices are the resonant tunneling diodes showing
the amplification and generation of terahertz irradiation [31,32]. A promising technology is with the
terahertz discrete GaN components, including the negative resistance diodes [33].

In this contribution, a novel low-loss graphene-based waveguide (Figure 1) is proposed and
analytically studied by a rigorous EM method. A parallel-plate waveguide is shorted by a graphene
film uniformly illuminated by pumping light. This H-waveguide directs the EM modes with the
amplification due to the induced negative graphene conductivity. The waveguide loss decrease is
provided by excluding the sharp-edged graphene and conductor strips from this design, the employ of
modes with the electric field decreasing towards the conductor plates, and by proper geometry of the
waveguide, allowing a better concentration of the modal field near the graphene film. The analytically
calculated results show the dependence of complex propagation constant and modal fields on the
frequency, dielectric filling, waveguide geometry, and quasi-Fermi energy level defined by pumping
light intensity.
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Figure 1. Cross-section of a graphene H-waveguide for lasing application. The terahertz waveguide
modes propagate along the z-axis, which is normal to the picture plane.

2. Proposed Graphene Component, Its Theory, and Used Methods

The terahertz range of frequencies is the place of complicated wave and material effects,
and the development of new components is a challenging process [34]. A part of the problems
can be diminished by reducing the cross-section of elements and geometry tailored to the employed
effects and component application.

In microwaves, an H-waveguide consisting of two parallel conductor plates and a dielectric
insert forming a figure of the letter H is known. The main mode of this waveguide is the quasi-TEM
(transverse-EM) one [35] with Ey (“vertical”) field component. An increased concentration of the field
inside of this dielectric sheet was found. Later, this waveguide was proposed for the millimeter-wave
range, called the nonradiative dielectric (NRD) waveguide [36]. This waveguide’s used mode is the
lowest TE(1)

y one. It has a relatively low conductor loss due to the electric field’s transverse orientation
parallel to the conductor plates. The irradiation of this insert in the transverse directions is reduced
due to the waveguide’s small height preventing propagation of this mode away from this dielectric
sheet. Some terahertz applications of this waveguide are described in Refs. [36–39], for instance.

In this paper, the central dielectric sheet of a nonradiative dielectric waveguide is substituted by a
single or multilayered graphene film (Figure 1, black-colored vertical strip), shorting the conductor
plates. Similar to the mentioned prototype NRD, the TE(m)

y modes are proposed for signaling to
decrease the plate-associated loss. The height of this waveguide is chosen to prevent the propagation
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of these modes without graphene insert. It allows reducing the irradiation towards the transverse ±x−
directions. This proposed waveguide is convenient for the pumping light illumination of graphene
from its left or right side to make conductivity Re

(
σg

)
negative over a specific frequency. Besides,

this structure is pertinent for charge injection to graphene by applying a DC voltage to the waveguide’s
conductor plates and realizing its associated amplification. This design has no graphene or conductor
strips at the difference to known structures, causing an essential loss due to the current-crowding
effect [8,40] near the mentioned sharp edges strips. Today, the packaging technologies exist, allowing
the manufacturing of vertically oriented graphene structures of this type. For instance, Ref. [41] is
used to make the graphene strips suspended over-the-trenches.

2.1. Hybrid Mode Theory

Here, this waveguide’s theory in the quasi-linear approximation is given, i.e., supposing that
the weak signal terahertz field does not influence graphene’s conductivity. Otherwise, the nonlinear
methods of Maxwell equations solution should be applied [14,15]. Besides, it is supposed that a plane
pumping light wave illuminates the graphene film, and it has a uniform conductivity distribution
along its surface.

In general, due to graphene conductivity’s anisotropy σ
↔g

, the waveguide’s modal field should

be hybrid with all six components. Assuming the time dependence as e jωt, we introduce two vector
potential functions [42,43] in each cross-section of the domains I and II (Figure 1)

F(I,II)(x, y, z) = y0F(I,II)
y (x, y)e− jkzz,

A(I,II)(x, y, z) = y0A(I,II)
y (x, y)e− jkzz

(1)

where y0 is the vector unit, j is the imaginary unit, and kz is the longitudinal propagation constant,
which is the subject to be obtained.

The four vector field components needed for further treatments in each domain are

H(I,II)
y = −

j
ωεµ

(
∂2

∂y2 + κ2
)
F(I,II)

y (x, y)e− jkzz, H(I,II)
z =

(
−

kz
ωεµ

∂F(I,II)y (x,y)
∂y + 1

µ

∂A(I,II)
y (x,y)
∂x

)
e− jkzz,

E(I,II)
y = −

j
ωµε

(
∂2

∂y2 + κ2
)
A(I,II)

y (x, y)e− jkzz, E(I,II)
z = −

(
1
ε

∂F(I,II)y (x,y)
∂x + kz

ωµε

∂A(I,II)
y (x,y)
∂y

)
e− jkzz

(2)

where ω = 2π f and f are the cycling and driving frequencies, correspondingly, µ = µ0µr with µ0 and
µr are the absolute vacuum and substrate relative permeabilities, correspondingly, ε = ε0εr where ε0

and εr are the absolute vacuum and substrate relative permittivities, correspondingly, and κ2 = k2
0εrµr,

k0 = ω/c, and c is the light velocity in vacuum.
The mode-matching method is used to solve this boundary value problem. In each geometry

domain I or II (Figure 1), a set of discrete modes of an ideal parallel-plate waveguide is written. Taking
into account the uniform geometry of graphene film and its constant conductivity distribution along
the y−axis, the radiation continuous-spectrum field is omitted [36,44].

The vector potentials for these modes are

F(I)
m (x, y, z) = y0F(I)

m sin
(
k(m)

y y
)
e jk(m)

x xe− jk(m)
z z,

F(II)
m (x, y, z) = y0F(II)

m sin
(
k(m)

y y
)
e− jk

(m)
x xe− jk(m)

z z,

A(I)
m (x, y, z) = y0A(I)

m cos
(
k(m)

y y
)
e jk(m)

x xe− jk(m)
z z,

A(II)
m (x, y, z) = y0A(II)

m cos
(
k(m)

y y
)
e− jk(m)

x xe− jk(m)
z z

(3)
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where F(I,II)
m and A(I,II)

m are the unknown potential function amplitudes, ky = mπ/b, m is the modal

number, and
(
k(m)

z

)2
= κ2

−

(
k(m)

x

)2
−

(
k(m)

y

)2
. It is seen that each vector potential function in (3) satisfies

the radiation boundary conditions at x = ∓∞, and the modes can be leaky at certain conditions [45,46].
Supposing an infinitely thin graphene layer (Figure 1), the modal fields should be matched at

x = 0 using the following boundary conditions

σ
↔g

E(I)
m,τ = x0 ×

(
H(II)

m,τ −H(I)
m,τ

)
(4)

E(II)
m,τ − E(I)

m,τ = 0, (5)

where E(I,II)
m,τ and H(I,II)

m,τ are the field vectors tangential to the plane x = 0, y, z. It provides four linear

algebraic homogeneous equations regarding F(I,II)
m and A(I,II)

m . Solving (4) and (5), i.e., calculating
a zero of the system’s determinant allows us to obtain a complex propagation constant k(m)

z from,
unfortunately, a transcendental equation in this hybrid mode case.

2.2. TE(m)
y Modes

The scalar approximation of graphene’s conductivity allows separating the hybrid modes into
two types [42,43] and simplifying the solution.

Consider the treatment of the TE(m)
y modes. The needed tangential-to-graphene field

components are

H(I,II)
y,m (x, y, z) = − j

ωµε

(
∂2

∂y2 + κ2
)
F(I,II)

y,m (x, y)e− jk(m)
z z,

H(I,II)
z,m (x, y, z) = − k(m)

z
ωµε

∂F(I,II)y,m (x,y)
∂y e− jk(m)

z z,

E(I,II)
y,m (x, y, z) = 0, Ez,m(x, y, z) = − 1

ε

∂F(I,II)y,m (x,y)
∂x e− jk(m)

z z

(6)

where
F(I)

y,m(x, y) = F(I)
m sin

(
k(m)

y y
)
e jk(m)

x x,

F(II)
y,m(x, y) = F(II)

m sin
(
k(m)

y y
)
e− jk(m)

x x.
(7)

Using the field components (6), the boundary conditions (4) and (5) at x = 0 are satisfied. It gives
a system of two linear homogeneous equations regarding F(I)

m and F(II)
m . Zeroing these equations’

determinant yields a simple formula for the modal propagation constant k(m)
z

(
k(m)

z

)2
=

(
κ2
−

(
k(m)

y

)2
)1−

4
(
κ2
−

(
k(m)

y

)2
)

(ωµσg)
2

,
m = 1, 2, 3, . . . ,∞.

(8)

This expression gives a pair of forward and backward modes [47] whose propagation constants
k(m)

z are different only by a sign before the root of (8).
The found longitudinal modal constant k(m)

z allows calculating the lateral propagation number

k(m)
x = ∓

√
k2

0εrµr −

(
k(m)

y

)2
−

(
k(m)

z

)2
. In lossy/active open waveguides, it gives a pair of modes of

untrivial difference between them, which will be studied below.
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2.3. TM(m)
y Modes

The TM(m)
y modes are handled similarly. The needed for further treatment field components are:

H(I,II)
y,m (x, y, z) = 0, H(I,II)

z,m (x, y, z) = 1
µ
∂Ay,m(x,y)

∂x e− jk(m)
z z,

E(I,II)
y,m (x, y, z) = − j

ωµε

(
∂2

∂y2 + κ2
)
Ay,m(x, y)e− jk(m)

z z,

E(I,II)
z,m (x, y, z) = − k(m)

z
ωµε

∂Ay,m(x,y)
∂y e− jk(m)

z z

(9)

where
A(I)

y,m(x, y) = A(I)
m cos

(
k(m)

y y
)
e jk(m)

x x,

A(II)
y,m(x, y) = A(II)

m cos
(
k(m)

y y
)
e− jk(m)

x x.
(10)

Using (4), (5), (9) and (10), an analytical formula is derived for the modal propagation constants
k(m)

z of the TM(m)
y modes

(
k(m)

z

)2
=

(
κ2
−

(
k(m)

y

)2
)[

1−
( σg

2ωε

)2
(
κ2
−

(
k(m)

y

)2
)]

,

m = 0, 1, 2, . . . ,∞.
(11)

Similarly to the TEy solutions, there will be forward and backward modes. Each of these modes is

paired due to the root k(m)
x = ∓

√
k2

0εrµr −

(
k(m)

y

)2
−

(
k(m)

z

)2
.

3. Results and Discussion

3.1. Graphene Conductivity

A graphene conductivity formula used here is from Refs. [4,18]

σg =
(

e2

4}

){
8kBTτ

π}(1− jωτ) ln
[
1 + exp

( EF
kBT

)]
+ tanh

(}ω−2EF
4kBT

)
−

4}ω
jπ

∫
∞

0
G(E−EF)−G( }ω

2 ,EF)
(}ω)2

−4E2
dE

}
, (12)

where e is the electron charge, } is the reduced Planck’s constant, kB is the Boltzmann constant, T is the
temperature in Kelvin, τ is the graphene relaxation time, ω is the terahertz cycling frequency, EF is the

quasi-Fermi energy, and G(E, E′) = sinh(E/kBT)
cosh(E/kBT)+cosh(E′/kBT) . In this formula, the level of quasi-Fermi

energy is defined by pumping light.
Figure 2 illustrates the frequency dependence of graphene conductivity’s real and imaginary parts

σg, denoting a frequency point Re
(
σg( fσ)

)
= 0.

The zero position of Re
(
σg

)
on the frequency axis depends on the infrared pumping light defining

the quasi-Fermi level in (12). If graphene is in its equilibrium state, the carrier distribution is described by
a single Fermi energy level depending on the graphene properties and temperature. Light illumination
of graphene leads to a new dynamic stage of charge carrier distribution characterized by the quasi-Fermi
energy levels for electrons EFn and holes EFp . Proper calculation of these levels requires solving an ab
initio problem or using semiclassical equations [48] for charge transport in graphene.

In practice, according to the data of different authors, it is supposed that for the charge densities in
order of 1010–1011cm−2, light wavelength around 0.8–10 µm, and source intensity in order 1–2 kW/cm2,
the quasi-Fermi energy level EF = EFn = EFp may vary in the limits 20–150 meV [19,22,27]. These values
of EF are used in this paper for the EM calculation of the proposed waveguide. It is estimated that
the amplified signals in the quasi-linear regime can have a level of 10 µW for the diffraction type of
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devices [21]. The gain factor can reach the values of the order 1000 cm−1, and it can be increased further
using the multilayer graphene films and graphene-semiconductor heterostructures.Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 22 
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The photo-induced carriers pump energy to traveling plasmons of the terahertz range, and the
EM coupled-wave is amplified. This effect is approximately described by a graphene conductivity
Formula (12) obtained using Kubo’s approach. In Ref. [18], it is shown that wave amplification occurs
at frequencies over fσ where Re

(
σg

)
< 0.

3.2. TEy Longitudinal Propagation Constant

Analyzing Formulas (8) and (11), it is seen that a critical frequency f (m)
c exists where κ2

−

(
k(m)

y

)2
=

k(m)
z = 0 for m ≥ 1. The wave propagation below this frequency is still supported by graphene

film’s guiding properties, although the parallel-plate waveguide does not propagate its corresponding
volumetrical mode.

In Figures 3 and 4, the frequency dependencies of the normalized real and imaginary parts of
the propagation constant k(m)

z /k0 = −
(
β(m) + jα(m)

)
/k0 of the first two TE(m)

y modes are shown for the

case when fσ < f (1)c . These real parts are negative for the backward modes before and after critical
frequencies f (m)

c . Because these modes are coupled to graphene with its high specific conductivity,
they are very slow and have increased phase constants βm.
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y
backward modes of a graphene H-waveguide of the height b = 0.01 mm, width 2a = ∞, εr = 3.84 ,
and µr = 1. Parameters used for calculation of σg are from Ref. [21]: T = 300 K, EF = 40 meV,
and τ = 1 ps.
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y

backward modes of a graphene H-waveguide of the height b = 0.01 mm and width 2a = ∞, εr = 3.84,
and µr = 1. Parameters used for calculation of σg are from Ref. [21]: T = 300 K, EF = 40 meV,
and τ = 1 ps.

The simulation of the imaginary parts of propagation constants shows that the negative
conductivity effect makes these modes propagate with amplification occurring below and over

their critical frequencies f (m)
c because there Im

(
k(m)

z /k0

)
> 0 (Figure 4). Remarkably, this value is

growing with the modal number in the considered range of frequencies. An explanation is with the
coupling of the modal field to graphene and the plasmon-surface nature of these modes. With the
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modal number m, the field localizes near the film and the modal properties are defined by graphene
more strongly.

Another variant is when f (1)c < fσ, which can be reached by increasing the waveguide height
b, for instance. In this case, both modes have critical frequencies f (m)

c in the considered range
(Figures 5 and 6). These waves are amplified over frequency fσ, which is typical for both modes, but,

here, the amplification is more substantial for the lowest TE(1)
y mode. The increase in Im

(
k(m)

z /k0

)
over

the frequencies f (m)
c is explained by the decrease in the shortening effect of graphene film (see Figure 2).
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Figure 6. Normalized imaginary parts of the propagation constant Im
(
k(m)

z /k0

)
of the first two TE(m)

y

backward modes of a graphene H-waveguide of the height b = 0.04 mm and width 2a = ∞, εr = 3.84,
and µr = 1. Parameters used for calculation of σg are from Ref. [21]: T = 300 K, EF = 40 meV, and
τ = 1 ps.
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3.3. Study of the Bound and Leaky Regimes of the TEy and TMy Modes

As mentioned in Section 2, each forward or backward mode has a paired solution k(m)
x =

∓

√
k2

0εrµr −

(
k(m)

y

)2
−

(
k(m)

z

)2
. In open structures and lossy material parameters, these modes can be

registered in the bound or leaky states [46]. In graphene-based waveguides, the bound or leaky regimes
depend on graphene parameters, surrounding material, and waveguide housing. The same mode can
be bounded or leaky at different frequencies, and there is a need to study the frequency dependence of
the lateral propagation constant kx to define these states.

Figure 7 shows the real parts of this propagation constant k(1)x = ∓

√
k2

0εrµr −

(
k(1)y

)2
−

(
k(1)z

)2
.

The modes are marked according to the sign before the root as (−kx) or (+kx). It is seen that this
wavenumber part is influenced by the conductivity frequency behavior and critical modal effect.
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Figure 7. Normalized real parts of ∓kx/k0 of the TE(1)
y backward mode of a graphene H-waveguide of

the height b = 0.01 mm and width 2a = ∞, εr = 3.84, and µr = 1. Parameters used for calculation of
σg are from Ref. [21]: T = 300 K, EF = 40 meV, and τ = 1 ps.

Figure 8 shows more information on the lateral properties of modes. At frequencies over fσ, the
imaginary part of kx for the mode marked (−kx) is negative; it corresponds to an exponential decrease
in the field away from the graphene film at both ∓x− directions. At the same frequencies, the mode

can be amplified along the z-axis due to the negative conductivity (Figure 4). Below fσ, Im
(
k(1)x /k0

)
> 0

and the field is exponentially growing with |x|. It means that in these frequencies, the mode is leaky,
and it needs a special treatment to handle this unphysical solution [45,46,49,50]. It is not considered
here because it is out of the paper’s scope.

Another mode marked as (+kx) is leaky strictly at the frequencies over fσ, but it can be bounded
in the lateral directions below the mentioned frequency. Here, the mode has an increased loss coupled
with graphene (Figure 4). In this way, the H-waveguides show some self-filtration properties essential
in the signal guiding and lasing.
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Figure 8. Normalized imaginary part of∓kx/k0 of the TE(1)
y backward mode of a graphene H-waveguide

of the height b = 0.01 mm and width 2a = ∞, εr = 3.84, and µr = 1. Parameters used for calculation
of σg are from Ref. [21]: T = 300 K, EF = 40 meV, and τ = 1 ps.

For comparison, consider the backward TM(0)
y mode (Section 2.3) and calculate the propagation

constants k(0)z and k(0)x = ∓

√
k2

0εrµr −

(
k(0)z

)2
. It is seen from Figure 9 that this mode is fast and weakly

coupled to graphene at all frequencies. This weak coupling is explained by the shortening of parallel
plates by graphene film.
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Figure 9. Normalized real part of the modal propagation constants k(0)z /k0 of the first TM(0)
y backward

mode of a graphene H-waveguide of the height b = 0.01 mm, width 2a = ∞, εr = 3.84 , and µr = 1.
Parameters used for calculation of σg are from Ref. [21]: T = 300 K, EF = 40 meV, and τ = 1 ps.

The imaginary part of the longitudinal propagation constant (Figure 10) is negative over fσ,

and the mode is damped. It may have a weak amplification at low frequencies because Im
(
k(0)z /k0

)
> 0,
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but the modal localization should be studied. Figures 11 and 12 show the frequency dependencies of
the lateral propagation’s real and imaginary parts constant kx. The mode marked as (−kx) is leaky
below fσ and can be slightly amplified. This regime is interesting for active antenna applications.
Over this graphene frequency, this mode is bounded but lossy. The mode marked as (+kx) is bounded
and amplified at frequencies f < fσ but leaky and lossy at frequencies f > fσ.

In this way, other TMy modes can be studied. The modeling performed here shows the very
weak coupling of these modes to graphene and low values of their normalized propagation constants
compared to the TEy modes. Then, the first ones can be considered as the higher-order modes.

Concluding the research with the modes of different polarizations, it is seen that their interactions
with graphene films highly depend on the modal type, as it was shown earlier in [45] in the research
on the Green function in graphene structures.Nanomaterials 2020, 10, x FOR PEER REVIEW 13 of 22 
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Figure 10. Normalized imaginary part of the modal propagation constants k(0)z /k0 of the first TM(0)
y

backward mode of a graphene H-waveguide of the height b = 0.01 mm, width 2a = ∞, εr = 3.84 , and
µr = 1. Parameters used for calculation of σg are from Ref. [21]: T = 300 K, EF = 40 meV, and τ = 1 ps.
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Figure 11. Normalized real part of the modal propagation constants ∓k(0)x /k0 of the first TM(0)
y

backward mode of a graphene H-waveguide of the height b = 0.01 mm, width 2a = ∞, εr = 3.84 , and
µr = 1. Parameters used for calculation of σg are from Ref. [21]: T = 300 K, EF = 40 meV, and τ = 1 ps.
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Figure 12. Normalized imaginary parts of the modal propagation constants ∓k(0)x /k0 of the first TM(0)
y

backward mode of a graphene H-waveguide of the height b = 0.01 mm, width 2a = ∞, εr = 3.84 , and
µr = 1. Parameters used for calculation of σg are from Ref. [21]: T = 300 K, EF = 40 meV, and τ = 1 ps.

Coming back to the TE(m)
y modes, we can see from Figure 13 that the field calculation confirms

the localized nature of proper TE(m)
y modes at frequencies f (m)

c < f > fσ. The exponential field
localization increases with the modal number m because the higher-order modes are more tightly
coupled to graphene.
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Figure 13. Normalized modal fields of the TE(m)
y backward modes in the right part of a graphene

H-waveguide (Figure 1) of the height b = 0.01 mm and width 2a = ∞, εr = 1, and µr = 1 calculated at
frequency f = 4000 GHz. Solid line: m = 1; dash line: m = 2; and dash-dot line: m = 3. Parameters
used for calculation of σg are from Ref. [21]: T = 300 K, EF = 40 meV, and τ = 1 ps.
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3.4. Controlling the Modes Varying the Parameters of Graphene H-Waveguides

An important question is on the controllability of amplification parameters. Figure 14 shows the
normalized imaginary part of the propagation constant k(m)

z /k0 of the lowest mode TE(1)
y for three

different values of EF for the considered case fσ < f < f (1)c . It is seen that
∣∣∣∣∣Im(

k(1)z /k0

)∣∣∣∣∣ is growing with

EF although this increase has some limitations in this waveguide.
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Figure 14. Influence of the quasi-Fermi energy level EF on the normalized imaginary part of the modal

propagation constant k(1)z /k0 of the TE(1)
y backward mode calculated for a graphene H-waveguide of the

height b = 0.01 mm, width 2a = ∞, εr = 1, and µr = 1. Solid line: EF = 40 meV; dash line:EF = 30 meV;
and dash-dot line: EF = 20 meV. Parameters used for calculation of σg are from Ref. [21]: T = 300 K
and τ = 1 ps..

The modal parameters can be adjusted in part by dielectric filling. The increase in permittivity

leads to some decrease in the phase β(1) = −Re
(
k(1)z /k0

)
(Figure 15) and loss

∣∣∣α(1)∣∣∣ constants (Figure 16)

as it follows from the calculations in the case f < f (m)
c . Dielectric leads to partial delocalization of the

field (Figure 17) and the corresponding variation of the mentioned modal parameters.
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Figure 15. Influence of dielectric filling on the real part of propagation constant k(1)z /k0 of the backward

mode TE(1)
y calculated for a graphene H-waveguide of the height b = 0.01 mm, width 2a = ∞,

εr = 1, 3.84, and µr = 1. Parameters used for calculation of σg are from Ref. [21]: T = 300 K,
EF = 40 meV, and τ = 1 ps.
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Figure 16. Influence of the dielectric filling on the imaginary part of the modal propagation constant

k(1)z /k0 of the backward mode TE(1)
y calculated for a graphene H-waveguide of the height b = 0.01 mm,

width 2a = ∞, εr = 1, 3.84, and µr = 1. Parameters used for calculation of σg are from Ref. [21]:
T = 300 K, EF = 40 meV, and τ = 1 ps.
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Figure 17. Mode field dependence Ex along the x− direction in a graphene H-waveguide of the
height b = 0.01 mm and width 2a = ∞ calculated for the dielectrics with εr = 1 and 3.8 and µr = 1
at frequency F = 4000 GHz. Parameters used for calculation of σg are from Ref. [21]: T = 300 K,
EF = 40 meV, and τ = 1 ps.

The proposed waveguide’s guiding properties’ overall review shows that all its complex TE(m)
y

modes are amplified over fσ. Waveguide shows some other interesting properties, such as the increase
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in amplification with the modal number for all modes below their cut-off frequencies. In opposite,
over these cut-offs, the lowest mode has the largest gain.

It is worthwhile to notice that these results are obtained using the quasi-linear approach.
Localization of the field close to graphene leads to increased field values, and if this field is strong
enough, it influences the graphene conductivity. It limits the quasi-linear modeling’s applicability to the
cases where amplification and signals are not so strong. In general, the problem should be formulated in
its self-consisted nonlinear form and solved using, for instance, the iteration methods [14,15]. Another
limitation is with frequency. At increased values, the conductivity shows its anisotropic property that
leads to the hybridization of modes. The scalar conductivity model (12) may show some inaccuracy,
and the EM theory of hybrid modes from Section 2 should be applied.

3.5. Conductor Loss Calculation in Graphene H-waveguide

Although the active graphene-based devices demonstrate an extremely high level of gain in order
of 1000 cm−1 [20], the question of imperfect material use should be carefully studied. In this research,
the dielectric is modeled with the complex permittivity in the Formula (8). In quartz, the dielectric loss
is negligibly low compared to the level of amplification at frequencies fσ < f < f (1)c .

Usually, in terahertz frequencies, the conductor loss prevails the dielectric one. The loss level
around 10–15 dB/mm is found below 10 THz, even in a parallel-plate waveguide for TE(1)

y propagating
mode [34,51].

The conductor loss of complex modes below their cut-off frequencies is exceptionally high, and this
worst-case scenario is studied below.

The conductor loss constant α(m)
c of our waveguide is calculated using the perturbation approach

and an enhanced Drude model of the surface resistance Rs [8,52–54]. The error of this approach
is within 10–20% for 2.4–12.5 THz estimated for parallel-plate waveguides. At high sub-infrared
frequencies, the lossy-media wall full-wave approach is preferable [55].

An analytical formula used here to calculate the conductor loss constant α(m)
c is given below

α
(m)
c =

Rs
∫

2L
(Hm,τ)

2dl

Re

∫
S
[E×H∗]ds

 =
4Rs

(
k(m)

y

)2(∣∣∣∣k(m)
x

∣∣∣∣2 + ∣∣∣∣k(m)
z

∣∣∣∣2)
ωµbRe

(
k(m)

z

)(
κ2 −

(
k(m)

y

)2
) , (13)

where L = (2 . . . 3)b is the integration path along with plates, b × (2 . . . 3)b is the cross-section of an

area around the graphene film, Rs = Re
√

jωµ0
σD+ jωε0

, and Drude conductivity σD = σ
1+ jωτc

with τc as the
mean free path time of electrons in a conductor.

Figure 18 shows that, in comparison to gain, this loss can be compensated by a negative conductivity
mechanism in graphene even in the worst-case scenario of the lowest mode TE(1)

y below its critical

frequency f (1)c as it follows from our theoretical treatment. Near this frequency, the conducting loss
tends to infinity (dielectric loss is not considered here) and cannot be compensated. An additional
effect connected with the TE(m)

y modes is the loss decreasing with frequency (see Formula (13) and
Figure 18), known for this type of TEy modes below and over their cut-off frequencies.

3.6. Longitudinal Field Dependence

The found propagation constant corrected by loss in conductor plates allows calculating the field
components’ longitudinal dependence along the z-axis in a more realistic manner. Figure 19 shows
Ex(z) normalized to the modal field value at z = 2b. It is seen that the exponential field grows with the
traveling distance.
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Figure 18. Comparison of an ideal graphene H-waveguide (solid curves) and the one having conductor
loss (dash curves) for the first two backward modes. Parameters of the waveguide: b = 0.01 mm,
2a = ∞, εr = 3.84, µr = 1, conductor conductivity σ = 5.96 · 104 Sim/mm, and τc = 3.6 · 1014 s for
copper. Parameters used for calculation of σg are from Ref. [21]: T = 300 K, EF = 40 meV, and τ = 1 ps.
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y backward mode at x = 0

(graphene plane). Parameters of the graphene H-waveguide calculated at frequency f = 4000 GHz:
2a = ∞, b = 0.01 mm εr = 1, µr = 1, conductor conductivity σ = 5.96 · 104 Sim/mm, and for copper.
Parameters used for calculation of σg are from Ref. [21]: T = 300 K, EF = 40 meV, and τ = 1 ps.
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Overall review of the obtained results shows that the proposed structure can provide a very high
gain of terahertz signals, similarly to the studied earlier planar structures. Still, the impact of many other
factors should be additionally investigated in the future. Among them is the influence of nonlinearity σg

at increased signal levels. The atomistic impurities and defects of graphene can presumably influence
these mentioned effects. The graphene–conductor interfaces limit conductivity, and the thermal drift of
all parameters can prevent increased amplification of signals. An experimental study of the proposed
structure is highly desirable to establish its amplification properties reliably. After a cycle of practical
research and with the maturity of the terahertz manufacturing technology, the proposed waveguide
can be considered for applications in traveling-wave amplifiers of the terahertz range. To realize the
lasing effect, a resonator on this waveguide should be developed. Then, the regimes of self-oscillations
are found varying the parameters of waveguide and input and output loads [19,32].

4. Conclusions

In this paper, a novel guiding structure has been proposed for terahertz lasing applications.
The waveguide consists of two parallel-plates of conductors shorted by a graphene film and composing
an H-waveguide. The negative conductivity of graphene is induced by laser light, and the modes are
amplified propagating along with this structure. At the difference to known designs, the proposed
waveguide can have decreased loss due to the complete exclusion of the sharp-edged conductors
and graphene edged strips from its design and using the TE(m)

y modes with the electric fields falling
towards conducting plates. The EM field’s better concentration near graphene is provided, employing
a geometry evanescent for the waves propagating away from this film.

This waveguide has been analyzed in a quasi-linear regime using a rigorous EM method of field
matching. The algorithm is formulated for the hybrid, TEy, and TMy modes, and the two last of them
are calculated analytically. The modal-type selective amplification has been discovered, and the TEy

modes have been studied in detail. It has been found that the proper TE(m)
y modes being bound at

frequencies of negative resistance of graphene can be guided and amplified in this waveguide even
considering the parallel-plate conductor loss calculated in Drude approximation.

The waveguide’s design can be enhanced further using the multilayered graphene conductors
and heterostructures to increase pumping light absorption [27,56]. It has been noticed on the necessity
of further research of this promising waveguide to establish the limits of accuracy of the developed
model taking into account, for instance, the nonlinearity of graphene conductivity at strong signals,
its anisotropy at increased terahertz (>10 THz) frequencies, and the influence of technological factors
on the output parameters [15].

The obtained results highlight the EM interaction mechanisms with graphene films showing the
modal-type and mode-dependent amplification and irradiation in the studied open graphene-based
structure. Based on our theory, a set of waveguides and components can be designed for the
loss-compensated interconnections and active antennas. Self-oscillating devices can be developed by
creating the active resonators in which the instability condition is provided by choosing the proper
geometry of a proposed H-waveguide and loads [19].

Funding: Open Access funding provided by the NTNU Norwegian University of Science and Technology
(including St. Olavs Hospital–Trondheim University Hospital).

Acknowledgments: The author thanks the Faculty of Information Technology and Electrical Engineering for the
sabbatical research grant’ 2020.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [CrossRef]
2. Heydari, M.B.; Samiei, M.H.V. Plasmonic graphene waveguides: A literature review. arXiv

2018, arXiv:1809.09937.

http://dx.doi.org/10.1038/nmat1849


Nanomaterials 2020, 10, 2415 18 of 20

3. Gusynin, V.; Sharapov, S.; Carbotte, J. Magneto-optical conductivity in graphene. J. Phys. Cond. Matt.
2006, 19, 026222. [CrossRef]

4. Falkovsky, L.A.; Varlamov, A.A. Space-time conductivity of graphene. Eur. Phys. J. B 2007, 56, 281–284.
[CrossRef]

5. Dubinov, A.A.; Aleshkin, V.Y.; Mitin, V.; Otsuji, T.; Ryzhii, V. Terahertz surface plasmons in optically pumped
graphene structures. J. Phys. Cond. Matt. 2011, 23, 145302. [CrossRef] [PubMed]

6. Lovat, G.; Hanson, G.W.; Araneo, R.; Burghignoli, P. Comparison of spatially dispersive models for dyadic
intraband conductivity of graphene. In Proceedings of the 2013 7th European Conference on Antennas and
Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 500–504.

7. Hanson, G.W. Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide.
J. Appl. Phys. 2008, 104, 084314. [CrossRef]

8. Kouzaev, G.A. Physics-based analytical engineering models of graphene micro- and nanostrip lines.
IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 2442–2450. [CrossRef]

9. Lovat, G.; Burghignoli, P.; Araneo, R. Low-frequency dominant mode propagation in spatially dispersive
graphene nanowaveguides. IEEE Trans. Electromagn. Compat. 2013, 55, 328–333. [CrossRef]

10. Lovat, G.; Ye, D.; Burghignoli, P.; Araneo, R.; Wei, X.-C. Theoretical study of the first higher order mode in
grounded graphene nanoribbons. IEEE Trans. Nanotech. 2018, 17, 814–823. [CrossRef]

11. Shao, Y.; Yang, J.J.; Huang, M. A review of computational electromagnetic methods for graphene modeling.
Int. J. Antennas Propag. 2016, 2016, 7478621. [CrossRef]

12. Yang, J.; Hu, P.; Yu, G. Perspective of graphene-based electronic devices: Graphene synthesis and diverse
applications. APL Mater. 2019, 7, 020901. [CrossRef]

13. Otsuji, T.; Tombet, S.A.B.; Satou, A.; Fukidome, H.; Suemitsu, M.; Sano, E.; Popov, V.; Ryzhii, M.; Ryzhii, V.
Graphene-based devices in terahertz science and technology. J. Phys. D 2012, 45, 303001. [CrossRef]

14. Makeeva, G.S.; Golovanov, O.A.; Kouzaev, G.A. Numerical analysis of tunable parametric terahertz devices
based on graphene nanostructures using the projection method and autonomous blocks. Proc. AIP Conf.
2017, 1863, 390003.

15. Lerer, A.M.; Makeeva, G.S.; Kouzaev, G.A. Electrodynamic and probabilistic calculation of performances of
THz devices based on periodic multilayer graphene-dielectric structures. In Proceedings of the Moscow
IEEE Workshop on Electronic and Networking Technologies (MWENT), Moscow, Russia, 11–13 March 2020.

16. Ooi, K.J.A.; Tan, D.T.H. Nonlinear graphene plasmonics. Proc. R. Soc. A 2017, 473, 20170433. [CrossRef]
17. Bozzi, M.; Pierantoni, L.; Bellucci, S. Application of graphene at microwave frequencies. Radioengineering

2015, 24, 661–669. [CrossRef]
18. Ryzhii, V.; Ryzhii, M.; Otsuji, T. Negative dynamic conductivity of graphene with optical pumping.

J. Appl. Phys. 2007, 101, 083114. [CrossRef]
19. Rana, F. Graphene terahertz plasmon oscillators. IEEE Trans. Nanotechnol. 2008, 7, 91–99. [CrossRef]
20. Ryzhii, M.; Ryzhii, V. Injection and population inversion in electrically induced p–n junction in graphene

with split gates. Jpn. J. Appl. Phys. 2007, 46, L151. [CrossRef]
21. Popov, V.V.; Polischuk, O.V.; Davoyan, A.R.; Ryzhii, V.; Otsuji, T.; Shur, M.S. Plasmonic terahertz lasing in an

array of graphene nanocavities. Phys. Rev. B 2012, 86, 195437. [CrossRef]
22. Ryzhii, V.; Dubinov, A.A.; Otsuji, T.; Mitin, V.; Shur, M.S. Terahertz lasers based on optically pumped multiple

graphene structures with slot-line and dielectric waveguides. J. Appl. Phys. 2010, 107, 054505. [CrossRef]
23. Chai, J.; Hu, P.; Ge, L.; Xiang, H.; Han, D. Tunable terahertz cloaking and lasing by the optically pumped

graphene wrapped on a dielectric cylinder. J. Phys. Commun. 2019, 3, 035016. [CrossRef]
24. He, X.Q.; Ning, T.G.; Pei, L.; Zheng, J.J.; Li, J.; Wen, X.D. Tunable hybridization of graphene plasmons and

dielectric modes for highly confined light transmit at terahertz wavelength. Opt. Express 2019, 27, 5961–5972.
[CrossRef] [PubMed]

25. Ryzhii, V.; Ryzhii, M.; Sato, A.; Otsuji, T.; Dubinov, A.A.; Aleshkin, V.Y. Feasibility of terahertz lasing in
optically pumped epitaxial multiple graphene layer structures. J. Appl. Phys. 2009, 106, 084507. [CrossRef]

26. Kumbhare, V.R.; Paltani, P.P.; Majumder, M.K. Future of graphene based interconnect technology—A reality
or a distant dream. In Proceedings of the 2018 5th IEEE Uttar Pradesh Section International Conference
on Electrical, Electronics and Computer Engineering (UPCON), Gorakhpur, India, 2–4 November 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 1–7.

http://dx.doi.org/10.1088/0953-8984/19/2/026222
http://dx.doi.org/10.1140/epjb/e2007-00142-3
http://dx.doi.org/10.1088/0953-8984/23/14/145302
http://www.ncbi.nlm.nih.gov/pubmed/21441654
http://dx.doi.org/10.1063/1.3005881
http://dx.doi.org/10.1109/TCPMT.2019.2940232
http://dx.doi.org/10.1109/TEMC.2012.2212247
http://dx.doi.org/10.1109/TNANO.2018.2839839
http://dx.doi.org/10.1155/2016/7478621
http://dx.doi.org/10.1063/1.5054823
http://dx.doi.org/10.1088/0022-3727/45/30/303001
http://dx.doi.org/10.1098/rspa.2017.0433
http://dx.doi.org/10.13164/re.2015.0661
http://dx.doi.org/10.1063/1.2717566
http://dx.doi.org/10.1109/TNANO.2007.910334
http://dx.doi.org/10.1143/JJAP.46.L151
http://dx.doi.org/10.1103/PhysRevB.86.195437
http://dx.doi.org/10.1063/1.3327212
http://dx.doi.org/10.1088/2399-6528/ab072c
http://dx.doi.org/10.1364/OE.27.005961
http://www.ncbi.nlm.nih.gov/pubmed/30876188
http://dx.doi.org/10.1063/1.3247541


Nanomaterials 2020, 10, 2415 19 of 20

27. Morozov, M.Y.; Leiman, V.G.; Popov, V.V.; Mitin, V.; Shur, M.S.; Karasik, V.E.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.
Optical pumping in graphene-based terahertz/far-infrared superluminescent and laser heterostructures with
graded-gap black-PxAs1-x absorbing-cooling layers. Opt. Eng. 2019, 59, 0061606. [CrossRef]

28. Lee, K.W.; Jang, C.W.; Shin, D.H.; Kim, J.M.; Kang, S.S.; Lee, D.H.; Kim, S.; Choi, S.-H.; Hwang, E.
Light-induced negative differential resistance in graphene/Si-quantum-dot tunneling diodes. Sci. Rep.
2015, 6, 30669. [CrossRef]

29. Li, H.; Yan, M.; Wan, W.; Zhou, T.; Zhou, K.; Li, Z.; Cao, J.; Yu, Q.; Zhang, K.; Li, M.; et al. Graphene-coupled
terahertz semiconductor lasers for enhanced passive frequency comb operation. Adv. Sci. 2019, 6, 1900460.
[CrossRef]

30. Ryzhii, V.; Otsuji, T.; Shur, M. Graphene based plasma-wave devices for terhahertz applications.
Appl. Phys. Lett. 2020, 116, 140501. [CrossRef]

31. Quispe, H.O.C.; Encomendero-Risko, J.J.; Xing, H.G.; Sensale-Rodriguez, B. Terahertz amplification in
RTD-gated HEMTs with a grating-gate wave coupling topology. Appl. Phys. Lett. 2016, 109, 063111.
[CrossRef]

32. Mao, X.; Xie, S.; Zhu, C.; Geng, Z.; Chen, H. Theoretical study of terahertz active transmission line oscillator
based on RTD-gated HEMT. AIP Adv. 2018, 8, 065323. [CrossRef]

33. Ahi, K. Review of GAN-based devices for terahertz operation. Opt. Eng. 2017, 56, 090901. [CrossRef]
34. Mitrofanov, O.; James, R.; Fernández, F.; Mavrogordatos, T.K.; Harrington, J.A. Reducing transmission losses

in hollow THz waveguides. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 124–132. [CrossRef]
35. Tischer, F.J. Properties of the H-guide at microwave and millimeter-wave regions. Proc. IEE Part B Electron.

Commun. Eng. 1959, 106, 47–53. [CrossRef]
36. Yoneyama, T.; Nishida, S. Non-radiative dielectric waveguide for millimeter-wave integrated circuits.

IEEE Trans. Microw. Theory Tech. 1981, 29, 1188–1192. [CrossRef]
37. Kuroki, F.; Ohta, H.; Yoneyama, T. Transmission characteristics of NRD guide as a transmission medium

in THz frequency band. In Proceedings of the 2005 Joint 30th International Conference on Infrared and
Millimeter Waves and 13th International Conference on Terahertz Electronics, Williamsburg, VA, USA,
19–23 September 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 2, pp. 331–332.

38. Ye, L.; Xu, R.; Wang, Z.; Lin, W. A novel broadband coaxial probe to parallel plate dielectric waveguide
transition at THz frequency. Opt. Express 2010, 18, 21725–21731. [CrossRef] [PubMed]

39. Sesao, K.; Monnai, Y. Variable terahertz attenuator integrated on non-radiative guide using photoinduced
carriers. IEEE Trans. Terahertz Sci. Technul. 2020, 10, 256–259. [CrossRef]

40. Meixner, J. The behavior of electromagnetic fields at edges. IEEE Trans. Antennas Propag. 1972, 20, 442–446.
[CrossRef]

41. Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10,
569–581. [CrossRef]

42. Balanis, C.A. Advanced Engineering Electromagnetics; John Willey & Sons, Inc.: Hoboken, NJ, USA, 1989.
43. Witt, H.R.; Biss, R.E.; Price, E.L. Propagation constants of a waveguide containing parallel sheets of a finite

conductivity. IEEE Trans. Microw. Theory Tech. 1968, 15, 232–239. [CrossRef]
44. Felsen, L.B.; Marcuvitz, N. Radiation and Scattering of Waves; Prentice Hall: Englewood Cliffs, NJ, USA, 1973.
45. Hanson, G.W. Dyadic Green’s function and guided surface waves for a surface conductivity model of

graphene. J. Appl. Phys. 2008, 103, 064302. [CrossRef]
46. Mohadesi, V.; Siahpoush, V.; Asgari, A. Investigation of leaky and bound modes of graphene surface

plasmons. J. Appl. Phys. 2017, 122, 133113. [CrossRef]
47. Shvechenko, V.V. Forward and backward waves: Three definitions and their interrelation and applicability.

Phys. Uspekhi 2007, 177, 301–306.
48. Santos, A.M.; Beliaev, D.; Scolfaro, L.M.R.; Leite, J.R. Quasi-Fermi levels, chemical and electric potentials

profiles of a semiconductor under illumination. Braz. J. Phys. 1999, 29, 775–778.
49. Monticone, F.; Alu, A. Leaky-wave theory, techniques, and applications: From microwaves to visible

frequencies. Proc. IEEE 2015, 104, 793–821. [CrossRef]
50. Xu, F.; Wu, K. Understanding leaky-wave structures. IEEE Microw. Mag. 2013. 14, 87–96.
51. Mendis, R.; Mittleman, D.M. Comparison of the lowest-order transverse-electric (TE1) and

transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications.
Opt. Express 2009, 17, 14839. [CrossRef] [PubMed]

http://dx.doi.org/10.1117/1.OE.59.6.061606
http://dx.doi.org/10.1038/srep30669
http://dx.doi.org/10.1002/advs.201900460
http://dx.doi.org/10.1063/1.5140712
http://dx.doi.org/10.1063/1.4961053
http://dx.doi.org/10.1063/1.5010272
http://dx.doi.org/10.1117/1.OE.56.9.090901
http://dx.doi.org/10.1109/TTHZ.2011.2159547
http://dx.doi.org/10.1049/pi-b-2.1959.0007
http://dx.doi.org/10.1109/TMTT.1981.1130529
http://dx.doi.org/10.1364/OE.18.021725
http://www.ncbi.nlm.nih.gov/pubmed/20941072
http://dx.doi.org/10.1109/TTHZ.2020.2977991
http://dx.doi.org/10.1109/TAP.1972.1140243
http://dx.doi.org/10.1038/nmat3064
http://dx.doi.org/10.1109/TMTT.1967.1126433
http://dx.doi.org/10.1063/1.2891452
http://dx.doi.org/10.1063/1.5006061
http://dx.doi.org/10.1109/JPROC.2015.2399419
http://dx.doi.org/10.1364/OE.17.014839
http://www.ncbi.nlm.nih.gov/pubmed/19687963


Nanomaterials 2020, 10, 2415 20 of 20

52. Kouzaev, G.A. Applications of Advanced Electromagnetics. Components and Systems; Springer: Berlin/Heidelberg,
Germany, 2013.

53. Lucyszyn, S. Accurate CAD modelling of metal conduction losses at terahertz frequencies. In Proceedings of
the 11th IEEE International Symposium on Electron Devices for Microwave and Optoelectronic Applications,
EDMO 2003, Orlando, FL, USA, 18 November 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 180–185.

54. Lucyszyn, S. Evaluating surface impedance models for terahertz frequencies at room temperature.
PIERS Online 2007, 3, 554–559. [CrossRef]

55. Yeap, K.H.; Tham, C.Y.; Yassin, G.; Yeong, K.C. Attenuation in rectangular waveguides with finite conductivity
walls. Radioengineering 2011, 20, 472–478.

56. Li, M.-Y.; Chen, C.-H.; Shi, Y.; Li, L.-J. Heterostructures based on two-dimensional layered materials and
their potential applications. Mater. Today 2016, 19, 322–334. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2529/PIERS061006115842
http://dx.doi.org/10.1016/j.mattod.2015.11.003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Proposed Graphene Component, Its Theory, and Used Methods 
	Hybrid Mode Theory 
	TEy(m)  Modes 
	TMy(m)  Modes 

	Results and Discussion 
	Graphene Conductivity 
	TEy Longitudinal Propagation Constant 
	Study of the Bound and Leaky Regimes of the TEy and TMy Modes 
	Controlling the Modes Varying the Parameters of Graphene H-Waveguides 
	Conductor Loss Calculation in Graphene H-waveguide 
	Longitudinal Field Dependence 

	Conclusions 
	References

