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Phenylalanine hydroxylase (PAH) is a crucial enzyme involved in tyrosine biosynthesis,
having roles in neurological and physiological processes. The purpose of PAH
has received little attention in crustaceans despite extensive investigations in other
arthropods. Here, we characterize the PAH gene for the first time in the parasite
Lepeophtheirus salmonis, a copepod that is responsible for huge economic losses
in salmonid fish farming. Phylogenetic and sequence analyses confirmed that LsPAH
is closely related to the metazoan PAH with conserved ACT regulatory and catalytic
domains. Temporal expression patterns revealed that LsPAH is expressed throughout
all developmental stages peaking during the copepodite stages, suggesting an essential
role in developmental physiology. We used RNAi to knockdown LsPAH expression in
the nauplius I stage to study developmental function during the larval stages. PAH
knockdown impaired larval development, molting and swimming ability with severe
morphological defects. This study provides insight into the role of PAH in copepods
and demonstrates the importance of this metabolic gene in salmon louse growth
and development.

Keywords: RNA interference, phenylalanine hydroxylase, salmon lice, molting, larval development

INTRODUCTION

The marine ectoparasite of Atlantic salmon (Salmo salar), the salmon louse (Lepeophtheirus
salmonis), causes substantial economic loss in salmon aquaculture and represents a significant
threat to wild fish populations in both the North Pacific and North Atlantic (Pike, 1989; Torrissen
et al., 2013). The feeding behavior of these parasites and aggregation of the lice on fish causes
lesions, anemia, osmoregulatory imbalance, secondary infections and can lead to mortality (Pike
and Wadsworth, 1999; Wagner et al., 2008). The adult female lice produce egg strings that hatch
to larvae (Johnson and Albright, 1991) that are planktonic and spread by water mixing and
currents and can infest fish both in farms and wild salmonids (Kristoffersen et al., 2014, 2018).
There are multiple chemical treatments for the louse control in aquaculture, but the majority
of these methods are losing their effect due to resistant lice (Aaen et al., 2015). Several different
mechanical treatment methods have also been developed, which pose different welfare challenges
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for the fish (Overton et al., 2019). A better understanding of
the biology of the louse is crucial for the development of new
treatment methods. The physiology of lice comprises several
important biological systems that are governed by various
genes and proteins. Various treatment methods target these
genes and proteins necessary in different biological processes
such as neuromodulation, body formation, molting, embryonic
development, and more. Finding ways to inhibit development
and molting could help decrease the lice infestation in farmed
fish. Identifying key genes involved in the growth, development,
and molting of lice could be the additional step to aid the ongoing
research to overcome this problem.

Phenylalanine hydroxylase (PAH) enzyme belongs to the
aromatic amino acid hydroxylase family and catalyzes the
conversion of phenylalanine to tyrosine in a tetrahydrobiopterin
(BH4)-dependent reaction (Erlandsen et al., 2002). The PAH
gene, also known as Henna in fruit flies, has been studied
in mammals since late 1950s (Kaufman, 1993). PAH is
a rate-limiting enzyme in the catabolism of phenylalanine
and its failure leads to the deficiency of catecholamine
neurotransmitter derivatives of tyrosine (Landvogt et al., 2008;
Sawin et al., 2014). PAH is present in liver for removal of
excess L-Phenylalanine to prevent the neurotoxic effect of
hyperphenylalaninemia, however, also maintaining the level
of this essential proteinogenic amino acid by preventing
full catabolism (Flydal and Martinez, 2013). The studies in
Drosophila, silkworm, pea aphids, and mosquitoes have revealed
the association of the PAH in cuticular coloration and
sclerotization that is vital in the reconstruction and remodeling
of the internal structures that occurs during metamorphosis
(Infanger et al., 2004; Chen et al., 2013; Fuchs et al., 2014;
Simonet et al., 2016). The tanning of egg chorion and
melanotic encapsulation of parasitic organisms are other general
PAH related functions (Mito et al., 2010). The role of PAH
in Acyrthosiphon pisum (pea aphid), Caenorhabditis elegans
(roundworm), and Drosophila melanogaster (fruit fly) has been
elucidated, where this gene plays a crucial role in melanization,
immune stimulation and embryonic development (Morales et al.,
1990; Calvo et al., 2008; Simonet et al., 2016). Moreover,
functional studies of PAH in insects have provided an extensive
amount of data on post-embryonic development and adult
physiological processes. PAH inactivation in pea aphids has
shown reduced fecundity and adult lifespan (Simonet et al.,
2016). Similarly, PAH knockdown in Rhodnius prolixus produced
interference with embryonic development and egg hatching,
demonstrating an essential role in insect development (Sterkel
and Oliveira, 2017). The role of PAH in the copepod salmon
louse has not been investigated yet. However, various genes
and pathways associated with the growth and development of
salmon lice have been studied. RNAi induced myosupressin
deficiency results in molting defects (Komisarczuk et al., 2019),
ecdysone receptor, and retinoid X receptor knockdown have
shown inhibition of molting from nauplii II to copepodite
stage (Sandlund et al., 2016). The knockdown of glutamine
frutcose-6-phosphate aminotransferase and chitin synthase 1
and 2 showed irregularities in copepodite shape and swimming
defects (Braden et al., 2020).

Understanding and unraveling biochemical pathways essential
for the growth and development of salmon lice is a key step
in fight against the parasite. Here we focus on the molting
and development of the salmon louse in planktonic stages. The
molting and growth of salmon louse have been well studied,
but the molecular mechanisms and critical genes involved in
this process are poorly understood. In this study, we aimed to
downregulate the LsPAH gene activity using RNAi, and show how
this affects molting, development and swimming performance of
the salmon louse.

MATERIALS AND METHODS

Gene Identification and Characterization
The full-length PAH transcript sequence was assembled from
RNA-seq data available in the NCBI Sequence Read Archive
database (SRR6832868) and a partial sequence available at
Licebase1. A full-length PAH cDNA sequence is also available
at Ensembl Metazoa (EMLSAT00000009260). The PAH
sequence was validated by PCR performed on cDNA derived
from L. salmonis.

Phylogenetic analysis was performed using Mega7 software
(Kumar et al., 2016). A Maximum Likelihood method (ML)
based on the Le_Gascuel_2008 model (Le and Gascuel, 2008)
was used to infer the phylogenetic relationships. Initial tree(s)
for the heuristic search were obtained automatically by applying
Neighbor-Join and BioNJ algorithms to a matrix of pairwise
distances estimated using a JTT model, and then selecting the
topology with superior log likelihood value. A discrete Gamma
distribution was used to model evolutionary rate differences
among sites [4 categories (+G, parameter = 1.1380)]. The rate
variation model allowed for some sites to be evolutionarily
invariable [(+I), 16.2857% sites]. The tree is drawn to scale, with
branch lengths measured in the number of substitutions per site.
The analysis involved 26 amino acid sequences. All positions with
less than 80% site coverage were eliminated. There were a total of
425 positions in the final dataset.

Life Stage Expression
For stage specific expression levels of the gene of interest,
salmon lice of all eight life stages were collected. The egg strings
were hatched in the flow-through incubator and planktonic
stages of salmon lice were collected. For parasitic stages, eight
Atlantic salmon (approximately 200 g) were transferred into a
400L tank and allowed to acclimate for 3 days. The fish were
infected with copepodites (Hamre et al., 2009) and the parasitic
stages of samples were collected at time points, according to
growth based on temperature at 8◦C as previously described
(Hamre et al., 2019). The following life stages and number of
animals were collected for 4 biological replicates, flash frozen
in liquid nitrogen and stored at −80◦C until further analysis.
Each biological replicate contains nauplius I (n = 50), nauplius
II (n = 50), planktonic copepodite (n = 50), chalimus I (n = 5),
chalimus II (n = 5), preadult I male (n = 1) and female (n = 1),

1http://www.licebase.org
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preadult II male (n = 1) and female (n = 1), adult male (n = 1) and
adult female (n = 1). RNA was isolated using Qiagen RNeasy Plus
Mini kit (Qiagen, Hilden, Germany) and cDNA was synthesized
using the QuantiTect Reverse Transcription Kit (Qiagen, Hilden,
Germany) following manufacturer’s instruction. Gene expression
was determined using qPCR.

Gene Knockdown
The RNAi technique was used to knockdown the PAH
gene in salmon lice following the protocol as previously
described (Eichner et al., 2014). A 547 bp region of salmon
lice PAH gene was amplified using the following primers
(LsTyrFW1 and LsTyrRw1, Supplementary Table 1) and cloned
into pCRTM4-TOPO R© TA vector (Thermo Fisher Scientific)
for the addition of T7 promoter. For control, a gene
encoding leucine-rich repeat protein kinase in Arabidopsis
(LRK) without any sequence similarity to the salmon lice
genome was used. In vitro double stranded RNA (dsRNA) was
synthesized using the T7 RiboMAXTM Express RNAi System
(Omega Bio-Tek, United States), following the manufacturer’s
instruction. The dsRNA products were purified using the
RNeasy Plus Mini kit (QIAGEN, Hilden, Germany) assessed
by Nanodrop spectrophotometer and quality controlled using
an Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA,
United States). Four groups of 30 Nauplius I were exposed

to 2–4 µg of PAH dsRNA (dsPAH: 2 µg and dsPAH 2X:
4 µg) and 2 µg of non-related LRK dsRNA in 100 µl of sea
water, respectively. Nauplii were exposed to dsRNA for 16 h.
Two control groups were used: negative control (without any
dsRNA) and larvae exposed to a non-related LRK dsRNA. The
whole experiment was performed at 9◦C. The gene knockdown
was assessed by phenotypic changes and quantitative PCR for
all treatment groups. The samples were flash frozen in liquid
nitrogen and stored at −80◦C for RNA extraction and gene
expression analysis. The whole experiment was repeated twice
with the same outcome.

Quantitative RT-PCR (qPCR)
Transcription levels were monitored by qPCR using salmon
louse elongation factor 1α (ELf1α) (Frost and Nilsen, 2003)
and ADP, ATP carrier protein 3 (ADT3) as reference genes.
The qPCR was performed using SYBR green assays and
melting curve analyses were carried out to check for primer-
dimers or non-specific amplifications. Thermal cycling was
performed on Roche Lightcycler R© 96 system in 20 µl reactions
under standard conditions. Relative expression of the target
gene was quantified with the 2−11CT method (Schmittgen
and Livak, 2008) using the geometric average of expression
levels of ELf1α and ADT3 genes for normalization. T-tests
were performed on qBase + software, version 3.2 (Biogazelle,

FIGURE 1 | Sequence alignment of PAH proteins. A partial sequence alignment of PAH protein from various organisms. The conserved binding domains are
indicated by different colors.
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Zwijnaarde, Belgium)2 to determine if controls and RNAi
groups were differentially expressed with p-value of 0.05 as
a threshold.

Cuticle Morphology and Staining
The specimens were imaged using Zeiss Axio Zoom.V16
(Carl Zeiss GmbH, Jena, Germany) and the length was
measured from head to end of abdomen using ImageJ
(Schneider et al., 2012). The length was analyzed by one-
way ANOVA followed by post hoc multiple comparison test
conducted in R (R Core Team, 2019) and figures were produced
using the package ggplot2 (Wickham, 2016). For cuticle staining
and imaging, the samples were fixed and stored in 10% (w/v)
formaldehyde in Phosphate buffered saline prior to analysis.
The specimens were thoroughly washed in distilled water and
then Congo red (Sigma Aldrich, Steinheim, Germany) solution
(1.5 mg/ml H2O) was added and the specimens were stained at
room temperature for 24 h, transferred to distilled water and left
for 5 min. The specimens were thoroughly washed several times
with distilled water and then mounted in ibiTreat microwells
on a thin layer of agarose for imaging. The specimens were
imaged using a Zeiss LSM 880 Airyscan (Carl Zeiss GmbH, Jena,
Germany) equipped with a Plan-Apochromat 10x/0.45 and a
Plan-Apochromat 20x/0.8 objective. Congo red stain was excited

2http://www.qbaseplus.com

by the 561 nm laser line and emission was detected in the
range 587–731 nm.

RESULTS

Sequence Analysis
The salmon louse PAH cDNA sequence was verified by
amplification of cDNA using specific primers. We confirmed
the cDNA and exon-intron structure by aligning the
transcript sequence with L. salmonis genome sequence
EMLSAG00000009260 (LsalAtl2s)3. This showed that the
gene is composed of 7 exons with a non-coding first exon. The
mapping of RNAseq reads from the Sequence Read Archive
(SRA) at NCBI to the genome sequence indicated that the splice
acceptor in intron 1 is located 42 nucleotides downstream of what
is predicted in the EMBL gene model (EMLSAT00000009260)
(Supplementary Figure 1). This transcript was found at a
very low frequency in adult stages and indicates a rare spliced
variant. The ORF is translated into a 451 amino acid long
polypeptide with a predicted molecular mass of 51.8 kDa and
an isoelectric point of 5.6. The structure of the protein was
predicted using the Phyre2 server. Similar to other characterized
PAH proteins, LsPAH contains a putative amino acid binding

3metazoa.ensembl.org

FIGURE 2 | Phylogenetic tree of PAH proteins. Phylogenetic analysis of phenylalanine hydroxylase (PAH) among different organisms. A Maximum Likelihood tree was
generated using MEGA7, with bootstrap values from 1000 replications. The sequences used for the construction of phylogenetic trees are listed in
Supplementary Table 2.
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site in the conserved ACT regulatory domain (Figure 1, yellow),
a conserved tetrahydrobiopterin (BH4) cofactor binding site
(Figure 1, cyan), a metal-binding site for iron atoms (Figure 1,
green) and a substrate-binding pocket (Figure 1, pink). The
L. salmonis full-length protein BLAST search indicated 88%
identity with PAH in Caligus rogercresseyi, 61% identity with
Henna in Acanthaster planci and 63% identity in Drosophila
melanogaster. Phylogenetic analysis revealed that LsPAH belongs
to the arthropod PAH family. The outcome was a particular
clustering of LsPAH with crustaceans and more specifically with
copepods (Figure 2).

Developmental Stage Gene Expression
Analysis of transcript levels using qPCR indicated that LsPAH
was expressed at all developmental stages of salmon lice
(Figure 3). Expression levels of LsPAH was highest in copepodites
followed by adult males and adult females. The expression levels
of LsPAH was relatively invariant in all other stages, with the
lowest expression levels found in nauplius I.

RNAi Mediated Knockdown of LsPAH
Validation of the knockdown of LsPAH by RNAi was done
using qPCR. Knockdown was assessed in copepodites 181 h
post-hatching at 9◦C. A significant reduction in the amount of

transcripts was measured after the exposure to LsPAH dsRNA
compared to the control groups (Figure 4A). The expression of
genes downstream in the pathway leading to the production of
the catecholamines was also assessed by qPCR (Figure 4B). There
were no significant changes between the control and treatment
groups in these downstream genes. There was no significant
regulation in Pale, DOPA decarboxylase, Phenylethanolamine
N-methyltransferase, Dopamine hydroxylase, and NBAD
hydrolase in all treatment groups.

RNAi Mediated Knockdown of LsPAH
Leads to Developmental Defects,
Molting Arrest, and Decreased
Swimming Performance
All treatment with dsPAH produced larvae with a distinct
phenotype differing from the control groups (Figure 5A).
The dsPAH treated nauplii were not able to completely
molt to copepodite, and their heads were enlarged (when
observed at the same time in development). The average
length of the larvae measured after 181 h showed a
significantly decreased body length of treatment groups
compared to control groups (Figure 5B) and molting
flaws (Figure 5C).

FIGURE 3 | Developmental expression profile of LsPAH. Expression of the transcript levels of LsPAH in salmon louse developmental stages relative to transcript level
in the nauplius I. Error bars represent the SE (n = 4 independent biological replicates). Each biological replicate contained 50 individuals for planktonic life-stages
(nauplii I, nauplii II, and copepodites), five individuals for chalimus I and chalimus II and one individual each for pre-adult and adult life-stages. Data were analyzed
using qBaseplus+ and one-way ANOVA was performed. Life stages labeled with different letters are significantly different from each other (p < 0.001).
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dsPAH knockdown produced larvae with developmental
defects. Knockdown larvae had asymmetric body formation
during the developmental stages compared to control treatments

(Figure 6). The nauplii are equipped with three exterior
appendages anteriorly on both sides, and these appendages
were bent and deformed in the dsPAH treated nauplii when

FIGURE 4 | Gene expression of various genes following dsRNA treatment. (A) RT-qPCR determination of the various genes in Phenylalanine metabolism pathway.
The expression level of LsPAH, LsPale and other genes involved in catecholamine synthesis pathway of dsRNA treated larvae, relative to expression level of the
dsRNA controls. The Elf1α and ADT3 genes were used for data normalization. The data were analyzed with one-way ANOVA for the downregulation and statistically
significant results are marked with asterisk (p < 0.001). dsPAH, dsRNA Phenylalanine hydroxylase; dsCTRL, non-specific dsRNA and WTCTRL, Wildtype on
seawater only. Each treatment contained 5 to 8 biological replicates. (B) The metabolic pathway of phenylalanine metabolism. The gene changes in transcriptional
levels are marked by upward and downward arrows for upregulation and downregulation, respectively. Blue color indicates the absence of the gene in L. salmonis.
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compared to control lice. In underdeveloped copepodites, the
loss of symmetry was still present, and the segmentation of
cephalothorax was irregular (Figure 6D). Additionally, for the
dsPAH treatment phenotype, none of the external appendages
from the anterior segment could be extracted from the shed
exuvia during ecdysis.

The loss of function phenotype related to swimming behavior
was observed at the end of the treatment period. The dsPAH

treatment group had reduced mobility and sunk to the bottom
of the eppendorf tube in contrast to the mock control and
wild type nauplii when observed at the end of the 16 h
dsRNA soaking period (Figure 5A). The control groups showed
normal movements and swimming freely. In contrast, the
treatment groups were lethargic and clustered at the bottom
of the flow-through wells on each daily observation after the
soaking period.

FIGURE 5 | Larvae phenotypes induced by LsPAH RNAi. (A) The dsPAH treated larvae (lower panel) were not able to molt to copepodite or molted to a defective
copepodite with an enlarged head. After 16 h treatment, dsPAH treated nauplii were lethargic and clustered in the bottom of the tube whereas mock dsCTRL (upper
panel) were swimming freely and dispersed to the top level of water column. Scale bars = 500 µm. (B) The variation in larval length in relation to phenotype. The
results are displayed as boxplot, n ≥ 34 individuals per treatment. Data were analyzed by one-way ANOVA followed by a post hoc multiple comparison test (Tukey’s
HSD test; p < 0.001). (C) Comparison of the nauplii that molted completely to copepodite in various RNAi treatments. The results are reported as boxplot, n ≥ 5 for
each group containing 30 individuals. Data were analyzed by one-way ANOVA followed by a post hoc multiple comparison test (Tukey’s HSD test; p < 0.001). The
significant differences compared to controls are denoted with an asterisk.
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DISCUSSION

In this study, we report the effect of downregulating the
single copy gene LsPAH that is responsible for phenylalanine
hydroxylase activity in salmon lice. Lower LsPAH activity is
expected to result in reduced metabolism of the amino acid
phenylalanine and affect tyrosine production. Downregulation
of the LsPAH activity therefore provides an opportunity
for functional analysis of disrupted phenylalanine catabolism
(Simonet et al., 2016). We demonstrate a direct effect of LsPAH
knockdown on the molting and development of the salmon lice.

LsPAH is expressed throughout the salmon louse lifecycle,
reaching the highest expression during the copepodite stage
followed by the adult stage. In Drosophila, the expression
of PAH was reported to increase throughout embryonic
and larval development stages with peak level occurring
at pupation (Morales et al., 1990; Bel et al., 1992). The
developmental expression pattern of the LsPAH in salmon
lice is indicative of a vital role during the larval stage and
molting. Using a RNAi based approach focusing on the
nauplius stages, we demonstrated an essential role of LsPAH
in molting and swimming behavior. Further examination

of the larvae demonstrated that the LsPAH knockdown
interferes with the ability to move, and the abnormal
enlargement of the head impairs molting into the copepodite
from nauplius II.

Previous studies have shown that the PAH inactivation
disrupted melanin associated processes in egg, larval and
adult stages and embryonic development. For example,
in a holometabolous insect, Acyrthosiphon pisum, the
PAH knockdown resulted in reduced adult lifespan and
fecundity and impaired embryonic development in the
offspring (Simonet et al., 2016). We observed similar
developmental defects in salmon louse. In Bombyx mori,
the PAH knockdown resulted in the failed coloration of the
neonatal larvae (Chen et al., 2013). Similarly, the oviposition
rate, chorion maturity, and egg hatchability were reduced
in mosquitoes and silkworm following the PAH inactivation
(Chen et al., 2013; Fuchs et al., 2014). In C. elegans, blister
3 (bli-3) mutants that lack dual oxidase catalyzing the
tyrosine cross-linking in stabilization of cuticle, the double
mutant bli-3 and pah-1 had severe phenotype changes with
variable growth problems, cuticle abnormalities, growth
arrest and incomplete molting with a dumpy body shape

FIGURE 6 | Cuticle staining of lice larvae. Upper panel: dsCTRL control, and lower panel: dsPAH treatment. (A,D) Copepodites treated with dsPAH revealed the
unorganized internal structure and developmental defects compared to control. The cephalothorax is not uniformly segmented and is poorly formed in dsPAH treated
copepodites. (B,E) The external appendages in nauplius II were distorted in dsPAH treatment compared to the control. (C,F) The posterior segment of the nauplius II
just after molting was symmetrically arranged, with a centrally positioned hindgut, but this symmetry was absent in treated individuals. Scale bars = 100 µm.
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(Calvo et al., 2008). The currently known sclerotization model
in arthropods is a complex process, which includes the
hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine
(DOPA), which by decarboxylation is changed to dopamine,
a compound of central significance to both sclerotization
and melanin formation (Andersen, 2012). In Drosophila, the
derivatives of dopamine are essential in the hardening of
the cuticle. Insects produce from eumelanin, pheomelanin
and dopamine derivatives like N-acetyldopamine (NADA)
and N-β-alanyldopamine (NBAD), precursors for the protein
crosslinking and hardening of cuticle (Sugumaran, 1998, 2009;
Wittkopp and Beldade, 2009). In addition, the oxidized NADA
and NBAD quinones, go through isomerization to quinone
methides and crosslinking reactions with cuticle proteins side
chains (most likely histidyl residues) for cuticle sclerotization
(Kramer et al., 2001). Interestingly, from extensive analysis, we
found that the proteins vital in the synthesis of NADA and
NBAD, N-acetyltransferase and NBAD synthetase, respectively,
were missing in salmon lice. However, NBAD hydrolase
that hydrolyzes NBAD back to dopamine was present but
no significant regulation was observed. A protein (DHPAA
synthase) in Aedes aegypti, similar to DOPA decarboxylase,
catalyzes the L-Dopa to 3,4-dihydroxyphenylacetaldehyde
(DHPAA). It was suggested that DHPAA synthase has a role in
the formation of flexible cuticle through the reactive DHPAA-
mediated protein crosslinking reactions (Vavricka et al., 2011).
So far, there have been no published studies of the PAH
functions in copepods.

The reduced swimming ability and developmental defects
could be related to reduced levels of tyrosine. Tyrosine
deficiency leads to changes in metabolic derivatives like
catecholamines and melanin, which are important in the
formation of exoskeleton, eye and body pigmentation and
neurotransmission (Wright, 1987; True, 2003; Christensen et al.,
2005; Vavricka et al., 2014). Since the arthropod exoskeleton
is a prerequisite for locomotor apparatus formation and
other body segments, this may explain the observed molting
difficulties during formation of the new exoskeleton. In
nematodes, it was indicated that the PAH might have a role
in supplying L-Tyr for forming L-Tyr cross links between
cuticle proteins for mechanical stability (Loer et al., 1999;
Calvo et al., 2008). We propose that the reduced swimming
activity, molting defects and developmental deformation
observed in salmon louse larvae are directly related to the
exoskeleton deformation caused by the lack of tyrosine, and/or
its metabolic derivatives. The external appendages were distorted
in the LsPAH downregulated nauplii. Similar phenotypes were
observed in double knockdown of ecdysone receptor and
retinoid X receptor with developmental defects in salmon louse
(Sandlund et al., 2016). The defects in locomotor apparatus
due to exoskeleton deformation could explain the decreased
swimming capacity. Furthermore, the increase in phenylalanine
level in the larvae, that could be toxic for their development,
as shown in phenylketonuria (PKU) in mammalian models
(Williams et al., 2008). PAH is a rate-limiting enzyme in the
catabolism of phenylalanine and its failure results in a subsequent
deficiency of catecholamine neurotransmitter derivatives of

tyrosine (i.e., dopamine, noradrenaline and adrenaline) leading
to neuromodulation complications (Landvogt et al., 2008; Sawin
et al., 2014) that could explain the reduction in movements and
swimming performance.

In summary, downregulation of the salmon lice PAH indicates
an important role in formation of the exoskeleton of the naupliar
stages. Morphological changes of the body parts of the lice
nauplii results in reduced swimming capacity and a termination
of development from nauplii II to copepodite.
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