
ISBN 9788232651245 (printed ver.)
ISBN 9788232651252 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2020:389

Achim Gerstenberg

Prototyping Cyber-Physical
Systems using Wayfaring

An Experiment and Insights for Early-Stage
Development

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2020:389
Achim

 G
erstenberg

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ria
l

En
gi

ne
er

in
g

Achim Gerstenberg

Prototyping Cyber-Physical
Systems using Wayfaring

An Experiment and Insights for Early-Stage
Development

Thesis for the Degree of Philosophiae Doctor

Trondheim, December 2020

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Engineering
Department of Mechanical and Industrial Engineering

© Achim Gerstenberg

ISBN 9788232651245 (printed ver.)
ISBN 9788232651252 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2020:389

Printed by NTNU Grafisk senter

Abstract

The two main aims of the thesis are firstly to qualitatively and quantit-
atively research the effect of using a prototype-driven wayfaring approach
for the early-stage development of cyber-physical systems to give normative
recommendations to developers and secondly to show and discuss how this
kind of research with human subjects can be conducted and improved.

Many development methodologies rely on early definition of require-
ments and design specifications and lack the agility to make fast design ad-
aptations. However, this agility is necessary to cope with unforeseen design
problems that arise during the early stages of highly uncertain complex
development projects. Prototype-driven approaches, that rely on frequent
testing and evaluation of prototypes for advancing the design, offer the ne-
cessary agility but research is required to better understand what influences
the outcome of such a development process and when it is appropriate to
use it. I answer these questions in the context of developing cyber-physical
systems by studying two case studies and a controlled quantitative experi-
ment in the context of programming a mobile autonomous robot. The first
case study of a small but multidisciplinary project is used to extend the
wayfaring approach and shows how prototyping helps to discover and solve
unforeseen problems, especially while merging different disciplines. The
second case study explains how the wayfaring approach can be applied in
highly uncertain large-scale development projects as shown here with the
example of the ATLAS detector development at CERN.

The controlled experiment quantitatively explores whether early testing
of prototypes has an influence on the performance of the design outcome and
also explores qualitatively what influences this performance. The research
shows that a wayfaring-like approach can be suitable during the explorative
concept evaluation phase of solving highly uncertain engineering problems.

iii

iv

Testing prototypes and abductively reflecting on the test results helps to
discover unforeseen design errors and in finding possible solutions. How-
ever, the experiment could not show a statistically significant performance
difference between participants who tested their designs early and often
compared to participants who could not test their design early. It showed
large individual performance differences between participants regardless of
their experimental condition. Qualitatively, these individual differences can
be explained by variations in error finding ability which not only depends
on the participant’s mental ability and programming experience but also
on when, how and what the participants test and how the code is written.
Furthermore, the results suggest that urged early testing without sufficient
questioning of design choices can lead to design fixation supposedly en-
hanced by the sunk cost of building and testing prototypes. The insights
lead to the normative suggestions to use early low-resolution prototyping
to keep the sunk costs to a minimum, prototype only the critical functions
of several disciplines quasi-simultaneously, prototype different concepts in
parallel and prioritize the critical functions whose solutions appear to be
least likely to succeed.

Well controlled quantitative human subject experiments are necessary
to better understand, quantify and compare design methodologies. Such
quantitative experiments in design methodology research are rare and often
not controlled enough to unambiguously attribute the observed results to the
stimulus. This thesis uses the above mentioned robot experiment as a case to
show measures like automating the experiment procedures or avoiding direct
human-human interaction between the experimenter and the participant to
increase repeatability and internal validity of the experiment. The thesis
also discusses lessons learned and when using the wayfaring approach is
appropriate for developing such experiments.

Acknowledgements

First and foremost I want to thank Martin Steinert for being a very helpful,
motivating and patient supervisor as well as the founder of TrollLabs that
gave me this unique opportunity to make the switch from physics to early-
stage product development. It was beautiful to be part of TrollLabs from
almost the beginning and see it evolve to what it has become now.

I greatly appreciate the efforts of Cecilia Haskins for chairing my defense
and Tobias Larsson and Malte Jung for taking their time to read my thesis,
give constructive feedback and be my opponents at the defense. I wish Covid
would not prevent you from coming to Trondheim. I thank Matilde, Carl
Christian and Jørgen for being part of an awesome ME310 team and great
colleagues, Carlo and Heikki for honest, sharp and constructive feedback
and being delightful and fun office partners as well as many other Trolls,
namely Stephanie, Matilde, Andreas, Kristoffer, Jørgen and Jørgen, Matt,
Yngve, Evangelos, Marius, Henrikke, H̊avard, Torjus, Pasi and Sampsa who
were a pleasure to work with.

I also want to thank my flatmates for letting me take over the upstairs
livingroom as an office and in particular Are and Else for giving me emo-
tional support and putting up a ”PhD on track” sticker above my bed as a
constant reminder. I can soon pass it on to Are.

Last but not least I want to thank my mom for many years of lovingly
supporting me from a distance, giving me her opinions and being the person
who helped me with a lot of proof reading.

Thanks also to my new home Norway with its splendid nature which
gave me the opportunity for great hikes, sailing and skiing.

Tusen takk!

v

vi

Preface

This thesis has been submitted to the Norwegian University of Science and
Technology (NTNU) for the degree of Philosophiae Doctor (PhD). All work
has been conducted at the Department of Mechanical and Industrial En-
gineering (MTP) at NTNU, more specifically within TrollLABS by Achim
Gerstenberg. The research was supported by the Research Council of Nor-
way (RCN) through its user-driven research (BIA) funding scheme, project
number 236739/O30.

vii

viii

Contents

Contents xii

List of Tables xiv

List of Figures xvii

1 Introduction 1
1.1 Research questions . 2
1.2 Aim and target audience . 2
1.3 Contributions . 3
1.4 Structure of the thesis . 9

2 Background information 13
2.1 Mixed-method research . 13
2.2 The TrollLABS mindset . 17

2.2.1 Fuzzy-Front-End . 18
2.2.2 Complicated and complex tasks 18
2.2.3 Development methods 19
2.2.4 Wayfaring . 20

2.3 Cyber-physical systems . 24
2.3.1 Definition of a Cyber-Physical System 24
2.3.2 The problem of non-deterministic and chaotic behavior 24
2.3.3 Implications for the development of Cyber-Physical

Systems . 25
2.4 Research Methodology . 26

3 Anecdotal insights from prototyping Cyber-Physical Sys-
tems 29

ix

x CONTENTS

3.1 Qualitative insights from the Fibo car case 29
3.1.1 What is the Fibo car project? 30
3.1.2 Eliciting unknown unknowns, probing and abductive

reasoning . 32
3.1.3 Low resolution prototyping of critical functions 33
3.1.4 Quasi-simultaneous prototyping of domains - finding

interdependencies . 34
3.2 Wayfaring in large-scale projects - CERN example 35

4 Experiment exploring the effect of early prototyping in cyber-
physical-systems development - the Robot Experiment 39
4.1 Objective of the experiment 39
4.2 Experimental setup . 40

4.2.1 Participants . 40
4.2.2 Physical environment 40
4.2.3 Timeline of the experiment 42
4.2.4 The task . 45
4.2.5 The robot . 46
4.2.6 Participant-experimenter interaction 47

4.3 Raw-data collection . 49
4.4 Processing of keystroke data 53
4.5 Results of the robot experiment 53
4.6 Limitations of the performance measurement 56
4.7 Simulation enhanced results of the robot experiment 59
4.8 Influence of testing on performance 59
4.9 Influence of testing on concept choice 67
4.10 Influence of testing on programming behavior 71
4.11 Influence of experience on performance 71
4.12 Limitations and strengths . 73
4.13 Qualitative results . 76

4.13.1 Time spent on planning 77
4.13.2 Programming and debugging styles 77
4.13.3 Poor reflections and priority choices 79
4.13.4 Chapter résumé . 80

5 Mixed-method discussion on the use of a prototype-driven
approach in CPS development 81
5.1 No statistically significant performances difference due to large

differences between the participants 82
5.2 Potential causes for the large performance differences between

participants . 83

CONTENTS xi

5.2.1 Programming experience 84

5.2.2 Concept choice . 85

5.2.3 Individual differences in error finding behavior 86

5.2.4 Individual differences in skill and method preferences . 87

5.3 Does testing lead to design fixation on premature concept
choices? . 87

5.4 Conclusions on how to develop Cyber-Physical Systems . . . 89

6 Designing and conducting research on the development of
cyber-physical systems 93

6.1 Designing a repeatable and internally valid experiment setup 94

6.1.1 Participant selection 94

6.1.2 Controlling the interaction with the participants . . . 95

6.1.3 Automation and ”foolproofing” of the setup and pro-
cedures . 99

6.1.4 Controlling for confounding variables - measuring pro-
gramming experience 101

6.2 Wayfaring for developing experimental setups 102

6.2.1 The evolution of the research question 103

6.2.2 The evolution of the task and the robot 105

6.2.3 Wayfaring for instruction testing 107

6.2.4 Resolution of the measurement 108

6.3 Leveraging quantitative results with a simulation 108

6.3.1 The benefits of using a simulation to leverage results
of a human subjects robot programming experiment . 108

6.3.2 The development of the simulation 109

6.3.3 Validation . 110

6.3.4 The simulation as part of a well-defined experiment
setup . 112

6.4 Lessons learned from the robot experiment 112

6.4.1 Timing of surveys . 112

6.4.2 Selecting participants for pilot studies 112

6.4.3 Using a robot with an existing and well-validated sim-
ulation . 114

6.4.4 Trade-off between internal and external validity 114

6.4.5 Discussion on using wayfaring for developing highly
controlled experiments 117

6.5 Thoughts on the future - a fully automated experiment setup?118

7 Summary 121

xii CONTENTS

Appendices 131

A Experimental setup information 133
A.1 Printed templates . 133

B Additional data 169
B.1 Manually recorded results . 169
B.2 Simulated results . 170

B.2.1 Simulation raw data labelling 170
B.2.2 Averaged simulation data for each evaluation 172
B.2.3 Influence of testing . 175
B.2.4 Influence of typing between tests 177
B.2.5 Influence of experience on performance 179

C Publications included in the PhD work 181
C.1 Contribution 1: Distributed Experiments in Design Sciences,

a Next Step in Design Observation Studies? 182
C.2 Contribution 2: Bridging Tangible and Virtual Interaction:

Rapid Prototyping of a Gaming Idea 192
C.3 Contribution 3: A Simultaneous, Multidisciplinary Develop-

ment and Design Journey - Reflections on Prototyping 198
C.4 Contribution 4: Large-scale Engineering Prototyping - Ap-

proaching Complex Engineering Problems CERN-style 207
C.5 Contribution 5: Open-ended Problems - A Robot Program-

ming Experiment to Compare and Test Different Develop-
ment and Design Approaches 217

C.6 Contribution 6: Testing the Effect of Desirable Difficulties on
Teaching Robotics . 228

C.7 Contribution 7: Development and Verification of a Simula-
tion for Leveraging Results of a Human Subjects Program-
ming Experiment . 233

C.8 Contribution 8: Evaluating and Optimizing Chaotically Be-
having Mobile Robots with a Deterministic Simulation 247

C.9 Contribution 9: The Relevance of Testing in Engineering
Product Development Investigations on a Robot Program-
ming Task . 253

C.10 Contribution 10: Fixation on Premature Concept Choices -
a Pitfall of Early Prototyping? 260

C.11 Contribution 11: A low-cost predictive display for teleopera-
tion: investigating effects on human performance and workload265

List of Tables

4.1 Significance analysis comparing the number of removed cubes
for planners and testers, Nplan and Ntest: number of data-
points, Mdn: median of removed cubes, U-rank statistic and
corresponding p-value . 54

4.2 Removal times of the 1st, 2nd and 3rd cube and signific-
ance analysis comparing planners and testers for all 5 and
the individually best evaluation of each participant. N: num-
ber of solutions that removed the cube(s), M: mean times
in seconds with standard deviation SD, Welch’s t-values and
p-values calculated from the corresponding data above . . . 57

4.3 Significance analysis comparing the number of removed cubes
for planners and testers. Mann-Whitney U test, N plan and N
test: number of datapoints, Mdn(m): medians of the mean of
removed cubes, U-rank statistic U and corresponding p-value
p, simulated results . 61

4.4 Simulated removal times of the 1st, 2nd and 3rd cube and
significance analysis comparing planners and testers for all 5
and the individually best evaluation of each participant. N:
number of solutions that removed the cube(s), M(m): mean
of the mean times in seconds and the corresponding standard
deviation SD, Welch’s t-values and p-values calculated from
the corresponding data above 62

4.5 Simulated combined times for 3rd cube removal including
time bonus and penalty for cube color detection. N: num-
ber of solutions that removed the 3rd cube, M(m): mean of
the mean times in seconds and the corresponding standard
deviation SD, t-values and p-values from Welch‘s t-test 63

xiii

xiv LIST OF TABLES

4.6 Concept choice by experimental condition and development
between evaluations. 68

4.7 Statistics comparing the mean number of removed cubes for
planners and testers that only used ultrasound-based solu-
tions N: number of solutions using ultrasound detection, M(m):mean
of the mean number of removed cubes over 99 simulations
with corresponding SD . 70

4.8 Statistics comparing the mean times for removing the 3rd
cube for planners and testers that only used ultrasound-based
solutions N: number of successful solutions using ultrasound
detection, M(m):mean of the mean number of removed cubes
over 99 simulations with corresponding SD, Welch‘s t-test . . 70

List of Figures

1.1 Overview of scientific contributions to this PhD work 3

2.1 The Fuzzy Front End of product development as seen by
Herstatt et al. [Herstatt, Stockstrom et al. 2006] 19

2.2 Steps of the systems approach [taken from Pahl et al. 2007] . 21

3.1 Overview of a multidisciplinary wayfaring journey from A to
Vx. Figure taken from publication 3. 31

3.2 Probing cycle. Figure taken from publication 3. 31

4.2 Timeline of the experiment execution. 42

4.3 Top-down view drawing of the playground with the starting
positions of the cubes . 46

4.4 Robot seen from the front and the side 46

4.5 Planning condition: Frequency of number of removed cubes
in each evaluation shown along the vertical axis 55

4.6 Testing condition: Frequency of number of removed cubes in
each evaluation shown along the vertical axis 55

4.7 Planning condition: Frequency of mean number of removed
cubes in each evaluation, simulated results 60

4.8 Testing condition: Frequency of mean number of removed
cubes in each evaluation, simulated results 60

4.9 Histograms for each participant of the 3rd cube removal time
for planners (left) and testers (right). Axis on the left: re-
moval time in seconds (bin size: 5 seconds), axis in the bot-
tom: order of participants . 64

xv

xvi LIST OF FIGURES

4.10 Number of tests before the 1st evaluation vs. number of
removed cubes . 65

4.11 Number of tests over the whole time vs. number of removed
cubes . 66

4.12 Keystrokes per test vs. number of removed cubes in the 1st
evaluation . 67

4.13 Histograms of the 3rd cube removal times grouped according
to the detection method a) ultrasound detection,b) blinking
light detection, c) hybrid, that is both ultrasound and blink-
ing light detection combined. Planners and testers are com-
bined in the graphs, axis on the left: removal time in seconds
(interval 5 seconds), axis in the bottom: order of participants 69

4.14 Influence of self-reported Python programming experience on
performance (number of removed cubes) in evaluation 1. . . . 72

4.15 Influence of self-reported Lego Mindstorms experience on per-
formance (number of removed cubes) in evaluation 1. 73

4.16 Programming test results related to performance, number of
removed cubes in evaluation 1 74

4.17 Programming test results related to performance, number of
removed cubes in evaluation 5 74

4.18 Influence of typing latency between special characters and al-
phabetical or numerical characters on performance (number
of removed cubes) in evaluation 1. A shorter latency corres-
ponds to higher experience [Thomas et al. 2005]. 75

6.1 The state of the programming booth when the participant
sits down for the first time. The aluminium foil is to reflect
the ceiling lights for a more evenly distributed lightning. . . . 98

6.2 The experiment control area where the experimenter can con-
trol and influence data acquisition, provide instructions and
receive feedback and observe the participant. 101

6.3 Keylogger used for capturing and influencing the participant’s
keystrokes. 102

B.1 Cube removal times, blue dots: planners, red dots: testers . . 170

B.2 Influence of total amount of tests on number of removed cubes
and number of tests between evaluation on change in number
of cubes. 175

B.3 Influence of amount of keystrokes between evaluations on the
change of number of removed cubes in the same time interval. 177

LIST OF FIGURES xvii

B.4 Influence of amount of keystrokes per test between evalu-
ations on the change of number of removed cubes in the same
time interval. 178

B.5 Influence of self-reported programming skills on the mean
number of removed cubes (performance). 179

B.6 Influence of typing latency on the mean number of removed
cubes (performance) in evaluation 1 and 5. 180

xviii LIST OF FIGURES

Chapter 1

Introduction

Self-driving cars, mobile autonomous robots and robotic surgery are ex-
amples of cyber-physical systems (CPS) because they use computing (cy-
ber) to interact context dependently with the physical world. CPSs use a
combination of sensory inputs to react to and influence the physical world
with actuators. Developing CPSs therefore requires developing the physical
artifacts and the computational algorithms and combine them to achieve the
desired contextual behavior in the physical world [Khaitan et al. 2015]. The
interplay of the deterministic algorithms with the non-deterministic nature
of the physical world can lead to chaotic robot behaviors and complicates
the development of CPSs (see 2.3.2, 2.3.3). This thesis addresses how the
prototype-driven approach of wayfaring (see 2.2.4) can be applied to the
development of CPS and how to conduct research about the methodology
of early-stage CPS development. Throughout the thesis the focus lies on
the early stages of CPS development which is the phase of idea generation
and assessment as well as concept development (see 2.2.1), i.e. exploring
the solution space and finding and selecting concepts using prototype-driven
approaches.

1

2 Introduction

1.1 Research questions
The work of this doctoral thesis was conducted at TrollLABS. As it

is common in this group, it focuses on the early-stages of highly uncertain
engineering development projects and more concretely on the development
of cyber-physical systems as well as how to do research on the develop-
ment methodologies and behaviors. In the thesis I look into two research
questions:

1. How can a prototype-driven approach be applied to the early-
stage development of cyber-physical systems and when is it
appropriate to use this approach?

I address this research question with several qualitatively observing
case-study projects and combine the qualitative findings with the res-
ults of a quantitative experimental study.

2. How can a controlled quantitative experiment for research-
ing early-stage development of cyber-physical systems be de-
signed and conducted?

The second research question is on the meta level of the first research
question. It focuses on insights gained from setting up and conduct-
ing the research necessary to answer the first research question. I use
examples and lessons learned from conducting a quantitative experi-
ment to illustrate how it can be done and what is important in such
experiments.

1.2 Aim and target audience
This thesis is aimed at two different target audiences. At first it aims to

advise developers of cyber-physical systems by giving normative procedural
and behavioural recommendations that are helpful during the early concept
creation and selection phase. These include recommendations on how to test
prototypes and avoid common pitfalls based on insights from case studies
and the experiment conducted within the framework of this thesis. The find-
ings that are relevant for developers can be found in chapter 3. Secondly,
the thesis is aimed at researchers in the field of engineering design meth-
odology that research the development processes of cyber-physical systems.
The thesis explains how and why to execute experimental details in quantit-
ative experiments to achieve a high degree of parameter control and internal
validity. I present and explain the design choices and lessons learned of the
experiment conducted as part of this PhD so that researchers benefit from
this examples for their own experiments in chapter 6.

1.3. Contributions 3

1.3 Contributions
During my time as a PhD student I have contributed to 10 publica-

tions, 9 of which are published. I am the main author and contributor in all
publications related to the quantitative experiment (contributions 5 to 10)
and in the other publications I was either also the main author or the pub-
lication resulted from a master thesis that I co-supervised. In the following
I list all publications I contributed to, give a short summary of each, how it
contributes to this thesis and what my contribution within the publication
is. Figure 1.1 shows the scientific contributions of the PhD categorized by
content type and to which research question they contribute. The list below
the figure is in chronological order.

Figure 1.1: Overview of scientific contributions to this PhD work

4 Introduction

Publication 1: published July 2015

”Distributed Experiments in Design Sciences, a Next Step in Design
Observation Studies?”

Carlo Kriesi, Heikki Sjöman, Martin Steinert, Achim Gerstenberg, and
42 other authors

This publication describes an experimental setup that can be conducted
by different researchers at different locations under comparable conditions
with well-defined instructions and physical materials provided by the dis-
tributor (in this case Carlo Kriesi). The experiment was conducted in five
different locations in four countries and the obtained data was sent back to
the distributor. The aim of this approach is to increase external validity
by decreasing the influence of local biases. This publication describes the
underlying design task, the implementation of materials, instructions and
sensors as well as encountered challenges of a distributed experiment. I
was one of the researchers who received the experiment equipment, conduc-
ted the experiment according to the instructions and returned the acquired
data to the experiment distributor. In addition, I contributed with intens-
ive feedback as the experiment was designed and organised in TrollLabs.
The publication is used in chapter 6 as examples for the importance of a
well-defined experiment setup, how to control an experimental protocol and
for how to enhance external validity of experiments.

Publication 2: published October 2015

”Bridging Tangible and Virtual Interaction: Rapid Prototyping of
a Gaming Idea”

Thov Reime, Heikki Sjöman, Achim Gerstenberg, Pekka Abrahamsson,
and Martin Steinert

This publication resulted from the master thesis of Thov Reime (super-
vised by myself, Heikki Sjöman and Martin Steinert). It describes develop-
ment of a physical car model that can detect its assembled configuration,
transfer this information to a computer where this physically assembled
car model is digitally modelled to be used in a driving simulator game for
children. The technical solution uses laser cut acrylic car parts, the Ar-
duino micro controller board to measure resistances to detect the current
assembly, and the ”Processing” software to illustrate the assembly digitally.
The task, which had to be done in a very short time frame, was worked

1.3. Contributions 5

on in wayfaring approach. The development process is described and re-
flected on in the publication by addressing the technical challenges and the
implementation of the car model. It gives examples for prioritizing critical
functions, low resolution prototyping, unknown unknowns and dynamically
changing requirements and quasi simultaneous prototyping, early merging
of disciplines and discovering interdependencies. This publication is used as
a case-study in chapter 3.1.

Publication 3: published October 2015

”A Simultaneous, Multidisciplinary Development and Design Jour-
ney - Reflections on Prototyping”

Achim Gerstenberg, Heikki Sjöman, Thov Reime, Pekka Abrahamsson,
and Martin Steinert

In this publication I demonstrate how to extend the wayfaring approach
based on the observation of the course of action of Thov Reime in his master
thesis project (see publication 2). Although Thov was supervised by Heikki
Sjöman, Martin Steinert and myself, we intervened very little into the de-
velopment process and did not instruct Thov to use the wayfaring approach.
The observations are made retrospectively. The publication reveals in de-
tail how unknown unknowns can be discovered and dealt with, repeated
probing cycles lead to abductive learning and dynamically changing designs
requirements and how quasi-simultaneous prototyping and early merging of
different disciplines can discover and handle interdependecies. This pub-
lication is used as a case-study in chapter 3.1 for explaining the extended
wayfaring mindset.

The one page summary behind this publication in the appendix C.3 is
the poster presented at the conference.

Publication 4: published August 2017

”Large-scale Engineering Prototyping - Approaching Complex En-
gineering Problems CERN-style”

Achim Gerstenberg and Martin Steinert

This publication proposes how wayfaring can be applied to large-scale
engineering projects with high degrees of uncertainty and therefore with dy-
namically changing design requirements. The publication points out the dif-
ficulties with modular top-down approaches for large-scale projects that re-

6 Introduction

quire a high degree of flexibility and uses Philipp Türtscher’s analysis of the
development of the ATLAS detector at CERN [Türtscher 2008, Türtscher
et al. 2014] and combines bottom-up approach with wayfaring showing how
justification and interlaced knowledge enables wayfaring in large-scale pro-
jects. This publication is used and described in more detail in chapter 3.2.

Publication 5: published August 2018

”Open-ended Problems - A Robot Programming Experiment to
Compare and Test Different Development and Design Approaches”

Achim Gerstenberg and Martin Steinert

This publication highlights the need for controlled quantitative experi-
ments in engineering design research. It describes in detail an experimental
setup for a human subject study investigating design research and provides
two potential study concepts that could be realized with the experimental
setup. A focus lies on how to control the interaction between the participant
and the experimenter and quantitatively record the participant’s behavior.
The experimental setup uses an open-ended robot programming task with a
quantifiable performance metric to test the influence of different stimuli on
robot programming performance. In this thesis this publication serves two
purposes: on the one hand it is a detailed description of the experimental
setup reported in section 4.2 and and on the other hand it provides many
examples for how to conduct a very controlled experiment and gives the
rationale for the experimental design, both discussed in chapter 6.

Publication 6: re-submitted August 2020

”Testing the Effect of Desirable Difficulties on Teaching Robotics”

Achim Gerstenberg and Martin Steinert

This publication is based on the experiment setup described in public-
ation 5 and adapts this setup for testing the effect of desirable difficulties
on teaching robot programming and open-ended task solving capabilities.
The paper presents the experimental design to test the hypothesis that par-
ticipants who receive a flawed introduction and need to find and correct
those perform better in a later open-ended task than participants who are
introduced to the robot with unflawed instructions. The paper includes pre-
liminary results and the discussing why continuing this experiment was not
meaningful. This publication is used in chapter 6 as it is an example of how

1.3. Contributions 7

controlled quantifiable experiments can be designed and how preliminary
results can lead to the development of a new experiment design. The new
design became the concept that was then investigated thoroughly in this
thesis.

Publication 7: published without peer-review March 2019

”Development and Verification of a Simulation for Leveraging Res-
ults of a Human Subjects Programming Experiment”

Achim Gerstenberg and Martin Steinert

In the experiment described in publication 5 achieving statistically mean-
ingful results from only manually executing the robot programming solu-
tions that the participants designed during the experiment is tedious, very
time consuming and overall not very feasible. Therefore, the statistically
power of the results was leveraged by using a robot simulation. I pro-
grammed such a simulation and this publication describes the development
of this simulation for the physical robot as well as the validation that en-
sures that the simulation is representative of the physical robot behavior.
This publication provides the details for replicating and understanding the
simulation used to obtain the results reported in chapter 4 as well as in
publication 9. In addition, the simulation serves as an example for how to
enhance experimental results, in chapter 6.

Publication 8: published May 2019

”Evaluating and Optimizing Chaotically Behaving Mobile Robots
with a Deterministic Simulation”

Achim Gerstenberg and Martin Steinert

This publication investigates the aspect of chaotical behaviour of autonom-
ous mobile robots and the consequences for its development, programming
and evaluation. The robot behavior depends on the interplay between
the programmed algorithm and the robot hardware with the environment.
Small perturbations in hardware and environment can lead to large devi-
ations in the robot behavior and, therefore, quantifying the robot’s perform-
ance requires statistical methods. With the simulation already mentioned
in publication 7 the mean behavior of the robot and the robustness towards
perturbations can be statistically studied which is important for provid-
ing similar conditions for all participants in the experiment described in

8 Introduction

chapter 4. Furthermore, it is of general relevance as a tool for rapid pro-
totyping when developing mobile autonomous robots because a sensitivity
analysis can reveal which algorithm and hardware changes are more or less
sensitive to perturbation and thus require more attention during the robot
development.

Publication 9: published May 2019

”The Relevance of Testing in Engineering Product Development
- Investigations on a Robot Programming Task”

Achim Gerstenberg and Martin Steinert

In this publication the results of a human subject study investigating the
influence of early testing in engineering product development are presented.
In the study I applied the experimental setup described in publication 5
to test whether early testing of prototypes has a quantitatively measurable
influence on the performance of the developed programming solutions for an
autonomous mobile robot. I present the manually recorded results as well
as the post-experimentally simulated results using the simulation described
in publications 7 and 8 and discuss the outcome. In summary, no statistic-
ally significant evidence of performance difference depending on prototype
testing during the early development stages was found. This publication is
referred to in the results section of chapter 4.

Publication 10: published May 2019

”Fixation on Premature Concept Choices - a Pitfall of Early Pro-
totyping?”

Achim Gerstenberg and Martin Steinert

While quantitatively testing the hypothesis described in publication 9, I
serendipitly observed that only very few experiment participants changed
their originally chosen concept to solve the robotic task. The participants
who could not test their design early, and thus could not physically compare
different concepts early, made superior concept choices compared to the par-
ticipants that were allowed to test their designs and could in theory compare
different concepts. From this observation I postulate that the sunk cost of
building, testing, comparing and then rejecting unfavourable concepts leads
to fixation onto the originally chosen concept. This lack of comparing con-
cepts seemed to lead to premature and sometimes poor concept choices.

1.4. Structure of the thesis 9

From this observation I recommend a development approach that has simil-
arities to test-driven design in software engineering based on low resolution
prototyping of critical functions to minimize sunk costs while still exploring
many possible concepts. This publication is used and discussed in 4.9 and
5 and also serves as an example of how a serendipity finding can lead to a
new hypothesis as discussed in chapter 6.

Publication 11: submitted for publication August 2020

”A low cost predictive display for teleoperations: investigating
effects on human performance and workload”

Henrikke Dybvik, Martin Løland, Achim Gerstenberg, Kristoffer Bjørnerud
Sl̊attsveen and Martin Steinert

Operating a remotely operated mobile ground vehicle often occurs through
a video feed from the vehicle to the operator. Due to technical restrictions
this video feed can be delayed by several seconds and this latency reduces the
operators performance of operating the vehicle and increases the operator’s
mental workload. In this experiment we studied how a simple predictive dis-
play can influence operating performance and the operator’s workload. The
developed predictive display uses shifting and zooming of the video feed’s
field of view according the instructed movement that the robot is executing
after the latency. This creates the illusion of an instantly moving robot. In
addition an arrow indicates the robot orientation after the movement has
completed. The experiment compares performance and workload with the
inherent system delay of 250 milliseconds with a 700 milliseconds latency
with and without the described predictive display. We find a statistically
significant performance difference between with the 700 milliseconds latency
with the predictive display compared to the 700 milliseconds latency con-
dition without a predictive display. There was no significant difference in
workload between the conditions.

The physical experiment setup used in this experiment was also de-
veloped using the wayfaring approach. Otherwise, this publication is not
related to the topic of this PhD. I was involved by helping with the study
design, initial data analysis and as a co-writer of the publication.

1.4 Structure of the thesis
This thesis consists of seven chapters and an appendix. The first

chapter is this introduction that you now almost finished reading. The
second chapter provides background information that I use in the later

10 Introduction

chapters. This background information is based on existing knowledge and
therefore not part of my scientific contribution. The background chapter
gives the framing of the type of early-stage and highly uncertain engin-
eering projects this thesis applies to, introduces existing methods for the
development of such kind of cyber-physical systems and provides the ne-
cessary information about the used research methodologies. In this second
chapter I firstly explain mixed-method research as I use this approach when
I combine the insights from case-studies and experimental data to answer
the first research question, next the early-stage complex engineering design
in the Fuzzy-Front End as it is typical for a PhD thesis within TrollLABS
and thus the scope where this research applies and last but not least I define
cyber-physical systems and the associated problems when developing them.

Chapters three to six include my contributions to research. In the
third chapter I look at case studies to describe the prototype-driven de-
velopment approach anecdotally and provide qualitative observations and
suggestions. The first case study is a master project conducted at TrollLabs
while the second part combines the prototype-driven approach with liter-
ature about the large-scale development of the ATLAS detector at CERN.
Chapter four approaches the first research question from the experimental
side. It presents the setup and mostly quantitative but also some qualitative
results of a controlled experiment exploring the effect of early prototyping
during the development of CPS. Chapter 5 combines the qualitative insights
from the case studies, the quantitative results from the experiment and also
the qualitative results from observing the behavior of the experiment par-
ticipants into normative conclusions applicable for developers of complex
cyber-physical systems.

The 6th chapter addresses the second research question on how to
design and conduct experiments investigating the early-stage product de-
velopment process of cyber-physical systems. I provide a brief history of
how wayfaring was also used for the design of the study, how I arrived at
the research question and on what study designs were tried and abandoned.
Derived from the research presented in chapter 4 and 5 I show how to lay
a focus on experimental control in such experiments with human subjects.
I use and explain the rationale of experimental design decisions, how those
are executed in detail and what the lessons learned are to further improve
such experiment designs in the future.

The final and 7th chapter gives a summary of the thesis.
The appendix includes additional data that allows a more complete

picture of the results of chapter 4 where I only present the most relevant
data for better readability. I also added some of of the paper templates used

1.4. Structure of the thesis 11

in the experiment. In the end, the appendix includes a copy of the relevant
publications written in the context of this thesis.

12 Introduction

Chapter 2

Background information

In this chapter I include the background knowledge that is used later in
the thesis. It is therefore shortened to what is needed and not a complete
explanation of the theories. The information about mixed-method research
is applied in the results of chapter 3 and used extensively for the discussions
in chapter 5.

2.1 Mixed-method research
Research aims to develop and test scientific theories. These theories,

that can be used to predict future outcomes, are made either inductively or
deductively. Those predictions shall be falsifiable such that the prediction,
sometimes also called hypothesis, can be confirmed or falsified by observa-
tions. If an observation falsifies a hypothesis the according theory is either
wrong or incomplete [Popper 1935] and needs to be replaced or extended.
The theories are created and extended by generalizing from observations.
This is done through either statistical generalization (quantitative research)
or analytical generalization (qualitative research).

Quantitative research is often applied to test hypotheses where an
observation is predicted from an existing theory and then tested if it can
reliably be reproduced with statistical significance. This implies that the
measurements are numerical or boolean. If an outcome is observed re-
peatedly n times then by statistical generalization it is assumed that at
the (n + 1)th time the same outcome is observed if the conditions are the
same as in the n observations before. The certainty of the prediction in-
creases with the number of confirmed observations. This means that for
making predictions from statistical generalization a deeper understanding
of the phenomena is not necessary. The system can be researched like a
black box where some stimulus is introduced (independent variable) and

13

14 Background information

some output is observed (dependent variable). By repeating this process
we can calculate correlations between the independent variable and the de-
pendent variable and the likelyhood that these observations occurred by
chance. Since the predictions only rely on statistics and not on logical ar-
guments the method is immune to logical mistakes. However, since we have
not gained any logical understanding of the system we cannot analytically
argue how a modified system that differs from the previously studied sys-
tem reacts to the stimulus. Therefore, it is essential to replicate the system
exactly to reproduce the result. If the influence of an independent variable
onto a dependent variable is to be tested then all other confounding para-
meters need to remain unchanged. The advantage of quantitative research
is that a theory can be built without understanding and holds true as long
as no evidence that refutes the theory is found. However, this comes at the
price that the generalizations are very specific and the scope of the theory
is narrow because a theory is only valid under the circumstances it was de-
veloped. If induction is used to discover a pattern one has to be careful to
not generalize too quickly. It is unlikely that one specific pattern is statist-
ically significant by pure chance but it is far more likely that some pattern
out of all possible observable patterns is statistically significant by chance
(i.e. p-hacking). This means that if a pattern is discovered from repeated
evidence one can only be certain that this discovery is valid after explicitly
repeating the experiment to specifically test the new hypothesis. Only if
the hypothesis cannot be refuted the finding can be confirmed.

In contrast to quantitative research qualitative research is based on
deducing predictions analytically from existing theories and developing or
extending theories by analytical generalization through explaining the obser-
vations with the most likely and logically plausible explanation. Therefore,
qualitative research can rely on single or few observations. The predictions
are made deductively by combining the theory with observable premises.
This means that both the theory can be logically flawed and premises can
be incorrectly assumed. Since predictions are made by logically argument-
ing it is possible to use logic to adapt existing theories, that were developed
and tested under certain other circumstances, to then fit under new circum-
stances. In explanatory case studies the theory is tested by pattern matching
[Eisenhardt 1989, Yin 2017], that is the researchers predict a cause-effect re-
lation and explain it with an existing theory and then verify if the predicted
pattern can be observed in the cases. Qualitative research can afford to col-
lect non-numerical data since it does not need to be evaluated statistically.
Since the aim often is to get a deeper understanding instead of quantifying
an effect it does not require that the observations are made with sufficient

2.1. Mixed-method research 15

statistical power and under controlled and similar conditions. This opens up
the possibility for interviews that follow the conversational flow, behavioral
analysis from direct observation or videos or to take one-time occurrences
into account. This is especially important in explorative case studies where
the researchers try to abductively construct new logic models [Yin 2017,
Burks 1946] from the observations.

Both in quantitative and qualitative research the validity of the study is
important. The construct validity evaluates if the measured variables ac-
tually are representative to test or construct the theory. Construct validity
can thus be increased by using multiple sources that investigate the same
aspect of the theory. To make sure that the measured variables are rep-
resentative it is important that the participants understand and follow the
instructions as it is desired in the experiment design and the same way as
other participants. It is also important that the participants are unaware
of the hypothesis and cannot consciously or subconsciously change their
behaviors respective to those variables. The same is true for the experi-
menter. An experimenter that is biased may alter how the experiment is
conducted and what is measured. Therefore, it is good practice to use a
double-blind setup where neither the participants nor the experimenter is
aware of the hypothesis and the measured variables and correlations. If this
is not possible or highly impractical the biasing effect of the experimenter
can be decreased by strict procedures and automation of the experimental
procedures such that the experimenter has less opportunity to influence the
study.

Another threat to validity is to internal validity that is how an ob-
servation can also be explain differently by a rival theory. If a researcher
cannot be certain that a theory is the only possible explanation to the ob-
servation then this theory is less internally valid. This can be the case if a
confounding variable has a correlation with both the independent and de-
pendent variable. In qualitative research it is therefore necessary to always
ask if an observed pattern makes sense and can be further explained and if
there are alternative theories based on other confounding variables that can
cause the same outcome. If two variable correlate statistically significantly
in quantitative research and they are the only parameters that are changed
then the existence of a confounding variable can be ruled out. Keeping all
parameters except for the independent and dependent variable constant is
however sometimes not possible. Then it is important to measure any pos-
sible confounding variable. If this confounding variable correlates with the
independent and dependent variable then a rival theory can be made that
the confounding variable causes the observed result of the dependent vari-

16 Background information

able. Let us for example assume that ice cream consumption and drowning
deaths correlate. It is weird to believe that consuming ice cream causes
drowning deaths and logically impossible that drowning causes ice cream
consumption. The correlation can be explained by the weather. On warm
days more people eat ice cream and more people go swimming and drown.
The outside air temperature and sunshine are therefore confounding vari-
ables that correlate with both ice cream consumption and drowning deaths
and explain the correlation. If we want to find out if ice cream consumption
causes drowning without the confounding effect of the weather we could
set up an experiment where we keep the air temperature and sunshine con-
stant and half of the participants receive ice cream before swimming and
the control group gets none. If no correlation is observed anymore we can
rule out that ice cream consumption causes drowning and the weather re-
mains as a possible explanation. The opposite experiment would even show
an anti-correlation. Nobody that first drowned has then eaten ice cream
afterwards.

Another aspect is external validity. This is if the findings of the
study are generalizable beyond the study. The findings may be internally
valid but if they do not apply in the real world the resulting theory is mostly
useless. In qualitative research and especially in case studies external valid-
ity is usually high as those cases are taken from the real world and are
not experiments designed to represent reality while still aiming for internal
validity. However Yin as well as Lipset et al. [Yin 2017, Lipset et al. 1956]
point out that the goal is to do a generalizing and not a particularizing
analysis where the resulting theory can explain more that the particularly
observed case. Another way of endangering external validity is by choosing
study participants that poorly represent the population the resulting theory
is supposed to be applied to; either actively by the researcher approaching or
denying participants or through self-selection bias where by selecting them-
selves participants with certain traits that influence the study are more likely
to participate. By sampling participants with widely different attributes the
findings become more externally valid but introduce many new potentially
confounding variables that are difficult to control. This trade-off between
internal and external validity extends beyond participant selection as mak-
ing an experiment design more controlled and internally valid in many cases
means controlling parameters that would normally vary in real world con-
texts. The influence of those varying parameters can be statistically studied
if the sample-size with a similar parameter value is sufficiently large. This
is seldom the case. Then the influence can only be studied qualitatively and
this is how mixed-method research comes into the picture.

2.2. The TrollLABS mindset 17

Mixed-method research combines quantitative and qualitative re-
search in a single study and Creswell and Clark [Creswell et al. 2007] define
it as

[...] collecting, analyzing and mixing both quantitative and qual-
itative data in a single study or series of studies. Its cent-
ral premise is that the use of quantitative and qualitative ap-
proaches in combination provides a better understanding of re-
search problems than either approach alone.

The main reason for using mixed-method research is that qualitative
research can compensate the shortcomings of quantitative research and vice-
versa. While quantitative research and statistical generalization provides
little insights into the reasons why the results are measured, qualitative
methods like interviews or observations can ask and provide those reasons.
On the other hand, qualitative research relies on personal interpretations
made by the researcher and can therefore be more easily biased. However,
qualitative research can provide the deeper insights that can explain the
quantitative results and helps developing rival theories and discovering con-
founding variables even if they do not statistically significantly correlate
with the dependent variable. Furthermore, quantitatively developed theor-
ies apply only within the very similar context that they were constructed
with and theories developed from qualitative research can use the found
principles to extend and generalize the quantitatively found theories. In the
ideal case quantitative and qualitative observations can cross-validate each
other and thereby strengthen construct validity.

Lastly all research must be reliable; meaning that if the study is re-
peated under similar conditions the researchers will come to the same con-
clusions regardless if the same researcher or a different researcher repeats
the study. This requires detailed documentation about the conditions and
procedures of the study and publishing those such that other researchers
can replicate the study.

2.2 The TrollLABS mindset
This thesis is written at TrollLABS. TrollLABS is a research lab within

the Department of Mechanical and Industrial Engineering at the Norwegian
University of Science and Technology. It provides a workshop where selected
master students and PhDs can work on engineering projects and build early
prototypes without much bureaucratic hurdles. The principle is that it
is very fast and easy to try out ideas immediately. So on the one hand
TrollLABS is a place where prototypes are built and on the other hand

18 Background information

it is a research facility where the prototyping and development process is
studied. The projects at TrollLABS are in the Fuzzy-Front-End of product
development, usually complex and with a high degree of uncertainty because
the developers try to solve this particular engineering problem for the first
time and therefore have little prior knowledge about this particular problem.
In this thesis the focus lies on the prototyping of cyber-physical systems.

2.2.1 Fuzzy-Front-End

Fuzzy Front End is the very beginning of the innovation process. It can
also be described as phase 0 or idea generation and concept creation phase.
If product development is regarded as a linear process with increasing fidel-
ity over time, like Eppinger and Ulrich [Eppinger et al. 2011] and Herstatt
and Verworn [Herstatt and Verworn 2004] do, then the Fuzzy-Front-End
is the beginning part of this timeline. This product development process
is shown in figure 2.1. The Fuzzy-Front-End consists of idea generation
and assessment (phase 1) and concept development and planning (phase
2). In this linear process prototype development and testing comes as late
as phase 4 and thus after the Fuzzy-Front-End. A prototype in this con-
text is a high fidelity execution of the detailed planning in order to verify
the planned functionality of the product before production. In contrast,
the TrollLABS understanding of Fuzzy-Front-End includes prototype de-
velopment and testing as a fundamental part of the Fuzzy-Front-End and a
prototype is a physical artifact with the purpose to test an idea, gain under-
standing and thereby reduce uncertainty. It can be seen as an experiment
that aims to answer if an idea can work with the purpose of learning and
discovering unforeseen problems and benefits. Whenever I talk about pro-
totyping from now on I mean this explorative kind of prototyping. In this
context I define Fuzzy-Front-End as the part of the development process
where the requirements for the solution are still unknown. This includes di-
vergent thinking (how many ways can I solve this problem) and convergent
analysis of prototypes (often rough evaluations of concepts based on testing
prototypes).

2.2.2 Complicated and complex tasks

Another aspect that determines the development approach is the con-
text of the problem and its solutions. In this thesis I use the Cynefin frame-
work by Snowden and Boone [Snowden et al. 2007] to define if a project
is complex or not. They categorize problems as simple, complicated, com-
plex and chaotic. Simple problems have a clear cause-effect relation with
one specific solution and can be solved by using best practices and routines
because the situation can easily be understood, categorized and then re-

2.2. The TrollLABS mindset 19

Figure 2.1: The Fuzzy Front End of product development as seen by Herstatt et
al. [Herstatt, Stockstrom et al. 2006]

sponded to using rules based on prior experience. Complicated problems
still have a clear cause-effect relationship and a solution is known to exist
but it requires expertise to see and analyse the cause-effect relationships and
find a solution. In the complex domain decisions need to be made based
on incomplete data. More information is gained through experimentation
(probing) and the solution emerges. Although cause-effect relationships ex-
ist and do not change they are not all known. This means that it is not
a priori known if a solution exists, a solution is thus not imposable (plan-
nable) and the development can only be explained logically in hindsight.
These projects usually involve unknown unknowns; that is an unforeseeable
problem without a known solution. Multiple master and PhD projects at
TrollLABS are complex in this sense because it is unclear if a solution exists
at all or how a solotion may look like at the beginning of the project [Blind-
heim 2019; Kriesi 2018; Kriesi, Steinert, Marmaras et al. 2019; Niedziela et
al. 2014, Craig et al. 2015; Steinert 2020; Pidić et al. 2018; Sjöman, Kalas-
niemi et al. 2018; Sjöman, Soares et al. 2018; Sjöman, Autiosalo et al. 2018;
Brede et al. 2019]. There are even engineering consultancies that special-
ize on complex problems and often reject projects where they are capable
of naming a concept that can solve the problem before further engaging
in the project [Misty West - about webpage 2019] (personal communication
with the founder Josh Usher in Aug. 2017). Chaotic problems have cause-
effect relationships that change and no persistent patterns emerge. Solving
chaotic problems is not part of this thesis. This is not to be confused with
the development of chaotically behaving robots which is mentioned later in
the thesis.

2.2.3 Development methods

As engineering projects have different degrees of complexity Boone
and Snowden suggest also different approaches to solving those problems
[Snowden et al. 2007]. In complicated scenarios the solution may not be
easily recalled but it can still be derived with expertise and the available
information. It is therefore assumed that such solutions are plannable. The

20 Background information

tasks can be clarified and defined and then system requirements and specific-
ations can be determined theoretically at the beginning of the development
process. The further development can then be segmented into modules [Pahl
et al. 2007; VDI 1997; Eppinger et al. 2011; Cooper 1990]. The development
process can be linear as shown for the systems approach by Pahl and Beitz
[Pahl et al. 2007] in figure 2.2 and they describe it as a stepwise process
with the goal of discovering the optimal solution although they say that
returning to earlier steps may be needed if required earlier defined goals
are not met. The first step is information gathering which includes market
analysis, trend studies or already having known requirements to formulate
the problem. Finding these requirements may come from the market ana-
lysis or trend studies but may also be provided to the developers through
contractual agreements that are predefined before the development starts
[Boehm 2000]. After the problem has been clearly formulated the developers
can start with system implementation planning. Pahl and Beitz dedicate a
section to ”problem solving as information processing” where they describe
how information is received (market analysis, patent, journals, etc.), pro-
cessed (analysis, synthesis, calculation) and transmitted (drawings, tables,
assembly and user manuals). In the systematic approach the focus lies on
using existing information by finding a known pattern with an existing solu-
tion (inductively) or by analytically deducing the solution from theories (i.e.
calculations). Validation of the found solution occurs towards later stages
of the development.

Other sequential product development methods that use predefined re-
quirements/specifications and assume plannability are V-model [Rook 1986],
waterfall model [Royce 1987], and VDI guideline 2222 [VDI 1997]. Michael
Schrage [Schrage 1993] describes these aforementioned methods as specific-
ation driven.

2.2.4 Wayfaring

The spec-driven development methods follow a hylomorphic mindset
where an artifact is first thought an then formed. The making of an artifact
becomes the materialization of a thought. Tim Ingold [Ingold 2016] suggest
a different mindset he calls wayfaring for ”finding one’s way” in life and
extends it to making of artifacts. According to Ingold, such thinking through
making is based on mindful observations with a focus on improvisation. The
next step of making emerges creatively from an improvised correspondence
with the artifact. To improvise is to follow the ways of the world as they
unfold [Ingold 2008] after carefully paying attention and accepting what
is in order to build upon it. This entails to perceive the artifact without

2.2. The TrollLABS mindset 21

Figure 2.2: Steps of the systems approach [taken from Pahl et al. 2007]

22 Background information

a preconceived idea, whether novel or not, and instead being alert to the
situation and feel the way ahead. It is an opportunistic journey guided
by prototypes that also assumes that unpredictable problems will occur.
Ingold compares this wayfaring process to a hunter being attentive to the
environment and the animal tracks to find his way to the prey. In his
book ”Lines: a brief history” [Ingold 2016] Ingold describes two modes of
movement along a line. One is wayfaring where the ”line goes for a walk”.
The line of travel advances from its tip experiencing and actively engaging
with the environment. This line is constantly adjusting its bearing, may stop
and even return to a previous place and has no predefined final destination
and thus is endless because there is always somewhere further to go to.

The other movement along a line Ingold calls transport. Transport,
by contrast to wayfaring, is destination-oriented with the aim to relocate
to a different position and thus complete the movement. Ingold describes
the movement passively as the traveler ”is transported” like a passenger
without the aim of experiencing the way across the environment. Ingold
further describes how knowledge is gained and used. Transport-like travel
leads to and relies on mapping knowledge like modern maps that are spatial
representations that allow the traveller to assemble a route-plan in the form
of a chain of connections and thereby virtually to reach his destination
even before setting out. It requires knowledge about the start and end
point and the travel plan pre-exists its enactment on the ground. During
wayfaring-like travel knowledge is gained along the way by observation of
the environment. This gained knowledge can then immediately inform the
traveller and determine the further path.

Schrage [Schrage 1999] introduces the term ”serious play” where product
developers play and improvise with prototypes being attentive and accepting
to the outcome. Prototypes shall not primarily be used to confirm expect-
ations but to discover what the developers need to know. Serious play in
product development can follow pre-existing rules, principles and patterns
but, just similar to play in games, it is openly accepting and inherently
responsive to the current situation equal to the wayfaring mindset proposed
by Ingold.

Steinert and Leifer [Steinert and Leifer 2012] as well as Edelman et
al. [Edelman et al. 2012] embrace Ingold’s concept of wayfaring and apply
it to product development. Steinert and Leifer however introduce a small
degree of planning as they begin their wayfaring product development with
a development towards the ”perceived target”. However, the main idea of
wayfaring, namely to observe the situation, adapt the further development
accordingly and include serendipitly appearing opportunities, remains. The

2.2. The TrollLABS mindset 23

development path is guided by building prototypes, testing them and then
abduct the next development from observing the testing of the prototype.
Hence their understanding of wayfaring as a product development approach
is congruent with Schrage’s notion of a prototype-driven approach. This
means that a design is finalized when the developers decide to stop the
development and since this final design emerges from previous experiences
it cannot be predicted. Since the development follows experiences instead
of a plan there is no one correct or best way to design a product using
wayfaring. This is similarly to an improvising musician. A different group
of developers also using a wayfaring approach would likely have a different
experience and thus develop something different. During improvisation,
unlike performing sheet music, there is not a single correct way to play.

Edelman et al. furthermore observed that wayfaring behaviors of the
developers facilitates radical breaks in a redesign task whereas a transport
mindset leads to incremental redesign with a focus on optimization instead
of ”out of the box” thinking [Edelman et al. 2012]. Although wayfaring-like
travel does not have one single bearing Ingold nonetheless implicitly assumes
an overarching direction or purpose. In his example of a hunter who’s path
is determined by the landscape and the traces Ingold still assumes that
finding a way forward is for the purpose of finding the prey. The hunter
may be open to what this prey is and certainly where to go to find it but
there is still an overarching purpose. Steinert and Leifer pick up this notion
of hunting and when applied to development this means that the goal is
to solve a technical problem. If you want to fly to Mars pure unguided
wayfaring resulting in a submarine on wheels that holds a candle is of little
use. Although the final design is not known until the developers decide that
the current design is sufficient their development is guided by a vision. Once
this design is discovered it can be translated into design specifications and
then a specification-driven approach can be applied to optimize the design.
Steinert and Leifer call this ”bringing it home”.

In case the final design can be defined from the beginning and the
development can be planned then there is no need for wayfaring which would
be less resource efficient and would likely not come to the same outcome.
Wayfaring can include ”dead-ends” where testing a prototype reveals that
the chosen direction was not supporting the vision. On the other hand,
developing with a wayfaring approach is inherently flexible and can adapt
when the situation changes. Furthermore, wayfaring allows solving problems
where no known solution exists and thus cannot be reached following a
plan. Or in other words, a hunt cannot be planned on a map without
knowing where the prey is. Therefore, it is assumed that using the wayfaring

24 Background information

approach is especially useful in solving complex problems.

2.3 Cyber-physical systems

2.3.1 Definition of a Cyber-Physical System

In this thesis I define a cyber-physical system (CPS) as a system with
multiple sensory inputs from the physical world used in a mathematical
calculation (computation) that influences the behavior of the system in the
physical world (physical to digital to physical). The output is typically
through actuators like motors or loudspeakers. Those CPS often use feed-
back loops as those actuators influence their physical surrounding which is
then again measured with the sensors that influence the computation.

A mobile autonomous robot is an example of a CPS that uses often mul-
tiple sensors to measure its surroundings, an algorithm that takes the sensor
values and uses an imperative program code to compute motors commands
to move the robot appropriately.

2.3.2 The problem of non-deterministic and chaotic behavior

The focus in this thesis lies on CPS that use a single-threaded imper-
ative program to process the sensor data. These programs follow a single-
threaded sequence of instructions (code) and are a deterministic model of
how to execute the computations and how the system reacts to the com-
putation results. This means that if the computation is repeated under
precisely same conditions the result is unambiguous. However, in the real
world the conditions that determine the input to the computation are not
precisely reproducible. Therefore the combination of a single-threaded im-
perative program with a physical system is non-deterministic because the
deterministic execution of the program depends on the non-deterministic
physical environment. For example, the physics equations that are used in
the control algorithm of an aerial drone are deterministic but the actual
flight path is not.

Depending on the hardware of the CPS, the programmed code and
the environment the CPS shows a behavior that can be sensitive to small
perturbations in the state of the hardware or the environment [Nehmzow
et al. 2003]. For example can a small difference in a sensory input cause the
the code to execute vastly different instructions and thus the CPS behaves
differently. This sensitivity to perturbation is one of the characteristics
for chaotic behavior. This does not mean that the behavior is random.
It means that the behavior still follows unambiguous instructions but it
quickly becomes unpredictable over a short time. This is especially the case
when the response to the sensory input is binary in that either a command

2.3. Cyber-physical systems 25

is executed or not. For example the path and speed of an autonomous car
on a highway is predictable for a longer time because fewer situations occur
that require an either or action than the same car driving on a crowded city
road where for example a traffic light causes a very binary decision like to
stop or not.

This chaotic behavior can be quantified by comparing how different
the behavior of a CPS is when it is repeated from an almost similar state.
For example Nehmzow and Walker let a mobile autonomous robot drive in
different environments and compared the predictability over time [Nehmzow
et al. 2003] by recording the track. Using an algorithm [Wolf et al. 1985] that
quantifies how a fiducial track separates over time from a track captured
at a later time but from almost similar position and orientation Nehmzow
and Walker could quantify the influence of the environment on Lyapunov
exponents that describe the sensitivity of the system to perturbations. One
thing to note though is that a CPS with less sensitivity to perturbations
and thus more predictable behavior is not necessarily desired. The path of
the autonomous car stopping at a traffic light is vastly different from the
car not stopping or an autonomous mobile lawn mowing robot that drives
a less predictable route can still be more efficient at completely covering an
unknown territory and thus cutting the lawn faster.

2.3.3 Implications for the development of Cyber-Physical Sys-
tems

When developing software it is important to test and verify that the
system actually behaves the way it is intended to. This process is inherently
more complex for CPS because it does not only depend on the deterministic
code but also on the non-deterministic surroundings and hardware. While
in a pure software project, like a calculator, a flaw is reliably reproducible
and can be debugged by going through the clock cycles step by step and
following the state of the processor at every clock-cycle, going through the
code of a CPS step by step influences how the CPS reacts. This means
that the flawed (and unflawed) behavior cannot be reproduced if the clock
cycles are manually controlled. Therefore, the developers do not have the
temporal in-depth look at which code is executed when the CPS executes
a certain behavior. Instead they need to guess from qualitative observa-
tions of the behavior which part in the code caused each behavior. If the
autonomous car keeps driving at a red traffic light they can only assume
which part of the code (or hardware) is faulty. Finding a flaw then becomes
increasingly difficult if this behavior is not repeatable and at a successive
test the car stops at the red traffic light. While this can never happen with

26 Background information

a deterministicly behaving system it can happen with CPS.
This problem also means that single or a low number of tests are not

suitable to detect rarely occurring behaviors and that if the CPS is only
tested once the observed behavior may not be a typical behavior. The non-
deterministic behavior does not only complicate the qualitative observation
and evaluation of the CPS but also the quantitative. With a deterministic
system one measurement is sufficient to quantify the behavior but for non-
deterministic systems the behavior needs to be evaluated statistically to
find the average behavior, how much the behavior fluctuates and how likely
undesired behaviors are to occur.

2.4 Research Methodology
The Design Research Methodology framework by Blessing and Chakra-

barti Blessing et al. 2009 differentiates between 4 different research stages.
These are research clarification, descriptive study 1, prescriptive study and
descriptive study 2. The research clarification leads to a research goal and
the corresponding research question. It is based on existing evidence, usually
from literature, combined with assumptions. From this a research question
and concrete hypothesis and criteria how it can be measured and falsified
can be developed.
The descriptive study 1 is usually exploratory and has the aim to empir-
ically better understand the researched phenomenon in order to develop a
targeted support (intervention) that can positively impact the design pro-
cess. The development and testing of the support is done during the pre-
scriptive study and the descriptive study 2 aims to evaluate the impact of
the support. Blessing and Chakrabarti point out that design methodology
research can include some or all of these stages and does not necessarily
need to begin with the research clarification.

In this PhD thesis I apply the different research stages to better under-
stand and enhance the prototype-driven approach of Wayfaring and com-
pare it to a spec-driven approach. Both the specification-driven approach
described in subsection 2.2.3 as well as Wayfaring (subsection 2.2.4) are
applicable approaches during the Fuzzy-Front-End of product development.
However, the two approaches greatly differ in their way of using prototypes.
The specification-driven methods rely on designing and planning based on
combining existing knowledge in new ways following design guidelines and
prototypes are used to confirm correct planning. Although Pahl and Beitz
do not exclude earlier prototypes categorically the emphasis clearly is on
theoretically designing and predicting the outcome with mental, analytical
and digital models. Since the developers look for existing solutions the spec-

2.4. Research Methodology 27

driven approach minimizes the risk of ”reinventing the wheel” and thereby
is often regarded as efficient.

In contrast, prototype driven-approaches still use existing knowledge
where it is already known to the developers or easily attainable but the
design is guided by testing prototypes, observing and then abductively reas-
oning how the outcome can be explained and what this implies for the next
design iteration.

This difference in use of prototypes between the two approaches begs
the question of how prototypes influence the development and how the ap-
plicability of the approach depends on the design context. Since TrollLabs
focuses on the early stages of complex systems development and I got in-
volved in mechatronics and cyber-physical systems projects at TrollLabs it
made sense to narrow down the research towards Wayfaring during the early
development of complex cyber-physical systems. Hence, the first research
question is ”How can a prototype-driven approach be applied to the early-
stage development of cyber-physical systems and when is it appropriate to
use this approach?”.

In order to answer this research question I use a combination of further
research clarification and descriptive studies.

The research clarification is a literature study. Based on the literature
I contribute by combining the wayfaring mindset with the literature about
complex large-scale development of the ATLAS detector at CERN.

As a descriptive study, I empirically observed a master student using
the wayfaring approach during his master thesis to better understand the
influence of testing. The student was introduced to wayfaring in his studies
but was neither influenced in choosing the wayfaring approach nor actively
directed how to apply it. The study is based on reflections on the develop-
ment process both from direct observation and from retrospectively asking
the master student about his design rationale.

The prescriptive study looks if the support, which is allowing and en-
couraging experiment participants to test their prototypes early, can suc-
cessfully be executed. In trial runs of the experiment I can confirm that
allowing, actively reminding and encouraging participants to test leads to
early testing of prototypes. Hence, the working of the support is confirmed
in this short prescriptive study.

The following descriptive study 2 is a direct quantitative experimental
comparison under controlled conditions between a spec-driven approach re-
lying on planning and late confirmatory testing of prototypes against a
prototype-driven approach. In this descriptive study I evaluate the influence
of early testing on task solving performance. The same study also serves as

28 Background information

an exploratory descriptive study to better understand the behaviors associ-
ated with testing. It is important to understand that the descriptive study
that is quantitative evaluating the support relies on hypothesis testing and
statistically comparing predefined measures. Some of these are the quanti-
fiable performance metric, how often and when the participants tested their
prototypes, how much code they type between tests and the participant’s
programming experience. While this experiment setup is mainly meant
quantitative for hypothesis testing it is simultaneously used as an explor-
atory descriptive study that qualitatively looks at the test outcomes, the
participant’s behaviors and tries to explain the quantitative observations.
This follows the mixed-method research approach described in 2.1. It is
from this qualitative observations I mainly conclude when it is appropriate
to apply the wayfaring approach.

The second research question is ”how can a controlled quantitative ex-
periment for research-ing early-stage development of cyber-physical systems
be de-signed and conducted?”. This includes how to control the instruction
interaction with the experiment participants and automating data capture,
enhancement and analysis. It arose because I want to develop a highly con-
trolled experimental setup to answer the first research question but there
was little literature and reference experiments within design research that
I could use as inspiration. Therefore, developing a controlled experiment
setup for studying the first research question became in itself exploratory
research. The second research question is answered with a descriptive study
that is self-reflecting on the experiment setup development and testing. The
descriptive study does not answer or even quantify the effects of designing
an experiment in this way on the experiment outcome but shares the qual-
itative insights.

Chapter 3

Anecdotal insights from
prototyping Cyber-Physical
Systems

This chapter delivers the qualitative part for answering the first research
question. It uses a master project at TrollLabs as a case study. It describes
the application of the prototype driven wayfaring approach in a concrete
example and showcases some new ways the wayfaring approach can be ex-
tended. This case study is based on contributions 2 and 3, where the first
describes the technical aspects of the project and the latter the methodolo-
gical aspects of extending the wayfaring approach.

The other part of this anecdotal chapter explores how the wayfaring
approach can be and in parts was applied in a large-scale development pro-
ject like the ATLAS detector at CERN. It combines the literature work by
Philipp Türtscher [Türtscher 2008, Türtscher et al. 2014] about the ATLAS
detector development with the ideas from wayfaring.

3.1 Qualitative insights from the Fibo car case
As hinted earlier in the section about development methods, wayfaring

relies on exploratory prototyping and abductive reasoning from test results
to influence the next design iteration. Consequently can the final result not
be predicted at the beginning of the development. This dynamic emergence
of requirements is illustrated in figure 3.1 where the developers start at point
A and, at the beginning, envision a solution at point V . Therefore, they
start building a first prototype into this direction to test their assumptions.
From the test results it becomes eminent that their initially imagined solu-
tion cannot work out as planned and the solution needs a redesign. The

29

30 Anecdotal insights from prototyping Cyber-Physical Systems

circles in this figure represent a probing cycle. A probing cycle consists, as
depicted in figure 3.2, out of designing, building and testing a prototype.
It starts with designing a new prototype based on the finding from testing
during the previous probing cycle. The design phase is first divergent as in
”how many ways can we solve the problem” and then convergent by analyt-
ically reasoning which concept(s) to build and test. Several layers of circles
represent different disciplines or domains in the project. One prototype can
include all disciplines but sometimes it is meaningful to branch the domains
to explore different concepts within just one or a few domains separately
but quasi-simultaneously in order to merge them again later.

It can also happen that testing a prototype reveals that the chosen
concept is not worth pursuing further and the wayfaring reaches a dead
end. In this case the developers can either go back to a previous prototype
and chose a different concept from there or abandon the project completely.
Thereby, wayfaring combines well with real option theory [Abad et al. 2015]
and can safe time and resources by finding out sooner why it is not mean-
ingful to continue a project. Since the development outcome is influenced
by the intermediate prototypes, the final result at point V x is usually not
at the initially envision point V . When the design requirements and spe-
cifications are explored to the point where the developers can be confid-
ent that the discovered concept is a satisfactory solution for the project, a
specification-driven approach like Scrum, Pahl-Beitz, VDI-model 2221, V-
model etc. can be applied to redesign and optimize the chosen concept into
a finished product.

This wayfaring approach was used in the Fibo car project and this case
serves to illustrate and extend it.

3.1.1 What is the Fibo car project?

The end result of the Fibo car project is a tangible user interface for
configuring a car model that can electronically detect its own configuration,
transfer this information to a computer with the aim to simulate this car
model configuration in a digital car racing game. The project started with
a cooperate sponsor who was interested in developing an interactive toy
for STEM education for children and young teenagers. At a first meeting
the idea was brought up as ”something like Kerbal Space program but for
cars and configurable in the real world”. The aim was to build a first
version of this tangibly configurable car model for early user testing and
for illustration of the idea to potential investors within a few months. The
development was therefore time critical and contributions 2 and 3 describe
the first 6 weeks of this development process. The project was mainly

3.1. Qualitative insights from the Fibo car case 31

Figure 3.1: Overview of a multidisciplinary wayfaring journey from A to Vx.
Figure taken from publication 3.

Figure 3.2: Probing cycle. Figure taken from publication 3.

32 Anecdotal insights from prototyping Cyber-Physical Systems

conducted by Thov Reime as part of his master project at TrollLABS. He
utilized a prototype-driven approach during the development. He took the
Fuzzy Front-End course [Steinert 2020] that introduces the principles of
wayfaring but during the master project he received little methodological
guidance. The described development process is a qualitative post-project
analysis. In this case several methodological characteristics were observable
and these are described below. The technical solution after 6 weeks of
development, and as shown in contribution 2, entails a tangible car model
with one central part and four peripheral parts that can be assembled into
a tangible car model. An Arduino-like micro controller board in the central
part uses resistors in the peripheral parts to detect the current configuration
and transfers this information to a PC where the configuration is digitally
represented.

3.1.2 Eliciting unknown unknowns, probing and abductive reas-
oning

Unknown unknowns are things we are not aware of that we do not
know them. In this context this means complications the developers are
unaware of and do not have a solution for. Since they are by definition not
predictable they make the outcome of a project uncertain. Eliciting these
unknown unknowns early is therefore essential to decrease uncertainty and
prototyping can help to discover them. The developers build prototypes
that they think will work but then unexpectedly do not work for an un-
predicted reason. After the problem is discovered it is a known unknown
because now the developer is aware of it but still does not know how to
solve it. Finding a solution requires abductive reasoning to formulate a
hypothesis for the cause of the problem and experimentation to confirm or
falsify it in order to be able to design a solution. Abductive reasoning is a
creative process that tries to find the most likely explanation. This is ne-
cessary when it cannot be derived deductively or inductively. The unknown
unknown was discovered by testing a prototype and became a known un-
known. By abductively reasoning the cause of the problem is estimated and
based on this a new improved prototype is built and tested. If the problem
is solved the initially unknown unknown becomes a known known. If how-
ever, a solution cannot be found it remains a known unknown. A known
unknown, or a solution (known known) that seems unreasonable, lead to a
dead-end in the development process. Finding these dead-ends quickly is
essential because quitting or fundamentally redesigning a project in later
stages leads to higher cost and lost time. Therefore, early testing of pro-
totypes to learn (instead of late prototypes to verify the design) are a way

3.1. Qualitative insights from the Fibo car case 33

to map out opportunities, understand the pitfalls and benefits of different
solutions before committing to a design and spending more resources on
optimizing this design. These design opportunities or dead-ends and road
blocks determine the development path and the design requirements evolve
dynamically and therefore this approach is called wayfaring.

An example for an unknown unknown during the development of the
Fibo car was that the resolution of the resistance measurement was too low
for differentiating between a large number of different car parts, especially if
they are connected in series. This was an unforeseen learning and ruled out
this concept as infeasible for a commercialized version of the product. Being
aware of this now known unknown means that the developers could aban-
don this concept and not spend and thus waste more time on it. Another
example of an unexpected problem was the connector design. The initial
design was carelessly designed and not universal, meaning that two equal
connectors could not connect to each other (a male and female connector
was needed) and this restricted the configurability of the car model. I would
rather call this an unknown known because it is an easy to fix design flaw
that as soon as one discovers it the solution is eminent. Nonetheless, it is
still important to discover it early to save redesign resources later. This con-
nector design itself was a result of testing a purely magnet based connector
that proved to be not mechanically strong enough to hold the attached car
piece. This example shows how test results influence the further develop-
ment and design requirements. There are also situations where unknown
knowns can become known knowns by studying existing information. This
was the case during week 5 when the master student tried to build a wire-
less data transmission from the LightBlueBean micro controller board in
the car model to the computer that displays the car model digitally. The
transmission of serial data through bluetooth to a computer running Win-
dows 8.1 was not possible. This information is available and knowing this
could have prevented testing this combination. In this case however, I ar-
gue that building and testing a prototype and then finding the cause is less
time consuming then finding this information prior to testing the prototype
because the developer does not know what information to look for. In this
case testing a prototype is the faster method to find unknown knowns.

3.1.3 Low resolution prototyping of critical functions

The wayfaring approach implies that failing is desired. Obviously not
in the sense that the problem shall not be solved but in the sense that if the
anticipated solutions cannot solve the problem we want to find out rather
sooner than later. This has the implications that the functionalities that

34 Anecdotal insights from prototyping Cyber-Physical Systems

are critical for the solution (e.g.. a plane needs to at least fly) and the
possible solutions that are most uncertain need to be tested first such that
if these critical functions cannot be fulfilled the project can be abandoned
as soon as possible. The other way to safe time and resources is to build
low-resolution prototypes. The question before building a prototype shall
be how to gain most insights for solving the critical function with the lowest
usage of resources. This can for example be done by good choice of proto-
typing material, restricting the amount of features in the prototype, choice
of prototyping tools (e.g. do I need digital design or is handcrafted good
enough?) and approximation where details are not necessary. By exploring
different concepts for solving the critical functions the developers can mitig-
ate risk of problems that may stop or delay the development in later stages
and can compare different solutions before committing to design require-
ments for further optimized designs. In the Fibo car project we can find
several examples of low-resolution prototyping of critical functions. One
critical function is to correctly detect the configuration of the car model. In
order to find out if using resistors to identify the configuration is a viable
solution it is not even necessary to design any car parts or even connect-
able parts. Testing the measurement electronics and the resistors on a
bread board is faster, more adaptable and sufficient to find the flaws of this
method. Another example is finding a convenient way to transfer data from
the central micro controller to the computer that displays and later simu-
lates the digital car model. For verifying that the data transmission works
the master student first displayed a rocket and a chair from a library. Al-
though the final solution needs to display car model parts and not a rocket
and a chair testing the data transmission had higher priority because it is
a critical function that is less likely to succeed. By prioritizing the critical
function that is more likely to cause unforeseen problems more uncertainty
can be decreased earlier.

3.1.4 Quasi-simultaneous prototyping of domains - finding inter-
dependencies

Usually an early low-resolution prototype does not fulfill all critical
functions from different domains within this one prototype and the crit-
ical functions are therefore prototyped and conceptually solved separately.
However, making the different domains work together is also a critical func-
tion and hence should be tested early. This means it can make sense to
combine different domains even if the individual solutions are not fully de-
veloped or known to not be used in a finalized product. This is to find
interdependencies between domains.

3.2. Wayfaring in large-scale projects - CERN example 35

3.2 Wayfaring in large-scale projects - CERN example
So far I have laid out how wayfaring can be used to deal with uncer-

tainty, how to incorporate quasi simultaneous prototyping to discover inter-
dependencies sooner and how different concepts can be tested and compared
with low resolution prototypes. All this requires a good overview over the
projects. In the projects at TrollLabs this was possible because the pro-
jects were developed by a small number of people who had the necessary
expertise to solve all aspects of the problem. However, there are projects
that even a small well-connected group of people cannot solve because of
the high workload as well as the diverse expertise that is needed. A com-
mon approach to such projects is to divide the project into well-defined
smaller subprojects called modules where a person or a small group take
responsibility for such modules [Sanchez et al. 1996, Baldwin et al. 2000].
To ensure that the modules work together when merged the specifications
for the interfaces between the modules are defined before the design starts.
Modularizing at the beginning of the project predefines a solution that in-
corporates only these modules and therefore reduces the solution space and
makes conceptual design decisions at a time when the uncertainty is highest.
The idea of wayfaring is that the concept is not planned before the design
starts but emerges through repeated building and testing of prototypes and
the concept choices are made after unknown unknowns are found and the
uncertainty has decreased. The question then is how wayfaring can be adap-
ted to be applicable in complex large-scale projects. The problem becomes
how to coordinate many developers with different expertise while still keep-
ing the design flexible and agile enough to react to unforeseen problems.
To give a general direction to everyone involved without giving precise in-
structions the project needs a vision. This is a goal that is agreed on by
everyone involved and ensures a common ground [Srikanth et al. 2011]. The
developers can self-select the way they contribute to this vision based on
their expertise. Since no central top-down authority defines responsibilities
the developers create a network where everybody has their envelope, that is
a self-assigned area of expertise, and take responsibilities according to the
needs and abilities in the network. These envelopes can overlap such that
different developers can have affirmative or conflicting opinions on designed
solutions. Decision cannot be made top-down since such a hierarchy does
not exist. Instead decisions emerge from a justification process. That is
a sense-making process where the developers need to explain and justify
their design decisions to others in the network. In the first place, having to
justify design decisions leads to a self-reflection and in a second step other
developers try to point out flaws in the design. In complex projects with

36 Anecdotal insights from prototyping Cyber-Physical Systems

uncertainty, rational arguments are sometimes not possible as the know-
ledge does not exist yet. In these cases experimentation is needed to gain
factual information. For this low-resolution prototypes can be used to an-
swer specific questions and thereby influence the decision making. Since
designs have to be justified to other developers in panel meetings also de-
velopers that are not working on the same subproblem but are effected need
to evaluate the designs, this justification process creates knowledge across
envelopes. This kind of knowledge Türtscher calls interlaced knowledge and
it helps with foreseeing interdependencies as the developers learn about the
designs of other developers [Türtscher 2008]. This is suboptimal from a
knowledge processing point of view but it enables the necessary agile design
responses without managerial intervention.

To study this I look at Philipp Türtscher’s publication [Türtscher et al.
2014] and his PhD thesis [Türtscher 2008] where he describes how the design
of the ATLAS detector at CERN emerged over time as a result of justific-
ation. He used interviews to study the emergence of the detector design as
well as quantitative semantic analysis to study the network structure of the
developers and the amount of justification indicating language throughout
the development process. The following are insights and examples from his
research about the development of the Atlas detector.

The vision for the development of the Large Hadron Collider, and there-
fore the ATLAS detector as part of it, is to confirm or disproof the existence
of theoretically predicted particles including the Higgs Boson. At the time
when this vision was formed the necessary technologies for reaching this
common goal were unknown. Therefore, the development process had to al-
low for experimentation, discoveries and design changes during the several
decades of development as new technologies are developed and unforeseen
problems (unknown unknowns and unknown knowns) that require design
changes arise. In addition, this project is so large and requires expertise
from so many fields that it cannot be done by a small group of people. In
total more than 3.000 scientists and engineers voluntarily joined the dis-
tributed development of only the ATLAS detector from 1992 until the first
measurements in 2008 [Türtscher et al. 2014, Cetina 2009]. Consequently,
decision cannot be taken by a centralized decision-making body like in a
traditional hierarchy because no individual or group had all the necessary
scientific and technical knowledge to make such decisions. Possible solutions
and controversies are discussed in working groups that make recommend-
ations to the collaboration board which is the main decision making body
where every participating research institute has one vote. Decisions required
a two-thirds majority vote, placing a strong emphasis on generating a con-

3.2. Wayfaring in large-scale projects - CERN example 37

sensus. Voting in the collaboration board is described as formalizing the
consensus that had already emerged from the discussions. The consensus
is reached after repeated round of justification and rebuttal that includes
evidence from simulation studies and tests of individual component proto-
types. It is reported that proponents of a particular technology conducted
their own research to develop a deep understanding of competing techno-
logies so as to identify their strengths and shortcomings. In some cases
design choices are delayed because they could not be based on simulations
only and prototypes were built. By semantically analyzing meeting minutes,
technical reviews, design reports and communication in mailing lists (2419
timestamped documents) Türtscher identified a lower level of justification
in the muon detector group compared to the calorimeter group. By compar-
ing the network density (how many different nodes does a node connect to)
of the collaborating developers Türtscher found that the network density of
the muon detector group was lower and more isolated within the developers
own expertise than in the calorimeter group. This is where the indication
that justification leads to interlaced knowledge comes from. It is also backed
by interview responses and that both justification and network density in-
creased after a revolt in the muon detector group where the developers
demanded more justification. This capability of understanding the design
rational of other detector parts allowed for the redesign of the supercon-
ducting magnets that had consequences for the inner detector group This
interlaced knowledge and global perspective was useful when agreeing that
fewer and smaller coils are overall beneficial. This meant that a redesign
of the superconducting magnets and all the effected systems surrounding
it was necessary. The change from a 10 m inner diameter of 12 magnet
coils to 8 smaller coils with 9.4 m diameter meant that the inner detector
electronics could not fit inside anymore unless the calorimeter and muon
detectors are also redesigned. This was done to give the inner detector elec-
tronics space between the calorimeter and the muon detectors to fit cables
and cooling pipes. This lead to the unforeseen problem (unknown unknown)
that the signal cables of the inner detector now ran close to the power sup-
plies and picked up signal noise. This was eventually solved by shielding
those cables but the shielding material introduced disturbance to the calor-
imeter measurements which was then accepted and accounted for. As we
see, dealing with unknown unknowns and redesigning needs a negotiation
process between developers and the ability to take a ”global perspective”.
This is not likely to happen by dialogue between many experts in a mod-
ularized pre-planned project management and is too complex for managers
to understand and coordinate. Another ATLAS example where justification

38 Anecdotal insights from prototyping Cyber-Physical Systems

and interlaced knowledge caused a redesign is the cooling system of the in-
ner detector. Developers from other detectors pointed out the risk of water
leakage from a binary ice cooling system and convinced the developers of
the inner detector to change towards an evaporative cooling system. It was
a factual evaluation through a justification process that convinced the inner
detector developers to change their design originating from other developers
that originally had no knowledge and need for knowing about the cooling
system but anyhow gained this interlaced knowledge over time.

Chapter 4

Experiment exploring the
effect of early prototyping in
cyber-physical-systems
development - the Robot
Experiment

Building and testing prototypes early in the development process appeared
to be essential and shaped the development process in the Fibo car project,
the ATLAS detector as well as in many projects conducted at TrollLABS
[Kriesi, Blindheim et al. 2016, Kriesi 2018, Leikanger et al. 2016, Jensen
et al. 2017] throughout the past years. However, none of these cases was
ever conducted simultaneously using a sequential spec-driven approach in
comparison to the applied prototype-driven approach. Therefore, it is not
possible to compare the two approaches under otherwise similar conditions.
The following experimental setup is designed to do exactly that.

4.1 Objective of the experiment
In this experiment the aim is to compare the influence on the task-

solving performance of a spec-driven approach versus a prototyping-driven
approach in an open-ended task that reflects the characteristics of early-
stage cyber-physical developments. The experiment is a randomized con-
trolled study where half of the experiment participants are allowed and
encouraged to build and test prototypes frequently while the other half of
the participants cannot test their designs during the early stages of the

39

40 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

development.

4.2 Experimental setup

4.2.1 Participants

31 participants took part in the study and 27 are included in the quant-
itative results. They are recruited from the third year of the cybernetics and
robotics program at NTNU. During this year the students organize fundrais-
ing for a field trip to Japan. The participants are paid 125 Norwegian Kroner
for the participation in the experiment regardless if the measurements were
completed or not. The money was paid to the general fundraising account
for the whole class and the participants did not receive an individual pay-
ment. The participants were recruited through a contact person from their
study program. This contact person was otherwise not part of the study.
The participants sign-up in a form for the day and time they are available
for participation. They are blind to which condition they are assigned to
when signing up. The contact person sent out a standardized mail the day
before the measurement explaining the location of the experiment and that
the experiment will be conducted without direct personal interaction with
another person and that the experiment will start automatically when the
participant enters the experiment room. The experimental condition was
varied in the time of day to avoid a bias. 13 participants (planners) were not
allowed to test their designs within the first 80 minutes of the programming
phase and 14 participants (testers) were given the stimulus to test their
prototypes regularly and from the beginning of the programming phase. 11
participants in the planning condition are male and 2 are female while 11
male and 3 female participants were given the testing condition. The aver-
age age of the planners is 23,6 years with a standard deviation of 1,0 years
and the average age of the testers is 23,7 years with a standard deviation of
1,1 years.

4.2.2 Physical environment

The experiment room is divided into three areas (see figure 4.1a). The
participant has access to the testing area and the programming booth and
the experimenter is in the control area. The three areas are separated by
honeycomb reinforced and about 2 meter high cardboard walls that can
block the view between the areas. The programming booth and the ex-
periment area have sliding cardboard doors such that the testing area can
be accessed either by the participant or the experimenter while maintain-
ing visual separation. Once it is needed, the playground on that the robot
drives is placed on the floor such that the distance from the edge of the play-

4.2. Experimental setup 41

(a) Floor plan (b) Programming booth

(c) Camera view on the playground (d) Control room

ground to the nearest wall is similar in all directions. A camera under the
ceiling captures videos of this area and provides a live video feed to the ex-
perimenter (figure 4.1c shows the camera view). In the programming booth
the participant sits down in front of a table with two screens (see figure
4.1b). The larger screen in the center is the programming screen that the
participants use to program their codes. To the right of this screen is the in-
struction screen where the experimenter can present predefined instructions
through a Power Point presentation. On the table is the keyboard used for
programming, the robot connected to the programming computer, drinking
water, paper cup and a pen for taking notes and filling out the consent form
and questionnaires. Above the programming screen is a camera for video
capture and live video feed to the experimenter. Above the camera is a slit
in the cardboard wall that connects the programming booth and the control
area. It is used to exchange paper documents between the experimenter and
the participants. It is covered with a lid to avoid visual contact between
the participants and the experimenter. In the experiment control area the
experimenter can see a duplicate of the programming screen, the live video
feed from the two cameras and controls the power point presentation that
is shown on the instruction screen (see figure 4.1d).

42 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

Figure 4.2: Timeline of the experiment execution.

4.2.3 Timeline of the experiment

The timeline of the experiment is shown in figure 4.2.
The introduction to the experiment starts when the participant

enters the room with a pre-recorded male computer voice that greets the
participants and reminds them that the information is given through these
prerecorded voice or text instructions and that the participants shall sit
down inside the programming booth. At the desk the participants find an
empty consent form that informs about the purpose of the experiment, what
data is recorded, that the data is recorded anonymously, that the participa-
tion is voluntary and can be stopped at any moment by the participant and
that the participants shall keep the content of the experiment confidential
to provide non-biased conditions for future participants. After consenting
to participate in the experiment the screen and video recordings are started.

The participants are given a paper questionnaire asking for their pro-
gramming experience in various relevant languages (see appendix A.1).
These are C and C-like language because the NXC (not exactly C) lan-
guage is fairly similar and used during the experiment, Arduino and Lego
Mindstorms because these types of projects are usually cyber-physical and
therefore comparable to the task in the experiment and Python because it
is the language most taught to the cybernetics students that participated
in the study. They are also asked to rank all the programming languages
they have used. This is done to ensure an answer on the languages men-
tioned above but also providing an opportunity to add additional languages.
The questionnaire, as well as all other papers exchanged between the ex-
perimenter and the participants are fed through a covered slit in the wall
to avoid visual contact between the experimenter and the participant. To
estimate the actual programming skills of the participants and introduce
them to the syntax used later without showing them the actual robot or
task they are given a code example that includes variables, a function, a

4.2. Experimental setup 43

loop, conditional and logic expressions. The participants shall go through
the code and track the value of a variable until the end of the code. The
result and the time needed is recorded. The maximum time available is
three minutes. The code example is presented to the participant on paper
and can be found in appendix A.1.

The explanation of the robot is given on the instruction screen ac-
companied with prerecorded voice instructions. The images shown on the
instruction screen and the voice instructions are coordinated in a Power
Point presentation. This ensures an equal presentation for every parti-
cipant. The instruction includes how the robot can move, what sensors it
has and how a code can be loaded onto the robot. The actual physical robot
is present on the desk in the programming booth throughout the entire ex-
periment. After the introduction on the instruction screen the participants
are handed out a data sheet about the robot (see appendix A.1) and a
paper explaining the functions available in the software library written for
this robot (see appendix A.1). The data sheet includes the calibration data
about the robot movement and the sensor measurements. The participants
have a blank paper for taking notes and are given 15 minutes to study this
material. A countdown timer on the instruction screen shows the remaining
time. To ensure the participant knows how to load and execute a code on
the robot an example code that plays sounds is shown on the programming
screen. At the same time an instruction text combined with a voice instruc-
tion explains how a code is compiled and loaded onto the robot and then
executed. After successful execution of the code a timeline of the experi-
ment is shown to give the participant an indication what to expect. This
timeline with an arrow to the corresponding point in time is shown at dif-
ferent places throughout the experiment to guide the participant. Then the
programming screen is turned off.

A paper version of the task description (see appendix A.1) is handed
out and immediately followed by a predefined visual and voice instruction
of the task on the instruction screen. Meanwhile, the experimenter arranges
the ”playground” where the robot needs to drive to fulfill the task. Before
this the testing area remains empty to not give the participants any impres-
sion about the possible task. After the presentation of the task has ended the
participant can go to the playground and inspect it before the participant
is told which experimental condition to follow. Then the programming
phase starts. The stimulus is introduced during the first 80 minutes of the
programming phase. The planners are informed that they cannot load the
code onto the robot within the first 80 minutes of the programming phase
but they can compile their codes to find syntax errors. The testers are in-

44 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

structed that they shall test often and at least every 5 minutes. A voice
instruction will remind them if they do not test within five minutes. They
are informed that there are six smaller programming windows on the pro-
gramming screen to test code snippets separately. The planners also have
these smaller windows available. During the programming phase a timer
shows the remaining time until the next evaluation of the solution. A voice
reminder of the remaining time is given at 60, 30, 15, 5 and 3 minutes before
the initial evaluation. At three minutes a reminder is given to make sure
the code compiles when the evaluation starts. In the planning condition
the keyboard key for loading the compiled code onto the robot is deactiv-
ated until the first evaluation. Just before and after the first evaluation a
text on the instruction screen and the computer voice asks the participants
how satisfied they are with the current solution on a 0 to 6 Likert scale.
They answer by saying a number. This is immediately followed by the first
evaluation. All five evaluations follow the same process. The programming
screen is turned off such that the participant cannot continue to program
and the cardboard wall separating the programming booth with the play-
ground is closed. Then the experimenter can arrange the setup of the cubes
and the robot starting position for the evaluation. The robot’s starting po-
sition is indicated by a paper sketch that the participant later replaces with
the actual robot. The starting positions of the cubes are similar in every
evaluation but the robot’s starting position changes for each evaluation.
The participants do not know this starting position before the evaluation.
The same sequence of robot starting positions is used for every participant.
The code is saved and loaded onto the robot. When the experimenter has
arranged the setup a combined instruction from the instruction screen and
a voice instruction asks the participants to come to the playground, replace
the robot sketch with the actual robot and start the execution of the code
as indicated by the voice instruction. The experimenter can observe the be-
havior and performance of the robot from the camera above the playground
and documents the performance manually. The evaluation ends when either
the robot completes the task, falls off the cardboard surface and therefore
cannot complete the task or the participant determines that the robot will
not complete the task for example because the robot does not move or is
stuck. A voice instruction then asks the participants to return to the pro-
gramming booth and continue programming until the next evaluation. The
remaining time until the next evaluation is shown together with the timeline
of the experiment on the instruction screen. The programming time before
the 2nd, 3rd, 4th and 5th evaluation is ten minutes before each evaluation
and each time a three minute remaining time warning is given. After the

4.2. Experimental setup 45

first evaluation all participants can load their codes onto the robot and
test them during the programming phase. The voice instructions reminding
the testing participants to test are not used after the first evaluation any-
more. In total there are five evaluations and after the last evaluation the
participants fill out a questionnaire where they are asked about biograph-
ical information, how much they enjoyed the experiment and how satisfied
they are with their solution. The experiment ends with an unstructured
interview where the experimenter can ask more specific questions about the
solutions and explain the purpose of the experiment in more detail. This is
a face-to-face conversation between the participant and the experimenter.

4.2.4 The task

The task is to autonomously use the robot to remove three cube-shaped
objects from a rectangular white area in the shortest time possible from
starting the robot until the three cubes are removed. The white rectangle is
approximately 1,50 meter by 1,20 meter and is surrounded by a darker 17cm
wide cardboard colored fringe. This cardboard is about three centimeters
high above the floor. This means that if the robot falls off this cardboard it
cannot drive back onto it and therefore cannot remove any more cubes from
the top of the cardboard. Sketch 4.3 shows the cardboard, the white area
and the starting position of the cubes. The starting positions of the cubes
remain the same at every evaluation whereas those of the robot were ran-
domly generated. Positions where the robot initially directly faces a cube
are excluded. The series of robot starting positions is the same for each
participant. The cubes must be taken off from the cardboard by the parti-
cipant as soon as no part of the cube is touching the white area anymore. A
ten seconds time bonus is subtracted from the overall time for completing
the task if the robot indicates the correct corresponding color of the cube
while removing it. A ten second penalty is given if the wrong color is in-
dicated. The color is indicated by playing a tone with the frequency that
corresponds to the cube color (red cube = 400 Hz, green cube = 800 Hz,
blue cube = 1600 Hz). The participants are provided with three blinking
lights that they can optionally place wherever they want and they can be
used as beacons that the robot can detect. They fit upside down into the
ceiling of the cubes and their light then radiates outwards such that the light
is detectable from any direction around the cube. The task is presented to
the participants through instruction slides on the instruction screen accom-
panied with corresponding voice instructions and through a paper handout
that the participants can keep until the end of the experiment. The paper
handout can be found in appendix A.1.

46 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

Figure 4.3: Top-down view drawing of the playground with the starting positions
of the cubes

4.2.5 The robot

The robot is self-designed and based on LEGO Mindstorms version
NXT 2.0. It has two electric motors that drive a belt located on the left
and right side of the robot. By using the motors synchronously the robot
can move straight forward and backwards and turn by asynchronously using
the motors. Each motor speed can be controlled individually. The robot
has four sensors.

Figure 4.4 shows the robot.

• ultrasound sensor: emits an ultrasound signal and measures the
time of flight until the reflected signal returns to the sensor. From this
time the NXT controller calculates the distance between the sensor

Figure 4.4: Robot seen from the front and the side

4.2. Experimental setup 47

and the reflecting object in front of the robot with centimeter preci-
sion.

• downwards reflection sensor: emits red light and measures how
much of this emitted light is reflected back into the sensor. The reflec-
ted light intensity is distance and reflectivity dependent. This sensor
is pointed downwards towards the ground and measures the ground’s
reflectivity as the distance remains constant. A darker surface under
the robot reflects less light and leads to a lower signal than a brighter
surface. With this sensor the robot can differentiate between the white
surface, the cardboard surface and the darker floor.

• two light and color sensors: There is one such sensor pointing
forward on each side of the robot. This sensor can emit red, blue and
green light and can measure how much light is reflected back into the
sensor. Thereby it can measure how much light falls into the sensor or
more explicitly how much of each color is reflected. These sensors can
be used to detect the blink light and the color of reflecting surfaces in
front of the robot.

The calibration measurements for the robot can be found in the data sheet
in appendix A.1 and in contribution 7.

The robot is programmed in the NXC language which stands for ”not
exactly C” and is therefore a language with a syntax that is very similar to
C but adapted for the NXT Lego Mindstorms controller. Additionally, the
participants are provided with a library written for this robot. It provides
simplified functions that make driving the robot and interpreting the sensor
readings easier. Apart from functions for driving the robot and using the
sensors this library includes functions for pausing the code execution, timers,
playing sounds and showing text and numbers on the NXT’s display. A de-
tailed description of these functions can be found in the description that the
participants receive and that is shown in appendix A.1 and in contribution
5.

4.2.6 Participant-experimenter interaction

In a controlled study the conditions shall be as similar as possible for
every participant. As personal interactions are difficult to control and can
have a subconscious effect on the participants behavior [Kahnemann 2011]
one aim is to avoid direct personal interaction between the experimenter
and the participant and keep the instructions as neutral and as similar as
possible for every participant. This primarily includes visual and auditory
interactions but also the timing of all interactions.

48 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

Instructions to the participants are given by:

1. computer generated voice: Pre-defined instruction texts are fed
into a text to speech algorithm and the resulting audio files are played
back to the participant at the appropriate time. A male voice was
used. The timing of the audio playback is either defined through the
Power Point presentation that is displayed on the instruction screen,
after predefined cues or contextual. The power point presentation
ensures that the audio is played synchronously to the displayed in-
formation. An example for a cue is starting the Power Point de-
scription of the task shortly after the participant received the paper
instruction but before the participant starts reading it. Contextual
voice instructions are for example if the participant does not close
the door and is informed to do so, giving syntax help when the code
does not compile or answering questions with ”yes” and ”no”. The
experimenter only answers procedural questions and does not answer
questions about the solution to the task. The voice instruction is also
used if the participant incorrectly places the robot during an evalu-
ation, as a countdown to start the robot during the evaluations and
instructing the participant to connect the robot to the USB cable to
the programming computer so that the code for the evaluation can
be loaded onto the robot. In some rare cases the prerecorded voice
messages are not sufficient and the experimenter had to talk to the
participants directly with the human voice. Examples for this are if
the robot stopped working (happened once) or in the pre-study dur-
ing a fire alarm and during a nosebleed of the participant. All these
cases were either noted in the lab book and later evaluated if and how
this influenced the experiment or excluded from the results. The voice
instructions can be found in appendix A.1.

2. Instruction screen and loudspeaker: This screen is deliberately
used to present instructions. The content shown comes from a Power
Point presentation that includes text, sketches and audio voice instruc-
tions. Either the experimenter advances the slides manually following
a predefined routine or whenever possible the slides advance automat-
ically after programmed time intervals.

3. Programming screen: The programming screen shows seven pro-
gramming windows. One large one on the left side and six small ones
on the right half. The main code that is tested is in the large win-
dow. The six small programming windows can be used to separately

4.3. Raw-data collection 49

write, compile and, when testing is allowed, test code parts. The ex-
perimenter can turn the programming screen on and off to allow and
disallow programming and to steer the participant’s attention to the
instruction screen. The programming screen is only turned on when
the participants are supposed to program.

When the participant tries to compile the code and an error message
shows up the experimenter starts a voice recording asking if the parti-
cipant wishes to receive syntax help. If so the experimenter encircles
the syntax error with the mouse cursor on the programming screen.
This is accompanied with a voice instruction that says what type of
syntax error exists there. Options are missing bracket, missing semi-
colon, spelling mistakes or simply ”watch the mouse cursor for a hint”
if none other applies. This help from the experimenter requires con-
stant attention as the experimenter needs to already detect the syntax
errors before the participant compiles the code and gets the error mes-
sage in order to respond promptly. The experimenter only helps to
find syntax mistakes and not logical programming mistakes.

4. Paper documents: These include the consent form, questionnaires,
the programming test, information about the robot and the library
and the task description. These papers are exchanged through the
covered slit in the cardboard wall above the programming screen.

4.3 Raw-data collection
The main interest of the experiment is to investigate the influence of

early testing of prototypes on the performance towards solving the task. The
task involves removing three cubes in the shortest time possible. Therefore,
there are two reasonable performance measures. Firstly, the number of
removed cubes until the robot fails the task and secondly if the task is
completed the time the robot took to complete it. This data is observed
through the camera above the playground, the time is manually stopped
and the experimenter notes if the robot moved at all, the times when the
robot touched the first cube, the times when the cubes are removed from
the white area and if the robot correctly identified the color of the cube that
is pushed out.

Other quantitative measurements are:

1. Keystroke latency logger: An Arduino Leonardo documents which
key and the time with millisecond precision when the participant
presses down the key on the keyboard. The Arduino also has the

50 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

capability to execute routines when specific keys are pressed or a cer-
tain time expires. The Arduino keylogger uses shortcuts of the pro-
gramming environment software to automatically safe the code. This
process is triggered when the testing participants load the code onto
the robot, participants in the planning condition compile the code or
every 5 minutes without loading the code (during a 2 second typing
break). Whenever a participant who is not allowed to load code onto
the robot presses F6, which is the shortcut for loading code onto the
robot, this keystroke is recorded but not sent to the programming PC
and thereby inhibits that participants in the planning condition can
test their codes on the robot before the first evaluation. The Ardu-
ino keylogger also uses the shortcuts when the experimenter presses a
button and then safes the code and loads it onto the robot for the next
evaluation. The keylogger keeps track of the iterations and names the
code files accordingly.

The time stamps from the keylogger are synchronized to other time
stamps during the experiment by entering the unix time stamp at the
moment the keylogger is started.

2. Number of tests: Since the experiments compares the influence of
testing onto the performance it is important to record when and how
often participants test their codes with the robot. The number of
saved and loaded codes as recorded with the keylogger is used as the
measure for the number of tests. If the participant loads the same code
onto the robot twice it is counted as one test and when the participant
loaded the code onto the robot but then did not execute the loaded
code to test it this was noted in the lab book.

3. Questionnaires: The questionnaires use a Likert-scale from 0 to
6. Three questionnaires are used during the experiment. The pro-
gramming experience questionnaire asks for experience in coding
C/C++ and Arduino as well as experience in using Lego Mindstorms.
Further does the questionnaire offer the option to add further pro-
gramming languages the participant knows.

The Post experiment questionnaire asks first for gender, year of
birth, study program and semester as well as for how pleased the
participant is with his or her programming and how pleasurable the
experiment was for them.

4. Daytime of the experiment: Both the scheduled start time for the
experiment as well as the actual start time are recorded. This is done

4.3. Raw-data collection 51

to control if the time of the day has an influence on the results.

5. Programming test: Just after the programming experience ques-
tionnaire the participants receive an example code with the syntax
used during the experiment. It includes variables, a function, loops
and conditional statements and is designed to illustrate the syntax but
also test if the participants can follow the basic programming needed
for the experiment. The code to analyze is:

int x = 0;

bool y = false;

int function(int parameter1, int parameter2)

{

return parameter1 + parameter2;

}

while(x <= 5)

{

if(x >= 2 && y)

{

y = false;

x = function(x,1);

}

else

{

x = x + 2;

y = true;

}

}

// END OF THE PROGRAM

The correct value of x after the program completes is 6. The time
provided for this test is three minutes but the participants can hand
in their solution earlier. Both the value of x and the time until the
solution is handed in is recorded. The participants are free to abort the
experiment if they do not feel comfortable solving this test. Regardless
of the result they were allowed to proceed with the experiment.

6. Starting time of coding: This is the time the participant uses
between receiving the task and starting to code a solution

52 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

In order to gain deeper insights and being able to double check and
explain outliers I, in addition to the quantitative results, also gather qual-
itative information.

The qualitative measurements are:

1. Camera video recordings: After the participant has returned the
signed consent form the camera recordings are turned on. There is one
camera above the programming screen facing towards the participant
and one camera mounted under the ceiling with the field of view on
the floor where the playground is. Both cameras are essential for the
experimenter to conduct the experiment and react properly, but they
also give the opportunity to observe and reconstruct the behaviour
of the participant. For example can the experimenter evaluate facial
expressions, when is the participant looking at the instruction screen,
the programming screen or at a paper on the desk or how long and
what did the participant test. The ceiling camera is also used to
monitor and document the robot’s performance during evaluations.

2. Codes: Saving the code solutions at different time intervals and when
the participant tests allows the experimenter to follow the program-
ming process. With the camera recordings from above the playground
it is possible to combine and relate the observed behavior of the tested
robot with the participant’s code changes resulting from observing the
test. The experimenter can compare the solutions at different points
of time to follow the participant’s programming logic and style.

3. Screen recordings: The programming screen of the participant is
duplicated such that the experimenter has a real-time feedback of
what the participant is programming and sees in which programming
window the participant is typing. The programming screen is also
recorded. It is also much more human readable and intuitive to qual-
itatively assess the participants programming behavior from a replay
of this screen recording than from the time stamps of the keylogger.

4. Paper notes from the participants: Together with the informa-
tion about the robot the participants are given a blank white A4 paper
and a pen that they can keep during the experiment to take notes.
These papers are mostly used to sketch code ideas.

5. Lab book: Besides using the lab book for notes mentioned above
like time of the day, time stamps of screen and video recordings the

4.4. Processing of keystroke data 53

experimenter notes unexpected occurrences during the experiment.
Examples are extensive yawning of a participant, when participants
make comments, description of robot behavior and qualitative evalu-
ations of the participants behavior or when things go wrong that can
have an influence on the outcome.

4.4 Processing of keystroke data
Thomas et al. [Thomas et al. 2005] suggest that typing latency while

programming is indicative for programming performance. They categorized
keystrokes into alphabetic characters, numerical characters, control com-
mands, arrow keys, and ”other” keystrokes that include brackets, space,
carriage return, slash, comma and semicolon. They then observed the laten-
cies between keystrokes of different categories and found that the median
latency of transitions from an alphabetical, numerical or control keystroke to
”other” keystrokes is inversely correlated to a point score given for correctly
completing a programming tasks.

I make the assumption that the relation between programming per-
formance and typing latency does not change throughout the duration of
the experiment and therefore use all typing data from the beginning of the
programming phase to the end of the experiment. Because we are interested
in the latency while the participant is continuously typing it is important to
determine the median and not the average latency. Thus long typing pauses
are of no consequence.

4.5 Results of the robot experiment
Out of the 31 participants 4 participants – 2 testers and 2 planners –

are excluded from the evaluation: 1 participant quit the experiment 8 min
after start of the programming phase, 3 other due to substantial technical
failure or a bug in the programming library.

Other participants that encountered minor disturbances that were eval-
uated as having little to no influence on the experiment outcome are included
in the study. Examples for these minor disturbances are technical problems
with the keyboard that could be resolved almost instantly, one of the three
blinking lights stopped working during the final evaluation and was replaced
and an evaluation was repeated because the firmware of the robot crashed
during the first attempt.

The two main performance metrics for a solution are how many cubes
are removed during an evaluation and how long it took to complete the task.
Since task completion times can only be evaluated for those solutions which
did complete the task this measure is limited, especially for the solutions

54 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

Evaluation Nplan Ntest Mdnplan Mdntest U p

1 13 14 0 1 81 0.319
2 13 14 0 2 63 0.077
3 13 14 3 3 70 0.135
4 13 14 3 3 88 0.456
5 13 14 3 3 90 0.500

Table 4.1: Significance analysis comparing the number of removed cubes for
planners and testers, Nplan and Ntest: number of datapoints, Mdn: median of
removed cubes, U-rank statistic and corresponding p-value

from the early evaluations. Therefore, the number of removed cubes is the
main performance indicator. Histograms of how many solutions removed
no cube, one, two or three cubes in an evaluation are shown in figures 4.5
and 4.6 for planners and testers for all five evaluations.

The number of solutions that remove no cubes decreases over time and
the number of solutions that complete the task increases over time as a
general trend. However, this trend does not continue from evaluation 4 to
evaluation 5 in both conditions. While in the forth evaluation all solutions
removed at least one cube, in evaluation 5 solutions that do not remove a
single cube reappear. The distribution of the number of removed cubes is
bimodal in the first 3 evaluations of the planners and slightly in the first
evaluation of the testers. Therefore, the comparison of the planners and
testers is given by the medians and the significance is tested with a Mann-
Whitney U-test for ordinal data (see table 4.1).

The only weak significant difference between planners (Nplan = 13 with
median Mdnplan = 0) and testers (Ntest = 14 with median Mdntest =
2) is found in evaluation 2 with a U statistic of 63 which results in a p-
value of less than 0.1 (0.077). While in this evaluation the majority of the
testers had developed a solution that at least removes one cube and often
completes the task, a large portion of the planners had solutions that fail
the task before they remove the first cube. After evaluation 3 the planners
drastically improve their solutions. In evaluation 3 there is still a trend that
the solutions of the testers remove more cubes with a p-value of 0.135 while
for evaluation 4 and 5 the p-values increase a lot indicating that the number
of removed cubes for the solutions of planners and testers are statistically
indistinguishable.

For more detailed quantitative comparison of the planners and the test-
ers, the number of solution that removed 1, 2 or 3 cubes respectively, the
mean time for removal with standard deviation as well as the results of

4.5. Results of the robot experiment 55

Figure 4.5: Planning condition: Frequency of number of removed cubes in each
evaluation shown along the vertical axis

Figure 4.6: Testing condition: Frequency of number of removed cubes in each
evaluation shown along the vertical axis

56 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

the significance test are given in table 4.2 for each of the 5 evaluations and
for the individually best evaluation of each participant. The best solutions
is selected firstly by the number of removed cubes and if the values were
the same by the shortest time for removal. For the statistical comparison,
a t-test that allows for unequal number and standard deviations (Welch’s
t-test) is used. As the contribution of the colour detection on the perform-
ance is only of minor importance it is not included in the evaluation here
but only considered in section 4.7. Graphs showing the removal times for
the first, second and third cube are presented in appendix B.1.

In all evaluations expect one the testers more often remove the first,
second and third cube. Although this may indicate that the testers outper-
form the planners in the number of removed cubes this result is generally
not statistically significant as the difference is small and the standard de-
viation high. The only weakly significant difference (p = 0.096) occurs for
the task completion time (3rd cube time) when comparing the individually
best performance from every participant. In this case the task completion
time of the testers outperforms the task completion time of the planners.

It is striking that all solutions from the planners in evaluations 2 and
3 that removed the first cube then also proceeded to complete the task (see
figure 4.5), also seen from the median number of removed cubes which is
either zero or all three (Table 4.1). This shows that there is a separation of
solutions which are either successful or unsuccessful and very few solutions
that partly solve the task and remove one or two cubes.

4.6 Limitations of the performance measurement
The results presented above originate from executing the solutions dur-

ing the scheduled evaluations. This means that we get one set of data points
per solution namely at the 5 different evaluations. At each evaluation the
solution is executed once from a different starting position. The task is to
find a solution that removes the cubes from any starting position and there-
fore a test of the solution from only one specific starting position is not
very representative for the performance of that solution. Furthermore, as
described in subsection 2.3.2 the behavior of the robot is non-deterministic,
meaning that executing the solution under seemingly same conditions again
does not give the same result. The one existing data point per solution may
therefore fluctuate substantially from the average performance of this solu-
tion. When comparing the task completion times of solutions of different
participants from one experimental condition the standard deviation often
is substantial compared to the mean value and therefore makes it difficult
to observe a significant difference between experimental groups. From the

4.6. Limitations of the performance measurement 57

Eval 1st cube 2nd cube 3rd cube

N M SD N M SD N M SD

Eval 1 Planner 1 6 36 40 4 81 73 3 116 101
Eval 1 Tester 1 8 17 7 5 37 21 4 66 28
Welch’s t-value 1 t = 1.17 t = 1.17 t = 0.83
p-value 1 p = 0.29 p = 0.32 p = 0.49

Eval 2 Planner 2 5 14 11 5 52 31 5 65 32
Eval 2 Tester 2 12 19 14 9 32 12 6 58 24
Welch’s t-value 2 t = −0.76 t = 1.33 t = 0.41
p-value 2 p = 0.47 p = 0.24 p = 0.69

Eval 3 Planner 3 7 21 26 7 49 48 7 97 71
Eval 3 Tester 3 14 24 32 12 41 29 8 72 35
Welch’s t-value 3 t = −0.24 t = 0.40 t = 0.84
p-value 3 p = 0.81 p = 0.70 p = 0.42

Eval 4 Planner 4 13 22 26 10 88 77 8 145 119
Eval 4 Tester 4 14 23 19 13 57 56 8 116 143
Welch’s t-value 4 t = −0.09 t = 1.04 t = 0.44
p-value 4 p = 0.93 p = 0.31 p = 0.66

Eval 5 Planner 5 10 19 11 10 41 26 8 82 47
Eval 5 Tester 5 12 18 16 11 46 25 9 77 65
Welch’s t-value 5 t = 0.09 t = −0.46 t = 0.17
p-value 5 p = 0.93 p = 0.65 p = 0.87

Best Planner 4.3 13 14 9 13 44 51 11 86 71
Best Tester 3.9 14 13 7 14 30 10 13 46 18
Welch’s t-value t = 0.321 t = 0.972 t = 1.82
p-value p = 0.75 p = 0.35 p = 0.096

Table 4.2: Removal times of the 1st, 2nd and 3rd cube and significance analysis
comparing planners and testers for all 5 and the individually best evaluation of
each participant. N: number of solutions that removed the cube(s), M: mean times
in seconds with standard deviation SD, Welch’s t-values and p-values calculated
from the corresponding data above

58 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

obtained data it is impossible to say if the large standard deviation is caused
by non-deterministic behavior and repeatedly executing the same solution
would yield a similar variance or if the task completion time actually varies
substantially between different participants.

It is therefore necessary to repeatedly execute each solution from the
same starting position to find the average performance and standard devi-
ation from this starting position and then repeat these measurements from
a larger number of starting positions to get a fair and comparable evaluation
of how this solution generally solves the task. This can in theory be done
manually by post-experimentally executing the code repeatedly. However,
assuming that setting up the environment and executing the code takes
about three minutes per iteration, with 10 iterations per starting position
to gain sufficient data for a decent statistical analysis and 20 starting po-
sitions for evaluating how universally the solution solves the task then a
proper evaluation of just one solution takes 10 hours. In addition, for a
comparison of the solutions under similar conditions it is furthermore ne-
cessary to avoid, repair or compensate wear and tear of the robot and the
environment. These efforts, even if technically possible, are very infeasible.

A digital simulation that simulates the path of the robot and its inter-
actions with the environment can overcome the limitations. The simulation
is deterministic and therefore needs only one iteration per starting position.
It is based on the codes provided by the participants during the experiment.
It is verified qualitatively by comparing the real world and simulated robot
behavior as well as statistically with three exemplary solutions. The behavi-
ors of the physical robot and the simulated robot are qualitatively indistin-
guishable. The simulation generates faster task completion times than the
manually measured task completion time of the physical robot. However,
the simulation gives the correct relative task completion time when compar-
ing solutions. Since this experiment compares solutions of participants from
different experimental conditions a relative comparison is sufficient and the
simulation can be used to evaluate and compare the solutions. More details
on the purpose, development and verification of the simulation can be found
in contribution 7 and in section 6.3. The simulation can provide data from
sufficiently many starting positions within minutes instead of hours for one
solution, i.e. the evaluation of all solutions of the study data can be done
within one day.

4.7. Simulation enhanced results of the robot experiment 59

4.7 Simulation enhanced results of the robot experi-
ment

The simulation results are gathered from simulating the trajectory from
99 different starting positions for each solution. The coordinates and the
robot orientation of these starting positions are generated randomly and
then reused for evaluating every solution. Each starting position is executed
once per solution. More iterations are not necessary because the simulation
is deterministic.

The performance result of a solution is the mean performance over
the simulation results of the 99 different starting positions. For compar-
ing groups of solutions, like planners versus testers, I calculate the median
(Mdn) or mean (M) result within each group from the mean (m) results of
the 99 runs for each solution. Explanations and detailed data are mentioned
in appendix B.2.

In the following results, the same participants as in the previously
shown data are included (and excluded).

4.8 Influence of testing on performance
In analogy to the previously presented manually recorded results I com-

pare the performance results of the group of participants who were not al-
lowed to test their solutions during the first 80 minutes of the programming
phase (planners) with the group of participants that were encouraged to
test their solutions regularly from the beginning onward (testers).

For the evaluation the number of removed cubes as well as the time for
removal of the cubes, especially of the 3rd cube, which is the completion
time, are taken into account. The completion time is only available for
those participants who succeeded in solving the task. In the 1st and 2nd
evaluation the data for the completion time is based on 6 to 9 participants,
in the last evaluation on 12 out of 13 for the planners and 13 out of 14
for the testers. Figures 4.7 and 4.8 each show a histogram over the mean
number of removed cubes separated by planners and testers for each of the
five evaluations. Unlike in the previous manual evaluation with 1 run per
solution, now the mean number of removed cubes over the 99 simulation per
solution can lie in between the natural numbers. The results are summed
up in 4 bars with a bin size of 0.75 cubes each.

In the simulated data there is also a clear development towards an
increasing number of removed cubes from one evaluation to the next with
the previously seen reversal from evaluation 4 to 5. The results again are
bimodal as the simulated solutions often either perform poorly or solve the

60 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

Figure 4.7: Planning condition: Frequency of mean number of removed cubes in
each evaluation, simulated results

Figure 4.8: Testing condition: Frequency of mean number of removed cubes in
each evaluation, simulated results

4.8. Influence of testing on performance 61

Evaluation Nplan Ntest Mdn(m)plan Mdn(m)test U p

1 13 14 0.21 1.95 87 0.432
2 13 14 1.59 2.13 84 0.376
3 13 14 2.78 2.72 87 0.433
4 13 14 2.65 2.67 84 0.376
5 13 14 2.75 2.62 70 0.166

Table 4.3: Significance analysis comparing the number of removed cubes for plan-
ners and testers. Mann-Whitney U test, N plan and N test: number of datapoints,
Mdn(m): medians of the mean of removed cubes, U-rank statistic U and corres-
ponding p-value p, simulated results

task but seldomly remove one or two cubes. This bimodal behavior seems
to be more pronounced for planners than testers.

Due to the fact that the data for the number of removed cubes do
not show a normal distribution, the statistical comparison of the planners
and testers is based on the medians and tested with Whitney-Mann U test.
Table 4.3 shows the simulated results for the median of the number removed
cubes (from the mean over the 99 starting positions for each solution) for
planners and testers in all evaluations. No significant difference between
the two groups is found. The weak significance in the manually recorded
data showing that the testers removed more cubes in evaluation 2 cannot
be confirmed in the simulated results.

The times of the removal of the cubes gives additional information on
the performance. For the comparison of the planners and testers the means
(M) of the means (m) for the 99 simulations and standard deviations SD
are calculated based on the number N of successful solutions - shown in
Table 4.4 with the corresponding significance test result (Welch’s t-test).
None of the compared times shows a significant difference between planners
and testers. As before for the manually recorded results this is caused
by standard deviations that are large compared to the associated mean
values, especially for the earlier evaluations by the low number of data
points because not many solutions remove a larger number of cubes.

The primary task of the experiment is to remove the cubes as fast as
possible but optionally an extra time bonus (or penalty) can be gained by
indicating the color of the cube that is pushed out. The color detection
requires either the use of the red color sensor, a blinking light or a combina-
tion of both. In contrast to the results given above, table 4.5 gives the times
of removing the 3rd cube with the time bonus and penalty of 10 seconds
for every correct or incorrect cube color detection. Including this additional

62 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

Eval 1st cube 2nd cube 3rd cube

N M(m) SD N M(m) SD N M(m) SD

Planner 1 12 21.6 24.4 7 66.4 60.7 6 111.0 69.8
Tester 1 11 22.4 20.1 9 59.6 39.2 9 109.2 62.0
t-value t = −0.08 t = 0.26 t = 0.05
p-value p = 0.94 p = 0.80 p = 0.96

Planner 2 11 15.6 13.2 8 47.9 50.3 7 86.2 56.4
Tester 2 13 36.0 43.1 10 82.7 67.2 9 117.7 82.6
t-value t = −1.61 t = −1.25 t = −0.9
p-value p = 0.13 p = 0.23 p = 0.38

Planner 3 13 17.9 18.5 10 57.0 39.5 10 97.6 54.4
Tester 3 14 19.7 13.2 13 48.8 25.9 13 96.0 49.7
t-value t = −0.28 t = 0.57 t = 0.07
p-value p = 0.78 p = 0.58 p = 0.94

Planner 4 13 22.1 19.2 12 69.3 53.0 12 118.3 82.4
Tester 4 14 28.5 27.4 13 62.6 43.8 13 111.8 60.5
t-value t = −0.70 t = 0.34 t = 0.22
p-value p = 0.49 p = 0.74 p = 0.83

Planner 5 13 20.7 23.6 11 48.2 42.5 11 78.8 52.1
Tester 5 14 25.1 22.4 13 62.8 50.3 13 100.6 62.0
t-value t = −0.49 t = −0.77 t = −0.97
p-value p = 0.63 p = 0.45 p = 0.36

Best evaluation
Planner 3.62 13 19.2 19.0 12 54.3 50.6 12 91.2 69.8
Tester 3.00 14 22.3 16.4 14 52.8 36.1 14 101.3 52.2
t-value t = −0.457 t = 0.088 t = −0.412
p-value p = 0.651 p = 0.931 p = 0.685

Table 4.4: Simulated removal times of the 1st, 2nd and 3rd cube and significance
analysis comparing planners and testers for all 5 and the individually best evalu-
ation of each participant. N: number of solutions that removed the cube(s), M(m):
mean of the mean times in seconds and the corresponding standard deviation SD,
Welch’s t-values and p-values calculated from the corresponding data above

4.8. Influence of testing on performance 63

Condition Evaluation N M(m) SD t p

Planner 1 6 105.9 65.4 -0.094 0.926
Tester 1 9 109.1 62.2

Planner 2 7 77.6 65.0 -1.142 0.272
Tester 2 9 119.0 81.9

Planner 3 10 94.5 60.0 -0.111 0.913
Tester 3 13 97.0 49.8

Planner 4 12 112.6 88.5 0.004 0.997
Tester 4 13 112.5 60.8

Planner 5 11 73.8 59.4 -1.041 0.309
Tester 5 13 110.2 63.8

Table 4.5: Simulated combined times for 3rd cube removal including time bonus
and penalty for cube color detection. N: number of solutions that removed the 3rd
cube, M(m): mean of the mean times in seconds and the corresponding standard
deviation SD, t-values and p-values from Welch‘s t-test

metric into the evaluation also does not show significant differences between
the planning and testing groups.

The statistics use the mean of the 99 simulations and therefore do not
take the distribution of the data into account. The figures 4.9 show the
time distribution using histograms of how often the solutions of evaluations
1 to 5 for every participant removed the third cube within a 5 second time
interval. Each line represents one solution/participant and they are ordered
such that the solutions that in sum over the 99 simulations removed the
most cubes are furthest in the back. Especially in the earlier evaluations
many histograms are a flat line as those solutions never removed the third
cube. The sum of the bins are equal to how often this solution/participant
completed the task out of the 99 simulations within the test duration time
of 400 seconds.

For both planners and testers the number of solutions that remove three
cubes increases throughout the evaluations and there two distinguishable
distributions recognizable. Some solutions remove the third cube within a
more narrow time interval than other solutions irrespective of whether they
complete the task the most or least often. It is mentionable that the three
narrowest distributions are developed by planners.

64 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

Figure 4.9: Histograms for each participant of the 3rd cube removal time for
planners (left) and testers (right). Axis on the left: removal time in seconds (bin
size: 5 seconds), axis in the bottom: order of participants

4.8. Influence of testing on performance 65

Figure 4.10: Number of tests before the 1st evaluation vs. number of removed
cubes

Does the amount of testing influence performance?

So far the comparison between planners and testers relied on the exper-
imental setup that restricts the planners to test within the first 80 minutes
of the development phase. Another measure is how often the participants
actually test when they are allowed to test and how the amount of testing
influences the performance outcome. Figure 4.10 shows the number of re-
moved cubes in the first evaluation vs. the number of tests until the first
evaluation as determined by counting how often the participants loaded
their code onto the robot. By definition all planners have zero tests and the
mean number of tests before the first evaluation for the testers is 26.9 with a
standard deviation of 8.2. The results show no significant linear correlation
between the number of tests and the number of removed cubes. Testers
with few test both achieved high performances and also low performances.

Also regarding the total number of tests up until the 5th evaluation
vs. the number of removed cubes shows no correlation (see Figure 4.11).
The number of tests after the 1st evaluation is not significantly different
between planners and testers (M = 10.8 +/- 4.7 for the planners, M= 12.1
+/- 4.4 for the testers). The complete set of data for all evaluations is
compiled in appendix B.2.3. There is also the result for how the number
of removed cubes changes between evaluations depending on the number of
tests between those evaluations. No significant dependency is observed.

Another aspect to look at is if the amount of typing between tests
has an influence on the performance. The longest coherent time where

66 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

Figure 4.11: Number of tests over the whole time vs. number of removed cubes

the participants can freely type and test is for the testers until the first
evaluation. It is also the phase where they start with a blank sheet and have
enough uninterrupted time to develop an already working solution. Figure
4.12 shows the average number of keystrokes per test for the testers before
evaluation 1. All testers with high performing solutions (removing more
than 1.5 cubes) in the first evaluation used between 30 and 80 keystrokes
per test (N = 9) while testers with poorly performing solutions (removing
less than 0.2 cubes) used 70 to 160 keystrokes per test in average (N =
5). Thus, more concise programming shown by less typing may correlate
to better performance. However, it is not clear if the participants with
more keystrokes write longer codes or if they type but then also erase more
characters.

4.9. Influence of testing on concept choice 67

Figure 4.12: Keystrokes per test vs. number of removed cubes in the 1st evalu-
ation

4.9 Influence of testing on concept choice
There are four distinct concepts of detecting the cubes and removing

them that were used by the participants. These are:

1. Ultrasound: Using the ultrasonic distance sensor to detect the cubes

2. Blink: Placing the blinking lights as beacons inside the ceiling of the
cubes and detect those using the light sensors

3. Hybrid: A combination of using the ultrasonic sensor and the light
beacons in the cubes

4. None: Does not attempt to detect the cubes but remove the cubes by
driving in a pattern or randomly

One participant in the planning condition in all evaluations drove around
randomly without using any sensor to detect the cubes. The rest of the
participants used one of the three other concepts (table 4.6). The classific-
ation is done by looking which functions appear in the code in the context
of cube detection. Using the blink value for cube color differentiation for
example is not considered as using the blinking lights for cube detection.

From the description of the hardware handed out to the participant
before the programming phase it could be derived that the ultrasonic de-
tection is superior to blink light detection. Thus, it is not surprising that
the ultrasonic detection is the most used method. It is striking that only 1

68 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

Ultrasound Blink Hybrid
Evaluation Planners Testers Planners Testers Planners Testers

1 8 7 0 5 4 2
2 7 7 1 5 4 2
3 7 7 1 4 4 3
4 8 7 1 4 3 3
5 8 7 1 5 3 2

Table 4.6: Concept choice by experimental condition and development between
evaluations.

planner but 4 to 5 testers used the blink light method over all evaluations
indicating that the testers may have probably studied the instructions less
thoroughly. Only 3 participants changed the method from one evaluation
to the next, one of them changed and changed back.

A question to consider is if the different choice of concepts of planners
and testers has an influence on the previously shown performance compar-
ison. Figure 4.13 shows the histograms for how often the solutions of the
different concepts (planners and testers combined) remove the third cube
during the fifth evaluation. Every concept has solutions that solve the task
consistently within a narrow time interval but the ultrasound based ap-
proach shows more solutions with a narrow distribution of times and is the
only concept that has outstandingly narrow distributions where the histo-
gram is two to three times as high as the narrowest distributions of the blink
and hybrid solutions.

The task can be solved faster with he ultrasound-based solution. The
solution with the fastest mean removal time of the third cube averaged over
99 simulations is 20 seconds with a mean standard deviation of less than
3 seconds for the ultrasound based solution and 52 seconds with a mean
standard deviation of 31 seconds for the blink-based solution. This is also
confirmed when I program and optimize an ultrasound-based and a blink-
based solution myself and compare those. In addition the minimal required
code for an ultrasound-based solution that reliably removes three cubes
consists of a loop, ultrasound distance measurements and an if-condition (4
lines of code) while the minimal required code for a blinking-based solution
is far more elaborate and challenging to program.

Also in the mean over the participants the ultrasound solutions remove
the 3rd cube faster than the blink-based solutions (M: 83 vs. 98 seconds, t
= -0.48, p = 0.64) and do so more consistently (SD: 45 vs. 61, t = -1.02, p
= 0.32).

4.9. Influence of testing on concept choice 69

(a) Ultrasound (b) Blink

(c) Hybrid: Ultrasound and blink

Figure 4.13: Histograms of the 3rd cube removal times grouped according to the
detection method a) ultrasound detection,b) blinking light detection, c) hybrid,
that is both ultrasound and blinking light detection combined. Planners and testers
are combined in the graphs, axis on the left: removal time in seconds (interval 5
seconds), axis in the bottom: order of participants

70 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

Eval Planners Testers Mann Whitney
N M(m) SD(m) N M(m) SD(m) U p

1 8 1.08 1.30 7 1.33 1.30 27 0.500
2 7 1.57 1.45 7 1.17 1.19 19 0.282
3 7 2.18 1.30 7 2.33 0.88 22 0.399
4 8 2.60 0.85 7 2.32 0.98 15 0.073
5 8 2.41 1.03 7 2.08 1.02 17 0.111

Table 4.7: Statistics comparing the mean number of removed cubes for planners
and testers that only used ultrasound-based solutions N: number of solutions using
ultrasound detection, M(m):mean of the mean number of removed cubes over 99
simulations with corresponding SD

Eval Planners Testers t-test
N M(m) SD(m) N M(m) SD(m) t p

1 3 113.6 71.5 4 87.6 81.1 0.441 0.678
2 4 80.5 78.2 3 108.8 117.0 -0.387 0.715
3 5 63.9 43.7 7 81.6 53.1 -0.607 0.557
4 7 57.6 39.1 6 127.2 76.2 -2.121 0.058
5 7 60.3 52.7 6 110.0 74.7 -1.408 0.187

Table 4.8: Statistics comparing the mean times for removing the 3rd cube for
planners and testers that only used ultrasound-based solutions N: number of suc-
cessful solutions using ultrasound detection, M(m):mean of the mean number of
removed cubes over 99 simulations with corresponding SD, Welch‘s t-test

Although not statistically significant it is still plausible to assume that
there is a difference between the performance of ultrasound-based and blink-
based solutions and therefore the concept choice can have an influence on
the comparison between planners and testers. Therefore, I compare the
planners and testers again but exclusively those who chose the ultrasound-
based approach. The blink light and hybrid concepts do not have sufficiently
many datapoints for a meaningful statistical analysis.

Both in the number of removed cubes (table 4.7) as well as in the re-
moval times (table 4.8) of the 3rd cube the testers outperform the planners in
the initial 1st evaluation, however not statistically significant. In the follow-
ing evaluations the planners remove more cubes (except one evaluation) and
do so faster than the testers. The performance difference between planners
and testers in the 4th evaluation is weakly significant and the 5th evaluation
also shows a tendency in the direction that the planners removed the 3rd

4.10. Influence of testing on programming behavior 71

cube faster. Surprisingly, for the testers the removal time is slower for the
last two evaluations than for the 1st. It could be argued that this comes
from the additional solutions that contribute to the statistics as more parti-
cipants solve the task in later evaluations. But this would not explain why
the performance in the 4th and 5th evaluation is lower than in the 3rd.

4.10 Influence of testing on programming behavior
Is there a difference in behavior between planners and testers that may

be a confounding factor influencing and/or explaining the previous results?
One thing that became noticeable throughout the experiment is that testers
start programming sooner after the programming phase started. This is
quantified by analyzing the screen recordings. The programming start time
is counted as the time when the participant types the first keystroke of
meaningful code that can be compiled and executes something testable on
the robot. This excludes testing of the keyboard or writing comments only.

When plotting histograms for when planners and testers start typing
meaningful code it can be observed that the distribution is not normal
but has a tail towards late coding start times. Therefore I use a Mann-
Whitney U test to test for statistical significance between the two groups.
The median programming start time for planners is 266 seconds and 150
seconds for testers. The U statistic is 46 resulting in a p-value of 0.026,
which is below the threshold of significance of 0.05. This means that the
testers start programming meaningful code significantly earlier than the
planners.

4.11 Influence of experience on performance
A plausible confounding factor that can have an effect on the perform-

ance is the prior experience of the participant in programming and specific-
ally in using robots to solve such tasks. Therefore, I aim to control for this
by recruiting participants from the same study program and year but also
by assessing prior experience in several ways. In the following I will present
the experience measurements and their influence on the mean number of
removed cubes in the first and fifth evaluation as a proxy for performance.

Self-reported experience

The participants self-reported their experience in programming lan-
guages like Python and C as well as their experience in programming Ar-
duino and Lego Mindstorms.

From the post-experiment interviews I know that Python is the most
common programming language the participants use in their studies and C is

72 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

Figure 4.14: Influence of self-reported Python programming experience on per-
formance (number of removed cubes) in evaluation 1.

the closest programming language to NXC (stands for Not Exactly C) which
was used in the experiment. In figures 4.14 and 4.15 I show the number of
removed cubes in evaluation 1 for the Python experience as a proxy for
general programming experience and for the Lego Mindstorms experience
as it is, according to my own judgement, the most relevant confounding
experience factor for this experiment.

These self-reported experiences do not significantly correlate with the
number of removed cubes.

A complete set of graphs is shown in appendix figure B.5 for the other
self-reported experience levels and also for correlations with the number of
removed cubes in the 5th evaluation - none of them shows a significance.
Also calculating the Pearsson coefficient for all self-reported experiences and
all evaluations does not show any significant correlation.

Pre-experiment programming test

Immediately after the self-reported experience questionnaire the par-
ticipants are given a programming test. Figures 4.16 and 4.17 show the
number of removed cubes in evaluations 1 and 5 depending on how the
participant solved the pre-experiment programming test. The majority of
participants solves the test correctly. Initially the test was intended to fil-
ter out participants that do not possess the necessary programming skill to
conduct the experiment. However, although the test evaluates basic pro-
gramming skills the majority of participants who failed the programming
test developed a well-performing solution (more than 1,5 cubes in average)

4.12. Limitations and strengths 73

Figure 4.15: Influence of self-reported Lego Mindstorms experience on perform-
ance (number of removed cubes) in evaluation 1.

already in the first evaluation whereas half of the participants that cor-
rectly solved the test did not develop a well-performing solution (less than
one cube in average) in the first evaluation.

The results show no dependency between correctly completing the test
and the performance.

Keystroke latency

According to [Thomas et al. 2005] the keystroke latency between cer-
tain types of keystrokes correlates inversely with programming performance.
Their study found that better performing students have a shorter latency
when shifting between keystroke pairs involving special characters like for
example brackets, semicolons, operators and other types of characters like
alphabetical or numerical characters. The keystroke data were acquired
with the self-built Arduino keylogger throughout the programming phase
and analysed for these types of keystroke latency and then the median key-
stroke latency for each participant is calculated. No significant correlation
between the median keystroke latencies and the performances measured in
the mean number of removed cubes was observed (figure 4.18 and figure B.6
in the appendix).

4.12 Limitations and strengths
The focus of the experimental design is lying on controlling the experi-

mental conditions and procedures as rigorously as possible to ensure a high
degree of internal validity. This is the clear strength of this experimental

74 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

Figure 4.16: Programming test results related to performance, number of re-
moved cubes in evaluation 1

Figure 4.17: Programming test results related to performance, number of re-
moved cubes in evaluation 5

4.12. Limitations and strengths 75

Figure 4.18: Influence of typing latency between special characters and alpha-
betical or numerical characters on performance (number of removed cubes) in eval-
uation 1. A shorter latency corresponds to higher experience [Thomas et al. 2005].

setup but it also comes at a cost.
The experimental setup aims to imitate actual CPS development to be

externally valid but at the same requires a repeatable conditions and a task
that can be finished within a single session of tolerable duration and allows
for a quantifiable performance metric. This excludes the majority of actual
real life CPS development tasks since most CPS do not remove objects with
a Lego Mindstorms robot.

Real CPS development often is complex. The task is also intended to
be complex and is indeed complex to some participants but not for all. One
participant managed to successfully complete the task without testing and
then correcting the solution. This means that the task, if approached by a
sufficiently skilled programmer, is plannable and thus only complicated but
not complex.

Each participant spends approximately three hours for the experiment.
Mainly this time consumption make it difficult to find a large number of
suitable participants and gaining sufficient statistical power with the meas-
ured effect size, standard deviation and number of participants. This is
especially the case if one wants to minimize the differences between parti-
cipants such as different study programs and seniority. In retrospect, with
the knowledge of how large the differences between participants are it may
have been worth to also include participants from other school years to gain
more data points assuming that the difference between school years is small
compared to the individual differences.

76 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

The number of removed cubes can only have discrete values between 0
and 3 and therefore the possible resolution is limited to four different values.
From single tests the solutions can only be evaluated on this rough scale
and may, apart from the also existing uncertainty, not represent the quality
of the solution accurately. This can be mitigated by executing the solutions
repeatedly and using statistical methods.

When the participants test their solutions the robot behaves
non-deterministicly and chaotically. Therefore, it cannot be guaranteed
that each participant can get exactly the same testing experience. Even
if two participant execute an exactly same solution their observations and
therefore the reflections may differ and thereby influence the further de-
velopment. This effect would be minimized if every solution is tested and
observed repeatedly but the time during the experiment is not sufficient for
the participants to execute many tests.

In the experiment, as well as in the setup of Thomas et al. [Thomas et
al. 2005], a keyboard with a Scandinavian layout was used. However, neither
Thomas et al. nor I asked the participants whether this layout is their
preferred and most familiar keyboard layout. Especially for programming
the English layout is more suitable and allows for faster typing of code.
It was observed that some participants were actively searching for keys
while programming. Therefore it seems reasonable to assume that some
participants were not fully familiar with the Scandinavian keyboard in the
context of programming and this influenced their keystroke latency and
biased the keystroke latency as a measure for programming experience. The
information about the participant’s most familiar keyboard layout was not
gathered.

4.13 Qualitative results
In this section I provide a qualitative look at the behaviors of the par-

ticipants and my personal evaluations on how it influenced the outcome of
the experiment. In this qualitative assessment I do not attempt to com-
pare events quantitatively and under equal circumstances but instead look
at single qualitative cases that can give insights. I will also include parti-
cipants who are not included in the quantitative results shown previously,
i.e. participants from the trial runs (participant numbers smaller than 41)
and the participants that are excluded previously due to malfunctions of
the experiment setup or participants that withdrew from the experiment.
Planners are labelled by the even participant numbers, testers by the odd
numbers.

4.13. Qualitative results 77

4.13.1 Time spent on planning

As already observed quantitatively in 4.10 the planners use statistically
significantly more time before they start coding a solution. What are typical
planning activities and how do they effect the results?

After the task has been announced many participants start the pro-
gramming phase with reading the robot and library documentation again
(p22, p24, p25, p26, p50, p59, p60, p68, p70). Now, with the task in mind,
the documentation can be read with the intention of planning a solution.
Some participants then take notes and write down ideas on paper or as
comments in the programming environment (p25, p50, p60, p71). Another
explorative behavior is to take a second closer look at the playground and
the blinking lights (p46, p50) or push the robot around on the playground
like a matchbox car to visualize the planned behavior (also p46, p50). Ex-
tensive planning behavior is predominantly observed in planners and to a
lesser extend in testers.

4.13.2 Programming and debugging styles

A main factor for the performance of the solutions is how quickly the
participants could find and repair errors in their codes. Some participants
corrected errors quickly in less than 10 minutes (p24 after 4 minutes of test-
ing, p47 after 9 minutes with multiple tests, p58 after 3 minutes and 1 test)
and other participants need considerably more time - up to 50 minutes of
testing (p26 after 65 minutes including 20 minutes with testing, p51 after 50
minutes of testing, p52 after 80 minutes including 20 minutes with testing,
p53 after 20 minutes with testing, p63 after 40 minutes of testing). Localiz-
ing the error in the code certainly depends on the skill of the programmer,
how well they understand their code and how confusingly the code is writ-
ten. While some participants needed one test to observe the malfunction,
reflect what causes it and find a solution other participants require extensive
debugging. In these cases it is the debugging strategy and behavior of the
participant that have a considerable effect on the time needed to repair the
error. How quickly an error was repaired largely depended on how quickly
the code that caused the malfunction was identified and not so much on the
time needed to find a solution.

One way to discover errors quickly is to discover them as soon as pos-
sible after they are created. This is done by testing frequently and verifying
that after changes were made the robot behaves still as expected (especially
p47 and most testers). This is not always possible for planners because
at the beginning they are not allowed to test their design changes. If the

78 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

robot does not behave as expected the error must be in the last code that
was written after the previous test. This method finds errors quickly but
can be disrupting and time consuming if the participant writes correct code
and uses time that was unnecessarily spent on testing because there is no
error. An advantage of this approach is that it becomes unlikely that the
newly added, untested code includes multiple errors. Finding errors be-
comes increasingly difficult when the tested code includes multiple, and
often confounding errors.

Another strategy to localize errors is by singling out potential code
snippets that cause the malfunction. This is either done by commenting
out code parts and observing if the unintended behavior (and the intended
behavior) is now missing, by copying code parts into a sidewindow (separate
windows in the programming environment) and verifying that they perform
individually as expected (p54, p55, p56, p63, p69) or by placing the robot on
the playground in specific scenarios that test specific aspects of the solution
(p46).

The last and often least efficient observed approach is to localize the
error by simultaneously correcting it using a ”trial and error” method. In
this case the participants do not properly reflect on the test observations and
do not want to or cannot understand what caused the error and therefore
cannot localize the error first and then repair it but instead they change the
code, test it and if it then works have consequently localized the error. Since
analyzing and thinking through the code to target the error can also be time
consuming this approach can be useful if the code section that causes the
malfunction is known to be very small and the possible number of causes
is low. For example if the last code change that causes the malfunction is
of the type ”if(a > b)” then maybe ”if(a ≤ b)” corrects the error. Some
participants (p47) used this approach successfully. I assume this because
the code changes were made very quickly and sometimes it did not solve
the problem. Other participants, who had errors in larger code sections and
only deployed the trial and error debugging strategy, needed horrendous
amounts of time to find the error(s) and they may have used this strategy
because they were not capable of localizing the error otherwise.

Writing well-structured code that uses confined and concise functions
that serve one distinct purpose and combining these functions to a short
main code makes it easier to segregate code parts for debugging. If the
code is clearly formatted, has a low level of nesting (code blocks within
code blocks) and uses simple conditions it is less confusing to read and
understand and therefore simpler to locate the errors.

The participants discover errors through testing and sometimes by men-

4.13. Qualitative results 79

tally visualizing the robot behavior; in some cases already while still not
having implemented their intended solution. Patching their solution with
workarounds, appending extensive code for edge cases and functionality
add-ons without questioning the originally chosen approach often leads to
unstructured and complicated code. One extreme example is the condition
of a while loop that is already nested in another if condition and another
while loop that makes the robot drive forward as long as the downward
reflection value is above a certain threshold, the blink value is above a cer-
tain threshold for at least 1 second but no more than 5 seconds and the
red light reflection value remains above 5. When the participant tested this
complicated solution and observed a malfunction it was difficult to trace
back the cause. I observed individual differences in code structure between
participants regardless of the experimental condition. Although a larger
number of planners (p24, p42, p46, p58) than testers (p57) designed a well-
structured code (categorized by subjective judgement) it is not clear that
planning leads to well-structured codes. Both planners (p26, p48, p52, p70)
and testers (p51, p53, p63, p69) write poorly structured and complicated
codes. In the few available cases of well-structured and poorly structured
codes in this experiment the participants with the well-structured codes
performed better than the participants with the complicated codes. Par-
ticipants p46 and p58 both had well-structured codes and were the two
best performing participants in the experiment. Participants p57 and p42
also showed well-structured codes and performed well above average (p57)
while participant p42 performed well from evaluation 3 onward which is an
average result.

Participants p48, p53, p69, and p70 were participants with poorly struc-
tured codes. While participant p69 performed well above average and par-
ticipant p48 on average, participants p53 and p70 performed poorly. It can
only be assumed from observations that the well-structured codes helped to
find errors faster and in tendency perform better but in principle it is also
possible that more experienced and capable programmers perform better in
any case and also happen to write better structured code.

4.13.3 Poor reflections and priority choices

I observed several participants who tested and observed that the robot
clearly did not behave as they had intended but then they did not attempt
to find the error and instead continued programming other features (p55,
p65).

Other participants had a strange choice of priorities as they, for in-
stance, programmed the color detection for indicating the cube color before

80 Experiment exploring the effect of early prototyping in
cyber-physical-systems development - the Robot Experiment

their solutions successfully removed any cubes at all (p43, p67, p69).
Participant p59 had solved the task 37 minutes before the first evalu-

ation but then ”unsolved” it during evaluations 1 and 2.

4.13.4 Chapter résumé

Summarizing it can be said that generally a more extensive planning
and a trend to better structured codes is found for the planners. However,
this does not neccessarily lead to a better performance. The individual skill
of the programmers and especially their debugging strategy and behaviour
considerably determines the quality of the code and thus the performance
regardless of the experimental conditions of testing or planning.

Chapter 5

Mixed-method discussion on
the use of a prototype-driven
approach in CPS
development

In this chapter I will combine the insights from the case-studies and the
results of the experiment to discuss possible explanations for the observa-
tions and to answer research question one. It asks how a prototype-driven
approach can be applied and when it is appropriate.

A main idea of prototype-driven development and wayfaring is to build
and test prototypes, reflect on the test results and then draw conclusions
for redesigning the solution. This assumption is discussed based on the
case-studies in the third chapter and from the quantitative results of the
experiment described in chapter 4. I have presented how testing of proto-
types impacted the CPS’s development in the Fibo car example (3.1) and
the ATLAS detector (3.2) and that a prototype-driven approach can lead to
successful results especially in complex problems like the ATLAS detector.
From the case studies I can give examples and argue that early building
and testing of prototypes is beneficial for the development because it al-
lows to find unknown unknown and interdependencies sooner and thereby
make design and concept changes easier but I cannot quantitatively conclude
that early prototyping is beneficial because I have no equivalent compar-
ison case that was conducted with a planning based approach. Therefore,
the controlled quantitative experiment uses the early testing versus plan-
ning stimulus and aims to compare the two extremes quantitatively under

81

82 Mixed-method discussion on the use of a prototype-driven approach in
CPS development

controlled conditions while still maintaining the external validity for CPS
development. The following sections explain how to interpret the quantit-
ative results and the last section of the chapter combines qualitative and
quantitative insights into normative recommendations.

5.1 No statistically significant performances difference
due to large differences between the participants

In the experiment I could not show a statistically significant perform-
ance difference when quantitatively comparing the performance outcome of
a prototype-driven development approach to a planning-based spec-driven
approach. This is mainly due to large performance differences between
individual participants in the experiment regardless of their experimental
condition. If I make the assumption that the mean performance difference
between planners and testers as well as the standard deviation of the per-
formance, hence the individually measured variations between participants,
do not change with additional participants then I would have needed in
total 54 participants to get a weakly statistically significant result with a
p-value of 0.1 or 90 participants for a statistically significant p-value of 0.05
in the comparison of removed cubes. This calculation is already based on
the results of the evaluation with the most statistically significant differ-
ence between planners and testers. The question is now if this performance
deviation between participants is caused by imprecise and fluctuating meas-
urements or if the performance difference between participants is actually
this large due to the difference in the participant’s programming and prob-
lem solving skills.

Although repeatedly executing the physical robot under seemingly same
conditions can yield deviating results due to the chaotic nature of CPS it
is shown in contribution 7 that already 20 manually executed iterations
with the physical robot give a reliable performance measurement that can
be replicated with the simulation. From this contribution I know that by
using the simulation performance differences between two solutions as small
as two percent can be resolved. This means that the performance analysis
when comparing two solutions is much more precise than the measured
deviations in the experiment, i.e. the uncertainty of the simulation has a
negligible effect on the resolution of the performance outcome. There are
some results that show a weak statistically significant difference in some
measurements. For example do the manually observed results indicated
that the testers removed the 3rd cube weakly significantly faster (p-value of
0.096 < 0.1) than the planners in their individually best evaluation. This
result was not replicated by the simulated results which show a p-value

5.2. Potential causes for the large performance differences between

participants 83

of 0.685 for the same comparison. This hints that the weakly statistically
significant result is a statistical anomaly of the few manually measured
data points in this specific evaluation. Firstly, the result is barely under the
arbitrarily set p-value threshold of 0.1 for weak significance and secondly
it becomes reasonably likely that some results show low p-values just by
chance if a large number of different comparisons are made. In this case it
was one of the several performance metrics in one out of the five evaluations.
Furthermore, if the effect was genuine, I would expect that statistically
dependent variable, the removal times of the 2nd cube, also show some
indication of a difference, when the 3rd cube is removed faster. However,
this was not found (p-value of 0.35 for the 2nd cube). Another similar
example where the manually recorded results show a weakly statistically
significant difference (p-value of 0.077) that is clearly not confirmed with
the simulated results (p-value of 0.376) is that testers remove more cubes
than planners in the 2nd evaluation. I dismiss this result as not genuine
for the same reason. Additionally, this result does not occur in the first
evaluation, which is the evaluation with the largest stimulus and where
I would expect the largest difference. The result also does not show a
trend over time that continues into the following evaluations. I therefore
argue that the found differences are not genuine because they can neither
be replicated by the larger data base from the simulation nor can they be
supported by qualitative arguments such as parallelism of the 2nd and 3rd
cube or do they indicate a trend that continues with the next evaluations.

In conclusion, if there is an influence of early testing on performance
then the effect is smaller than what can be reliably concluded from the data.
This does not mean that there is no effect of early testing but if so there
are one or more other confounding factors that have a stronger influence
on the performance. The resolution of the simulated results is accurate
enough to say that it is the actual performance deviation between the dif-
ferent solutions of the different participants that account for the statistically
insignificant difference between planners and testers. These individual per-
formance differences overshadow the potential influence of early testing of
prototypes in the quantitative results.

5.2 Potential causes for the large performance differ-
ences between participants

As the performance difference between participants cannot be statist-
ically explained by the intentionally introduces stimulus of testing versus
planning then the remaining question is how to explain the performance
difference between the participants. Can I find quantitative and qualitative

84 Mixed-method discussion on the use of a prototype-driven approach in
CPS development

evidence that explains the large deviations in performance between different
participants in a different way?

5.2.1 Programming experience

A confounding factors that was anticipated to influence the perform-
ance was the prior experience of the participants in programming and more
specifically programming cyber-physical systems. Therefore, the experi-
ment design aims to assess the participant’s prior experience with a pre-
experiment test, a self-reported experience questionnaire and by evaluating
the participant’s keystroke latency patterns as shown in subsection 4.11.
None of the experience measurements correlates with the measured per-
formance.

The pre-experiment programming test requires understanding the basic
programming principles and serves as a filter for finding participants that
do not have sufficient programming skills to meaningfully participate in
the experiment. However, if a participant answered the test incorrectly I
still allowed the participant to continue with the experiment and evaluated
their programming skills by observing them. All participants used for the
study were familiar with the basic programming principles and therefore
included in the study even if they failed the pre-experiment test. One of the
best performing participants (p46) returned the test incorrectly. The paper
handout with the code of the test is attached in appendix A.1.

The questionnaire asks for programming experience in several languages
or equipment. Python is the most taught language in the study program
of the participants and therefore a good proxy for overall programming
experience. In addition, C and Arduino are syntactically very similar to
the language used in the experiment and Arduino and Lego Mindstorms
programming experience is asked for because they are directly applicable to
programming mobile robots and thus to the Lego Mindstorms task. None
of those self-reported experiences correlates with the measured performance
and statistically explains the performance differences. The programming
experience questionnaire is presented in appendix A.1.

The last measure for estimating the programming experience is evalu-
ating the typing behavior by the method of Thomas et al. [Thomas et al.
2005]. This method measures the habituality of the participants towards
programming specific typing patterns. However, these measured typing pat-
terns are not specific to programming of CPS and thus not representative
for experience in developing CPS. Although Thomas et al. also used a
Scandinavian keyboard layout many experienced programmers use English
layouted keyboards as the programming specific keys are faster accessible

5.2. Potential causes for the large performance differences between

participants 85

on those. I did not ask for what keyboard layout the participants are most
used to. This would mean that experienced programmers could in partic-
ular have long keystroke latencies. This could be a second reason why the
typing behavior estimated programming skill does not correlate with the
measured performance.

After all I would argue that the three methods mentioned above are a
measure for the experience of typing codes and applying the programming
principles in pure software projects. This means that at least the type of
experience that I measured is not a parameter that linearly influences the
performance.

An outcome of the study is that the strategies for organizing the pro-
gramming flow, testing prototypes at meaningful times, reflecting on the
test results and different concepts and debugging are important factors for
performing well in this open-ended task. However, this experience cannot
easily be captured by tests and questionnaires and thus not quantitatively
measured and only evaluated subjectively by observing the participants as
described in the qualitative results.

5.2.2 Concept choice

An open-ended task can be solved in several ways and by different
concepts. As pointed out in subsection 4.9 the possible concepts perform
differently and are unequally difficult to program. Is the performance dif-
ference between planners and testers insignificant because the testers made
unfavourable concept choices that counter the performance difference po-
tentially caused by the stimulus?

Since the testers chose the inferior performing and difficult to program
blink light concept more often than the planners I can assume that the
performance difference between the planners and testers would have been
more pronounced if both groups had made more similar concept choices.
When comparing planners and testers with the same concept choice only
the comparison of the ultrasound-based approach has a meaningful sample
size. In evaluation 1, where the planners had not tested yet and the stimulus
is largest, the testers in average remove more cubes and do so faster than
the planners but the difference is not sufficiently large to be statistically
significant. In evaluation 4 the trend reversed. The planners remove more
cubes (p = 0.073) and do so faster (p = 0.058) than the testers with weak
significance. But with the small sample size a few outliers can influence
the result towards a significant difference by chance. These results are
also not confirmed when all concept choices are compared although the
better concept choice of the planner should also be reflected in the overall

86 Mixed-method discussion on the use of a prototype-driven approach in
CPS development

performance. Possible reasons for the difference in concept choice are given
in section 5.3.

5.2.3 Individual differences in error finding behavior

As described in the qualitative results on programming and debug-
ging styles (section 4.13.2) the participants differed sometimes greatly in
how many programming mistakes they made and far more crucially in how
quickly the participants could recognize that an error was present, locate it
and then repair it.

The seemingly crucial skill that distinguishes many of the well-performing
participants from the poorly performing participants is knowing how to
combine planning and testing. As described in the wayfaring approach in
section 2.2.4 it is a continuous loop of planning and designing, building the
code, testing the code and reflecting on the outcome and then planning
and redesigning the solution according to what the developer has learned
from the test. Taking sufficient time for planning is important as it helps
to construct a well-structured code with fewer errors and less ambiguous
codes where the errors can be found faster. During testing it is important
to carefully observe the robot behavior and relate it to the code to find the
malfunctions and recognizing which code part is currently performing cor-
rectly or failing. Since the debugging cannot be done step-by-step virtually
in a debugger the participants need to be able to mentally understand the
code in real time as the robot executes the code and then draw their design
conclusions from the observation. For this it is important that newly writ-
ten and so far untested code is easy to comprehend and does not comprise
too many changes in one step such that a malfunction can unambiguously
attributed to one location in the code. Tools like cause-dependent tones to
mark events in order to know which part of the code is currently executed
are very helpful and were used by some participants.

When to test depends on how complicated the code is and, thus, how
likely it is to make errors and how quickly an error can be found as well as
on the skill of the programmers to observe and relate the observation to the
code. What may be a complicated task for highly skilled developers can be
a complex task that requires more testing for others.

Although the effect cannot be quantified the study reveals that it was
the individual differences in how the participants planned to avoid errors
and their strategy for finding and correcting errors that explains most of
the individual performance difference between participants. In the end it
boils down to how well the design - build - test cycle from the wayfaring
approach is executed that most considerably influences the performance.

5.3. Does testing lead to design fixation on premature concept choices? 87

5.2.4 Individual differences in skill and method preferences

Although all participants are recruited from the same year within the
cybernetics study program at NTNU there are personal differences in pro-
gramming skill and preferences on how to structure the coding process.
Some participants are more used to a planning based approach while others
use, and many depend on, a more prototype-driven approach. The per-
formance difference can thus be a result of participants having to work with
their favoured or unfavoured method.

Furthermore, it seems reasonable that testing is more required when the
project is more complex and less predictable whereas a simple or complic-
ated problem is predictable enough and can be planned with sufficient skills.
Whether a problem is complicated or complex (according to [Snowden et al.
2007]) depends on if unknown knowns and especially unknown unknowns
arise. This obviously depends on the project but also on the experience
of the developers - unknown knowns and unknowns of less experienced de-
velopers can be known knowns for more experienced programmers. Al-
though the open-ended task used in the experiment is meant to be and was
indeed complex for the majority of participants it was merely complicated
for some participants as one participant (p46) solved the task successfully at
the first test and others solved it without hesitation after quickly observing
an error.

The difference in performance is not explainable merely with the pro-
gramming experience as discussed above, but is also influenced by individual
skill and routines for foreseeing potential problems.

5.3 Does testing lead to design fixation on premature
concept choices?

As described in section 4.6 there are four distinct concepts that the
participants used to solve the task. The two most prominent ones were to
detect the cubes with the ultrasound range finder or with the light sensor
and blinking lights placed as beacons inside the cubes. The ultrasound
solution is far easier to program and outperforms the blinking light solution.

Why did especially testers, who could have tested and compared the
different concepts, choose the inferior blinking light solution?

I observed that testers used statistically significantly less time before
starting to program their solutions (see section 4.10) and almost never tried
out a second concept and remained fixated on the concept they started
with. Planners also did not change their concepts before evaluation 1 but
this makes sense because without testing they have no reference inducement
to make changes. They could have prepared a second solution that they can

88 Mixed-method discussion on the use of a prototype-driven approach in
CPS development

test immediately after the first evaluation but none of the planners chose to
do this.

The planners need to rely on the information about the robot and the
library to make mental models of their solutions. The robot behavior of
different concepts therefore needs to be imagined and compared mentally.
Obviously, mentally exploring concepts does not require typing code and
thus takes less time than actually executing and testing a concept. Thus,
the wasted time when discarding a mental concept is less than discarding a
concept after programming and testing it. Arkes and Blumer [Arkes et al.
1985] describe how continuing an endeavour, once an investment of effort or
time has been made, can be explained by the desire to not appear wasteful
when discarding the already made progress. With increasing effort and time
investment the sunk cost effect intensifies.

While planners, even when making several competing mental models,
use little time and no programming and testing effort, the testers invest
more time and effort for coding and thus have a higher sunk cost when
discarding a solution. I argue that this desire to minimize sunk cost leads
to fixation on the initial concept choice.

Although this may explain why testers fixate on their initial concept
choice it does not explain why they make inferior concept choices in the first
place. Both planners and testers before starting to program have similar
initial conditions apart from the instruction that the testers shall test often
and early. Since I observe that the testers use statistically significantly
less time before starting to program I assume that they think through fewer
mental models and are more likely to start programming their initial concept
idea. The blink lights are the last part of the task description and may have
primed the participants to think about a solution that uses the blinking
lights. Although the priming was the same for both experimental conditions
the testers may have been more susceptible to it due to the ability and
instructed urge to test promptly.

The fixation on the chosen concept may have been substantiated when
the testers test the robot and see that their solution can potentially work.
The participants rush to correct the errors and proceed with the current
concept instead of questioning the overall concept. This leads to a fixation
on the often prematurely made concept choice as described in more detail
in contribution 10.

5.4. Conclusions on how to develop Cyber-Physical Systems 89

5.4 Conclusions on how to develop Cyber-Physical
Systems

In this section I will use the previously described and discussed obser-
vations to answer the first research question on how and when to apply a
prototype-driven approach during the early stages of cyber-physical systems
development.

Let us first revisit the insights from the case studies and the experiment
to find positive observations that shall be included and negative observations
that shall be tackled with the proposed prototype-driven approach. In the
case studies I have seen that unknown unknowns exist in complex projects
and can be discovered through testing of prototypes. After reflecting on
the test results and abductive reasoning the test results influence the design
of the next prototype. A series of designing, building, testing and then
redesigning lead to an explorative wayfaring-like development path guided
by these probing cycles instead of executing a pre-planned design. The aim
is to decrease uncertainty of the project by finding unknown unknowns of
critical functions, and thus potentially surprising problems that terminate
the project, as early as possible.

In both case studies unknown unknowns arose when merging interde-
pendent solutions from different disciplines. Testing of prototypes is thus
not only useful for testing individual parts of the solution but also pro-
totypes from different disciplines need to be merged early on to test for
interdependent unknown unknowns and reflect upon the entire concept and
question whether the chosen concept is a good choice.

Since the aim is to reduce the uncertainty it is sufficient to build low-
resolution, and thus low-fidelity prototypes that focus the critical functions
to ensure that these criteria can be met before proceeding with optimizing
the solution. The rapid prototyping with low resolution is needed to dis-
cover unforeseen problems early. From the ATLAS case study I know that
results from testing prototypes can be used as arguments for or against
design choices were often required by the design review panels. At the same
time, using test results to justify a design to opposing proposals of other
developers proved to be a useful tool for fostering interlaced knowledge
between developers and allowed a bottom-up coordination of large-scale
projects. I argue that this bottom-up coordination can react much quicker
to design changes than a traditional top-down hierarchy and would hardly
be possible without the constant justification of design choices based on
prototypes.

From the robot experiment I have seen that just prescribing developers

90 Mixed-method discussion on the use of a prototype-driven approach in
CPS development

to test at certain times and thus enforcing building and testing of proto-
types alone does not yield improved performance of the solutions. The mere
quantity of prototypes built and tested does not matter and too extensive
testing and redesigning can even have negative effects like an unreflected
trial-and-error approach for fixing design errors and patch-work like solu-
tions that treat the symptoms but does not question the chosen concept
and can lead to unnecessarily complicated solutions. It showed that when
and what prototypes were built and tested matters decisively. In the ex-
periment I observed that some participants had problems prioritizing the
critical functions and implemented other non-critical functions before the
critical functions were solved. Additionally, I observed that the participants
who were encouraged to test used statistically significantly less time before
implementing their solutions and, despite being able to develop several con-
cepts and compare them, fixated on the initially chosen and sometimes
inferior performing concept. I suspect that this lack of questioning the
concept results from avoiding the sunk cost of giving up already achieved
progress.

In the following I will propose a method that provides agility for un-
certain development projects to adapt to unexpected design changes that
also nudges the developers towards a behavior that incorporates the above
mentioned advantages and addresses the difficulties.

Assuming the development project to be complex the approach needs
to be guided by prototype testing to react to unforeseen problems (unknown
unknowns or unknown knowns) while at the same time be adaptive when
the complexity of the development changes. The aim is to decrease the un-
certainty as soon as possible during the development. This can be achieved
by prioritizing critical functions, building low resolution prototypes that can
be built quickly and merging these low resolution prototypes of the critical
subsystems early. I suggest to define the critical functions and how they
can be tested to be satisfied before exploring the solution space. These cri-
teria for the critical functions are not design requirements. For example,
some critical functions expected from a Mars rover are to land on Mars and
be functional after landing while defining that it needs to have six wheels
would be a design requirement. This leaves the solution space open for i.e.
deformable tensegrity robots (see contribution 4)

By defining the critical functions first and then exploring the solution
space one ensures that the development is driven by the needed functionality
and not by a preconceived idea of a potential solution. The question becomes
in how many different ways the critical functions can be fulfilled. The fo-
cus here lies on ”how many” and ”critical functions” because it encourages

5.4. Conclusions on how to develop Cyber-Physical Systems 91

exploring and comparing multiple solutions while focusing on developing
the minimum required to satisfy the critical functions to avoid unneces-
sary feature creep. Avoiding optimization beyond the necessary minimum
for gaining the required insights (low resolution prototypes) and the de-
velopment of unnecessary features reduces the sunk cost when abandoning
explored solutions. This has the aim of providing enough time to explore
further concepts and to decrease the risk of design fixation.

Unknown unknowns can emerge when combining multiple subsystems.
To decrease this kind of uncertainty it is important to merge subsolutions to
achieve a system that fulfills the complete set of critical functions as early
as possible. This makes it necessary to quasi-simultaneously find solutions
to different critical functions and doing so with low resolution prototypes
allows the developers find well-working combinations of subsolutions earlier.

Consequently, it is common that the reflection upon the test results
prompts design changes and in larger-scale projects this can influence many
developers or even groups of developers. In these cases a mutual understand-
ing (interlaced knowledge) combined with a bottom-up decision hierarchy
is important for allowing these agile design changes. As shown by the AT-
LAS case, the early merging, testing and justifying enables this interlaced
knowledge necessary for the bottom-up design coordination in large-scale
projects.

Since the aim is to decrease uncertainty as early as possible one should
not only focus on critical functions in general but prioritize those that are
least likely achievable and thus most uncertain. In case these critical func-
tions cannot be fulfilled and the project has to be abandoned it minimizes
the resources spent on meaningless developments.

Another major challenge that arose from the qualitative findings of the
experiment is that the ability to know when and what to test and how
to reflect on the test results has a major impact on the development out-
come. Having to define the critical functions and its tests before starting
the development leads to a conscious choice when to test and to a precon-
ceived expectation of the test outcome and thus it is easier to realize when
the actual test results deviates. By having frequent self-prescribed tests
through the critical functions and focusing on only developing the essentials
the error can be found and isolated sooner. An additional problem specific
to CPS is that errors may not be repeatable due to the non-deterministic
behavior of CPS. In these cases errors need to be found and located by a
single observation. Repeated execution, either of the actual physical system
or by simulation, can give statistical insights to compare different concepts
and where to look for improvements but cannot provide the same direct

92 Mixed-method discussion on the use of a prototype-driven approach in
CPS development

qualitative insights of directly observing a failure qualitatively.
The above described development method is also described in contri-

bution 10.

Chapter 6

Designing and conducting
research on the development
of cyber-physical systems

This chapter will revolve around the second research question:

How can a controlled quantitative experiment for researching early-
stage development of cyber-physical systems be designed and con-
ducted?

The first section of this chapter is on how to enhance internal validity
in a mostly quantitative experiment setup. I will name different threats to
internal validity and give examples how it can be maintained.

The design of the experiment was not planned out in detail from the be-
ginning and emerged from pilot tests. In the second section I will showcase
how the wayfaring approach can also be utilized when designing experi-
ments.

As mentioned in the previous chapter, evaluating the performance of
chaotically behaving mobile autonomous robots requires statistical methods.
In the third section I will describe the rationale and the methods behind
developing the simulation and how it leverages the experimental results.

Last but not least, in the last section I will provide some lessons learned
while designing and executing the experiment, give ideas for further im-
provement and discuss how focusing on internal validity influenced external
validity and the statistical power. What compromise is most beneficial for
research in this field?

93

94 Designing and conducting research on the development of
cyber-physical systems

6.1 Designing a repeatable and internally valid exper-
iment setup

As described in the section on mixed-method research (2.1) internal
validity is important for attributing measured effects to the intentionally
introduced difference between groups of participants (stimulus). Any other
difference between participants may knowingly or unknowingly influence the
dependent variable and unless the influence of the confounding variable is
precisely known the measured difference cannot be attributed to the stim-
ulus. This is especially important for quantitative research as the results
cannot be logically deduced but are only statistically inferred. This is why
anything but the stimulus is kept as constant as possible for every parti-
cipant and the confounding variables that cannot be kept constant need to
measures such that their influence can be statistically be determined.

The following subsections give examples for possible undesired con-
founding variables and how their influence was kept constant in the robot
development experiment or at least measured or minimized.

6.1.1 Participant selection

One source of differences are differences between participants. There-
fore, the aim is to select participants that are presumably as similar as
possible in their properties that have influence on the experiment result.
In the case of the robot development experiment this means that I aim
to find participants with similar programming skills and experiences and
intellectual abilities. Thus, I chose participants from one course at one
university. However, this means that most participants are in their early
twenties, Caucasian and male. If these properties of the participants have an
influence then the results are biased and thus not transferable to developers
with other properties. Although selecting very equal participants makes the
results comparable between participants (internal validity) it makes them
less externally valid.

Using monetary rewards for motivating participants to join the study
is common. However, if the reward is directly given to the participant it
can introduce a selection bias towards participants that are more monetarily
indigent but are otherwise less suitable for the experiment. This monetarily
introduced selection bias can be mediated by not paying out the reward to
the individual participant but to a group that the participants belong to.
In the robot experiment the students from the course were fundraising for
a course trip to Japan and the reward for participating in the experiment
was paid out to the entire group. The individual share of this reward was
therefore small since only some members of the group participated in the

6.1. Designing a repeatable and internally valid experiment setup 95

experiment. This introduces a bias towards intrinsically motivated parti-
cipants and this may very well have an influence on the experiment results
but I argue that this influence is much more equal distributed among the
participants than the influence of a monetary selection bias would be.

6.1.2 Controlling the interaction with the participants

The behaviour of the participants is influenced by instructions. For
the internal validity it is important that the instructions are given and un-
derstood equally for every participant. This means that the instructions
themselves but also how they are presented need to be similar. If the ex-
perimenter gives the instructions directly to the participant the interaction
cannot be controlled and the participant gets an impression of the exper-
imenter that can consciously or unconsciously influence the participant’s
further behaviour. Therefore, the experiment was conducted without direct
human to human interaction between the experimenter and the participant.
Instruction were given by email, on paper, by audio and through screens.

The following paragraphs will give some detailed examples of how this
can be achieved.
Invitation of the participants

One way that the participant can be influenced by the experimenter
prior to the experiment is by already knowing the person or researching
him or her, on for example, social networks. This can be avoided by in-
viting the participant through a middleman that is part of the group the
participants are recruited from. This middle person sends out an invitation
email and a reminder provided by the experimenter at a defined time before
the experiment. The middle person is then responsible for scheduling the
participants into time slots but does not assign the experimental condition.

Since the arriving participants will not be welcomed by a human they
need detailed instructions on how to find the experiment room. The parti-
cipants are also informed before the experiment that there will be no dir-
ect human-human interaction and that the experiment starts automatically
when they enter the experiment room.

It is unavoidable that the participants find out who is responsible for
the experiment when reading the consent form at the beginning of the ex-
periment and then may recognize the experimenter by name or at least find
out the gender.

Conducting the experiment at different times of the day or on specific
weekdays may introduce a bias. For example the participants may have had
an exhausting lecture before and are tired, the weather can influence the
mood or at different times of the year the participants need to spend more

96 Designing and conducting research on the development of
cyber-physical systems

or less time studying for exams. This is why it is important to vary the
experimental condition (in my case testing vs. planning) often and without
a pattern. I alternated the two conditions but paid attention that one group
was not always taking part in the experiment during the morning and vice
versa.
Providing standardized instructions

Ensuring that each participant receives identical instructions without
human-human interaction can be guaranteed by predefining the instruction,
the medium and the timing of delivery. During the experiment the instruc-
tions are provided by prerecorded computer generated voices, positioning
of the cursor on the programming screen, exchange of paper through a slit
that visually conceals the experimenter and text and video on a dedicated
instruction screen.

The majority of instructions are provided through the instruction
screen to the right side of the programming screen. When the participant
enters the programming booth both screens are black and when the par-
ticipant sits down the instruction screen turns on announcing that this is
the instruction screen. The timing of this is manual and controlled by the
experimenter by observing the participant through a camera. The con-
tent is controlled by a semi-automated Power Point presentation. All parts
that are not dependent on the participant’s behaviour or very critical to
be identical for every participant are automated. This includes displaying
timers and describing the robot and the task with an audio-visual sequence.
Other instructions, like those for setting up the evaluations are situationally
triggered by the experimenter following a predefined protocol that adapt to
the participant’s behaviour. When instructions are given while the parti-
cipants are not supposed to work on their solution (i.e. during evaluations)
the programming screen can be turned off.

The oral instructions could be kept identical by recording a human
voice and then playing it back. The computer generated voice is chosen be-
cause it has no meaning inducing tonality and the tonality does not change
between different instructions. It has a very neutral tone to avoid influ-
encing the participant’s mood. The voice instructions are either part of
an automated procedure or situational and triggered by the experimenter
according to a predefined routine. Automated voice instructions are part
of the Power Point presentation used for giving instructions on the instruc-
tion screen. Situational voice instructions follow a if-then protocol. For
example if the participant has not closed the door to the experiment room
when entering the programming booth then a voice instruction will remind
the participant to do so. A special case of situational voice instructions

6.1. Designing a repeatable and internally valid experiment setup 97

are given during debugging. The participant receives immediate help if the
compiler discovers a syntax error while compiling. This requires that the
experimenter pays constant attention to the programming on a duplicated
screen in the experiment control area and has spotted the syntax errors
already before the participant compiles the code. In this case a voice in-
struction specifies the cause of the syntax error and the experimenter uses
the mouse cursor on the programming screen to indicate the position of
the syntax error. For example the experimenter marks the word that has
the spelling mistake or encircles the existing bracket whose counter part is
missing. When the participant asks questions another voice instruction an-
nounces that the participants can only ask questions that can be answered
with yes or no and then the question can be answered with a prerecorded
”yes” or ”no”. Only procedural questions and no questions helping with
finding a solutions are answered.

A problem with using the text to speech software is that some pronun-
ciations sound unnatural and are difficult to understand. This sometimes
limits how an instruction can be formulated and requires reformulation.

Voice instructions are also used during the evaluations. The setup
of the playground is set up by the experimenter to ensure equal conditions
between participants. To avoid human-human interaction the programming
booth is visually separated from the playground area by a sliding door.
While the experimenter sets up the playground the programming screen
is turned off. When the experimenter has prepared the playground a voice
instruction tells the participant to place the robot at the same location where
a paper indicator of the robot was placed on the playground to indicate the
starting position and orientation of the robot. The experimenter can observe
the placement of the robot with a camera live feed. An additional voice
instruction exists in case the participant misplaces the robot or does not
remove the paper indicator underneath the robot. The participant starts
the execution of the program on the robot following a voice instruction
count down. This is necessary to synchronize the time taking with the start
of the robot.

Instructions and information on paper offer the possibility to
provide information that the participant can keep as well as to receive back
well-documented information from the participants. Instructions on paper
include the consent form, questionnaires, the pre-experiment programming
test and the description of the robot and the task for the participant to keep.
The papers are exchanged through a slit in the wall above the programming
screen. The slit is positioned high enough that even if there is a visual gap
to look through the participant could not see the experimenter and on the

98 Designing and conducting research on the development of
cyber-physical systems

Figure 6.1: The state of the programming booth when the participant sits down
for the first time. The aluminium foil is to reflect the ceiling lights for a more
evenly distributed lightning.

6.1. Designing a repeatable and internally valid experiment setup 99

experimenter’s side is a paper sheet that covers the slit but allows to slide
through the instruction papers (see figure 6.1). The timing of the exchange
is predefined and initiated as a response to the participant’s behaviour or
with a voice instruction.
Verifying that instructions are understood correctly

In order to ensure that the instructions lead to the same behaviour
for every participant it is important that the instructions are understood
correctly and similarly.

In the majority of cases the correct understanding is evident from ob-
serving the participant’s behaviour. Common misunderstanding can be
avoided by redesigning clearer instructions or corrected by playing an ad-
ditional voice instruction. In some rare cases it can be more important
to clarify using the experimenter’s own voice even if this compromises the
restriction of direct human-human interaction.

Since it is important that the participants know the procedure for com-
piling their code, loading it onto the robot and executing it, this procedure
is executed with a test code before the programming phase starts. This en-
sures that the participants have correctly understood this crucial procedure.

6.1.3 Automation and ”foolproofing” of the setup and proced-
ures

The experiment is controlled from the experiment control area as it is
shown in figure 6.2. This area is separated from the programming booth
and the playground area with cardboard walls. On the camera screen the
experimenter can see a live video feed of the participant in the programming
booth and a top down view of the playground area. This video feed can also
be recorded for post-experiment analysis. This proved useful for verifying
and reconstructing participant behavior in cases where the recorded data
seemed faulty. In addition, it is useful for getting further qualitative insights
for explaining participant behaviour as well as documenting the performance
of the robot on the playground. Recording videos allows other researcher
to codify the qualitative observations and increase construct validity by
allowing for analysing inter-coder reliability [Cohen 2016].

The situational manually triggered voice instructions are played back
through a loudspeaker controlled by the computer that processes and re-
cords the video feed.

On the duplicated programming screen the experimenter can continu-
ally follow the participant’s code while the participant is programming. This
is necessary to get a qualitative impression of the participants programming
behavior as well as finding syntax errors in the code before the participant

100 Designing and conducting research on the development of
cyber-physical systems

compiles the code in order to give immediate syntax help as described in the
previous subsection. The experimenter also has a keyboard and a mouse to
control the cursor on the programming screen. The keyboard is only needed
while setting up the experiment and the mouse cursor is used to indicate
syntax errors.

The instructions on the instruction screen are controlled from a separate
computer that runs a Power Point presentation. This presentation consists
of manually advanced slides with situation specific information and timers
as well as automatically triggered slides that combine voice and displayed
instructions in a predefined timed sequence.

The experiment control area is the only area with daylight and a heating
unit to ensure a more controlled artificial lighting and uniform temperature
in areas where the participant stays. Also all noise sources such as computers
and the experimenter are located in the experiment control area.

In order to guarantee similar conditions to all participants it is not only
necessary to predefine the content and timing of the interactions but also
ensure that they are executed equally. Checklists and automation are tools
to ensure and document consistent execution and minimize the possibility
for human error and the ability of a biased experimenter to alter the ex-
periment outcome by consciously or unconsciously introducing inconsistent
behavior [Tuyttens et al. 2014, Mynatt et al. 1977].
Arduino keyboard controller and keystroke logger

The Arduino Leonardo (shown in figure 6.3) is connected to the key-
board the participant uses to type code and to the programming PC. By
being in the middle between the participant’s keyboard and the PC it can be
used to manipulate and generate additional keyboard inputs. The Arduino
Leonardo is used to:

1. pass on, record and timestamp the participant’s keystrokes and save
them on an SD memory card

2. restrict the keystroke (F6) for loading code onto the robot while the
participant is not allowed to test it with the robot

3. automatically save the code with an incrementing filename when the
participant loads it onto the robot or each five minutes for planners.
It emulates the keystrokes needed to execute the necessary shortcuts.

4. load the code onto the robot, save it with a corresponding filename for
each evaluation when the experimenter presses a button to advance
to the next evaluation. This is important for keeping the setup time
of evaluations low.

6.1. Designing a repeatable and internally valid experiment setup 101

Figure 6.2: The experiment control area where the experimenter can control and
influence data acquisition, provide instructions and receive feedback and observe
the participant.

Apart from the obvious, namely to record the keystrokes of the parti-
cipants for potentially finding behavioural patterns in this data, the Arduino
helps with simplifying the experiment procedure. It reduces the chance for
human error such as forgotten or ambiguous data capturing and it technic-
ally restricts the participants from behaving in undesired ways.

6.1.4 Controlling for confounding variables - measuring program-
ming experience

Properties that cannot be controlled but that are strongly assumed to
have an effect on the dependent variable need to be quantified because this
allows for statistically analyzing the effect that this confounding variable
has on the dependent variable. Thereby, the effect of the stimulus can
still be quantified independently. It is important though to measure the
confounding variable reliably and ideally in at least three independent ways
to achieve triple modular redundancy. If these measurements agree, the
experimenters can be confident that the measurement is correct and if one
measurement disagrees the average of the two closer measurements can be
used.

In the robot experiment an assumed confounding variable is the pro-
gramming experience of the participants. It is therefore measured in three
different ways (questionnaire, pre-experimental programming test and typ-

102 Designing and conducting research on the development of
cyber-physical systems

Figure 6.3: Keylogger used for capturing and influencing the participant’s key-
strokes.

ing behavior). In this case none of the three measurements agreed. This
means that the three measurements either do not measure the same quant-
ity or are not adequate tools for measuring programming experience. Fur-
thermore, none of the three measurements correlated with the dependent
variable, also either because the measurements were not accurate or be-
cause the alleged confounding variable was not confounding the dependent
variable after all.

6.2 Wayfaring for developing experimental setups
The conventional research approach starts with identifying a gap in

literature, an under-researched area with potential for new discoveries, and
then finding new research questions and matching hypotheses in this re-
search area which are then tested in an experiment setup. The study design
(experiment setup, participants, control variables,independent and depend-
ent variables) is defined along with the data analysis before the data is
collected. Initiatives like the Center for Open Science and its Open Science
Framework [Sullivan et al. 2019, Nosek et al. 2018] provide opportunities
for preregistering studies before data is collected such that the study design
and data analysis cannot be altered based on the results. This decreases the
likelihood of mistakenly reporting spurious findings that emerged by chance.
This is a well-acknowledged approach for confirmatory studies. However,
if research is entirely confirmatory it is limited to discoveries within the
predefined research question and its hypothesis.

6.2. Wayfaring for developing experimental setups 103

The research presented in this thesis followed this approach for the
quantitative results of the final study. However, the earlier preliminary
studies and qualitative research in this thesis was more opportunistic and
exploratory and did not follow this approach.

The initial research question at the beginning of the PhD was inspired
by my personal experiences as part of a product development team in a
complex technical challenge. Updated research questions emerged as results
of wayfaring while conducting research on the current research question.
Wayfaring was not only used for evolving the research question but also to
shape and refine the final experiment setup. From one point onward in time
the research question, hypothesis and experimental setup was locked, the
experiment was executed and the quantitative data was then analysed as
previously defined.

In addition, the qualitative data describing the participant’s behaviors
was collected opportunistically. Therefore, the qualitative data may be
biased by selective observation of the experimenter while the quantitative
data was collected indifferently of any events and thus does not have a
situational dependent observer bias.

However, using wayfaring to design the experimental setup may unin-
tentionally cause inherent biases due to the way the experiment is designed.
This cannot be avoided and may also occur in predefined studies with the
exception that an experiment setup designed using wayfaring may emerge
as more ”tailored” towards a certain result. I argue that this is justifiable as
long as the experiment setup is well documented because then the external
validity of the findings can be related to the experimental setup and under-
stood in this context. Even if the results are influenced by the context, at
least the context is known and the results can be interpreted in this context.

The following subsection describes how the initial research question
arose, and how it developed in the light of the preliminary findings and
gives some examples of how wayfaring influenced the technical side of the
experiment setup. The later subsection will put more focus on how wayfar-
ing was deployed for designing the experiment setup.

6.2.1 The evolution of the research question

As part of doing a PhD at TrollLabs it is clear that the research will
be in the realm of early-stage product development of complex and tangible
technical products. Beyond this framing the topic of the PhD was not
further defined at the start of the PhD.

While being part of an ME310 project I experienced how the inter-
actions between team members in an egalitarian hierarchy influenced the

104 Designing and conducting research on the development of
cyber-physical systems

intrinsic motivation and the outcome of the project. This notion was fur-
ther supported and enhanced during a visit of Malte Jung presenting his
PhD work [Jung 2011], visiting CERN and reading the reports on collab-
orations on the ATLAS detector project at CERN [Türtscher 2008] as well
as the graduation research project of Joanna Pisarczyk [Pisarczyk 2015] on
fablab-like grassroot peer-production communities in the Amersfoort region
in the Netherlands. Malte’s work looked at how group hedonic balance,
which is influenced by the in-group interactions, influences the performance
of engineering teams, the CERN reports mention that justification and a
notion about caring for others in the project influences intrinsic motivation
and cooperation and Joanna Pisarczyk points out the importance of face-
to-face interactions on how and who collaborates in voluntary egalitarian
projects.

This lead to the desire to quantify behaviors between team members
and search for patterns that seem to have an impact on the team’s engin-
eering performance. Possible measures to look at include counting words
indicating justification like ”why”, ”therefore” or ”because”, proximetrics
(who is how close to whom, body orientation, occupation of space), body
posture, gestures, backchanneling, touch and eye contact. Time resolved
quantification of these measures allows not only correlating frequency to
performance outcome but also entrainment between the team members and
comparing the effect sizes of different behaviors.

The main challenges that ultimately lead to giving up this research was
that it is difficult to ground within engineering design research as well as
psychology and it is therefore hard to publish. Another reason is the ex-
tensive scope of the project. Even if all the measurements can be developed
and automated this research would still need a large number of data points
to find statistically significant factors because the behaviors of the team
members cannot be controlled and show a variety of behaviors. This could
be improved by using virtual reality technology like Jeremy Bailenson does
in his research on social interactions to eliminate, or at least reduce, con-
founding variables [Fox et al. 2009]. However, this would severely decrease
the context in which the team members can be studied and thus limit the
external validity and usefulness of the research for engineering teams.

For this reason the next objective was to design an experiment that
addresses a more specific aspect and can be well controlled having only
one independent variable, is grounded within engineering and less extens-
ive. The resulting proposed experiment compares co-located vs. remote
pair programming for solving a complex problem using an autonomous mo-
bile robot. Although with this planned setup it was not possible to study

6.2. Wayfaring for developing experimental setups 105

which behaviors have an influence on the pair-programming performance,
it was designed as a controlled study to see if there is an effect of co-located
personal interactions at all and to quantify its magnitude. For this two
identical programming stations need to be set up and connected to enable
remote pair-programming. In this process I first set up one programming
station to test the programming environment, the instructions, the robot
and the task.

In this context, I developed a series of non-complex tutorial tasks to
teach the participants how to use the robot with the library and bring all
participants to a more even knowledge level. The question arose if a tutorial
with purposely designed flaws in the provided example code will lead to
better understanding and thus to better solutions while solving the complex
task. Participants were invited and divided into groups to test and compare
both approaches. The observations from testing with those participants
were used to refine the setup and thus the results are not gathered under
strictly similar conditions and cannot be compared quantitatively.

The main observation from comparing the two teaching approaches was
that there was a large performance difference between participants but this
difference was unrelated to the experiment condition. Instead I qualitatively
observed that participants who tested their programming solutions with
the robot more frequently and learned from these tests performed better.
The influence of reflecting on test results seemed evidently larger than any
possibly introduced effect caused by the stimulus (introducing flaws into the
tutorial tasks). More information on this setup and the observations can be
found in publication 6.

This qualitatively observed influence of early and frequent testing of
prototypes for learning purposes was the predominant finding from the pre-
studies. Thus, it lead to the final research question on how a prototype-
driven approach can be applied to early-stage development of cyber-physical
systems resulting in the study that is prominently described in this thesis.

6.2.2 The evolution of the task and the robot

The task must fulfill the following criteria:

1. be repeatable under controlled conditions

2. has a dependent variable that is measurable with high resolution

3. be representative for early-stage CPS development

4. be solvable by most participants within the provided time

106 Designing and conducting research on the development of
cyber-physical systems

The first is fulfilled by providing the participants with the same robot,
library and setup of the playground. Since all iterations of the task design
involved removing cubes, the dependent variables are number of removed
cubes and the task completion time.

I want to study the development of uncertain and complex CPS and
the task shall reflect this while still be solvable by most participants be-
cause otherwise not enough comparable data can be acquired. For more
participants to solve the task I can either make the task less complex or
provide a library of functions that takes away tedious and time consuming
coding. For example, instead of setting the output voltages to motors and
using the rotation sensor to program a feedback loop that ensures that the
motor actually achieves the desired rotational speed the participants can
use the provided library function that defines each motor speed directly.
Thereby the participants gain time that they can use on conceptually find-
ing a solution instead of solving technicalities. The aim of the experiment
is not to test the participant’s ability to apply known knowledge.

The initially intended task was to push out all cubes but in a given
order of the colors. This task was incredibly complex, not only because
the robot had to detect the color and reject pushing out the cube if it had
the wrong color, but also because the robot had to verify that the correctly
colored cube was indeed removed from the playground before proceeding
with searching for the next cube. While pilot testing this experiment design
I noticed that many participants did not solve the task even with a more
and more extended and optimized library. This means that I had to make
the task progressively less complex.

The next task design was to remove the blue and green cube but never
the red cube. This task is considerably easier and already more test par-
ticipants solved it but it still had the challenge that the red cube can be
pushed out while being outside of the field of view of any of the sensors or
with the side of the robot when the robot is rotating. Since this task was
still too complex I ended up choosing the task that was eventually used in
the experiment. The drawback is that this task is far more limited in the
number of different concepts that solve the task and thus is far less complex
and less representative for the development of real CPSs.

Also the shape of the cubes was changed after realizing in a test that the
ultrasound sensor is not capable to detect cubes at an angle of 45 degrees,
even if they are place immediately in front of the sensor. As a solution I
tested cylindrical objects but those do not have a sufficiently large cross-
section to be detectable from a distance larger than roughly 40 cm. As a
third and working attempt I used retro reflectors, two wooden boards at

6.2. Wayfaring for developing experimental setups 107

right angles to each other, to always reflect a signal back parallel to the
incoming beam.

Another feature that was rejected after testing was the ”gotoposition”
function in the library that allowed participants to tell the robot to drive to
a specific location and turn into the programmed robot orientation. This
function relied on the rotation sensor in the motors to integrate the driven
path and then calculate the direct path from the current location to the
desired location. The precision of the robot reaching this location decreases
as the robot drives because any measurement error also integrates and in-
creases. The participants expected and relied on consistent accuracy re-
gardless of how far the robot had previously driven and got frustrated if the
robot could not provide this precision consistently. Therefore, I removed
this function from the library.

The Lego Mindstorms color sensor measures reflection of blue, green
and red light and can therefore detect those three colors and I included
functions for detecting these colors in the library. After testing I realize
that even the red cube reflects more green and blue light than the green
and blue cube. Therefore the detection of green and blue cubes is only
possible by first measuring if they reflect some green and blue light and
then eliminate that they are red by checking if the red reflection value is
low. Finding these combination of thresholds to conclude the cube color
caused too much confusion among the test participants that they spend too
much time to understand and thus not having sufficient time for solving the
task. Therefore the green and blue color detection was removed from the
experiment.

As one can see it was not possible to plan ahead the interplay between
robot and physical setup design, library functionality, task design and the
skill of the participants and these parameters had to be tested and adapted
repeatedly. This process very much resembles the wayfaring approach.

6.2.3 Wayfaring for instruction testing

Not only the robot and task design needs to be tested and adapted but
also the semi-automated interaction with the participants. This includes
finding the correct timing for the instructions, adding missing instructions
and testing if the instructions are understandable.

The computer generated voice has an unnatural pronunciation that
sometimes makes understanding the voice difficult. In these cases the in-
struction needs to reformulated differently. More commonly an instruction
is missing. The behavior of the participants is difficult to predict and there-
fore special situational instruction are necessary. An example for this was

108 Designing and conducting research on the development of
cyber-physical systems

that a test participant sat down in the programming booth without closing
the door to the experiment room. As a consequence I had to generate a
voice instruction that reminds the participants to close the door.

Another good example of unpredictable participant behavior is when
a test participant used his own chalk to take notes on the blackboard that
was hanging on the wall after I had already removed the existing chalk to
avoid this.

6.2.4 Resolution of the measurement

Initially I assumed that almost all participants would solve the task
already before the first evaluation and that the task completion time is
a good smooth metric to measure the performance. As this was not the
case also the number of removed cubes was introduced as as performance
measure. Difficulties partly resulted from an unexpected degree of non-
deterministic behavior of the robot. This weakens the findings when based
only on the result from a single evaluation. It can be overcome by a determ-
inistic simulation which can run the solution numerous times and thereby
enable statistics. Needing statistics and the simulation was thus not anti-
cipated and is an example for an unknown unknown.

6.3 Leveraging quantitative results with a simulation
While designing the robot and the task I assumed that the robot beha-

vior is, if not fully deterministic, at least sufficiently consistent that a single
execution of the code is enough to evaluate the performance of the solution.
While this may be the case for simple well-designed solutions, for intricate
solutions the performances differed greatly between evaluations and are in-
fluenced severely by small perturbations in the setup. This made it evident
that the manually recorded results during the experiment cannot provide a
realistic performance assessment by themselves and a statistical method was
required to differentiate the performance of different solutions. Although it
is theoretically possible to do this assessment with numerous runs manu-
ally with the physical robot it is firstly very time consuming and tedious.
Secondly it is difficult to maintain similar conditions for every evaluation. A
detailed description of the development and validation process can be found
in contribution 7.

6.3.1 The benefits of using a simulation to leverage results of a
human subjects robot programming experiment

The simulation is deterministic, meaning that if rerun under the same
conditions the results will be exactly equal. This is important because then
the start conditions can be kept equal for testing every solution and thus the

6.3. Leveraging quantitative results with a simulation 109

simulation provides the possibility to compare the solution fairly under the
same circumstances and thus with higher internal validity. The physical ro-
bot for example is subject to battery drainage, inconsistent levels of friction
due to wear and tear and inaccuracy in the initial placement of the cubes
and the robot and thus a manual evaluation with the physical robot can-
not guarantee similar conditions. Achieving this would require frequently
exchange of the batteries, calibrating the driving speed and multiple execu-
tions of the robot from one starting configuration to minimize the statistical
error of inaccurate robot and cube placement. Since the simulation is de-
terministic it only needs one run per starting position. Not only can the
simulation run faster and automated, it also requires no repeated runs from
a starting position to gather useful data.

Thus, with the simulation the experiment can be evaluated within a
day instead of months and from a larger variety of starting positions. This
increases internal validity because more starting positions reduce the risk of
favouring certain solutions by chance.

An additional benefit is that the simulation can purposefully and in a
controlled manner introduce perturbation to for example starting positions,
motor speeds or sensor readings and evaluate the robustness of the solution
to these perturbations. This would evaluate how accurately the performance
of the solution for each run can be predicted. This was not the criterion
for evaluating the performance in this experiment but it may very well be
a meaningful criterion to look at when evaluating the performance in other
settings.

6.3.2 The development of the simulation

The development of the simulation was unique in the sense that usually
a simulation exists before the physical robot is constructed and it is used to
predict the behavior of the physical robot before it is physically implemen-
ted. In this case the physical robot was developed and refined using physical
tests and constructed without a prior simulation and then the simulation
was developed to reproduce the behavior of the physical robot as accurately
as possible.

As input to the simulation the measurements of the environment and
from the robot data sheet are used and each property is modelled separ-
ately (i.e. driving speed, angular speed when turning, sensor values, ...).
When the simulated behavior did not match the actual behavior of the
physical robot firstly the digital representation was made more accurate
and only as a last resort heuristic correction were introduced. For example
did the simulated ultrasound sensor show too short distances to the cubes

110 Designing and conducting research on the development of
cyber-physical systems

when the cubes were simply modelled as squares. After implementing the
retro-reflector configuration and using ray casting to emulate the ultrasound
beam the simulated ultrasound distance was accurate. On the other hand,
the simulated color reflection sensor values were too small for short distances
between the sensors and the cubes even when using the ray casting method.
Although digitally adding an additional reflecting circle around the center of
the cube does not represent the geometry of the physical setup, adding this
artefact made the simulated color sensors accurate. This method is accept-
able since the aim of the simulation is not to model the real world in order
to explain the occurring phenomena (like for example atomic simulations
in theoretical physics) but to reproduce the robot behavior as accurately as
possible such that it is useful for evaluating the robot performance. The
simulation is written with C sharp in Unity, a game development software
that includes a physics engine that simulates the physics interaction between
the robot and the cubes. The simulation uses a two dimensional top-down
view because the third dimension is not necessary for describing the phys-
ical setup. The participant codes can be entered into the simulation after
syntactic adaptation.

6.3.3 Validation

The aim of the simulation is to provide a tool for evaluating the solu-
tions written for the physical robot in an exact, repeatable and timely man-
ner. We know that the simulation can evaluate the solutions quickly and
repeatedly (deterministic) but it also needs to be an accurate representa-
tion of the physical robot behavior. This needs to be validated before the
simulation can be used as an evaluation tool.

The validation is done in three ways: Firstly, by comparing each prop-
erty individually. This is already done as described above during the devel-
opment. Secondly, by qualitatively comparing the robot behaviors. Does
the robot interact with the cubes in a similar way and is the simulated tra-
jectory qualitatively indistinguishable from a set of observed trajectories of
the physical robot under similar starting configurations?

The last, and for the performance evaluation most critical litmus test
is if the simulated performance matches the manually recorded performance
statistically. For this example codes are both repeatedly executed on the
physical robot and simulated and the means of the performance measures
are compared. Three example codes are used. They are selected such that
they cover a wide spectrum of the functionalities and are representative of
the solutions developed by the experiment participants. From the three
example codes two used the ultrasound sensor for cube detection and the

6.3. Leveraging quantitative results with a simulation 111

other solution used the blink light beacons. All three solutions solved the
task reliably.

Before it is possible to judge if the simulated results are representative
for the physical robot’s performance it is necessary to know how precisely
the performance of the physical robot can be determined. The variance in
performance of the physical robot is the limit to how precise the simulated
performance can match. For this the three solutions were repeatedly ex-
ecuted with the physical robot from the same starting configuration each
time to gather statistics on the relative variance of the task completion time
between reruns. To ensure that the chosen starting configuration was not
biased this procedure was repeated from two additional starting configura-
tions.

For the actual comparison between the physical robot performance and
the simulated performance the physical robot is executed once with each
example solution from 20 different starting positions. The same 20 starting
positions are then programmed into the simulation and executed as well.
The result shows that the simulated task completion times are between
70 and 78 percent of the manually recorded task completion times of the
physical robot. Although the simulated times do not match the manually
recorded times the relative difference between the solutions is sufficiently
similar regardless if determined manually or by simulation and the relative
variance of the differences between the solutions is smaller than the variances
determined as described previously for the repeated reruns of the physical
robot from the same starting position. The relative inaccuracy of the simu-
lation is thus smaller than the inaccuracy caused by the non-deterministic
behavior of the physical robot which is the limit of how precisely the simula-
tion can be validated. For the comparison of performance as it is needed in
the experiment the relative comparison between solutions is sufficient and
thus the simulation can be used for this.

Lastly, it was verified that the 20 starting positions for the manual
recorded task completion times were unbiased by comparing their average
result to the average result of the simulation from 99 randomly chosen start-
ing positions. An interesting question is how small performance differences
between solutions can be resolved with statistical significance. It turns out
that a 2 percent slower solution can be distinguished. This was done by
comparing a solution to the same solution with 2 percent reduced motor
speed. This resolution is more precise than the variance caused by the
non-deterministic behavior of the physical robot and hence this remains the
limiting resolution factor.

112 Designing and conducting research on the development of
cyber-physical systems

6.3.4 The simulation as part of a well-defined experiment setup

When replicating the robot experiment setup to reproduce the study
described in the previous chapters it is important that the conditions are
as similar as possible to the original study. The simulation can be executed
by other researchers under equal conditions and thus produces comparable
results. This cannot be guaranteed if the evaluation is done manually be-
cause small differences in the physical setup can easily occur and influence
the evaluation of the solutions.

6.4 Lessons learned from the robot experiment
In this section I summarize aspects and details of the experiment that

worked out optimally as well as of those that, in hindsight, could have been
improved upon.

6.4.1 Timing of surveys

Surveys are a useful way of collecting data, however, they appeared
to be annoying for some participants, take time and take mental capacity
away from the rest of the experiment. They interrupt the experiment flow
and therefore no written questionnaires were used during the programming
phase but either in the beginning or at the end.

The programming experience questionnaire had to be placed at the be-
ginning of the experiment in order to avoid that the participant’s judgement
is influenced by the programming used in the pre-experiment programming
test.

Whereas it proved beneficial to collect all questions that cannot be
influenced by what happened previously in the post experiment question-
naire. Thereby, asking for this data may annoy the participant but this
cannot alter the experiment results anymore.

6.4.2 Selecting participants for pilot studies

As mentioned before, it is very difficult, if not impossible, to design a
human-subject experiment without testing the study setup and adapting it
to unforeseen problems. In the end I used roughly as many participants
for testing different iterations of the experiment setup as participants used
for the actual study. In order to collect internally valid data it is necessary
to not make any changes while collecting the data that is used to derive
quantitative, comparative conclusions. Therefore, the study design needs
to be thoroughly tested in pilot studies and the question arises whom to use
as pilot participants.

On the one hand, one wants to test with participants that are as similar

6.4. Lessons learned from the robot experiment 113

as possible to the final participants but at the same time it is often difficult
to find sufficiently many suitable participants for the final study and the
same person cannot participate twice. It can therefore be meaningful to
use pilot participants that could not be part of the final study anyway to
have more available final participants. Another consideration for choosing
pilot participants is what you can learn from them. This includes the use-
fulness of the feedback they can give as well as their abilities. In my case I
early on used pilot participants that had experience with designing human-
subject experiments themselves in order to get a well-qualified feedback on
the general study design from a scientific point of view. Their feedback was
useful for determining what research question and which hypothesis are in-
teresting and valid, how they can be tested, what confounding variables to
pay attention to and learning from the experiences they had made in their
studies.

After having determined the purpose and principle objective of the
experiment, I used pilot participants with a background in programming to
better design the task and the library as well as to experience unexpected
behaviors to adapt and add instructions. I recruited these pilot participants
from students who took the mechatronics course and from the same study
program as the participants for the final study but from one year higher. I
also included extreme cases like professional programmers with several years
of working experience.

During the last tests before the final study I used some participants from
the pool of suitable participants for the final study because I judged that
it is more important to have a well-calibrated experiment setup that works
with the target group and loose some potential participants than executing
the study with a task that is either too easy or too difficult and then in the
end provides less useful data because the performance data is saturated.
The pilot participants received a cinema ticket as a sign of appreciation.

I noticed that pilot participants that have an emotional connection to
the experimenter and study designer, like friends and colleagues, are more
engaged with testing the experiment and give much more, critical and thus
useful feedback and suggestions for improvement. They tend to spend more
mental capacity and time helping and can also more easily be contacted
again and asked for their opinion after having made changes to the setup.
This proved very useful especially during earlier stages of the study design.

This stepwise approach - first pilot participants experienced in human
studies, then those with good programming experience, then those at the
level of the final experiment - proved to be very successful to define the
design and all details of the final experiment and ensures its validity.

114 Designing and conducting research on the development of
cyber-physical systems

6.4.3 Using a robot with an existing and well-validated simula-
tion

The Lego Mindstorms robot and the library used in the experiment
were deliberately designed for the task and adapted and tailored to the
needs of the experiment. Building the robot from the ground up meant a
large degree of freedom and flexibility but also consumed a large amount of
time, especially building and verifying the simulation.

This time could have been reduced by adapting an existing mobile
autonomous robot with an approved, well-established and verified simula-
tion. Even if the self-built robot executed equally repeatable as an exist-
ing and established robot and the simulation was equally accurate, well-
calibrated and verified the self-built robot and simulation requires extens-
ive description for making the system replicateable for other researchers.
Moreover it makes it more difficult to publish the robot and simulation
design than referencing a well-known and acknowledged robot-simulation
combination.

If I was to design such an experiment again I would rely more on an
existing robot-simulation combination.

6.4.4 Trade-off between internal and external validity

When designing the robot experiment the main priority was a high
internal validity while still maintaining external validity. However, this often
comes as a trade-off between the two. To answer the research question to
which degree early prototyping increases the development performance the
task needed to have a quantifiable performance metric. In addition, it had to
be solvable within the given time frame. This limits the task design that is
aimed to represent complex nature of developing mobile autonomous robots.
In the real world the development is much more complex than finding and
pushing objects outside a rectangular area. In this sense, designing a task
that is solvable under controlled conditions, which is necessary for internal
validity, restricts the external validity because it limits the answer to the
constrains set in the experiment and, thus, weakens the conclusions that
can be drawn from the results.

The same argument applies to the selection of participants - the very
homogeneous group of participants (early twenty year old Norwegian males
in the middle of their cybernetics studies). They may be not representat-
ive in all aspects for other groups of programmers, e.g. professionals and
thereby limit the external validity. In case of reproducing the experiment
this selection of participants makes the results between experimental con-
ditions internally comparable but limits the applicability of the finding to

6.4. Lessons learned from the robot experiment 115

developers that are very similar to the study participants.
Making the experiment internally valid was time consuming both in

terms of time needed to design the experiment (setting up the program-
ming booth, designing and testing automated instructions, developing the
simulation) as well as time consuming while the participant is present (mul-
tiple experience measurements, setting up evaluations following automated
instructions, answering questionnaires and tests).

The long experiment duration meant that it was challenging to find
many participants. A study with more participants could have been more
statistically powerful and thus may have provided a higher resolution for
determining effect size.

Another trade-off between internal and external validity arises in terms
of team work and cooperation. Most development projects are conducted in
teams and for higher external validity the experiment could have been con-
ducted with several participants developing in cooperation simultaneously.
I deliberately chose to conduct the experiment with individual developers
for two reasons. In teams of two pair-programming developers the human-
human interaction needed for cooperation introduces a difficult to control
or measure confounding variable that would significantly decrease internal
validity and the amount of data points halves. Finding sufficiently many
suitable participants was a limiting factor.

Having a well-defined and documented experiment setup provides other
researchers with detailed information to quickly replicate the experiment
setup with less effort. They can either re-run the experiment with very
similar participants in order to check if the findings are reproducible and
thereby increase internal validity or with participants with different back-
grounds to check if the findings also apply in different contexts and extend
the applicability of the findings. Thus, providing a detailed description of a
well-defined setup with a naturally highly restricted external validity may
overcome these limitations by making it easier to rerun the experiment in
new contexts and thereby extend external validity. Another example of a
well-defined experiment setup that can enhance external validity through
enabling other researchers to run the experiment in different contexts is de-
scribed in contribution one [Kriesi, Steinert, Aalto-Setaelae et al. 2015]. In
this case, the experiment was performed in several different laboratories, i.e.
in different locations and even different countries. The equipment needed for
the experiment was distributed together with precise descriptions on how to
conduct the experiment so that a third party could execute the experiment
unambiguously. If the hypothesis of the experiment can be concealed to the
executing experimenter such a distributed experiment can thereby become

116 Designing and conducting research on the development of
cyber-physical systems

a double-blind setup.
The pros and cons of predefined interactions

Useful tools for internal validity are predefined interactions as they cre-
ate similar conditions for all participants. But the downside is that the
experiment executions becomes rigid and less able to react to unforeseen
events. Furthermore, predefining reasonable interactions needs extensive
pilot studies and is therefore time consuming in the experiment devel-
opment phase.Despite comprehensive preparations there were unexpected
events during the robot experiment, such as the participant that brought
his personal chalk to write on the blackboard (see 6.2.3), people knocking
on the door and entering the experiment room unexpectedly, unpredictable
participant behavior or rare failures of the robot that require context ad-
apted interactions. These events are so rare and context dependent that
a suitable instruction cannot be predefined. Thus, predefined interactions
can enhance internal validity in the absense of these unexpected events but
in return make experiment design more time consuming and execution less
able to react to unforeseen events.
Does the anonymous observation influence the participant behavior?

Although avoiding direct human-human interaction between the par-
ticipants and the experimenter increases internal validity it is unclear if
this in itself effects the outcome of the experiment. The Hawthorne effect
describes the change in participant behavior due to being observed in the
experiment [Parsons 1974, McCambridge et al. 2014]. The question arises
how does this change if the experiment is conducted without direct human-
human interaction. Some participants reported the experience as ”weird”
when asked after the experiment but also that they quickly got used to it
and were not thinking about it anymore. Anonymous observation decrease
external validity because in most work environments the interactions are
not automated and the work is not monitored by an unknown and hidden
observer. As the participants of the robot experiment got quickly used to
these conditions and felt only slightly deranged the effect is estimated to be
minor and the profit of increased internal validity outweighs this drawback.
This evaluation is based on qualitative observations and post experiment
interviews. Further research is needed into this direction.
When is it meaningful to optimize for internal validity?

In a retrospective view on the study design it can be said that the
experiment indeed has a high degree of internal validity which by itself
is an important property especially of quantitative experiments where the
explanatory power inherently comes from inductive reasoning. However,
the research might have been more efficient and meaningful if more focus

6.4. Lessons learned from the robot experiment 117

would have been on gathering results from more participants and potentially
conducting multiple consecutive experiments with less internal validity but
also with less effort for each study.

Collecting data with a larger number of participants who are less equal
introduces confounding variables and may increase the standard deviation
of the dependent variable and thus decrease the statistical power but may
nonetheless be useful. The participants have to be randomly assigned to
the experimental conditions so that the introduced confounding variables
contribute equally to both experimental conditions and the effect averages
out. If the effect of introducing confounding variables, and thus adding
more deviations between the participants, is less significant than the gain
in statistical power due to the larger number of data points then it may be
beneficial to use a larger set of less equal participants. Another benefit is
that the result then becomes more externally valid.

The hypothesis of the robot experiment (testing vs. planning) resulted
from observations and pattern seeking during a pilot study and thus the re-
search was rather exploratory than aimed at confirming a well-established,
previously researched hypothesis. Therefore I now assume in hindsight that
more insight would have been generated in the same time with several sim-
pler, faster and less internally valid experiment setups using a larger number
of participants. The used approach using the highly internally valid exper-
iment design was to a certain extent inadequate for the partly explorative
research.

6.4.5 Discussion on using wayfaring for developing highly con-
trolled experiments

Is wayfaring a useful approach for developing highly controlled human-
subjects experiments? Yes and no! Yes in the sense that I believe that
constructing the robot experiment the way it was done required the dis-
covery of many unknown unknowns and reacting opportunistically to these
unexpected incidents. Testing was especially needed for exploring possible
participant behaviors and how to deal with them and it was crucial for
designing an automated experiment sequence.

Setting up research questions and hypothesis while wayfaring and ad-
apting the experiment setup based on observations of pilot studies bears
the danger of unknowingly introducing or enhancing a bias that is then
confirmed in the final study. The wayfaring approach may therefore lead to
a Feyerabend-like attitude of ”anything goes” [Feyerabend 1993] that may
be suitable for exploratory studies. In the robot experiment case I selected
the stimulus of testing versus planning after observing that testing proto-

118 Designing and conducting research on the development of
cyber-physical systems

types early seemed to make subjectively observed difference. I did not use
this pilot data that indicated the importance of early testing for the final
conclusion but it may be that the experiment setup I used is inherently
sensitive to early testing and thus not representative and externally valid in
this regard. In this particular case I can conclude from the final results that
there was no strong bias since the results did not support the hypothesis
that early testing of prototypes makes a statistically significant difference
but in general this danger of introducing a bias through using wayfaring
must be considered.

If wayfaring is applied for finding patterns and generating hypothesis
then the study has to be exploratory whereas the hypothesis of a confirm-
atory study needs to be planned and stipulated with the aim of falsifying
the hypothesis [Popper 1935]. Wayfaring in this case is useful to fine-tune
the interaction with the participant but not for adapting the hypothesis. In
summary, wayfaring is useful for exploratory studies and for developing the
automated interaction with participants but not the general study design
in confirmatory studies.

6.5 Thoughts on the future - a fully automated ex-
periment setup?

The robot experiment showcases how confirmatory studies could mean-
ingfully use automated participant interaction. In confirmatory studies it is
applicable and especially useful because the anticipated observable pattern
is already known but one wants to eliminate as many confounding variables
as possible to become more certain that the introduced stimulus caused the
observed effect.

An experiment setup that is entirely automated is effectively a double-
blind setup because even though the experiment designer knows the ex-
perimental condition that the participant takes part in, the experimenter
cannot alter the ongoing experiment in any way. Since data capture is then
also automated the collected data and data format is known and the data
analysis can also be predefined and automated. The experiment can then
only be biased in the setup itself.

Not only is developing a fully automated experiment setup incredibly
time consuming, it also comes with some other problems that need to be
further researched. Firstly, although it may become possible to give fully
automated instructions, there needs to be a much better understanding
of how these instructions are perceived and understood by the participant.
Secondly, it is not well researched how such automated instructions and data
capturing influence the participant’s behavior and may lead to an altered

6.5. Thoughts on the future - a fully automated experiment setup? 119

Hawthorne effect.
On the other hand a fully automated experiment setup is by definition

well-defined. The experiment setup needs to be unambiguously documented
and can therefore also be unambiguously setup at a different time or loca-
tion. This can allow for distributed experiments like the one in contribution
one [Kriesi, Steinert, Aalto-Setaelae et al. 2015], which in return means
that participants can be recruited at many different locations and thus in
larger numbers. Potentially even the time effort for conducting the experi-
ment is minimal if no experimenter needs to be present for conducting the
experiment.

120 Designing and conducting research on the development of
cyber-physical systems

Chapter 7

Summary

This thesis presents research in the realm of early-stage product develop-
ment of cyber-physical systems. It includes research that looks at how
to use a prototype-driven development approach to better develop cyber-
physical systems and also research on a meta level about how to conduct
such research. The research on the development approach answers the first
research question and is based on case studies and a quantitative human
subject experiment. It leads to normative recommendations that are useful
to developers. The meta level research reviews the design and execution
of the same quantitative human subject experiment from a researchers per-
spective leading to insights on how to design and carry out such experiments
and answers research question two.

RQ1: How can a prototype-driven approach be applied to the early-stage
development of cyber-physical systems and when is it appropriate to use
this approach?
Prototype-driven development approaches use prototyping iterations to ad-
vance the design. Testing of the prototypes provides the insights to abduct-
ively reason how to change the design in the next iteration. This leads to a
wayfaring-like design process that cannot be planned and hence the design
evolution can only be explained in hindsight. This helps in discovering
and responding to unforeseen problems (unknown unknowns and unknown
knowns) quickly and as soon as possible. From one case study it becomes
evident that parallel prototyping of different disciplines and domains is ne-
cessary to discover unforeseen interdependencies earlier. The other case
study of the development of the ATLAS detector at CERN shows that a
wayfaring-like prototype-driven approach can also work in large-scale pro-
jects where it is impossible for a single person or a small group to oversee

121

122 Summary

the entire project. For this a high degree of design justification through for
example prototype testing creates interlaced knowledge between domains
which was used to coordinate design decisions in a decentralized bottom-
up approach. Testing prototypes then does not only provide insights for
further designs but serves also as means of design justification in large-
scale projects. From the case studies one can qualitatively observe and
assume that early testing of prototyping is essential and leads to better
performing solutions. The quantitative human subject experiment studies
the influence of early testing of prototypes on the performance outcome of
the development of a mobile autonomous robot. The experiment does not
quantitatively confirm a statistically significant influence of early testing on
performance. This is mainly due to large individual differences between
the participants. From qualitative observations during the experiment I
observed large behavioral differences between the participants. Most influ-
ential are differences in debugging and error finding behavior and the ability
to reflect on observations while testing the prototypes. Mobile autonomous
robots, although programmed with a determinsitc code, nonetheless behave
non-deterministic due to the interaction with the environment. Correlating
the observed robot behavior with the context of the environment and the
code in real time seemed to be a major difficulty for many experiment par-
ticipants. The ability to reflect depends on the individual reflection skill as
well as on the coding, debugging and testing behavior.

From the mixed-method analysis, I can recommend early testing of pro-
totypes in complex cyber-physical systems development. However, an un-
reflected and enforced early testing of prototypes does not necessarily lead
to better results and can also bring disadvantages. These are for instance
confusing patchwork-like solutions that are difficult to reflect upon and fix-
ation on premature concept choices due to the sunk cost effect. Meaningful
selection of what kind of prototypes to build depends on the complexity
of the project and individual preferences of the developers. Making good
choices for what, when and how to build and test is not trivial.

RQ2: How can a controlled quantitative experiment for researching
early-stage development of cyber-physical systems be designed and con-
ducted?
The second research question is answered through a meta-level reflection of
the quantitative robot experiment. In quantitative experiments insights are
generated from statistical inference by introducing one stimulus and quan-
tifying the dependent variable. This is important to ensure the internal
validity that any observed effect can only be contributed to the intention-

123

ally introduced stimulus - confounding variables need to be avoided or at
least controlled. I present many examples and some lessons learned on how
internal validity can be improved in such quantitative human-subject de-
velopment methodology experiments. Possible confounding variables that
are addressed are individual differences between participants, direct human-
human interaction between the experimenter and the participant, inconsist-
ent presentation and understanding of instructions, imprecise rules for con-
ducting the experiment and in the case of the robot experiment technical
uncertainties with the robot. For these issues I presented an uncommon
participation reward and invitation scheme, measures to avoid confounding
direct human-human interactions and ways of ”fool proofing” the execution
of the experiment to minimize errors in conducting the experiment.

The presented setup shows possible steps towards a setup where the
experimenter is aware of the experimental condition but the experiment
execution becomes so well-defined and automated that the experiment be-
comes effectively a double-blind setup because the experimenter has little
to no possibility to influence the experiment. This may however pose chal-
lenges to the external validity of the study due to added limitations caused
by controlling the setup beyond externally realistic contexts.

As a development approach for designing the experiment I used the
wayfaring approach to iteratively design and improve the study design. I
present the design journey and explain why using this approach is useful for
designing explorative studies and for developing the automated interactions
with the participants and why, on the other hand, it has limitations for the
design of very controlled confirmatory study designs.

The results answering the second research question can be seen as
inspiration for researchers in development methodology research for their
study designs by studying the lessons learned and taking over useful ideas.

124 Summary

Bibliography

Abad, Zahra Shakeri Hossein and Guenther Ruhe (Aug. 2015). “Using real
options to manage Technical Debt in Requirements Engineering”. In:
2015 IEEE 23rd International Requirements Engineering Conference
(RE). 2015 IEEE 23rd International Requirements Engineering Con-
ference (RE). ISSN: 2332-6441, pp. 230–235. doi: 10.1109/RE.2015.
7320428.

Arkes, Hal R and Catherine Blumer (1st Feb. 1985). “The psychology of
sunk cost”. In: Organizational Behavior and Human Decision Processes
35.1, pp. 124–140. issn: 0749-5978. doi: 10.1016/0749-5978(85)90049-
4.

Baldwin, Carliss Young and Kim B. Clark (2000). Design Rules: The power
of modularity. MIT Press. 508 pp. isbn: 978-0-262-02466-2.

Blessing, Lucienne TM and Amaresh Chakrabarti (2009). DRM: A design
reseach methodology. Springer.

Blindheim, Jørgen (2019). “On Solid-State Deposition of Metal Structures:
Conceptualization of a New Additive Manufacturing Method based on
Hybrid Metal Extrusion & Bonding”. doctoral thesis. Trondheim, Nor-
way: Norwegian University of Science and Technology.

Boehm, Barry (2000). “Requirements that handle IKIWISI, COTS, and
rapid change”. In: Computer 33.7, pp. 99–102.

Brede, Jostein Rødseth et al. (2019). “Resuscitative endovascular balloon
occlusion of the aorta (REBOA) in non-traumatic out-of-hospital car-
diac arrest: evaluation of an educational programme”. In: BMJ open
9.5, e027980.

Burks, Arthur W (1946). “Peirce’s theory of abduction”. In: Philosophy of
science 13.4, pp. 301–306.

125

126 BIBLIOGRAPHY

Cetina, Karin Knorr (2009). Epistemic cultures: How the sciences make
knowledge. Harvard University Press.

Cohen, Jacob (2nd July 2016). “A Coefficient of Agreement for Nominal
Scales:” in: Educational and Psychological Measurement. doi: 10.1177/
001316446002000104.

Cooper, Robert G. (May 1990). “Stage-gate systems: A new tool for man-
aging new products”. In: Business Horizons 33.3, pp. 44–54. issn:
00076813. doi: 10.1016/0007-6813(90)90040-I.

Craig, Adam et al. (June 2015). See. Feel. Trust Your Autonomous Car.
Stanford University, p. 167.

Creswell, John W. and Vicki L. Plano Clark (2007). Designing and Con-
ducting Mixed Methods Research. 1st ed. THousand Oaks, California:
SAGE Publications. 275 pp. isbn: 1-4129-2791-9.

Edelman, Jonathan et al. (2012). “Understanding radical breaks”. In:Design
Thinking Research. Springer, pp. 31–51.

Eisenhardt, Kathleen M. (1st Oct. 1989). “Building Theories from Case
Study Research”. In: The Academy of Management Review 14.4, pp. 532–
550. issn: 0363-7425. doi: 10.2307/258557.

Eppinger, Steven and Karl Ulrich (2011). Product Design and Development.
5th. McGraw-Hill Education. 432 pp. isbn: 978-0-07-340477-6.

Feyerabend, Paul (1993). Against method. 3rd ed. Verso.
Fox, Jesse, Dylan Arena and Jeremy N Bailenson (2009). “Virtual reality: A

survival guide for the social scientist”. In: Journal of Media Psychology
21.3, pp. 95–113.

Herstatt, Cornelius, Christoph Stockstrom et al. (1st Mar. 2006). “”fuzzy
front end” practices in innovating japanese companies”. In: Interna-
tional Journal of Innovation and Technology Management 03.1, pp. 43–
60. issn: 0219-8770. doi: 10.1142/S0219877006000703.

Herstatt, Cornelius and Birgit Verworn (2004). “The ‘Fuzzy Front End’ of
Innovation”. In: Bringing Technology and Innovation into the Board-
room: Strategy, Innovation and Competences for Business Value. Lon-
don: Palgrave Macmillan UK, pp. 347–372. isbn: 978-0-230-51277-1.
doi: 10.1057/9780230512771_16.

Ingold, Tim (2008). Bringing Things to Life: Creative Entanglements in a
World of Materials (Part 5). url: https://www.youtube.com/watch?v=
VYT-7_qlURw.

— (2016). Lines: a brief history. Routledge.
Jensen, Matilde Bisballe, Christer Westum Elverum and Martin Steinert

(2017). “Eliciting unknown unknowns with prototypes: Introducing pro-
totrials and prototrial-driven cultures”. In: 1-31. Accepted: 2018-03-

BIBLIOGRAPHY 127

22T08:56:58Z Publisher: Elsevier. issn: 0142-694X. doi: 10.1016/j.
destud.2016.12.002.

Jung, Malte Friedrich (Aug. 2011). “Engineering Team Performance and
Emotion: Affective Interaction Dynamics as Indicators of Design Team
Performance”. Dissertation. Department of Mechanical Engineering at
Stanford University.

Kahnemann, Daniel (2011). Thinking fast and slow.
Khaitan, Siddhartha Kumar and James D. McCalley (June 2015). “Design

Techniques and Applications of Cyberphysical Systems: A Survey”. In:
IEEE Systems Journal 9.2, pp. 350–365. issn: 2373-7816. doi: 10.1109/
JSYST.2014.2322503.

Kriesi, Carlo (2018). “Wayfaring in the Biomedical Sector: A Call for Re-
Introducing the Toolmaker”. doctoral thesis. Trondheim, Norway: Nor-
wegian University of Science and Technology.

Kriesi, Carlo, Jørgen Blindheim et al. (1st Jan. 2016). “Creating Dynamic
Requirements through Iteratively Prototyping Critical Functionalities”.
In: Procedia CIRP. 26th CIRP Design Conference 50, pp. 790–795. issn:
2212-8271. doi: 10.1016/j.procir.2016.04.122.

Kriesi, Carlo, Martin Steinert, Laura Aalto-Setaelae et al. (2015). “Distrib-
uted Experiments in Design Sciences, a Next Step in Design Observa-
tion Studies?” The Design Society - a worldwide community. In: ISBN:
9781904670650 ISSN: 2220-4334 Library Catalog: www.designsociety.org
Pages: 319-328.

Kriesi, Carlo, Martin Steinert, Anastasios Marmaras et al. (2019). “Integ-
rated Flow Chamber Device for Live Cell Microscopy”. In: Frontiers in
bioengineering and biotechnology 7, p. 91.

Leikanger, Kittil Kittilsen, Stephanie Balters, Martin Steinert et al. (2016).
“Introducing the wayfaring approach for the development of human
experiments in interaction design and engineering design science”. In:
DS 84: Proceedings of the DESIGN 2016 14th International Design
Conference, pp. 1751–1762.

Lipset, Seymour Martin, Martin A Trow and James Samuel Coleman (1956).
Union democracy: The internal politics of the International Typograph-
ical Union. Vol. 296. Free Press.

McCambridge, Jim, John Witton and Diana R. Elbourne (1st Mar. 2014).
“Systematic review of the Hawthorne effect: New concepts are needed to
study research participation effects”. In: Journal of Clinical Epidemi-
ology 67.3, pp. 267–277. issn: 0895-4356. doi: 10.1016/j.jclinepi.
2013.08.015.

128 BIBLIOGRAPHY

Misty West - about webpage (2019). url: https://www.mistywest.com/

about/.
Mynatt, Clifford R., Michael E. Doherty and Ryan D. Tweney (1st Feb.

1977). “Confirmation Bias in a Simulated Research Environment: An
Experimental Study of Scientific Inference”. In: Quarterly Journal of
Experimental Psychology 29.1, pp. 85–95. issn: 0033-555X. doi: 10.

1080/00335557743000053.
Nehmzow, Ulrich and Keith Walker (Dec. 2003). “The Behaviour of a Mo-

bile Robot Is Chaotic”. In: The Interdisciplinary Journal of Artificial
Intelligence and the Simulation of Behaviour 1.4, pp. 373–388.

Niedziela, Kornel et al. (Dec. 2014). Augmenting the Passenger-Car Team
Dynamic using Ambient Communication. Palo Alto: ME310 course at
Stanford University, p. 42.

Nosek, Brian A et al. (2018). “The preregistration revolution”. In: Proceed-
ings of the National Academy of Sciences 115.11, pp. 2600–2606.

Pahl, Gerhard et al. (6th Aug. 2007). Engineering Design: A Systematic
Approach. Springer Science & Business Media. 629 pp. isbn: 978-1-
84628-319-2.

Parsons, H. M. (8th Mar. 1974). “What Happened at Hawthorne?: New
evidence suggests the Hawthorne effect resulted from operant reinforce-
ment contingencies”. In: Science 183.4128, pp. 922–932. issn: 0036-
8075, 1095-9203. doi: 10.1126/science.183.4128.922.

Pidić, Almir et al. (2018). “Low-Cost Autonomous Underwater Vehicle
(AUV) for Inspection of Water-Filled Tunnels During Operation”. In:
ASME 2018 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference. American
Society of Mechanical Engineers Digital Collection.

Pisarczyk, Joanna (June 2015). “Peer Production in physical world: a look
at today’s community-based infrastructures”. Graduation research pro-
ject. Leiden University Media Technology Department.

Popper, Karl (1935). Logik der Forschung. Springer.
Rook, Paul (1986). “Controlling software projects”. In: Software engineering

journal 1.1, pp. 7–16.
Royce, Winston W (1987). “Managing the development of large software

systems: concepts and techniques”. In: Proceedings of the 9th interna-
tional conference on Software Engineering, pp. 328–338.

Sanchez, Ron and Joseph T. Mahoney (1996). “Modularity, flexibility, and
knowledge management in product and organization design”. In: Stra-
tegic Management Journal 17 (S2), pp. 63–76. issn: 1097-0266. doi:
10.1002/smj.4250171107.

BIBLIOGRAPHY 129

Schrage, Michael (1993). “The Culture(s) of Prototyping”. In: Design Man-
agement Journal 4.1, pp. 55–65.

— (1999). Serious play: How the world’s best companies simulate to in-
novate. Harvard Business School Press.

Sjöman, Heikki, Juuso Autiosalo et al. (2018). “Using Low-Cost Sensors to
Develop a High Precision Lifting Controller Device for an Overhead
Crane—Insights and Hypotheses from Prototyping a Heavy Industrial
Internet Project”. In: Sensors 18.10, p. 3328.

Sjöman, Heikki, Jani Kalasniemi et al. (2018). “The Development of 1Bal-
ance: A Connected Medical Device for Measuring Human Balance”. In:
Technologies 6.2, p. 53.

Sjöman, Heikki, Nazare Soares et al. (2018). “The Breathing Room: Breath-
ing Interval and Heart Rate Capturing through Ultra Low Power Radar”.
In: Extended Abstracts of the 2018 CHI Conference on Human Factors
in Computing Systems, pp. 1–4.

Snowden, David J and Mary E Boone (2007). “A Leader’s Framework for
Decision Making”. In: Harvard Business Review 85 (November), pp. 1–
9.

Srikanth, Kannan and Phanish Puranam (2011). “Integrating distributed
work: comparing task design, communication, and tacit coordination
mechanisms”. In: Strategic Management Journal 32.8, pp. 849–875.

Steinert, Martin (2020). Course - Fuzzy Front End - TMM4245 - NTNU.
url: https://www.ntnu.edu/studies/courses/TMM4245#tab=omEmnet
(visited on 23/03/2020).

Steinert, Martin and Larry J Leifer (2012). “’Finding One’s Way’: Re-
Discovering a Hunter-Gatherer Model based on Wayfaring”. In: Inter-
national Journal of Engineering Education 28.2, p. 251.

Sullivan, Ian, Alexander DeHaven and David Mellor (2019). “Open and re-
producible research on open science framework”. In: Current Protocols
Essential Laboratory Techniques 18.1, e32.

Thomas, Richard C., Amela Karahasanovic and Gregor E. Kennedy (2005).
“An Investigation into Keystroke Latency Metrics As an Indicator of
Programming Performance”. In: Proceedings of the 7th Australasian
Conference on Computing Education - Volume 42. ACE ’05. event-
place: Newcastle, New South Wales, Australia. Darlinghurst, Australia,
Australia: Australian Computer Society, Inc., pp. 127–134. isbn: 978-
1-920682-24-8.

Türtscher, Philipp (21st Nov. 2008). “The Emergence of Architecture in
Modular Systems: Coordination across Boundaries at ATLAS, CERN”.
Dissertation. University of St. Gallen.

130 BIBLIOGRAPHY

Türtscher, Philipp, Raghu Garud and Arun Kumaraswamy (1st Dec. 2014).
“Justification and Interlaced Knowledge at ATLAS, CERN”. In: Or-
ganization Science 25.6, pp. 1579–1608. issn: 1047-7039. doi: 10.1287/
orsc.2013.0894.

Tuyttens, F. A. M. et al. (1st Apr. 2014). “Observer bias in animal behaviour
research: can we believe what we score, if we score what we believe?”
In: Animal Behaviour 90, pp. 273–280. issn: 0003-3472. doi: 10.1016/
j.anbehav.2014.02.007.

VDI (1997). VDI 2222 Methodic development of solution principles - ori-
ginal title in German: Konstruktionsmethodik - Methodisches Entwick-
eln von Lösungsprinzipien.

Wolf, Alan et al. (July 1985). “Determining Lyapunov exponents from a
time series”. In: Physica D: Nonlinear Phenomena 16.3, pp. 285–317.
issn: 01672789. doi: 10.1016/0167-2789(85)90011-9.

Yin, Robert K (2017). Case Study Research and Applications: Design and
Methods. SAGE Publications.

Appendices

131

Appendix A

Experimental setup
information

This chapter in the appendix provides additional resources used while con-
ducting the experiment. The codes used for evaluating the solutions with
the simulation and analysing the data can only be found digitally under the
links mentioned below. All this information and more can be found digitally
on Github. There are three relevant repositories:

• Content for running the experiment:
https://github.com/AchimGerstenberg/RoboExpSetup

• Content for evaluating the solutions using the simulation:
https://github.com/AchimGerstenberg/RoboExpSimulation

• Python script for data analysis:
https://github.com/AchimGerstenberg/RoboExpDataAnalysis

A.1 Printed templates

Consent Form

133

 1 av 1

Vår dato

05.09.16
Vår referanse

AG
Fakultet for ingeniørvitenskap og teknologi

Institutt for produktutvikling og materialer

Deres dato

Deres referanse

Postadresse Org.nr. 974 767 880 Besøksadresse Telefon

7491 Trondheim E-post: Achim Gerstenberg Richard Birkelandsvei 2b + 47 45160802

 Achim.gerstenberg@ntnu.no Lab M66

 http://www.ivt.ntnu.no/ipm/ Gløshaugen

All korrespondanse som inngår i saksbehandling skal adresseres til saksbehandlende enhet ved NTNU og ikke direkte til enkeltpersoner.
Ved henvendelse vennligst oppgi referanse.

Request for participation in research project

Background and Purpose

The purpose of this experiment is to research how different problem solving approaches effect

programming robots in the area of product development.

This experiment is part of a PhD project at the department of mechanical and industrial engineering,

Norwegian University of Science and Technology.

What does participation in the project imply?
The participant will complete an open-ended task using a LEGO Mindstorms robot and the NXC

programming language. During this experiment keystrokes, written code as well as video of

participant will be recorded for research purposes.

What will happen to the information about you?
All personal data will be treated anonymously. No name is connected to the gathered data. In case of

a publication, participants will therefore not be recognizable.

Voluntary participation
The participation of this experiment is voluntary, and you can at any time choose to stop and

withdraw from the experiment. If you have any concerns, ideas or questions please contact Achim

Gerstenberg or Martin Steinert.

Consent for participation in the study
I have received information about the project and am willing to participate. I agree that data is

collected, analyzed and published anonymously. I further agree to be confidential about the

experiment to provide non-biased conditions for every participant.

--

Name of the participant (Please use capital letters)

Place & date, Signature

Achim Gerstenberg

134 Experimental setup information

A.1. Printed templates 135

Checklist

PRE-EXPERIMENT CHECKLIST participant number:

 Print Documents (this checklist and evaluation form, consent form, CTest,

questionnaires, expl. of functions, datasheet, task description

 Write the participant number on all prints

 Create/open a participant folder on the usb stick

 Update the info.txt file on the SD card

 Turn on mock-pit lights

 Turn on ceiling lights (not the spots)

 Put your phone in flight mode and silent

 Empty floor from experiment equipment

 Put in new batteries into the LEGO robot

 Set the “shut down” time of the robot to “never”

 Connect and reset the robot

 Prepare programming windows

 Load the “checkcompile” program onto the robot and have it open on screen 1

 Set keyboard language to EN

 Make sure that checkcompile is visible on screen 1

 Turn off screen 1

 Load presentation with instructions on 2nd screen

 Put the prepared SD card into the keylogger

 Load keylogger program onto Arduino, open serial monitor, check if it works

 Synchronize stopwatch, programming computer, keylogger, and video rec. computer

 Make voice instructions available (open folder)

 Set volume to max

 Get fresh drinking water

 Put up “experiment in progress” sign on the door

 Close off the experimentor’s space with cardboard walls

After participant has signed the consent form

 Start screen capture

 Start video recording

136 Experimental setup information

A.1. Printed templates 137

Evaluation protocol

Evaluation 1 participant number:

 Code compiled Robot fell off cardboard

 Robot moved Robot stopped

 Robot touched a cube Program manually aborted

 1st cube removed
 Time:

 t bonus t penalty

 2nd cube removed

 Time:

 t bonus t penalty

 3rd cube removed

 Time:

 t bonus t penalty

Overall time including bonus and penalties: _________________________

Notes:

138 Experimental setup information

Evaluation 2 participant number:

 Code compiled Robot fell off cardboard

 Robot moved Robot stopped

 Robot touched a cube Program manually aborted

 1st cube removed
 Time:

 t bonus t penalty

 2nd cube removed

 Time:

 t bonus t penalty

 3rd cube removed

 Time:

 t bonus t penalty

Overall time including bonus and penalties: _________________________

Notes:

A.1. Printed templates 139

Evaluation 3 participant number:

 Code compiled Robot fell off cardboard

 Robot moved Robot stopped

 Robot touched a cube Program manually aborted

 1st cube removed
 Time:

 t bonus t penalty

 2nd cube removed

 Time:

 t bonus t penalty

 3rd cube removed

 Time:

 t bonus t penalty

Overall time including bonus and penalties: _________________________

Notes:

140 Experimental setup information

Evaluation 4 participant number:

 Code compiled Robot fell off cardboard

 Robot moved Robot stopped

 Robot touched a cube Program manually aborted

 1st cube removed
 Time:

 t bonus t penalty

 2nd cube removed

 Time:

 t bonus t penalty

 3rd cube removed

 Time:

 t bonus t penalty

Overall time including bonus and penalties: _________________________

Notes:

A.1. Printed templates 141

Evaluation 5 participant number:

 Code compiled Robot fell off cardboard

 Robot moved Robot stopped

 Robot touched a cube Program manually aborted

 1st cube removed
 Time:

 t bonus t penalty

 2nd cube removed

 Time:

 t bonus t penalty

 3rd cube removed

 Time:

 t bonus t penalty

Overall time including bonus and penalties: _________________________

Notes:

142 Experimental setup information

A.1. Printed templates 143

Questionnaires

Programming experience questionnaire participant number:

How would you grade your programming knowledge in C or C++:

(0 = no experience, 6 = professional (for money) programmer)

0 1 2 3 4 5 6

How would you grade your programming knowledge in programming Arduino:

(0 = no experience, 6 = professional (for money) programmer)

0 1 2 3 4 5 6

How would you grade your programming knowledge in programming LEGO Mindstorms:

(0 = no experience, 6 = professional (for money) programmer)

0 1 2 3 4 5 6

Please give a ranking of all the programming languages and how much experience you

have in each. (0 = no experience, 6 = professional (for money) programmer)

1. ________________________ 0 1 2 3 4 5 6

2. ________________________ 0 1 2 3 4 5 6

3. ________________________ 0 1 2 3 4 5 6

4. ________________________ 0 1 2 3 4 5 6

5. ________________________ 0 1 2 3 4 5 6

6. ________________________ 0 1 2 3 4 5 6

144 Experimental setup information

A.1. Printed templates 145

Post experiment questionnaire participant number:

Thank you for participating in our experiment!

This really helps us in doing research about learning behavior in product development.

This experiment is anonymous but before you leave, we would like to know some things

from you:

Specify your gender:

Which year were you born:

What is your study program:

Which semester are you in in your current field of study:

How pleased are you with the result of your programming?

(0 = not at all, 6 = very pleased)

0 1 2 3 4 5 6

How much did you enjoy this experiment? (0 = not at all, 6 = it was very pleasurable)

0 1 2 3 4 5 6

Do you have a study colleague in mind that you will recommend to participate in this

experiment? Yes No

Will you actually recommend it to him or her? Yes No

One final (but very important) remark:

Please do not tell anyone about the content of this experiment.

146 Experimental setup information

A.1. Printed templates 147

Pre-experiment programming test

// What is the value of x when the program ends?

int x = 0;

bool y = false;

int function(int parameter1, int parameter2)

{

 return parameter1 + parameter2;

}

while(x <= 5)

{

 if(x >= 2 && y)

 {

 y = false;

 x = function(x,1);

 }

 else

 {

 x = x + 2;

 y = true;

 }

}

// END OF THE PROGRAM

// What is the value of x?
// Your answer:

// you can use this table to help remember the values

// x | y //
//---------------//
// 0 | false //
// | //
//---------------//
// | //
// | //
//---------------//
// | //
// | //
//---------------//
// | //
// | //
//---------------//
// | //
// | //
//---------------//
// | //
// | //
//---------------//

148 Experimental setup information

A.1. Printed templates 149

Voice instruction content

In this appendix section I list the manually triggered voice instructions
and when they are used. The computer generated voices that accompany
the instructions on the instruction screen correspond to the text that is dis-
played in the power point slides. The slides used on the instruction screen
can be found on Github:
https://github.com/AchimGerstenberg/RoboExpSetup/tree/master/instructions

Welcome, this experiment is conducted without direct personal interac-
tions. You will be guided through the experiment by prerecorded voice
and video as well as text instructions.
Triggered when the participant enters the experiment room for the first
time.

Please close the door.
Triggered if the participant enters the programming booth without closing
the door to the experiment room.

Please go to the programming booth.
Triggered if the participant does not enter the programming booth after
entering the experiment room and awaits further instructions.

You have received a new instruction on the instruction screen.
Triggered if the participant has received a new instruction on the instruction
screen but has not noticed it.

Please do not forget to load your code onto the robot and test it regur-
arly.
Triggered before evaluation 1 for participants in the testing condition that
have not tested within the last 5 minutes. ”Regurarly” was misspelled on
purpose to make the computer generated voice more easily understandable.

We recommend to test your code soon.
Triggered one minute after the previous test reminder if the participant had
not yet tested recently.

Please connect the robot.
Triggered if the robot was not connected to the programming PC and the
experimenter needed to load a code onto the robot. This usually happened
before evaluations.

150 Experimental setup information

Do you want help with the syntax?
Triggered after the participant tries to compile a code that includes a syntax
error. If the participant answers ”yes” one of the following voice instruc-
tions is used:
A semicolon is missing. Watch the mouse cursor for a hint.

A bracket is missing. Watch the mouse cursor for a hint.

There is a spelling mistake. Watch the mouse cursor for a hint.

Watch the mouse cursor for a hint.
Triggered if none of the above applies.

The robot is placed incorrectly.
Triggered during an evaluation if the participant has not placed the robot
correctly at the assigned position and orientation.

Are you ready to start the robot?
Triggered when the robot is placed correctly and the experimenter is ready
to document the robot performance.

Start the robot in three, two, one, now.
Used to synchronize the time keeping by the experimenter with starting the
robot’s code execution by the participant.

I can only answer to questions with yes or no.
Triggered if the participant asks a question that cannot be answered with yes
and no. Yes and No questions are answered with yes and no by a computer
generated voice.

Please wait a moment and do nothing.
Used when the experimenter needs additional time. Usually needed if some-
thing unexpected occurred.

You can now carry on.
Used when the problems have been resolved and the participant can continue
with the experiment.

Explanation of programming library functionality

// Explanation of functions

// Table of contents:

// OUTPUTS:

 dispNum(x,y, value);

 dispText(x,y,"example text");

 PlayTone(frequency, duration);

// TIMING & RANDOMNESS

 startTimer1();

 readTimer1();

 wait(time);

 random(minimum, maximum);

// SENSORS

 reflectionDown();

 reflectionRedLeft();

 ultrasound();

 blink // is an int variable

// MOVEMENT

 motor(speed_left_belt, speed_right_belt);

 turn(speed, degrees);

// EXAMPLE SYNTAX CODE

A.1. Printed templates 151

// Output for FEEDBACK

void dispNum(int x, int y, int value)
{
 // displays a numerical value on the screen of the robot at the
 // screen coordinates x (horizontal) and y (vertical).
 // In x the display is 90 pixels wide and in y it has 8 lines that can be adressed
 // with LCD_LINE1, LCD_LINE2, LCD_LINE3, ..., LCD_LINE8.
}
 //example:
 dispNum(0,LCD_LINE1, 42);

void dispText(int x, int y, "example text")
{
 // displays text on the screen of the robot at the
 // screen coordinates x (horizontal) and y (vertical).
 // In x the display is 90 pixels wide and in y it has 8 lines that can be adressed
 // with LCD_LINE1, LCD_LINE2, LCD_LINE3, ..., LCD_LINE8.
}
 //example:
 dispText(0,LCD_LINE1, "Hello World");

void PlayTone(int frequency, int duration)
{
 // plays a tone with the frequency specified in variable "frequency" in Hz
 // for the time specified in "duration" in ms.
}
 //example:
 PlayTone(440,200);

152 Experimental setup information

// TIMING and RANDOMNESS

void startTimer1()
{
 // starts or restarts a timer when this function is called.
 // start_timer2() and start_timer3() work analogously.
}
 //example:
 startTimer1();

unsigned long int readTimer1()
{
 // returns the time in milliseconds that has passed after starting the timer.
 // readTimer2() and readTimer3() work analogously.
}
 //example:
 int time = readTimer1();

void wait(int time)
{
 // pauses the execution of the program for the time specified
 // in the parameter "time" in milliseconds.
}
 //example:
 wait(1000);

int random(int minimum, int maximum)
{
 // returns a random number between minimum and maximum
 // if minimum is greater than maximum, it returns 0
}
 //example:
 int x = random(-20,20);

A.1. Printed templates 153

// SENSORS

int reflectionDown()
{
 // This sensor emits red light downwards and measures how much is reflected
 // It returns values between 0 and 100, where higher numbers mean higher reflectivity
 // of the surface below
}
 //example:
 int refl = reflectionDown();

int reflectionRedLeft()
{
 // The color reflection sensors send out red light and detect how much of
 // the emitted red light is reflected back into the sensor.
 // Red objects reflect more red light than green or blue objects.
 // Smaller values correspond to less reflectivity of red light.
 // This function return a reflection value for the left reflection sensor.
 // A similar function exists for the right reflection sensor and is called by
 // reflectionRedRight()
}
 //example:
 int reflRight = reflectionRedRight();

int ultrasound()
{
 // The ultrasound sensor measures the distance between the sensor and an object
 // that reflects ultrasound by detecting the time of flight of an ultrasound pulse.
 // It returns a number that correlates with the distance in cm.
}
 //example:
 int ultra = ultrasound();

int blink;
// The reflection sensors in the front can also sense a blinking light source.
// This process runs continuously in the background.
// The average value from the last one and a half seconds is stored in the
// global integer variable “blink” that can be used throughout the code.
// example:
 if(blink > 2)

154 Experimental setup information

// MOVEMENT

void motor(int speed_left_wheel, int speed_right_wheel)
{
 // the speeds can be values between -100 (full backwards) and 100 (full forward).
 // Speed of 0 stops the motor.
}
 // example:
 motor(10,-10);

void turn(int speed, int degree)
{
 // Sets one belt to positive speed and the other to negative speed and thereby
 // turns the robot with the motor speed defined in the first parameter.
 // The turning direction and stopping angle is defined in degrees in the
 // variable degree. A positive degree value turns the robot clockwise.
}
 // example:
 turn(20,-90);

A.1. Printed templates 155

// EXAMPLE OF SYNTAX

int x = 7;
int y = 42;

// decleration of a function
int function(int parameter1, int parameter2)
{
 return parameter1 + parameter2;
}

while(true) // infinite loop
{
 if(x == y || x != 7) // "==" equal, "||" logical or, "!=" not equal
 {
 x = 42;
 }
 else
 {
 y = 7;
 }

 while(x >= y && x > 7) // "<=" less than, ">=" greater than, "&&" logical and
 {
 x = x - 1; // you could also write "x--;"
 }
}

/* this is
a multi-line
comment */

156 Experimental setup information

A.1. Printed templates 157

Robot datasheet

Data Sheet

Table of contents:

- Dimensions
- Movement

- straight line
- battery voltage dependency
- turning speed and accuracy

- Sensors
- ultrasound accuracy
- ultrasound cut-off angles / field of view
- downward reflection sensor example values
- color sensor sensitivity at a red cube object, distance dependency
- blink detection sensitivity, distance dependency
- blink detection sensitivity, cube orientation dependency

Dimensions:

Front view

Top view

Weight including batteries: 690 g

158 Experimental setup information

Movement:
The robot has one rubber belt on each side which move over a front and a back wheel. The
front wheel is driven by an electric motor. Included in the motor is a rotation sensor that senses
position of the motor shaft. This allows the motor speed to be PID controlled. The motors can be
controlled individually of each other and can turn forward and backwards.

Straight Line Speed:

Measured straight line driving
speed as a function of
programmed motor speed
with fully charged batteries.

At motor speeds of 85 and
above the robot starts to drift
into a left turn.

Forward straight line driving
speed as a function of motor
speed at different battery
voltages.

At the lower battery voltage the
robot starts a left turn at motor
speeds of 60 and above.

A.1. Printed templates 159

Turning Speed and Accuracy:

Turning the robot by using the motor command :

Turning speed using the motor
function with motor(-x,x) where
x is the programmed motor
speed. This means the robot is
turning counterclockwise on the
spot with equal absolute motor
speeds on both belts in
opposite directions.

Accuracy of turning the robot with a programmable speed by a programmable angle using the
turn command :

Relative deviation from the
desired turning angle. A
positive value means
“overshooting” the desired
turning angle.
A motor speed of i.e. 10 means
that the robot turns with
motor(-10,10) or motor(10,-10).

160 Experimental setup information

Sensors:
The robot is equipped with 4 sensors.

- Ultrasound distance sensor: points forward and measures the time of flight of a
sound signal emitted from the robot and reflected off an object. This time can be
converted into a distance measurement.

- Downwards reflection sensor: points downwards and measures the reflectivity of
the surface under the robot

- Color and blink sensor: The robot has one of these sensors on each side. They
point forward and measure the colored light reflectivity of objects and the light
intensity of a blinking light with a frequency of 0,93 Hz.

Ultrasound accuracy:

Ultrasound value as a function of distance from the ultrasound sensor to the center of the cube:

Base plate
perpendicular to
the sensor
beam

Base plate at 45
degrees to the
sensor beam

A.1. Printed templates 161

Ultrasound cut-off angles:

The ultrasound distance measurement remains accurate until the object is outside the field of view of the
sensor. At the cut-off angle the object is no longer in the field of view of the ultrasound sensor. The cut-off
angles are shown below:

Cut-off angle: Cut-off angle: Cut-off angle: Cut-off angle:

35 ± 3 degrees 35 ± 3 degrees 22 ± 2 degrees 26 ± 2 degrees

Downwards reflection sensor:

The reflection sensor sends out pulses of red light and detects how much of this light is reflected.

Sensor value on white paper: 47

Sensor value on cardboard: between 36 and 38

Sensor value when overhanging over the cardboard edge: 15

162 Experimental setup information

Red light reflection sensor sensitivity:

Reflectivity of red light off
a red, green and blue
cube dependent on the
distance between the
sensors and the center of
the cubes.

A.1. Printed templates 163

Blink sensor sensitivity:
The blink sensor uses the same sensor as the color sensor except that it is responsive to a blinking light
source at 0,93 Hz.
The following values were measured for a blink light placed upside down in the ceiling of a green cube.

Base plate
perpendicular
to the sensor
beam

Base plate at
45 degrees to
the sensor
beam

Right
sensor

Left sensor

The color sensors have a
similar view angle pattern.

164 Experimental setup information

A.1. Printed templates 165

166 Experimental setup information

Task description

The task is to use the robot to remove the three cube objects from the white area in the

shortest time possible.

The robot must stay on the cardboard area.

You may use any of the three blinking light sources and place them wherever you like before

executing the program. They fit into the top side of the cube objects. The robot shall not be

influenced by you after the program is started.

Objects that are fully outside the white area on the cardboard must be removed from the

“playground” by you.

You can earn a 10 second time bonus if you display the correct tone frequency while pushing

out a cube. You will get a 10 second time penalty if you play the wrong tone frequency.

Red cube: 400 Hz

Green cube: 800 Hz

Blue cube: 1600 Hz

You are given:

• The LEGO robot

• This task description with the starting setup (backside)

• Explanation of useful functions

• A data sheet about the robot’s behaviour

• Time to complete the task

• Three blinking light sources

A.1. Printed templates 167

This is the setup of the cube objects for each evaluation. The starting position and

orientation of the robot will be different each time.

168 Experimental setup information

Appendix B

Additional data

This appendix chapter includes data from the robot experiment that was
left out in the main part of the thesis because it would make it too long to
be easily readable.

B.1 Manually recorded results
In this section I present additional data that was recorded manually by

the experimenter while the participant was participating in the experiment.

169

170 Additional data

Figure B.1: Cube removal times, blue dots: planners, red dots: testers

B.2 Simulated results
The data shown below results from 99 iterations for each solution from

99 different randomly chosen (but similar for each solution) starting po-
sitions. The raw data contains 13365 rows. It is therefore added in the
Github repository as an html and a tab separated txt-file under
https://github.com/AchimGerstenberg/RoboExpDataAnalysis

the filename ”simulation rawdata”.
The labelling of the columns is explained in subsection B.2.1. This

raw data is then averaged over the 99 iterations for each solution in every
evaluation. The resulting data is published as an html table and a tab
separated txt-file in the same Github repository under the file name ”sim-
ulation evaldata” and the corresponding labbeling is explained in appendix
B.2.2.

B.2.1 Simulation raw data labelling

datetime
Actual time when the simulation of this iteration completed and the result

B.2. Simulated results 171

was saved in the file

participant
participant identification number

evaluation

codename
Filename thecode of the solution was initially saved under

StartConfig
Incrementing number for counting up the starting positions from 1 to 99

startX, startY and startPhi
X, Y coordinate and orientation of the robot’s starting configuration in the
simulation

red, green and blue blink
Set to true if the participant used the blink light beacons inside of the red,
green or blue cube.

red, green and bluecube
Removal times of the red, green and blue cube in seconds

bonus
Sum of bonus time for detecting the correct cube color in seconds

penalty
Sum of penalty time for incorrectly detecting the cube color in seconds

lastcube
processed data: time of removing the lastcube in seconds. This is equal to
the task completion time. The value is ”NaN” if the task was not completed.

overalltime
The time in seconds for completing the task including subtraction of the
bonus time and adding the penalty time. The value is ”NaN” if the task
was not completed.

172 Additional data

boxestouched
Counter for how often the robot touched a cube before completing the task.
For compatibility reasons the value is ”NaN” if the task was not completed.

edgetouches
Counter for how often the robot reached the edge of the white area on the
playground before completing the task. For compatibility reasons the value
is ”NaN” if the task was not completed.

distance
The distance the robot travelled before completing the task in arbitrary
units. For compatibility reasons the value is ”NaN” if the task was not
completed.

removedcubes
processed data: number of removed cubes

fallofftime
The time in seconds when the robot fell off the playground if the robot fell
off. Otherwise the value is ”NaN”.

lastmovedtime
The time in seconds when the robot lastly changed its x or y coordinate.
This can be indicative if the robot was stuck spinning or stopped.

condition
Experimental condition. The value is either 0 for participants that could
not test their solutions before the first evaluation or 1 for participants that
could.

first, second and thirdcube
processed data: Time in seconds when the robot removed the first, second
and third cube. ”thirdcube” is redundant with ”lastcube”. The values can
be ”NaN” if the cubes were not removed before the robot fell off or the
simulation timed out.

B.2.2 Averaged simulation data for each evaluation

The averaged data for each evaluation contains the mean values, stand-
ard deviations and sample size N as well as the medians for the same column
labels as mentioned in the previous subsection. In many cases the sample

B.2. Simulated results 173

size is N = 99 for all 99 starting configurations and in some cases N < 99
if the raw data contains ”NaN” values.

Additionally, the table consist of the following column labels:

taskcomplete
Share of runs that complete the task from the 99 starting positions

tests
Number of tests after the previous and before the current evaluation

keystrokes
Number of keystrokes after the previous and before the current evaluation

searchmethod
manually entered data: Method used for detecting the cubes. 1 = ultra-
sound, 2 = blink, 3 = combination of ultrasound and blink

174 Additional data

B.2. Simulated results 175

B.2.3 Influence of testing

Figure B.2: Influence of total amount of tests on number of removed cubes and
number of tests between evaluation on change in number of cubes.

176 Additional data

B.2. Simulated results 177

B.2.4 Influence of typing between tests

Figure B.3: Influence of amount of keystrokes between evaluations on the change
of number of removed cubes in the same time interval.

178 Additional data

Figure B.4: Influence of amount of keystrokes per test between evaluations on
the change of number of removed cubes in the same time interval.

B.2. Simulated results 179

B.2.5 Influence of experience on performance

Self-reported experience

(a) Arduino experience, evaluation 1 (b) Arduino experience, evaluation 5

(c) C experience, evaluation 1 (d) C experience, evaluation 5

(e) Lego Mindstorms exp, eval 1 (f) Lego Mindstorms exp, eval 5

(g) Python experience, evaluation 1 (h) Python experience, evaluation 5

Figure B.5: Influence of self-reported programming skills on the mean number of
removed cubes (performance).

180 Additional data

Keystroke latency

(a) Keystroke latency, evaluation 1 (b) Keystroke latency, evaluation 5

Figure B.6: Influence of typing latency on the mean number of removed cubes
(performance) in evaluation 1 and 5.

Appendix C

Publications included in the
PhD work

181

C.1 Contribution 1: Distributed Experiments in Design
Sciences, a Next Step in Design Observation Studies?

Not included due to copyright restrictions.

192 Publications included in the PhD work

C.2 Contribution 2: Bridging Tangible and Virtual In-
teraction: Rapid Prototyping of a Gaming Idea

© IFIP International Federation for Information Processing 2015

K. Chorianopoulos et al. (Eds.): ICEC 2015, LNCS 9353, pp. 523–528, 2015.

DOI: 10.1007/978-3-319-24589-8_50

Bridging Tangible and Virtual Interaction:

Rapid Prototyping of a Gaming Idea

Thov Reime
1
, Heikki Sjöman

1
, Achim Gerstenberg

1
,

Pekka Abrahamsson
2
, and Martin Steinert

1

1 Department of Engineering Design and Materials, NTNU,

Richard Birkelands vei 2B, 7492 Trondheim, Norway
{Heikki.Sjoman,Achim.Gerstenberg,

Martin.Steinert}@ntnu.no, Thov@stud.ntnu.no
2 Department of Computer and Information Science, NTNU, Sem Sælands vei 9,

7491 Trondheim, Norway

pekkaa@ntnu.no

Abstract. The Fibo Car is an example for a game interface that allows a user to

modify a virtual car in a racing game through assembling tangible car parts.

This paper describes the 6 week development journey towards a fully functional

proof of concept prototype, reflections on the process as well as the technical

details of the prototype.

1 Introduction

The basic idea of the Fibo Car game project is that the player can construct a real

world car model out of tangible building blocks. The structure of the model is digi-

tally recognized and it influences the properties of the virtual model in the car racing

game.

In this paper we focus solely on the development of the tangible objects, the struc-

ture recognition, and a virtual representation without any gameplay. The game idea is

related to games like Kerbal Space Program [1] or Besiege [2] except that the con-

structing takes place tangibly like in LEGO Mindstorms [3].

The solution presented here has one central part that can detect the attached neigh-

boring parts. The identification is realized by measuring and identifying part-specific

resistances with an Arduino Uno microcontroller board [4] wired to a PC. A virtual

representation of the identified tangible model is then shown on a screen. The latest

version of the prototype is shown in figure 1.

The upcoming section describes the development journey of the first 6 weeks. It

includes failures, dead ends, and gives reasons for the actions taken. We concen-

trated on development speed using a process with rapid iteration cycles in favour of

fast learning and quick improvement without project control by predefining require-

ments and a priori budgeting.

524 T. Reime et al.

Fig. 1. Latest proof of concep

ing virtual representation in b)

in c).

2 Development Jo

The project started with a p

to the developers. The aim

the reasons behind the idea

The main challenge was p

started by exploring possib

communication and inform

out to be the easiest to deve

structure recognition, we re

nearest neighbor instead of

tance identification and ne

solution was tested with re

ohmmeters. The principle

sure as early, simple and

already available in the lab

did not work. In the beginn

determined that we require

parts. This fit with the alre

connection points. They use

non-ambiguous electrical c

soldered onto a circuit boa

into the car parts. Knowing

for manufacturing a soldere

shown in figure 2 on the lef

tors were mechanically not

thermore, the connectors w

were combinable. This was

car piece to connect. Anyh

fore, we continued develop

resistors with a microcontr

surement on a screen. We d

t prototype showing the tangible model in a) and the correspo

). All available tangible car parts of the latest prototype are sho

ourney

presentation of the basic game idea by the problem ow

was to reach a common ground on the project vision

a. This initiated a brainstorming about possible solutio

perceived to be the structure recognition. Therefore,

ble technical solutions on paper. When considering ra

mation through light signals, measuring resistances tur

elop and cheapest alternative. Concerning the algorithm

ealized that it is simpler if each car part is only detecting

f all parts detecting the entire structure. Therefore, re

eighbor detection were chosen to be pursued. The resi

esistors on a solderless prototyping board measured w

was confirmed as functional. The idea here was to m

fast as possible that principles worked with compone

 in order to minimize the amount of time wasted in cas

ning of the second week of the development journey,

e three electrical connection points for connecting two

ady existing BitSnap connectors [5] that had three elec

ed magnets and their own shape to ensure a consistent

onnection. Those BitSnap connectors were designed to

ard, and solderless prototyping boards were too large to

g that the principle worked, we decided that spending ti

ed circuit board version was a safe investment. The resul

ft. From this prototype we learned that the BitSnap conn

t rigid enough to support the weight of the car parts. F

were not symmetrical, meaning that only matching p

s in conflict to the fundamental idea of allowing any gi

how, the structure recognition technically worked. The

ping the remaining critical functions such as measuring

roller, sending this data to a PC and displaying the m

decided to not bother with improving the connectors at

ond-

own

wner

and

ons.

we

adio

rned

m for

g its

esis-

stor

with

make

ents

se it

we

car

ctric

and

o be

o fit

ime

lt is

nec-

Fur-

pairs

iven

ere-

the

mea-

this

C.2. Contribution 2: Bridging Tangible and Virtual Interaction: Rapid

Prototyping of a Gaming Idea 193

 Bridging Tangible and Virtual Interaction: Rapid Prototyping of a Gaming Idea 525

point in time to save time towards achieving the critical functions of our envisioned

game idea. The microcontroller measurement was prototyped using an Arduino Uno

because it is easy to develop, immediately accessible in the lab, and already offers the

software to display the results of the measurement on a computer screen. After merg-

ing the existing development stages and fulfilling the critical functions as early as

possible (digitally recognizing a structure of mechanically attached objects, transfer-

ring this data to a PC, and displaying it) we could now focus on improving the exist-

ing solution. During week three, we intended to focus on shrinking the Arduino mi-

crocontroller solution to a size that is suitable for embedding in a car part. Light Blue

Beans [6] appeared to be a suitable solution that is already available in the lab. They

also had the advantage of replacing the wire connection between the Arduino and the

PC by wireless Bluetooth communication. One upcoming problem with Light Blue

Beans was that they only have two analogue inputs. This lead to the use of shift regis-

ters to channel many measurements through few input pins on the microcontroller.

The shift register also work in combination with the Arduino Uno and the Arduino

was kept because it is more convenient to program.

Fig. 2. Left: the resistances on the connected circuit boards in the middle are unique for each

connection and measured by ohmmeters. Right: two sequent designs of a mechanically more

stable connector.

Week four started with developing mechanically stronger and symmetrical con-

nectors. This was implemented by using larger and stronger magnets and using pin

connectors to further stabilize mechanically. The first design is shown in figure 2 in

the top right. However, this design turned out to be impossible to connect to an iden-

tical connector because the magnet orientation would not match. It required a match-

ing counter piece and was thus no improvement to the previous solution with the

BitSnaps. The bottom right design solved this problem. This design flaw was discov-

ered by building and testing the design in a very rough way instead of technically

drawing and machine producing the parts. This decreases the risk of design errors and

thereby saves more costly resources at a later development stage when such errors

have more profound implications.

All electrical components were now on two large breadboards that required a lot of

space. The components had to be merged on one platform so that they would all fit

safely inside a physical shell. This was accomplished by soldering all components

194 Publications included in the PhD work

526 T. Reime et al.

(transistors to control a shift register, reference resistors and header connectors) com-

pactly onto a custom circuit board.

The next issue to be tackled was to advance the virtual representation from a line

of text to a car look-a-like representation. We took two approaches into account: The

first was a photograph based version where the PC would display a corresponding

picture for every possible combination of parts. The second was using 3D models

for representation of the car structure. We decided to develop the second option be-

cause the number of pictures needed for the first was inconveniently large when scal-

ing up the number of car parts. We used Processing [7] to process the data coming

from the Arduino, determining the structure and displaying the models on the PC

screen. The system was first tested by displaying a rocket and a chair as substitutes

for the virtual car model. Only after verifying the concept, we continued to make

virtual representations of the car parts using a CAD software and importing those

models to Processing. After confirming that Processing was a reasonable option for

displaying a digital representation, week five began by drawing the car model parts

and implementing them within Processing. At the same time, we also pursued the

implementation of Light Blue Beans to make the physical model wireless. However,

we experienced that Windows 8.1 did not allow importing serial data via Bluetooth.

We could not instantly resolve this problem with the resources at hand and therefore

decided to move back to the proven technology to not lose more time with this issue.

During week six we explored switches, buttons and potentiometers as extra tangible

inputs to alter the car parts. Since the gameplay did not yet exist, the visual represen-

tation was the only possibility to make adjustments to. We showed that this extension

was technically functional and could also be used to change non-visual properties in

the game later on. But there was no meaningful reason to develop something further

that had no use at the current development stage. Therefore, we stopped after the

proof of concept and continued to make a laser cut physical car model in acrylic. The

acrylic car model was combined with the existing technology and combined all as-

pects from physical model to structure recognition and virtual representation. Figure 1

shows the prototype after these six weeks of development.

3 Reflections on the Development Process

It turned out that our process was very similar to the wayfaring process described by

Steinert and Leifer [8]. Both processes are largely based on rapid iteration cycles of

design, build and testing ideas as early and quickly as possible. We tested the most

critical functions with the resources that are readily available in the lab to fail early

and mitigate the risk of losing advances that become unusable due to a later design

changes. The early testing lead to learnings that shaped the development journey; the

design emerged over time.

C.2. Contribution 2: Bridging Tangible and Virtual Interaction: Rapid

Prototyping of a Gaming Idea 195

 Bridging Tangible and Virtual Interaction: Rapid Prototyping of a Gaming Idea 527

4 Detailed Description of the Latest Prototype

The final prototype consists of one central part connected to a PC, and four external

objects that can be attached to the central part. The central part has four connectors,

one on each vertical side, on which external parts can be attached; each external part

has only one connector. When no external parts are attached to the central part, a 3D

model resembling the central part is displayed on the connected PC screen. Upon

attaching an external part to the central part, a virtual 3D model resembling the at-

tached part is automatically updated.

The identification of the neighboring car parts is achieved by the measurement of

resistors through the connectors on the sides of the car parts. All connectors are made

from 4 pin headers where two alternating pins are pulled out (see figure 2, bottom

right). In the external parts’ headers, a resistor is placed with one pin hole between its

two legs. In the central part headers, two wires are connected to the female pins that

the external connectors will fit into. Thus, when an external part connector is con-

nected to a central part connector, we get a closed loop that runs through one wire into

one of the central part header pins, through the male pin on the external part header,

through the resistor, and back across to the other wire. This design is made with the

intention of having multiple ‘central parts’ in the future that can measure each other’s

resistors. So far in this prototype, the central part pins that connect to the external

header serve only for structural integrity.

The connector wires are connected to an analogue gate and ground on an Arduino

Uno. The Arduino is able to calculate the resistance between ground and the analogue

gate by comparing it to a reference resistor between its 5 volt supply and ground.

Because there are four connectors and we use only one analogue gate, a shift register

is used to control which connector has current at any time. The shift register is placed

on a custom made circuit board along with the reference resistor, four transistors, two

rows of headers for the connector wires, and a series of headers for easy connection of

wires from the Arduino. Three wires connect three digital pins on the Arduino to the

shift register. The shift register is connected to the gate pins on the transistors which

open the current through the various connectors. Thus, the loop through ground, resis-

tor, and analog gate is controlled. The circuit board is placed inside the central part

and connected to the Arduino through a total of six wires (three digital, 5V, ground,

and analogue).

When measuring the resistors, the Arduino uses as sequence of North, West, South,

and East when the central part is seen from above. For each measurement, the value is

serial printed, and a semicolon is added between the values. Processing 2.2.1 imports

the string through the COM port on a PC. Before Processing can use the data for any-

thing, it must convert the string into integers and store them in an array. The semico-

lons act as delimiters for the values. Processing then takes each value in the array and

compares it to a set of thresholds.

Processing displays a rotating 3D model resembling the central part in a window.

Depending on which interval between thresholds a certain measured value is,

Processing displays a corresponding 3D model next to the central part. The correct

position is acquired by the position of the value in the array, thus the reason for the

compass sequence in the Arduino.

196 Publications included in the PhD work

528 T. Reime et al.

All 3D models are made in Autodesk Inventor [9] and converted into an .obj for-

mat. Processing loads the models in the setup of the script, and only displays them

when receiving not NULL values from the Arduino.

The physical objects are made from laser cut pieces of 5mm thick acrylic plastic

sheets. All pieces are modeled and assembled in Inventor before converting to a 2D

format fit for cutting. The pieces are then assembled together with circuit board, cen-

tral part connectors, and external connector. The pieces are held together with hot

glue and clear tape so that broken pieces can be removed and retrofitting is easier.

5 Future Plans

In the near future, we will focus on improving the existing prototype by including

wireless communication, universally orientable connectors, alternate modes of inter-

object communication, more than one ‘smart part’, and how to merge our tangible

programming prototype with actual gameplay. We will continue to use a wayfaring

mind set as we are satisfied with the results it has yielded so far. Looking further

ahead, developing and testing of real gameplay is needed before we can undergo user

testing and subsequent reiterations.

Acknowledgments. We extend our most sincere gratitude to project owner Leonore

Alexandra Nilsen, CEO of Metis Productions AS, for giving us this challenge and

introducing us to the Fibo Car Project. This research is supported by the Research

Council of Norway (RCN) through its user-driven research (BIA) funding scheme,

project number 236739/O30.

References

1. Web page about “Kerbal Space Program”,

https://kerbalspaceprogram.com/en/?page_id=7 (retrieved April 28,

2015)

2. “Besiege” sandbox game, http://www.besiege.spiderlinggames.co.uk/

(retrieved April 28, 2015)

3. lEGO Mind Storms EV3, http://www.lego.com/en-

/mindstorms/?domainredir=mindstorms.lego.com (retrieved April 28,

2015)

4. Arduino Uno microcontroller board,

http://www.arduino.cc/en/Main/HomePage (retrieved April 28, 2015)

5. Little Bits Electronics, BitSnaps,

http://littlebits.cc/accessories/bitsnaps (retrieved April 28, 2015)

6. Lightblue Beans, https://punchthrough.com/bean/ (retrieved April 28, 2015)

7. Processing programming language, https://processing.org/ (retrieved April 28,

2015)

8. Steinert, M., Leifer, L.: ‘Finding One’s Way’: Re-Discovering a Hunter-Gatherer Model

based on Wayfaring. Int. J. Eng. Educ. 28(1), 251–252 (2012)

9. Autodesk Inventor,

http://www.autodesk.com/products/inventor/overview (retrieved April

28, 2015)

C.2. Contribution 2: Bridging Tangible and Virtual Interaction: Rapid

Prototyping of a Gaming Idea 197

198 Publications included in the PhD work

C.3 Contribution 3: A Simultaneous, Multidisciplin-
ary Development and Design Journey - Reflec-
tions on Prototyping

© IFIP International Federation for Information Processing 2015

K. Chorianopoulos et al. (Eds.): ICEC 2015, LNCS 9353, pp. 409–416, 2015.

DOI: 10.1007/978-3-319-24589-8_33

A Simultaneous, Multidisciplinary Development

and Design Journey – Reflections on Prototyping

Achim Gerstenberg
1
, Heikki Sjöman

1
, Thov Reime

1
,

Pekka Abrahamsson
2
, and Martin Steinert

1

1Department of Engineering Design and Mat.,
2 Department of Comp. and Info. Sc.

NTNU, Høgskoleringen 1, 7491 Trondheim, Norway

{Achim.Gerstenberg,Heikki.Sjoman,Thovr,Pekkaa,

Martin.Steinert}@ntnu.no

Abstract. This paper proposes a wayfaring approach for the early concept

creation stage of development projects that have a very high degree of intended

innovation and thus uncertainty. The method is supported by a concrete game

design example involving the development of a tangible programming interface

for virtual car racing games. We focus onto projects that not only have high

degrees of freedom, for example in terms of reframing the problem or iterating

the final project vision, but are also complex in nature. For example, these can

be projects that allow for the exploration and exploitation of unknown

unknowns and serendipity findings. Process wise we are primarily focusing

onto the early stage that precedes the requirement fixation, which we see as

more dynamic and evolutionary in nature. The core conceptual elements that we

have derived from the development experiences are: simultaneous prototyping

in multiple disciplines (such as computer science, electronics and mechanics

and engineering in general, abductive learning based on the outcome of rapid

cycles of designing, building and testing prototypes (probing), and the

importance of including all the involved disciplines (knowledge domains)

from the beginning of the project on.

1 Introduction

To innovate incrementally is hard, to innovate “radically” harder still. Many an

engineering project is fixating their requirements very early and then focus onto

executing these predefined (and often unproven) specs as fast, as good, and as cost

effective as possible. The usual outcome is a cost and/or time overrun if the innovative

specs are to be met or a decrease in result quality. In a sense people perceive the

innovation game often as a game under certainty with fixed variables and attribute

values, fixed rules and thus predictable outcomes, hence it can be modeled, simulated

and optimized. We argue that the innovation game is a game under uncertainty, with

unknown unknowns that need to be discovered, evaluated and then discarded or

embodied. The game is also played in a dynamic environment (opponents may counter

and react) and even the rules are technically not fixed - take the Kobayashi Maru test

situation as an example.

410 A. Gerstenberg et al.

We argue that the development of highly innovative/uncertain and products is

rather like an exploration journey. You have a vision where you want to end up and a

general idea where your project is heading. However, neither can you know all the

“moves” required to get there, nor can you accurately anticipate the effects and

responses that one move will have in the future. Your expertise is your toolbox and it

greatly helps in “playing your way through the project”. Nevertheless the project is

dependent on many unforeseeable events. In fact unknown unknowns (variables that

are part of your problem/solution that you are neither aware off nor do you know their

value) arise, serendipitous events present themselves, turning a complicated problem

into a complex one - too complex to be planned out beforehand. We subsequently

argue that sequential process models are not fitting for any innovative projects. [1,2].

The reference case [3] of designing a tangible game interface for racing games is

used to extract reoccurring patterns during the design process and propose a method

based on the experiences [4,5]

Our proposed method is based on abductive learning [6,7,8] and includes all

involved disciplines from day one. This wayfaring model based on Steinert & Leifer

[9] aims to allow the rapid requirement dynamics that become necessary during the

development process.

2 Use of Wayfaring in the Example Case

Our example case is based on the vision of developing a physical car model as a

tangible interface for manipulating/shape a digital car model in a virtual car racing

game. A description of the project and the technical solution can be found in [3] This

vision as an overarching goal was given to the developers instead of a precise list of

requirements on how the technical solution is supposed to look like and the project

architecture was allowed to emerge. This meant that the space of possible solutions is

open, ambiguous and uncertain. In our example case, the problem became to identify

car parts in the physical model that are attached to each other and to recognize the

assembled structure. We explored the solution space by trying to come up with as many

possible solutions to the problems as possible (divergent thinking). Possible ideas for

solutions included measuring resistance, power dissipation of wireless communication

devices or pulsed light communication for identifying connected pieces. For

determining the structure we looked into a centralized structure with one central part

that collects the data from all assembled parts and a decentralized structure that only

required the detection and identification of neighboring parts. However, with no, or only

little, experience it is unknown to us which of the suggested ideas was feasible to

pursue. We call these unsolved uncertainties unknown unknowns because these open

questions emerged during the development process and were in itself unknown to us

before engaging the problem. We argued that resistors were the cheapest, simples and

most reliable proposition and that just detecting neighboring car parts simplified the

algorithm. Furthermore, having to use a specific center part restricted the liberty of

freely using any car part separately in the virtual game. However, these are only

arguments based on limited experience and in order to converge on the most promising

proposal one has to build and test ideas to gain new knowledge. This repeating cycle of

C.3. Contribution 3: A Simultaneous, Multidisciplinary Development and

Design Journey - Reflections on Prototyping 199

 A Simultaneo

divergent and convergent th

probing. The probing cycle

design requirement change

realized that the measurem

changes in the programming

abductive learning from

opportunistically finding on

of the last probing cycle sha

the resistor principle. Ther

electrical connections betwe

setup shown in figure 1b) th

exactly three electrical conn

car model. Testing these B

sufficiently robust and not g

parts. This learning resulted

figure 1 c) and d) where

genderless and subsequentl

1d). This train of subsequen

be successive or dead ended

Progress is achieved by t

cycles. Therefore, it is imp

learning outcome for each

testing the critical function

the properties that are neces

the testing of the resistor pri

to find out how resistors ca

save time we compromise

compactness of the system

prototyping boards, header w

Fig. 1. a) first test of the res

version of universal connector

ous, Multidisciplinary Development and Design Journey

hinking with designing, building and testing ideas is ca

es lead to abductive learning where the test result lead

es and ideas for the next probing cycle. In our case,

ment of the resistors fluctuates significantly. This lead

g of the microcontroller that processes the measurement. T

repeating cycles of probing leads to a wayfaring

ne’s way through the project. This means that the test res

ape the future development. Figure 1a) shows the first tes

re we discovered that the idea is feasible and that th

een car parts are needed. This lead to the development of

hat uses BitSnap connectors that serendipitously already

nections and allow the user to easily manipulate the phys

itSnap connectors revealed that these are mechanically

genderless, thus limiting the combinations of mountable

d in the development of the customized connectors shown

the first version in figure 1c) turned out to be also

y lead to the development of the second version in fig

nt probing cycles showcases the wayfaring journey that

d.

the emergence of new ideas as a result of previous prob

portant to minimize the time spent and to maximize

probing cycle. This accomplished by concentrating on j

ns by building a low resolution prototype that is reduced

ssary to only test the critical function. An example for thi

inciple as it is shown in figure 1a). The critical function w

an be used to identify connected parts unambiguously.

d robustness, automation of the measurement, looks

m to focus only on the critical function and thus u

wires and ohmmeters that were readily available in the la

sistor concept, b) testing with the BitSnap connectors, c) fa

r, d) successive version of a universal connector.

411

alled

s to

we

d to

The

of

sults

st of

hree

f the

had

sical

not

car

n in

not

gure

can

bing

the

just

d to

is is

was

 To

and

used

ab.

ailed

200 Publications included in the PhD work

412 A. Gerstenberg et al.

Imposing this train of thought to the entire project yields that prototypes that fulfill

critical functions within different disciplines are merged as soon as they are available to

test the system at large. The aim is to test and discover interdependencies. In our case,

we combined the resistance measurement with a microcontroller, the information

transmission to a PC and the virtual representation on the PC screen as soon as they

were available in their most rudiment form. This means that all components from

possibly different disciplines need to be prototyped simultaneously. Testing the entire

system creates an interlaced knowledge between different disciplines. The structure

recognition algorithm for example influenced the shape of the connectors and these

changes had to be made in agreement with mechanical design of the car parts. This was

possible because the developers of all disciplines were integrated from day one.

3 A Wayfaring Approach to Early Stage Concept Creation

In this part we describe a method that we derived from the project described above.

The method has potential when finding and tackling previously unsolved engineering

design problems that have no known existing solution. These problems are not

necessarily complicated but rather complex according to Snowden and Boone [10]:

they cannot be solved by asking experts to plan the final solution because they require

the use of previously unproven and maybe even unknown concepts. In this context the

development process becomes a wayfaring journey where the path towards fulfilling

the vision emerges from making educated guesses and testing concepts, rather then a

navigation journey along predefined waypoints. An optimum solution cannot be

predicted when doing things that have never been done before. This method concerns

only the early part of product development, the fuzzy front-end of concept creation,

where the requirements of the product are not yet fixed. Figure 1 depicts such a

wayfaring-inspired product development journey. This is a systematic and heuristic

approach to developing something radically novel. The path to the end result will only

be explored and discovered during the project. The journey consists of many probes.

A probe is a circle of designing, building and testing of an idea or a prototype. In the

figure 2, probes are depicted as multiple circles and may contain branching of ideas

and prototypes on a multidisciplinary level or even dead ends. Each circle level

corresponds to a role or a discipline in the project. At first, the team takes the best-

guess direction based on the initial vision. Through multiple probing and prototype

cycles the team then tries to find the big idea worth implementing. This journey can

be long or short, but the main point is to learn fast with low-resolution prototypes.

Through these prototypes one develops the requirements dynamically as perception of

the problem and the vision of the solution will change during the journey. In a

nutshell, we increase the degrees of freedom in the early design phase, develop

requirements dynamically, and only then switch into classical engineering/project

management mode.

While researching radical innovation projects, our chess analogy is lacking because

in chess it is theoretically possible to calculate the move with the highest probability

of winning the game. However, in the product design “game” the possible future

C.3. Contribution 3: A Simultaneous, Multidisciplinary Development and

Design Journey - Reflections on Prototyping 201

 A Simultaneous, Multidisciplinary Development and Design Journey 413

moves, players, even the boundary conditions are often neither comparable nor

foreseeable. There are unknown unknowns that create opportunities for extremely

innovative solutions but also prevent us from predicting or simulating an optimum

solution. In this analogy, the rules of the chess game can change without notice and

we can only provide a journey overview in hindsight, roadmaps do not apply. The

Hunter-Gatherer model by Steinert and Leifer [9] and Ingold [11] inspired this

wayfaring concept.

Fig. 2. Wayfaring journey in product development.

Many of our engineering problems are multidisciplinary and require interdependent

knowledge between disciplines that cannot be covered by individuals or homogeneous

teams. Two or more disciplines of the project are interdependent when design changes

in one discipline lead to requirement adaptation in at least one other discipline. We

argue that including team members or at least domain perspectives from all involved

disciplines early in the project helps to reveal desirable and undesirable

interdependencies already in early decision making phases. Even if actual deliverable

input from every member is dispensable early on, the benefit of learning early

overcomes the cost of participation. One of the greatest threats in new product

development is the fear of failure [12]. According to Snowden [10] safe failing is

identified as one of the cornerstones while innovating in the complex domain. The

interlaced knowledge, developed through sense-making and justification of ideas to the

other involved disciplines, is also beneficial when designing within one discipline while

having the entire system in mind and thereby knowing when the other disciplines need

to be taken into account and their input is needed [13]. This is a skill that can only be

learned when combining all involved disciplines from the first day of the project.

The nature of trying out new concepts entails that outcomes cannot be guaranteed

and some problems, opportunities and interdependencies are difficult, if not

impossible, to foresee. When trying out something never attempted before we can no

longer base our assumptions on past experiences and unexpected discoveries can

arise. Snowden calls these discoveries unknown unknowns because we unknowingly

202 Publications included in the PhD work

414 A. Gerstenberg et al.

discover something previously unknown [10]. In order to achieve these unexpected

discoveries new experiences must be created from probing ideas. One of the ideas of

probing is therefore to build and test prototypes that create completely new

knowledge – knowledge that is impossible to accurately anticipate regardless of what

our expectations may be. The concept of probing is depicted in Figure 2. Each probe

is a prototype where new knowledge is deductively, inductively and/or abductively

created and tested. The vision and requirements are then evolving dynamically until

they are locked. The development cycle is executed through different roles of

disciplines. Each probe is ideated through divergent thinking where open questions

are asked in order to stimulate the creative process followed by convergent thinking,

that evaluates and analytically benchmarks the ideas through proof-of-concept

prototypes. The interesting interlaced knowledge lies in the boundaries of the

different disciplines and presents the potential for serendipity discoveries.

Fig. 3. Probing cycle

To continue with the chess analogy, we do not expect to win if we must plan all

our moves (and anticipate the opponent’s) in the beginning. However, if allowed to

experiment and revert moves a thousand times during the game, it will quickly

become a game of probing (or prototyping) multiple moves. Through not following an

optimal game strategy, this will eventually lead to overall winning the game in case of

a complex game scenario. Because the cost of probing is minimal, it allows us to

explore opportunities that are not immediately perceived as profitable. It leads to

moves that would normally not be taken, to discoveries that are normally not found,

and may potentially lead to surprising and highly innovative ways of winning the

game. Therefore, the aim must be to make the probing and the learning of ideas as

low-risk (i.e. fast and cheap) as possible in order to create the experience needed to

reflect, to understand the outcome, and then abductively reason and opportunistically

choose the next step [14].

C.3. Contribution 3: A Simultaneous, Multidisciplinary Development and

Design Journey - Reflections on Prototyping 203

 A Simultaneous, Multidisciplinary Development and Design Journey 415

The notion is to put the focus on testing the most critical functions, thus leaving

the development of the “nice to have” add-ons for later. It is preferable to utilize the

resources for discovering the essentials and preferably fail there early. The probing

removes uncertainty and an undiscovered problem is revealed before it forces

undesired requirement changes at a later stage [15]. The testing usually involves

building a low resolution prototype with the intention to either find the critical

function or to build a prototype for user testing in order to avoid developing into an

unnecessary direction. Low-resolution prototypes can be anything from cardboard

models to Arduino hacks to proof-of-concept prototypes. Often developers have

major problems in failing. Low-resolution prototypes in very fast iteration rounds do

not resemble the finished object and are thus one way to allow and speed up

experimentation. It seems to be inherent to human nature to fear failure, thinking it

will cost too much. This can lead to a non-willingness to take risks and make

cooperation hard with people from other disciplines. This skill of creative competence

[16,12] does not come naturally. This is why changing the mindset into one that

favors building prototypes with the option of failing safely before planning is critical

while developing new concepts. Hence, despite the natural fear of failing, the mindset

should be biased towards building low-resolution prototypes in order to gain

experience instead of thinking the idea through and remaining with doubt.

Another finding is to merge system components as soon as possible in order to

tackle potential integration issues very early on. This follows the same line of thought

as aiming to discover unknown interdependencies as early as possible. Whenever a

component individually fulfills its critical function, it ought to be integrated with

other components to test its critical function in the context of the whole system. So,

even when the system can and is divided into modules, integration should be tested

while changes to the system are still easily possible. We believe that there is no point

in fully developing one component and then risking requirement changes in other

components that would endanger the previous development. This requires quasi-

simultaneous prototyping to ensure that components can be merged. Thus in our

context, simultaneous prototyping means understanding and probing ideas from

multiple disciplines at the same time.

The main purpose of probing is to find solutions to the evolving problem by

abductive reasoning and to continuously update the understanding of the problem.

While probing different paths for the project one of the most important mindsets is to

be opportunistic, to find, recognize and take chances that present themselves. Another

benefit is the possibility to abandon disadvantageous concepts, “dead ends”, in an

early stage at the lowest cost and involvement possible. All in all, the wayfaring

model calls for a bias towards action and learning in action.

4 Conclusions of Wayfaring

We propose a method suitable for developing new products with a high degree of

uncertainty. It is largely based on including all disciplines related to the product from

the beginning on and iterative cycles of probing ideas by designing, building and

204 Publications included in the PhD work

416 A. Gerstenberg et al.

testing prototypes. The intent of this approach is to discover unknown unknowns and

unexpected interdependencies early in order to minimizing losses due to failure and to

spot opportunities and hitherto unknown potentials. Both, the initial problem

statement and the targeted project vision remain in flux much longer than usually. The

relatively early requirement fixation stage becomes a delayed dynamic requirement

evolution process. The decisions to fix the dynamic requirements are made based on

gained and tested information, based on learning cycles trough low-resolution

prototyping and probing. We believe the headway and learnings, both in terms of

breadth and depths have been superior to pre-planned or more traditional process

models. We thus invite the community to deploy and test this approach in the early,

pre-requirement definition phase and to share their insights.

Acknowledgments. We thank the project owner L. Nilsen, CEO of Metis Productions

AS. This research is supported by the Research Council of Norway (RCN) through its

user-driven research (BIA) funding scheme, project number 236739/O30.

References

1. Sanchez, R., Mahoney, J.T.: Modularity, flexibility, and knowledge management in

product and organization design. Strategic Management Journal 17(S2), 63–76 (1996)

2. Baldwin, C., Clark, K.: Design Rules: The power of modularity. MIT Press (2000)

3. Reime, T., et al.: Proceedings of the 14th International Conference on Entertainment

Computing, ICEC 2015, Trondheim, Norway, September 29-October 2, 2015. Springer

(2015)

4. Eisenhardt, K.M.: Building Theories from Case Study Research. The Academy of

Management Review 14(4), 532–550 (1989)

5. Yin, R.K.: Case Study Research: Designs and Methods. SAGE Publications (2013)

6. Burks, A.W.: Peirce’s theory of abduction. Philosophy of Science 13(4), 301–306 (1946)

7. Eris, O.: Effective inquiry for innovative engineering design. Springer Netherlands (2004)

8. Leifer, L.J., Steinert, M.: Dancing with ambiguity: Causality behavior, design thinking,

and triple-loop-learning. Information, Knowledge, Systems Management 10(1), 151–173

(2011)

9. Steinert, M., Leifer, L.J.: “Finding One”s Way’: Re-Discovering a Hunter-Gatherer Model

based on Wayfaring. International Journal of Engineering Education 28(2), 251 (2012)

10. Snowden, D.J., Boone, M.E.: A Leader’s Framework for Decision Making. Harvard

Business Review, 69–76 (2007)

11. Ingold, T.: Lines: a brief history. Routledge (2007)

12. Bandura, A.: Perceived self-efficacy in the exercise of control over AIDS infection.

Evaluation and Program Planning 13(1), 9–17 (1990)

13. Türtscher, P., et al.: Justification and Interlaced Knowledge at ATLAS, CERN.

Organization Science 25(6), 1579–1608 (2008)

14. Schön, D.A.: The reflective practitioner. Basic Books, New York (1983)

15. Kriesi, C., Steinert, M., Meboldt, M., Balters, S.: Physiological Data Acquisition for

Deeper Insights into Prototyping. In: DS 81: Proceedings of NordDesign 2014, Espoo,

Finland, August 27-29 (2014)

16. Kelley, T., Kelley, D.: Creative confidence: Unleashing the creative potential within us all.

Crown Business (2013)

C.3. Contribution 3: A Simultaneous, Multidisciplinary Development and

Design Journey - Reflections on Prototyping 205

Example Case
The Fibo Car is a tangible toy interface for car
games. The prototype’s technology is based around
an Arduino Uno [1] that measures unique resistors
placed inside car-like physical parts. The exterior
parts are attached to a central part by header
connectors that provide electrical connection and
structural integrity. A circuit board containing a
shift register inside the central part allows for the
measurement of resistors in four parts at the same
time. The measured values are sent to a computer
where Processing 2.2.1 [4] analyses the data and
displays 3D models representing the physical parts,
thus giving a real-time virtual representation of
the physical assembly. The prototype did not
include input from the gameplay domain because
we assumed that the resulting prototype would
have too low resolution to be included in actual
gameplay: a high resolution prototype with
gameplay would be made in the future. The
prototype presented in the figure below shows the
state after six weeks.

Abstract
This paper proposes a wayfaring approach as a
method suitable for the early concept creation phase
of development projects that have a very high degree
of innovation. The method is supported by a concrete
game design example focusing on the development of
a tangible programming interface for virtual car
racing games. Process wise we are solemnly centered
onto the early stage that precede the requirement
fixation, which we see as more dynamic and
evolutionary in nature. The core elements that we
have derived from the development experience are:
simultaneous prototyping in multiple disciplines,
abductive learning from rapid cycles of designing,
building and testing prototypes (probing), and the
importance of including all involved disciplines
(knowledge domains) from the beginning of the
project.

A Simultaneous, Multidisciplinary Development and Design Journey of
Bridging Tangible and Virtual -Reflections on Prototyping

Achim Gerstenberg1*, Heikki Sjöman1, Thov Reime1, Pekka Abrahamsson2, Martin Steinert1

Examples of wayfaring in case
• Interdependencies: Business model

and game design affected the domains
o f m e c h a n i c s , c o m p u t a t i o n ,
electronics, and virtual representation:
representants from all disciplines
should be involved in the early phase.

• Unknown unknowns and abductive
learning: Resistors as identifiers had
initially promising results, but its
instability made it a non-viable
solution for the end product. New
magnetic connectors led to the
discovery of how symmetry affects
design of genderless connectors (see
figures above).

• Low resolution prototypes and
probing: The principle of the electrical
connectors was prototyped at a low
resolution level with minimal time and
resource investment before making
actual connectors. This formed the
basis for the critical function of part
identification. Existing 3D models from
Processing’s example library were used
to prototype the critical function of
displaying 3D models based on signals
from Arduino.

• M e r g i n g a n d s i m u l t a n e o u s
p r o t o t y p i n g : E l e c t r o n i c s a n d
mechanics were already merged by
combining LittleBits Bitsnaps [3] and
the three pin electrical connector
principle on soldering boards during
week two.

Proposed method
The Hunter-Gatherer model by Steinert and Leifer [6] and Ingold [2] inspired this wayfaring concept. We
believe this method has potential in unsolved engineering design problems with dynamic requirements
and high level of interdependencies between related engineering disciplines. These problems are
complex according to Snowden and Boone [5]: they require the use of previously unproven or unknown
concepts; optimum solutions cannot be predicted. We suggest that the path shall emerge from probing in
multiple domains simultaneously: designing, building, and testing of an idea or prototype related to
preferably all knowledge domains. This quasi-simultaneous prototyping ensures that components can be
merged in the future. Including perspectives from all domains help reveal interdependencies and build
interlaced knowledge. Risk taking and failing is used to encourage testing a wide range of opportunities
and yield discovery of unknown unknowns. Through multiple probing and prototyping cycles, the team
tries to abductively reason and find the big idea worth implementing. The main point is to learn fast
with low-resolution prototypes and merge these as soon as possible to validate or falsify critical
functions. Another benefit is to abandon “dead ends” quickly. As the vision of the solution and problem

* Achim.Gerstenberg@ntnu.no
1: Department of Engineering Design and

Materials, TrollLABS, NTNU
2: Department of Computer and Information

Science, NTNU

perception changes, the requirements develop
dynamically. After the idea has been found, it
is passed forward to more traditional
approaches like the waterfall model or the
scrum model. All in all, this wayfaring model
calls for a bias towards action and learning by
doing.

Conclusion
We derived a method for developing new
products of a high degree of uncertainty. It
is based on including all disciplines from the
beginning and using iterative cycles of
probing ideas by designing, building and
testing prototypes. The described example
has covered a project time of six weeks of a
single Full-time equivalent (FTE) position.
We believe the headway and learnings have
been superior to traditional process models.
We thus invite the community to deploy and
test this approach in the early, pre-
requirement definition phase and to share
their insights.

Background: NTNU_Hovedbygningen_okt2014_0391. Modified to black and white.
Foto: Gunnar K. Hansen, NTNU Komm.avd.

References
[1] Arduino Uno Microcontroller Board, 2015. Retrieved April
28, 2015: http://www.arduino.cc/en/Main/HomePage
[2] Ingold, T. (2007). Lines: a brief history. Routledge.
[3] Little Bits Electronics, BitSnaps, 2015. Retrieved April
28, 2015: littlebits.cc/accessories/bitsnaps
[4] Processing programming language. Retrieved April 28,
2015: https://processing.org/
[5] Snowden, D. J., & Boone, M. E. (2007). A Leader’s
Framework for Decision Making. Harvard Business Review,
69 - 76
[6] Steinert, M., & Leifer, L. J. (2012). “Finding One”s Way’:
Re-Discovering a Hunter-Gatherer Model based on
Wayfaring. International Journal of Engineering Education,
28(2), 251.

Acknowledgements
Thanks to Leonore A. Nilsen, CEO of Metis Productions AS,
and to TrollLABS. This research is supported by the Research
Council of Norway through its user-driven research (BIA)
funding scheme, project number 236739/O30.

206 Publications included in the PhD work

C.4 Contribution 4: Large-scale Engineering Prototyping
- Approaching Complex Engineering Problems CERN-style

Not included due to copyright restrictions

C.5 Contribution 5: Open-ended Problems - A Robot
Programming Experiment to Compare and Test Different
Development and Design Approaches

Not included due to copyright restrictions

228 Publications included in the PhD work

C.6 Contribution 6: Testing the Effect of Desirable
Difficulties on Teaching Robotics

CERN IdeaSquare Journal of Experimental Innovation, 2020; X(X): X-X
DOI: https://doi.org/10.23726/cij.2020.???

Testing the effect of desirable difficulties on teaching robotics

Achim Gerstenberg,1* Martin Steinert,1

1 Department of Mechanical and Industrial Engineering, NTNU, 7491 Trondheim, Norway
*Corresponding author: achim.gerstenberg@ntnu.no

ABSTRACT
Desirable difficulties such as generating one’s own solution instead of replicating a provided solution is associated with improved

long-term memory. Disseminating misleading information has shown improved learning in science education over consuming concise
and clear learning instructions. We aim to quantify if a tutorial about programming a mobile autonomous robot that requires having to
correct misleading instructions leads to better problem solving capabilities than providing correct and clear tutorial instructions when
asked to solve a complicated open-ended robotics task. We present an experimental setup for a controlled comparative human-subject
study that compares the effect of desirable difficulties on participant’s performance in solving a complicated open-ended task after
completing an introductory tutorial. We explain the experiment timeline, the tasks of the tutorial, as well as the open-ended task
including the robot and how this experiment can be executed under very controlled, repeatable and as unbiased as possible conditions.
We share and discuss some observed problems in this setup from early trials.

Keywords: Desirable difficulty, Human subject experiment, Problem solving

Received: August 2020. Accepted: Month Year.

INTRODUCTION

Desirable difficulties such as generating a solution
instead of being told a solution (Bjork 1975; Bjork 1994;
Bjork 2011) and using tests instead of presentations
(Roediger & Karpicke 2006) have been shown to
improve long-term retention of the learning content. In
addition, Muller found that noticing and correcting false
information in science education videos significantly
improved the understanding (Muller 2007).

We present an experimental setup for a comparative
study that quantitatively investigates if introducing
desirable difficulties improve short-term performance in
open-ended problem solving. In the learning phase, we
use flaws in an example solution that the participants
need to correct as a generative desirable difficulty. We
furthermore describe how such quantitative experiments
can be conducted under controlled conditions to
minimize biases introduced by inconsistent interaction
with the participant.

EXPERIMENT AGENDA

During a series of tutorial tasks that familiarize the
participants with the programming of a robot, the
participants are either presented a working solution to
the task or a dysfunctional, flawed solution that they

need to correct. In addition, all participants receive an
explanation of the library functions needed. The flawed
or unflawed solutions are presented on a separate screen
so that participants cannot automatically copy and paste
the solution into the programming environment. This
ensures that they need to either create their own solution
or need to fully read and then retype the provided
solution. After completing nine tutorial tasks, which
introduce the participants to the functionalities of the
robot necessary for this experiment, all participants are
presented an open-ended task. The time from when the
robot is started until it has completed the open-ended
task is used as a measure of performance. The evaluation
takes place after the programming phase. We suggest a
programming phase of eighty minutes.

This experimental setup aims to research if desirable
difficulties increase problem-solving performance in an
open-ended task. Accordingly, the hypothesis to be
tested is:

Participants that correct flawed solution suggestions
in tutorial tasks afterwards generate solutions that solve
the open-ended task faster than participants that received
unflawed solutions during the tutorial tasks.

The following paragraphs describe the robot used,
the tutorial tasks and the open-ended task.

Additional information about the physical setup, a
more precise description of the robot and the library, the
standardized interaction with the participants and other
experiment examples this setup can be used for are
described in (Gerstenberg & Steinert 2018).

ORIGINAL ARTICLE

Published by CERN under the Creative Common Attribution 4.0 Licence (CC BY 4.0)

1 11

2
Achim Gerstenberg and Martin Steinert

THE ROBOT

The robot is based on Lego Mindstorms NXT 2.0 and
has two motors to drive forwards, backwards and turn,
and sensors to detect the reflectivity of the surface
underneath the robot, an ultrasonic distance sensors and
light sensors that can detect the color of an object and
recognizes a blinking light. It is programmed in the NXC
(not exactly C) programming language. A library that
simplifies the programming of the robot is provided to
the participants. This library includes functions for
sensors, outputs and movement. For example, a function
that separately defines the PID controlled motor speeds
on each side in percentage values from negative 100 to
positive 100, spares the participant the need to program a
closed feedback loop for the voltages to each motor.
Other functions simplify turning of the robot, reading out
sensor values, generating random numbers, play tones
and display characters on the robot’s screen. Figure 1
shows a front view of the robot.

Fig. 1. Detailed front view of the robot with its four sensors.
The motors and belts for moving the robot are positioned on
the sides and are not visible.

TUTORIAL TASKS

The aim of the tutorials is on the one hand to
introduce the participants to the robot and its capabilities
and on the other hand to provide the differentiation
between the flawed and unflawed condition. The tutorial
consists of 9 separate tasks where each tasks introduces
one new functionality from the library. While working
on the tutorial the participants can execute the codes that
they have created. They are presented the next tutorial
task when the robot fulfils the current task. In the case
that the experimental group, that needs to find the flaw
in the solution, does not solve the task within the time
limit they are shown the solution for 1 minute. The

following table lists the nine tutorial tasks with a short
description of the flaw used for the experimental group
and the provided time limit.

Task description Flaw description Time
limit

1. Write a program that each
second plays a sound for
100 ms at 440 Hz.

Sound has 4400
Hz and the time
between sounds is
1 ms instead of 1
second

3 min

2. Show the elapsed time in
seconds on the display.

Time variable
starts at 42 seconds
and the display
position changes
each second
instead of the
value

3 min

3. Drive straight forward as
slowly as possible (but
visibly moving) for 5
seconds then turn 90
degrees counterclockwise
with speed 10 using the
turn function. When the
turn is completed, drive
straight backwards as fast
as possible for half a
second and then stop both
belts for two seconds.
Spin the robot clockwise
for 2 seconds at half speed
using both belts and stop.

Robot turns in the
opposite direction
in both cases and
uses a forbidden
speed value.

5 min

4. Place the robot on the
aluminum foil and drive
forward as long as the
robot is on the aluminum
foil. Use the downwards
light reflection sensor to
find out when the robot
(or more precisely the
sensor) reaches the edge
of the aluminum foil and
stop the robot.

Too low threshold
for detecting the
edge of the
aluminum foil. The
robot keeps driving
after reaching the
edge.

5 min

5. Place the robot in front of
the red or green cardboard
wall. Drive towards the
wall. If the wall is green
stop in front of the green
wall. Keep driving and
crash into the wall if it is
red.

Robot only
compares the green
light reflection
between the
sensors on each
side and does not
compare to the red.

5 min

C.6. Contribution 6: Testing the Effect of Desirable Difficulties on Teaching

Robotics 229

3
Testing the effect of desirable difficulties on teaching robotics

6. Place a blinking light 20
cm behind the robot.
Rotate the robot on the
spot until the robot detects
a blinking light. Stop the
robot when it detects the
blinking light.

Robot turns so
quickly that the
light sensors are
not facing the
blinking lights for
the duration of one
blinking period
and consequently
are not properly
detecting the
lights.

5 min

7. Place the robot facing
towards the 50 cm wide
cardboard wall and drive
towards it. Stop between
20 and 30 cm in front of
the wall using the
ultrasonic distance sensor.
Turn the robot until the
ultrasonic sensor no
longer detects it and drive
past the cardboard wall.

The threshold is
chosen lower than
the minimum
distance the sensor
can detect and
therefore the robot
keeps driving into
the wall.

5 min

8. Drive around with random
speed (between full speed
backwards and full speed
forwards) on each wheel
by using the random
function.

Change wheel speeds
every second

The input order of
the parameters to
the random()
function is inverted
resulting in the
function returning
0 instead of
random values
between -100 and
100.

3 min

9. Equivalent to the previous
task but stop the robot
after 5 seconds using
timers

Timer 1 is started
but timer 3 is used
for the timing.
After this is
corrected the time
until the program
stops is 5
milliseconds
instead of 5
seconds.

3 min

OPEN-ENDED TASK

The aim of this task is to attain a performance
measure that allows for a quantitative comparison of the
two conditions. The task is open-ended, meaning that
there is not one single clear solution and many different
ways of finding them. While the tutorial tasks each
contain a single new code component, the open-ended
task requires a creative combination of several
components to be solved. The participants need to

transfer knowledge from the tutorials and adapt it to the
new context of the open-ended task.

The task is to remove three cube-like objects from a
white area of 1.8 square meters in the shortest time
possible after starting the robot. The starting position of
the robot is unknown to the participant and the solution
is supposed to work from any possible starting position.
Three blinking lights are provided and can be placed
anywhere including inside the cube-like objects. The
robot cannot be manually influenced after it is started.

Fig. 2. Setup of the three coloured cubes on the 1.8 square
meter large white area that the autonomous robot needs to push
onto the surrounding.

INTERACTION CONTROL

Qualitative research offers insights into why
differences occur while quantitative research setups, like
the one presented here, allow researchers to quantify
effect size with usually fewer insights about why a
difference between conditions exists. This means that it
is important to have one exclusive difference between
conditions such that differences in the results can be
linked to this single stimulus. Therefore, everything else
that may have an influence on the results needs to be
kept equal for every participant.

Common biases in human subject experiments are
dependent on the behaviour of the experimenter and the
perceptions of the participant. Apart from carefully
designing and testing instructions, we cannot control for
how a participant perceives and interprets them.
However, we can control how the instructions are
presented and can reduce biases introduced by direct
human-human interaction with the experimenter. This
experiment setup is designed without any direct oral and
visual experimenter to participant interaction by
providing instructions through pre-recorded voice and
video instructions that use computer generated voices to
avoid emotional inflictions through voice tonality. Other
instructions are given as text on a screen or paper, and
the timing when information is presented follows a

230 Publications included in the PhD work

4
Achim Gerstenberg and Martin Steinert

predefined script. This process ensures that each
participant receives neutral and similar instructions.

PRELIMINARY RESULTS

We tested this setup with mechanical engineering
students with basic programming skills from a
mechatronics course. However, it was a preliminary test
as the instructions were slightly adapted in the course of
the experiment, i.e. that there were small setup changes
between the participants that may influence the result
differently.

The results did not show a significant difference
between participants that completed the tutorial without
flaws versus the participants that completed the flawed
tutorial. We cannot conclude that there is no effect, but
the effect is not observable due to the small number of
participants and the inter-participant variation of the
performances regardless of the condition. All
participants were able to complete the tutorials within
the given time limits while not all participants were able
to successfully solve the open-ended task.

LIMITATIONS AND STRENGTHS

Having an experimental setup that is equivalent for
every participant limits the flexibility of the study. The
desirable difficulties presented in the tutorial need to be
difficult, yet solvable for the participants. Finding this
challenge point requires already extensive testing prior
to the actual experiment with a group of participants that
have a similar skill level as the participants used later in
the actual study. Since participants cannot partake in the
study twice, those used in the preliminary study will not
be able to participate again.

Another downside to a rigid setup is that it makes
qualitative research more difficult. The setup allows for
standardized qualitative data gathering such as analysing
the codes the participants write, their keystrokes, video
and audio recordings and questionnaires. However, such
a setup does not allow for situational inquisitions like
interviewing the participant during the experiment, or
asking for feedback on specific design decisions or on
potential problems. Direct human interaction between
the experimenter and the participants is possible after
gathering the data and retrospectively asking question
may still lead to insightful observations.

Probably the main limitation is that different
participants have varied skills and different approaches
to open-ended problem solving. For example, some
participants read the provided information about the
robot more carefully and approach the problem in a very
structured way, while others rely on frequently testing
prototypes. The ability to gain insights from testing
varies between participants. These differences between

participants may lead to the inconclusive observation in
our preliminary results and shows the importance of
choosing participants with an as equal as possible skill
level. This restricts the validity of the study to this type
of participant but it also allows statistically significant
findings with fewer participants. Another limitation and
simultaneous strength is that each participant works
alone. This makes the experiment less meaningful as
programming nowadays is often done in pairs, but it also
eliminates the uncontrollable influence of group
interactions on the experiment.

The strength of quantitative research is that it can
verify or falsify hypotheses objectively by statistically
evaluating if a theory applies in the context of the
experiment or not. A hypothesis therefore needs to be
falsifiable (Popper 1935) and usually originates from a
prediction made with an existing theory. If the
hypothesis is falsified the theory is incomplete in the
tested context. Knowing the context of the experiment is
therefore essential. This includes for example the age,
gender, education, culture, etc. of the participants, the
field of study the theory is applied to (here robotics
education) and the experiment setup (physical setup,
instructions, time of the day, etc.). To validly compare
results between participants it is vitally important to keep
these experimental settings equal for all participants that
shall be included in the comparison. When the only
difference between participants is the intentionally
introduced stimulus that differentiates participants from
two experimental conditions then any observed
difference in the results can be attributed to the stimulus.
Furthermore, quantitative research can determine effect
size because it allows for statistically evaluating the
significance of the effect.

The aforementioned experimental setup is optimized
towards repeatability of these experimental settings with
a special focus on how to provide equal experiences to
every participant by standardizing instructions and
presenting them as neutral a form as possible.

While qualitative research helps to generate theories
and find hypotheses, those hypotheses need to be
quantitatively tested to verify the theory for similar
contexts so that one can use the theory for predictions.

With the experimental setup described in this paper,
we aim to contribute with an experiment idea for testing
the hypothesis that desirable difficulties can improve
open-ended problem solving and we hope to encourage
the development of quantitative studies in the field of
computer science education with highly controlled
interactions between the participants and the
experimenter.

ACKNOLEDGEMENTS

This research is supported by the Research Council
of Norway (RCN) through its user-driven research (BIA)
funding scheme, project number 236739/O30

C.6. Contribution 6: Testing the Effect of Desirable Difficulties on Teaching

Robotics 231

5
Testing the effect of desirable difficulties on teaching robotics

REFERENCES

Bjork, R.A., 1975, Retrieval as a memory modifier: An
interpretation of negative recency and related phenomena.
Information processing and cognition, Loyola Symposium,
123 – 144

Bjork, R.A., 1994, Memory and metamemory considerations in
the training of human beings, Metacognition: Knowing
about knowing, 185 – 205.

Bjork, R.A., 2011, Making things hard on yourself, but in a
good way: Creating desirable difficulties to enhance
learning, Psychology and the real world: Essays illustrating
fundamental contributions to society, Worth Publishers,
New York, NY, US

Gerstenberg, A. & Steinert, M., Open ended problems – a robot
programming experiment design to compare and test
different development and design approaches. Proceedings
of NordDesign 2018

Muller, D.A., 2007, Saying the wrong thing: improving
learning with multimedia by including misconceptions,
Journal of Computer Assisted Learning, 24(2), 144 – 155

Roediger, H.L. & Karpicke, J.D., 2006, Test-enhanced
learning: Taking memory tests improves long-term
retention, Psychological Science, 17, 249–255

Popper, K., 1935, Logic of Scientif Discovery, Springer

232 Publications included in the PhD work

C.7. Contribution 7: Development and Verification of a Simulation for

Leveraging Results of a Human Subjects Programming Experiment 233

C.7 Contribution 7: Development and Verification of
a Simulation for Leveraging Results of a Human
Subjects Programming Experiment

DEVELOPMENT AND VERIFICATION OF A SIMULATION FOR
LEVERAGING RESULTS OF A HUMAN SUBJECTS PROGRAMMING

EXPERIMENT

Achim Gerstenberg
Department of Mechanical and Industrial Engineering

Norwegian University of Science and Technology
Trondheim, Norway

achim.gerstenberg@ntnu.no

Martin Steinert
Department of Mechanical and Industrial Engineering

Norwegian University of Science and Technology
Trondheim, Norway

martin.steinert@ntnu.no

March 24, 2019

ABSTRACT

Quantitatively evaluating and comparing the performance of robotic solutions that are designed
to work under a variety of conditions is inherently challenging because they need to be evaluated
under numerous precisely repeatable conditions Manually acquiring this data is time consuming and
imprecise. A deterministic simulation can reproduce the conditions and can evaluate the solutions
autonomously, faster and statistically significantly. We developed such a simulation designated to
leverage data from a human-subject experiment post-experimentally. We present the development of
the simulation and the verification that it actually reproduces the results obtained with the physical
robot. The aim of this publication is to provide insight into the development details such that other
researchers can replicate the setup and to show the degree of validity of the simulation.

1 Introduction

Gerstenberg and Steinert [1] presented an experimental setup for engineering design methodology research where
participants are expected to program a mobile robot to autonomously detect and move objects in the shortest time
possible and from any starting position within a given area. The time the robot needs to complete the task is the
performance measure that can be used for testing the influence of different design methodologies on performance
outcome in such an open-ended task. During the experiment the participants generate and test their solutions. The test
results during the experiment are not sufficient to obtain statistically valid performance results but the codes that the
participants generate can be evaluated post-experimentally. This can be done by loading the participant codes onto
the robot and then manually executing the codes, observing the robot and documenting its performance from many
different starting positions. While gathering this data the conditions must be kept as equal as possible for comparability.
This means that the starting conditions must be accurately repeated, the battery equally charged, frictions in the motors
remain equal, etc.. To reduce the error introduced by not perfectly replicating the conditions, each starting position
can be repeatedly executed and the results for this starting position are then averaged. Acquiring data manually from
many starting position is very time consuming and annoying. Therefore, this paper presents a digital and deterministic
simulation that speeds up the post-experimental performance evaluation and, in addition, makes it more comparable by
guaranteeing equal conditions when comparing solutions. We describe the task and the robot used in the experiment
that this simulation is made for, how we developed the simulation from observing the physical robot, how we validate
that the simulation gives qualitatively and quantitatively valid results and use the simulation to illustrate that small
perturbations in the conditions can have a significant effect on performance when evaluating only a single or few
repetitions.

MARCH 24, 2019

2 The physical robot and the task

The robot is built from LEGO technic and is controlled by a LEGO Mindstorms NXT 2.0 system. Two electric motors
can move the robot via two belts; one on the left and one on the right side. The robot has in total 4 sensors. A ultrasound
distance sensor is mounted in the center front and two identical light/colour sensors are mounted on the sides. The
light/colour sensor can detect light intensity and measure the colour of nearby objects. These three sensors point
forward. Near the front and pointing downwards, the robot has a reflection sensor. The sensor emits red light and
measures how much of this emitted light is reflected back into the sensor. The reflection sensor can detect differences in
reflectivity of the surface underneath the robot.

The robot is programmed by the participant in the NXC language. NXC stands for “not exactly C” and is a programming
language very similar to C. The participant is provided with a library that includes functions specifically written for
this robot. It simplifies the interpretation of raw data such as converting the time of flight of the ultrasound pulse from
the ultrasound distance sensor to a distance in centimeters or the raw light sensor values into a meaningful value for
detecting blinking lights. The library allows the participant to quickly use the robot to solve the task instead of spending
time on programming the basic robot functionality.

A rectangular cardboard playground platform of approximately 1,50 m by 1,20 m has a white area rectangle in the
centre surrounded by a 17 cm cardboard fringe. On top of the white area three coloured cubes (red, green and blue)
are placed. The participant programs the robot so that the robot autonomously removes the cubes entirely from the
white area in the shortest possible time. In the top of the cube a cut-out allows inserting one blinking light per cube
that can be detected by the robot from any direction. The participants can optionally place up to three blinking lights
anywhere on the playground including inside the top of the cube. The blinking lights are detectable with the light/colour
sensor and using the blink variable from the library. The robot can detect the difference of reflectivity between the
cardboard surface and the white area with the downwards pointing reflection sensor. If the robot drives off the cardboard
playground the task is failed. The robot shall be capable to solve the task from any starting position and orientation
inside the white area.

3 Development approach

In contrast to most simulations that are used to test different solutions before building the physical robot this simulation
was developed after the physical robot and environment already existed in order to use the simulation to generate
a performance measure in a controlled, repeatable and faster way. The approach for developing the simulation is a
repeating cycle of measuring the physical robot behaviour and then digitally replicating it and comparing the real
robot behaviour to the simulated robot behaviour. The movement of the physical robot and each sensor are measured
individually and several times. These measurements are averaged. The averaged measurements describing the robot can
be found in the datasheet [2] and are in part shown in the next subsection. The physical environment and the robot
behaviour were modelled in a 2D digital, scaled and deterministic simulation. For comparing the simulation with reality
the simulation and the physical model are set up under similar conditions and each sensor and movement of the robot
are compared individually. If the simulation is not accurate within the error of the measurements of the physical robot
behaviour then a more detailed digital representation of the physical robot is developed and the comparison is repeated
until the simulated robot behaviour is well within the error range of the measurements of the physical robot behaviour.
If this cannot be achieved by making more and more detailed digital representations of the physical robot then we
implement elements that can no longer be explained from the setup of the physical robot. We justify this approach
because the aim is not to make a comprehensive explanatory model of how the physical robot behaves but the aim is to
digitally replicate the physical robot’s behaviour as precisely as possible to predict task performance outcome.

After calibrating the physical shapes and sizes, robot propulsion and sensors of the simulation individually, the
simulation was compared to the behaviour of the physical robot in the context of solving the task. This comparison
was done with three different codes that use as different task solving approaches as possible and cover all sensors and
functions available to the participants. All three are tested from several different starting positions. The qualitative
comparison is done by looking if the real and simulated trajectories are similar and the interaction of the robot and
the cubes and edges of the white are phenomenologically similar. The quantitative comparisons are discussed in the
verification section.

4 Technical solution

For displaying, animating, programming the robot behaviour and simulating the physical interactions between the
objects we use the Unity game development software version 5.6.1 [3]. The first step was to digitally replicate a

2

234 Publications included in the PhD work

MARCH 24, 2019

top-down representation of the cardboard and the white area, the coloured cubes and the robot dimensions. This is
done by drawing a scaled image of each of the objects and inserting them into the unity scene. All of these images
have a box collider tracing the outline of the objects. Unity detects when two box colliders enter or exit into overlap
and gives an event trigger that can be used for capturing the state of the robot in the environment. The moving objects
(robot and cubes) are modelled as a rigid body. This means that the physics engine of unity calculates the interacting
forces between the objects and translates them accordingly. For simulating the deceleration of the cubes, the rigid body
of the cubes is assigned a drag value. Onto the robot image/object the sensors are placed as images as well. Only the
downwards reflection sensor uses a box collider. It is used to detect when this sensor is entering or exiting the white
area or the cardboard area.

4.1 code organization

The unity scene animation is controlled by code written in C sharp. This includes the movement and the simulation of
the sensors, coordinating the execution of the participant codes in the correct order from predefined starting conditions,
documentation of the robot behaviour for later analysis, the simulation representation of the library that the participants
used to control the physical robot and a reoccurring simulation loop that animates the scene and calculates the physics
interactions between the objects. This calculation by the physics engine and the animation are executed during a code
block called “fixedUpdate()” which is provided by the Unity game engine. FixedUpdate is executed 50 times a second.
Additionally to the physics engine we use the fixedUpdate class to include our code for translating the robot in the
scene, update the array that saves the sensor value for the blink sensor and check if the task is completed to reset it
for the next simulation. All other code evaluations are calculated in between two successive FixedUpdates. We use
coroutines to coordinate the schedule for executing the participant codes. Coroutines are like threads that run between
each FixedUpdate and can be yielded for specific times like until the next fixedUpdate or until another coroutine has
finished. While FixedUpdate is like the relentless clock that runs until the simulation stops, coroutines can be used to
execute code at specific times in a sequence. This, apart for scheduling the participant codes, is used to interrupt the
execution of the participant code when those include the "wait" or "turn" command until the waiting time has elapsed or
the robot has finished the turn.

4.2 simulating motors

The movement of the digital robot is modelled with two speed state variables that determine the amount of translation
of the robot object during the execution of FixedUpdate. They represent each of the driving belts of the physical robot.
These two speed state variables are set by the motor and the turn function within the experiment library. The library
is accessible to the participants while coding their solution. The translation along the forward axis of the robot is
proportional to the average of those two speed variables and scaled by a calibration factor that is determined from the
slope of a linear fit between -75% and 75% motor speed in figure 1. For motor speeds over 80% the motors of the
physical robot are not sufficiently strong to move the robot accordingly. Even with full batteries the speed levels off
at motor speeds higher than 75% or below -75%. This is modelled in the simulation by limiting the maximum speed
to 75% or -75% respectively if a higher amount is written in the code. It is verified by comparing the times that the
physical and simulated robot need at different coded motor speeds to cross the long side of the white area. While
pushing a cube the physical robot drives slower because the motors are not strong enough to fulfill the power demand
required from the PID control. This occurs when pushing a cube with a desired motor speed above 20%. For motor
speeds above 20% the robot speed is reduced by 5% of the coded motor speed.

When the robot is driving in a turn, i.e. when the speed state variables for each side are not equal, then the simulated
robot orientation is rotated proportional to the difference between the two speed state variables. In case the absolute
value of the speed state variables are equal but they have opposite signs then the robot is turning on the spot. The
proportionality factor is determined from the slope between 0% and 60 % motor speed of the angular velocity plot of
the physical robot shown in figure 2 and limited above motor speeds of 60%.

The motor speed in the simulation is programmed to change by a maximum of 9 percent points at the next FixedUpdate
until it reaches the desired motor speed. In order to simulate the inertia of the physical robot and the acceleration limit
was determined by qualitatively observing and comparing the behaviour of the physical and the simulated robot when
changing from a rotation to a straight forward movement because it is difficult to accurately measure the acceleration of
the physical robot otherwise.

Besides turning the robot on the spot by setting the two speed state variables, the library provided to the participant gives
the possibility to turn the robot by a given amount of degrees and with a given rotation speed using the turn function
from the library. In the simulation this is implemented using a coroutine that halts the participant code until the turn is
completed. This means, similar to the physical robot, that the participant code cannot simultaneously execute another

3

C.7. Contribution 7: Development and Verification of a Simulation for

Leveraging Results of a Human Subjects Programming Experiment 235

MARCH 24, 2019

Figure 1: Motor speed as used in the participant code vs. physical distance driven per time for fully charged batteries,
with and without pushing a cube.

Figure 2: Angular velocity of the physical robot when having opposing speed state variables (rotating on the spot).

operation such as reacting to sensor inputs. In the simulation the turn is implemented by calculating the orientation
where the turns need to stop and then calculating the target orientation for each FixedUpdate depending on the rotation
speed. Then the turn coroutine sets the speed state variables to zero and the robot orientation is directly controlled by
the coroutine and no longer by the code that is executed during FixedUpdate. However, the coroutine rotates the robot
and is yielded after each rotation step until FixedUpdate has been executed to keep the turn synchronized with the
physics simulation that occurs in FixedUpdate.

4.3 simulating sensors

The units used during measuring the sensor outputs of the physical robot are centimeters for distances and degrees
for angles. The angles in the physical world and the simulation are equivalent and need to translation. However, the
centimeters measured in the real world do not correspond to the distance units used in the Unity editor. One distance
unit in the Unity editor corresponds to 9.49223 centimeter in the physical world. The measurement and fit functions
shown below are in centimeters and the conversion number is used to translate from the real world to the simulated
values.

4.3.1 Downwards reflection sensor

The simulated downwards reflection sensor is a child object of the robot in the Unity scene. This means it uses the
robot object as its reference frame and therefore moves synchronous with the robot. It has a box collider surrounding
it. It is used to detect entering or exiting the box colliders of the white area or the cardboard area. Whenever the box
collider of the reflection sensor enters or exits one of those area box colliders, a state variable is set to the according

4

236 Publications included in the PhD work

MARCH 24, 2019

Figure 3: The plot shows the ultrasound value measured by the physical robot depending on the actual distance from the
cube center. The sketches on the right side of the graph illustrate the cube orientation perpendicular to the ultrasound
sensor (top) and at 45 degrees orientation (bottom).

reflective value that was measured with the physical sensor. The reflectivity value for the white area is measured and
simulated at 47, cardboard at 36 and outside the cardboard at 16.

4.3.2 Ultrasound distance sensor

The simulated ultrasound sensor is, similar to the downwards reflection sensor, also a child object of the robot in the
Unity scene that moves with the robot object. The simulated sensor value is estimated from the distance between the
center of the ultrasound sensor object and the center of the cube. The conversion between the simulation units and the
centimeter used in the physical world is made with the slope of the measurement shown in figure 3 for when the cube
base plate is orientated perpendicular to the ultrasound sensor. For angles where the cube’s base plate is oriented at 45
degrees to the forward direction of the sensor, the distance measurement is similar but the cutoff angles - this is the
largest angle where the sensor can still detect the cube - is smaller. For a perpendicular orientation the cutoff angle is
35 ± 3 degrees whereas at 45 degrees it is 22 ± 2. We model a linear decline of the cutoff angle according to these
numbers: cutoff = − 13

45 · γ + 35 where γ is the angle between the forward direction of the ultrasound sensor and a
vector perpendicular to the cube’s base plate.

4.3.3 Blink light sensor

The blink value is determined from the forward pointing light / colour sensors on the left and right side of the robot. In
the simulation those sensors are child objects of the robot object and move synchronous with the robot. The sensors on
the physical robot detect the blink light by the light intensity difference between the times when the blink light is turned
on and turned off. This requires time for the blink light to turn on and off again and causes a delay in the blink light
measurement. In the simulation this is modelled by assessing delayed values from an array that stores the past blink
values. In this simulation we use a delay of 500 milliseconds. The simulation, as well as the physical robot, evaluate the
sensor measurement from both the left and right light sensor. The larger value is used as the blink value that is stored in
the array and can be used in the participant code. The blink value for each light sensor is influenced by four factors:

1. ∆, the distance factor related to the distance d between the sensor and the blink light

2. β, the viewing angle factor related to the angle α between the forward sensor direction and the direction from
the sensor to the blink light

3. φ, the relative cube orientation correction dependent on the angle ϕ between the direction from the sensor to
the blink light and the direction perpendicular to the edge of a cube’s base plate

4. δ, the relative cube orientation distance correction, the effect mentioned above is dependent on the distance d
between the sensor and blink light

The current blink value in the simulation is calculated by:

blinkvalue = ∆(d)β(α)−∆(d)β(α) · φ(ϕ)δ(d)
The blink value neglecting the cube orientation towards the sensor is ∆(d)β(α) but the actual blink value can be
decreased due to the orientation of the cube. The cube orientation correction φ(ϕ) is furthermore dependent on the

5

C.7. Contribution 7: Development and Verification of a Simulation for

Leveraging Results of a Human Subjects Programming Experiment 237

MARCH 24, 2019

Figure 4: Blink values dependent on the distance from the sensor to the blink light in a cube for the blink light positioned
straight ahead of the sensor. The black symbols represent the measurement for a cube orientation where the base plate
of the cube is perpendicular to the forward sensor direction. The white symbols represent a cube’s base plate oriented at
45 degrees to the sensor.

Figure 5: Blink values for the left sensor (black symbol) and the right sensor (white symbol) at a distance of 40
centimeters depending on the angle between the forward direction of the sensor and the direction to the blink light. The
angle is negative if the blink light is positioned to the left of straight forward direction from the sensor. At all angles the
cube’s base plate is held perpendicular to the direction from the sensor to the blink light.

Figure 6: Blink values for a blink light inside a cube positioned 40 centimeters straight in front of the sensor for different
orientations of the cube relative to the sensor. Angles of zero and ninty degrees represent a cube with a base plate
perpendicular to the forward direction of the sensor. At 45 degrees the corner of the cube is pointing towards the sensor.

6

238 Publications included in the PhD work

MARCH 24, 2019

distance and corrected by multiplying φ(ϕ) by a factor δ(d). The product of φ(ϕ) · δ(d) is a relative correction and
therefore must be multiplied with ∆(d)β(α) to get the absolute correction.

The distance factor is determined from the measurements shown in figure 4. We use the measurement for the
perpendicular orientation of cube’s base plate relative to the forward sensor direction. The distance factor ∆ is fitted
with

∆ = 3 · 10−6d4 − 0.0011d3 + 0.144d2 − 8.55d+ 200

This blink value based on the distance gets influenced when the blink light is not positioned straight in front of the sensor.
The blink value decreases if the blink light is positioned towards the sides of the sensor. This effect is also measured at
a sensor to blink light distance of 40 centimeters and normalized to the blink value of 24. The measurements for the
different sensors on each side deviate slightly from one another and are shown in figure 5 and the normalized fits are:

βleft =
1

24
(8 · 10−6α4 + 7 · 10−5α3 − 0.0277α2 − 0.1567α+ 25.023)

βright =
1

24
(7 · 10−6α4 + 7 · 10−5α3 − 0.027α2 − 0.0891α+ 26.005)

The uncorrected blink value can then already be calculated to ∆(d) · β(α) for each of the sensors. However, if the cube
base plate is orientated at angles above 30 and below 60 degrees to the forward direction of the sensor the blink value
decreases. This dependency is shown in figure 6 where an angle of zero or ninety degrees is equivalent to the base plate
being perpendicular to the sensor direction. The relative correction is fitted from this data to:

φ =
1

24
(24− (0.0338 · ϕ2 − 3.0929 · ϕ+ 87.133)

The fit is accurate for angles between 30 and 60 degrees. Outside of this interval the simulation assumes no influence
caused by the cube orientation. The influence of the cube orientation is distance dependent. This can be seen from
the difference of the two curves in figure 4. We use the blink value difference of these two curves and the blink value
difference between zero and forty five degrees cube base plate orientation from figure 6 to fit a correction δ(d) of the
cube orientation correction.

δ = 3 · 10−9d5 − 10−6d4 + 0.0002d3 − 0.0144d2 − 0.482d− 4.6

We are aware that these polynomial fits are over-fitted outside of the domain that is relevant for the simulation. This is
justified because we want to make a precise interpolation in the domain the sensor values are changing and we can
program a constant for where the sensor values are no longer influenced.

4.3.4 Colour light reflection sensor

The sensor of the physical robot sends out coloured (red, blue and green) light and measures how much light is reflected
back into the sensor. In the experiment and the simulation only the red reflection is used. The reflection effect cannot be
estimated by using a single distance between the sensor and an object but is ideally simulated by reflection of infinitely
many light rays. We tried and determined that it is possible to simulate the red reflection sensor by using 21 raycasts for
each of the sensors equally spaced within the view wangle of the sensors to get a simulated value that is consistent and
within the error margin of the physical sensors. The rays originate from the sensor location and measure the distance
until they hit an object. The rays are sensitive to a polygon collider in the shape of the crossed walls of the physical
cubes and a circular collider. The circular collider is added to decrease the distance from the sensor to the reflecting
object because when the simulated sensor is directed at the cube center from a close distance the simulated value was
smaller than the actually measured value. We cannot logically explain why this manipulation is necessary but we justify
this by wanting to accurately imitate the physical sensor even if we do not understand why the one to one replication of
the physical environment does not give the desired results.

The simulation is calibrated to the reflectivity measured with the physical robot and cubes. Figure 7 shows the red
reflection values of each sensor for different distances between the sensor and the cube. The sensor is aligned towards
the center of the cube. These curves are fitted and the fit formulas are used to estimate the reflectivity for each raycast
for each sensor. For each of the sensors the values for all 21 raycasts are then averaged to get the overall value for this
sensor. The fit function for the reflection of red light from a red cube for the left sensor is:

redleft = −0.0114d3 + 0.8174d2 − 19.52d+ 158.94

7

C.7. Contribution 7: Development and Verification of a Simulation for

Leveraging Results of a Human Subjects Programming Experiment 239

MARCH 24, 2019

Figure 7: distance dependency of the reflection values of red light for a red, green and blue cube straight in front of the
sensor. The distance is measured between the sensor and the cube center.

and the fit for the reflection of red light from a red cube for the right sensor is:

redleft = −0.0177d3 + 1.244d2 − 28.979d+ 229.03

.

The measurements for the reflection of red light from green and blue cubes for both sensors are significantly smaller
and we consider them similar within the measurement precision of the sensors. Therefore, we estimate them with one
similar fit which is:

bluegreen = −0.1572(d− 5) + 5.5442

.

The calibration was tested by placing the physical robot in front of the cubes and validating this setup with the simulated
values. Special focus was on when the cube fills the view angle of the sensor only partly, when the sensor points onto
an edge of the cube walls and when the cube is locked in the pushing location central in front of the robot.

5 Verification of the simulation

5.1 Why and how we verify

The goal of the simulation is to have a more repeatable, accurate and time-saving tool for evaluating the performance of
the programmed solution with a high number of runs rather than using the physical robot. The simulation can only be
used as a substitute for running the physical robot if the simulated robot behaviour is an accurate enough representation
of the physical robot’s behaviour. Thus, the physical robot has to be well characterized in order to be the reference
for the development and evaluation of the simulation. We will describe the three solutions that we use to validate
the simulation. We describe how the physical and the simulated robot behave and compare them qualitatively and
quantitatively. For the qualitative comparison the behaviour of the physical robot is judged from videos showing the
trajectories and interactions with the cubes and the boundaries. For the quantitative comparison we answer the following
questions:

1. How accurately can the physical robot repeat its performance under the same starting condition?
2. Does the simulation give the same results as the physical robot?

5.2 The test codes

Three solutions that reliably solve the task are chosen such that they include all sensors and functions necessary for
detecting and removing the cubes.

5.2.1 ultrasound solution 1

This ultrasound based solution drives straight ahead whenever the ultrasound sensor detects an object within a distance
of 120 centimeters or otherwise turns clockwise. The robot does not fall off the cardboard because the cubes, that are

8

240 Publications included in the PhD work

MARCH 24, 2019

detected by the ultrasound sensor, are removed as soon as they are fully outside the white area. The physical cubes are
removed by the experimenter and the digital cubes are programmed to disappear when the cube is outside the white
area.

5.2.2 ultrasound solution 2

The second solution is also ultrasound based. It also turns clockwise until the ultrasound sensor detects object within a
distance of 120 centimeters. Then it turns further to fully face the cube. Then it drives straight forward until it reaches
the edge of the white area and continues driving for half a second longer to ensure that the cube is fully pushed outside
of the white area. It then turns clockwise back towards the white area and continues searching cubes with the ultrasound
sensor. This code does not react when it misses or looses a cube after detecting it.

5.2.3 blink solution

This solution uses blink lights in each cube to detect cubes. It turns clockwise in 20 degree steps until the robot measures
a blink value that is larger than 13. After each turn the robot stops in this position for 1 second to allow the blink
value to update to the correct value for this robot orientation. The robot aborts the search after 18 turning steps (one
full rotation) without finding a blink light and then drives straight for two seconds in order to start a new search in a
different area. If the robot detects a blinking light it drives straight ahead until it reaches the edge of the white area or it
no longer detects a blink light in front of the robot for more than one second.

5.3 Qualitative results

When qualitatively comparing the behaviour of the physical robot with the simulated robot we start both scenarios with
the same starting configuration and with the same code. We observe the trajectories of the robots and how the physical
and simulated trajectory diverge, how the robots interact with the cubes and if they are removed in the same order and
generally if there are any repeating patterns such as the robot getting stuck in corners or missing cubes after initially
detecting them.

5.3.1 ultrasound solution 1

The physical robot turns until it detects a cube and then drives straight forward. If the robot is not directly heading
towards the center of the cube it will eventually loose the cube out of the view angle of the ultrasound sensor and start
turning again until the cube falls into the view angle again. Depending on the distance between the physical robot
and the cube it performs one to three correction turn until it touches the cube. Theoretically we would expect many
more corrections but we believe that the angular momentum of the robot when it turns leads to an overshoot so that the
cube lies firmly within the view angle of the ultrasound sensor when the robot begins to drive straight forward. The
overshoot occurs either because the robot’s angular momentum makes it impossible for the robot to change directions
abruptly or because a delay in the ultrasound measurement causes a delayed command to the motors to drive straight.
We can replicate the overshoot of the physical robot in the simulation by both introducing a delay in the ultrasound
measurement and by simulating a limited acceleration. Since the limited acceleration is also observable in the physical
robot and we cannot identify a delay of the ultrasound measurement we implemented only the limited acceleration in
the simulation. Both the physical and simulated robot remove the cubes in the same order and from the same quadrant
of the white area in the three tested starting configurations. When cubes are located near the boundary and the robot
is located on the opposite side of the playing field the detection range can be insufficient and the robot keeps turning
infinitely. This occurs with the physical robot as well as the simulation.

5.3.2 ultrasound solution 2

The physical robot rotates until the ultrasound sensor detects a cube and then drives straight forward. For cubes more
than eighty centimeters away it occurs that the robot does not fully turn towards the cube and misses it and keeps driving
straight without corrections until it reaches the white area. In case no correction is needed, i.e. in general with short
distances to the cubes this code performs more efficiently than ultrasound solution 1 because it approaches the cubes
in a straight line and avoids driving an additional distance. However, we expect that in the average over many trials
this solution is inferior because it looses a lot more time when it misses cubes. The simulated robot generally shows a
similar behaviour. It also turns towards the cubes, detects them approximately at equal angles and occasionally misses
cubes. However, it misses cubes far more seldom. So far we cannot explain this difference as it does not seem cube
distance dependent and predictable. The different trajectories of the physical robot when restarting the robot under the
same starting conditions can differ largely. This is because if the robot misses a cube and drives past it the situation
is vastly different and the robot’s reaction to the different situation is also very different. Instead of one repeating

9

C.7. Contribution 7: Development and Verification of a Simulation for

Leveraging Results of a Human Subjects Programming Experiment 241

MARCH 24, 2019

scenario we observe a range of different scenarios depending on if a cube was removed or not. The simulated trajectory
qualitatively matches one of those scenarios. This ultrasound solution has similar issues with the ultrasound detection
range both physically and in the simulation.

5.3.3 blink solution

The detection range using the blink lights is shorter than the detection range for the ultrasound sensor. The robot
therefore often cannot find a cube when turning around and searching. The physical and the simulated robot most of the
times detect and remove the same cube first but less reliably as for the previous codes. This means that the trajectories
of the repetitions differ significantly depending on if a certain cube was detected or not. The simulation reproduces
the scenario that was most common during the tests with the physical robot and is then usually accurate for the first
cube and in many cases also the second cube. The simulated trajectory for removing the last cube was never similar to
any trajectory obtained using the physical robot. The robot then continues to drive to a different location and starts
searching again. When the cube is near the center it is far more likely to fall into the detection range than when the cube
is near the boundary. The blink solution often moves cubes away from the center but does not fully move them outside
the boundary. The cubes near the boundary are far less likely to be detected and in these cases the task completion
times are significantly longer. This phenomenon occurs equally in the simulation and in reality.

5.4 Quantitative results

Ensuring that the simulation matches the behaviour of the physical robot qualitatively is a good starting point. If we
want to use the simulation for quantitatively evaluating the performance of solutions we need to validate that simulation
estimates the quantitiave result of the physical robot accurately. For this we start with measuring the repeatability of the
physical robot by repeatedly executing the same scenario. We then execute the physical robot and the simulation from
many different conditions and compare the results statistically.

5.4.1 How repeatable is the performance of the physical robot?

The three described solutions are evaluated with the physical robot from three different starting positions with up to 13
repetitions from each starting position. We show the mean time the robot needed to complete the task and the standard
deviation over the N repetitions. Failed attempts are excluded from the statistics as they would imply an infinite task
completion time. The failed attempts are caused by the robot getting stuck outside the cube detection range.

Table 1: Results of repeatedly executing three solutions with the physical robot from three different starting conditions

start pos. M SD N failed

ultrasound 1 1 19.0 6.7 11 1
2 22.6 4.3 12 0
3 26.4 9.2 13 0

ultrasound 2 1 27.9 9.8 9 1
2 26.6 5.7 10 0
3 30.2 0.6 10 0

blink solution 1 89.9 45.8 7 0
2 88.4 53.3 8 0
3 110.8 98.5 8 0

5.4.2 Statistical comparison of the physical vs. the simulated robot

We measure the task completion time for the three solutions from twenty different starting configurations using the
physical robot and the simulated robot. The starting configurations used in the physical evaluation and the simulation
are equal and each starting position is run once. We present the mean task completion time and its standard deviation
for each solution over those twenty runs. N describes the number of included measurements. If N is less than twenty
this means that the solution failed 20−N times. This is the case for the ultrasound based solutions and this happened
when the nearest cube object was outside the ultrasound detection range when the robot was searching for cubes. These
runs were aborted because they would lead to an infinite task completion time. Failed attempts are excluded from
calculating the mean and standard deviation.

10

242 Publications included in the PhD work

MARCH 24, 2019

Table 2: Comparison of the completion times, physical vs. simulated robot for 20 starting positions

solution N M SD % of phys. M

physical ultrasound 1 18 20.5 2.92 100
ultrasound 2 19 28.6 11.06 100
blink 20 106.6 43.07 100

simulated ultrasound 1 20 15.25 1.38 74.4
ultrasound 2 19 20.28 3.54 70.4
blink 20 84.21 72.58 78.4

For the initial placement of the robot for the twenty starting positions the robot’s front edge is aligned along rectangular
lines on the white area. This means that the initial rotation is along one of the four major directions and the locations
are incremental. This setup is chosen such that the initial placement of the robot is easily repeatable. To check if we
introduce a bias by selecting the starting configurations in this way we run the simulation from 99 randomly chosen
starting positions and orientations. The random starting configurations are generated with a random number generator
in the Unity software. Starting configurations where the robot is initially touching a cube are removed. The results are
shown in table 3:

Table 3: Simulated task completion times for 99 randomly assigned, non-rectangular starting positions and orientations

solution N mean std.dev.

ultrasound 1 99 15.16 1.06
ultrasound 2 99 20.86 7.37
blink 99 75.53 57.66

In the discussion we will argue that the measured task completion time is sensitive to perturbations. To investigate
this we run the three codes from the previously used twenty starting positions and initially orient the robot one degree
further counter-clockwise. We calculate the pairwise differences in task completion time between the non-perturbed
and the perturbed starting orientation for each of the twenty starting configuration and then take the mean and standard
deviation of the differences. The results are shown in table 4.

Table 4: Influence of one degree counter clockwise perturbed starting orientation on task completion time

pert. pert. diff. diff.
solution N mean std.dev. mean std.dev.

ultrasound 1 20 14.97 1.85 0.35 0.67
ultrasound 2 19 19.05 3.28 1.26 1.07
blink 20 64.00 32.20 42.57 59.32

Another imperfection of the physical robot is that the motors do not perfectly keep the rotation speeds that they are
assigned in the code. To estimate the influence of inaccurate motor speed we simulate the three solutions from the
previously used twenty starting positions with a one percent motor speed increase on the right motor. This means that
the robot drives a visually unnoticeable left turn when it is originally programmed to drive straight.

Table 5: Influence on 1% faster motor speed of the right motor on task completion time

pert. pert. diff. diff.
solution N mean std.dev. mean std.dev.

ultrasound 1 20 14.89 2.1 1.07 1.03
ultrasound 2 19 20.00 4.34 2.23 2.51
blink 20 62.10 28.20 39.97 65.06

11

C.7. Contribution 7: Development and Verification of a Simulation for

Leveraging Results of a Human Subjects Programming Experiment 243

MARCH 24, 2019

5.5 Discussion of the results

We want to use the simulation to compare the performances of code solutions written for the physical robot in a more
time saving and more controlled way. The simulation needs to reproduce the results obtained with the physical robot at
least relatively to compare different solutions. Most intuitively one tries to program a simulation that matches the reality
as accurately as possible by comparing and improving the simulation to match reference cases taken with the physical
robot. This entails that the physical and the simulated robot are deterministic and thus reliably repeat their respective
behaviours when started under the same conditions. The simulation is deterministic but the physical robot shows
significant deviations both in its trajectory as well as in the task completion time which we use as the main performance
metric. Table 1 gives the task completion times of the physical robot for three different solutions from three different
starting positions of the robot. We see that the deviations from the mean depend primarily on the solution and also
on the starting position. For the ultrasound solution 1 the standard deviation of the task completion time is between
19% and 35% of the mean, for ultrasound solution 2 it is between 1,4% to 35% and for the blink solution it is between
50% and 89%. Apart from the one starting position with the low standard deviation for ultrasound solution 2 the
deviations are too large to use the trajectories and task completion times as references for developing a simulation. As a
consequence, despite the simulation being in itself accurately repeatable, it cannot evaluate a solution more accurately
than how accurately the physical robot can repeat its performance, because we have no clear reference to optimize the
simulation to. This means that a the simulation from one starting configuration, despite being numerically precise,
has the same uncertainty as a single evaluation of this starting configuration with the physical robot. We develop the
simulation by qualitatively observing the physical robot and the simulation and adjust the simulation until it qualitative
shows the same characteristic behaviour, such as interactions with cubes and the boundary, in as many cases as possible.
This approach aims to make the simulated behaviour qualitatively indistinguishable from the physical robot behaviour.
However, this qualitative validation of the simulation is subjective and depends on the judgement of the experimenter
looking at the video captures of the physical robot.

The large deviations of the physical robot originate from small perturbations that can neither be controlled for in
physical measurements nor can the simulation replicate reality with more precision than the perturbations that cause
the deviations. Therefore, a single measurement of the physical or the simulated robot is not a good indication for the
overall performance of the solution. However, we assume that these perturbations are normally distributed and their
effects can be mitigated by repeatedly executing and evaluating the robot from many starting conditions and performing
statistics. To illustrate this approach we measure and simulate the task completion times for the three solutions from
twenty different starting positions. The measured and the simulated task completion times seldom match pairwise for a
single starting position but the question is if the results match relatively when comparing the means of the different
solutions. The results are shown in table 2. Firstly we see that the means of the simulated task completion time are
between 70% and 78% of the measured means task completion times, i.e. the simulation does not absolutely give the
same results as the measurement with the physical robot. For comparing the performance of different solutions it is
sufficient that the simulation gives the same result when relatively comparing the task completion times. We compare
the three solutions by normalizing the means and standard deviations by the task completion time of the blink solution,
which was the slowest of the three solutions. The means and standard deviations measured with the physical robot are
normalized to the physically measured blink solution mean and the simulated results are normalized to the simulated
blink solution result. The normalized task completion time mean for the physically measured ultrasound solution 1 is
19,3% of the blink solution task completion time with a standard deviation of 2,7% whereas this comparison for the
simulated case gives a normalized mean of 18,2% with a normalized standard deviation of 1,6%. These normalized
means are well within each others standard deviations and are considered equal within the measurement accuracy.
The same is the case for ultrasound solution 2 with a normalized mean of 26,9% and a normalized standard deviation
of 10,4% for the physical evaluation and a normalized mean of 24,1% and a normalized standard deviation of 4,2%
for the simulated evaluation. The same conclusion is true when normalizing to other values. This means that we can
compare different solutions relatively without needing a simulation that is absolutely accurate. The twenty starting
positions for the robot that were used for this evaluation were chosen such that they can be reliably reproduced in the
real world and replicated as similar as possible in the simulation. This means that the starting positions were reasonably
chosen to cover a wide range of different starting positions and orientations. It can be that the selection caused a bias
in the setup. To ensure that this is not the case we simulated the three solutions from 99 randomly chosen starting
positions. The results are in table 3. The task completion time means for the simulation with 20 chosen and 99 random
starting positions differ by less than 1% for ultrasound solution 1, by less than 3% for ultrasound solution 2 and by
about 10% for the blink solution. The increase in relative difference can be explained with the accompanied increase of
the standard deviation of these solutions. This shows the importance of a large sample size for solutions with a large
standard deviation. The differences between the simulations are significantly less than their standard deviations (and
standard errors) and we conclude that the chosen twenty starting positions do not show a significant bias.

12

244 Publications included in the PhD work

MARCH 24, 2019

During the observation of the physical robot we saw that despite starting the same code and placing the cubes and the
robot as similarly as possible at the same positions for each repetition we see that the robot initially drives very similar
trajectories that diverge from each other over time and some events cause a drastically different trajectory afterwards.
These drastic differences between trajectories occur when one trajectory removes a cube while the other only moves or
rotates the cube without removing it or even misses the cube entirely. Another scenario is when the robot is programmed
to react when it reaches and detects the boundary of the white area and the trajectories are almost aligned with the
boundary. An initially small perturbation in the location or orientation of the robot then has a large influence on where
it detects and reacts to the boundary causing a larger deviation of the trajectories. Both scenarios make the system
sensitive to small differences in robot location and orientation. To illustrate this sensitivity and investigate the effect
of a single perturbation under controlled conditions we use the previous twenty starting conditions to simulate the
task completion times when the initial robot starting orientation is changed by 1 degree counter clockwise. The mean
task completion time from the unperturbed starting positions in table 2 and the mean task completion time from the
counter clockwise rotated starting positions in table 4 are similar within their uncertainty limits. We cannot distinguish
a significant effect on the mean task completion times caused by perturbing the starting positions. We then calculate
the absolute pairwise difference between the task completion times of the unperturbed and perturbed simulation for
each of the twenty starting positions. The mean of these absolute differences and the standard deviation thereof is also
shown in table 4. We see that the misalignment of the robot by one degree already explains 0.35/1.38 = 25% of the
standard deviation observed over the twenty different unperturbed starting positions for ultrasound solution 1. For
ultrasound solution 2 the misalignment accounts for 36% of the original standard deviation and for the blink solution
the perturbation causes an absolute difference mean that is 59% of the standard deviation. We repeated the same idea
of comparing perturbed and unperturbed robot behaviour with increasing the motor speed of the right motor by 1%
point. The results are shown in table 5 and the mean task completion time is similar to the unperturbed result within
the measurement accuracy. From the pairwise differences in task completion time for each starting position and its
mean we see that it explains 78% of the unperturbed standard deviation of ultrasound solution 1, 63% for ultrasound
solution 2 and 55% for the blink solution. Both perturbations have a significant influence on the task completion time
for a single evaluation from a single starting position. These perturbation are very likely to occur when executing
the physical robot and are both undetectable and therefore impossible to control for. This explains why we observe
significantly varying results when repeating the physical measurement under conditions that appear similar but are in
fact perturbed. This makes it impossible to replicate the physical conditions in the simulation with a precision that has a
negligible effect on the trajectory. Evaluating the performance of different solutions from a single measurement is not
possible. Evaluating the performance requires repeated measurements and statistics. Manually executing and measuring
the physical robot often enough to get a reliable statistic result can in principle be done but is very time consuming and
therefore not feasible. Additionally, can the simulation keep the conditions absolute repeatable whereas an evaluation
with the physical robot is subject to drainage of the batteries, wear and tear of the mechanical parts and changes of the
surrounding conditions such as light and temperature that cause perturbations that have significant influences on the
repeatably as illustrated above. These influences make a comparison of different solutions under similar conditions
impossible and the inaccuracy introduced by not perfectly matching the behaviour of the physical robot within the
simulation is far less significant than the inaccuracy introduced by changing conditions. Another advantage of the
simulation is that it is very time saving, allows to generate more results from more starting positions and therefore
allows a statistical analysis with a lower uncertainty.

5.6 Conclusion

We develop a simulation to a self-built LEGO Mindstorms robot. We aim to use the simulation to compare the
performance of different code solutions programmed to solve a task that involves finding and moving cubic objects. We
replicate the physical environment digitally and measure the behaviour of the physical robot to make a mathematical
model that we use to implement a simulation. The simulation is primarily based on these measurements and then
adjusted from qualitative comparisons between the physical and the simulated robot behaviour. After adjusting and
verifying the simulation for the individual sensors and actuators we verify the simulation by comparing the simulated
robot behaviour with the behaviour of the physical robot in a systems approach with three solutions that cover the
entire scope of available functions combined in solutions that solve the task. We conclude that the trajectories of
the physical robot deviate significantly despite being repeatedly executed under as similar as possible conditions as
possible. The physical robot behaviour is not deterministic. This implies that the simulation cannot accurately replicate
the trajectory of the physical robot when the physical robot does not have a consistent trajectory. We verify that the
simulation qualitatively shows a similar behavioural characteristic as the physical robot. For quantitatively comparing
code performances a repeated evaluation from different starting conditions and a statistical analysis is required. We
compare the task completion times of the physical and the simulated robot for twenty different starting conditions. We
show that the simulation does not absolute give the same result as measured physically but it is relatively accurately
when comparing different solutions. We ensured that the starting conditions used for the quantitative verification are

13

C.7. Contribution 7: Development and Verification of a Simulation for

Leveraging Results of a Human Subjects Programming Experiment 245

MARCH 24, 2019

unbiased. We argue that the sometimes drastically different trajectories and task completion times of the physical
robot are caused by a sensitivity of the system to small perturbations of the robots position and orientation. We use
the simulation to demonstrate that likely inaccuracies such as a change of the robot’s initial orientation by one degree
or a one percent speed difference in the motor speed can already explain the standard deviation calculated from the
task completion times of the twenty starting conditions. Overall we conclude from these results that this simulation is
needed and a useful tool for relatively comparing solution performances under controlled conditions with sufficient data
for statistical methods.

References

[1] Achim Gerstenberg and Martin Steinert. Open ended problems - a robot programming experiment design to
compare and test different development and design approaches. In DS 91: Proceedings of NordDesign. Design
Society, 2018.

[2] Achim Gerstenberg. robotdatasheet.pdf in robotexpsetup on github, May 2018. https://github.com/
AchimGerstenberg/RoboExpSetup/blob/master/printouts/robotdatasheet.pdf (accessed 24-March-
2019).

[3] Unity Technologies ApS. Unity version 5.6.1f1, May 2017. https://unity.com/ (accessed 24-March-2019).

14

246 Publications included in the PhD work

C.8. Contribution 8: Evaluating and Optimizing Chaotically Behaving

Mobile Robots with a Deterministic Simulation 247

C.8 Contribution 8: Evaluating and Optimizing Chaot-
ically Behaving Mobile Robots with a Determin-
istic Simulation

Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the CIRP Design Conference 2019

29th CIRP Design 2019

Evaluating and Optimizing Chaotically Behaving Mobile Robots with a

Deterministic Simulation

 Achim Gerstenberg*a, Martin Steinerta

aNorwegian University of Science and Technology, Department of Mechanical and Industrial Engineering, Richard Birkelands vei 2B, 7491 Trondheim, Norway

* Corresponding author. Achim Gerstenberg. E-mail address: achim.gerstenberg@ntnu.no

Abstract

Testing and comparing prototypes is essential during the development of mobile autonomous robots. These robots often behave chaotically, i.e.

their behavior is sensitive to small perturbations and their performance is unpredictable. An evaluation and comparison of solutions cannot be

based on a few test runs. We present an approach that uses a digital simulation to acquire the data necessary for statistical comparison. The

simulation can be sped up and automated and thus allows the developers to compare solutions more quickly than physical tests can.

While it is not possible to replicate a test setup in the physical world with sufficient accuracy, the simulation is deterministic and can be used to

investigate the dependency of a specific perturbation.

We illustrate this approach using three solutions to an example task where the robot needs to remove objects from an area in the shortest time

possible. When executing each solution from 99 randomly chosen starting conditions an average performance difference of as little as 2% was

distinguished with statistical significance. Differences in performance under an environmental perturbation such as a slight misaligned of the

robot’s starting orientation or a hardware perturbation of imprecisely controlled motor speeds are also found to be significant for some solutions

showing how the approach can be used to test robustness of solutions to perturbations.

Robot performance is dependent on the interplay between the algorithm that controls the robot, the robot hardware and its environment. By

testing different algorithms and subjecting them to perturbations of the environment and the robot’s hardware, it is possible to optimize the

algorithm-hardware combination for the least restrictive hardware requirements necessary while still ensuring the desired performance. In this

paper we offer a quantitative approach for iterative development of the algorithm-hardware combination of mobile autonomous robot solutions.

© 2019 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the CIRP Design Conference 2019

 Keywords: mobile robot; chaos; performance evaluation, requirement; simulation

1. The challenge of evaluating autonomous mobile robot

solutions

Mobile autonomous robots play an increasingly important

role in today’s life. Self-guided lawn mowers cut the grass in

the garden, vacuum cleaners clean the floors and drones inspect

power lines. The actions of these mobile autonomous robots are

based on algorithms and can be chaotic [1,2]. This means that

small perturbations of the robot lead to large deviations in the

robot’s behavior over time. External perturbations, such as air

movement acting on a drone, and perturbations that are inherent

to the robot, like measurement errors of the robot’s sensors or

mechanical wear and tear of the robot’s actuators can often not

be avoided or minimized to a degree that the system becomes

stable within the desired time frame. Lyapunov exponents and

the error growth factor are tools used to characterize how

chaotic a system is and how long it remains predictable [3,4].

Although predictability often is desired, it is not necessarily a

reasonable measure of performance regarding evaluation of the

performance of a solution in terms of solving the desired task.

Sometimes a chaotically behaving robot may be superior to a

stable and predictable robot behavior. In the development

process, testing and comparing prototypes is essential for

making design choices [5-8] and the Nation Institute for

Standard and Technology has developed physical testing

grounds for mobile autonomous robots in urban search and

2 Author name / Procedia CIRP 00 (2019) 000–000

rescue settings [9]. However, quantitative evaluations of such

robot behaviors are difficult because the behavior fluctuates

unpredictably. Evaluating solutions from single or few test runs

is inevitably statistically insignificant when unavoidable

perturbations have major influences on the test results. To

quantitatively compare solutions, a statistical evaluation with

sufficiently many repeated tests and precise data capturing is

necessary. The number of tests needed to find a significant

performance difference between two solutions depends on the

actual difference of performance, how precisely we can

measure the performance, how consistently the robot repeats

this performance and how many uncontrolled sources of

perturbations influence the robot. More uncontrolled

perturbations require more tests, as the performance

fluctuations average out. Acquiring this amount of data is

tedious and time consuming.

2. Solving this challenge with a deterministic simulation

We want to find a way to measure the robot’s performance

precisely, offer control over perturbations and automate the

measurements for convenience.

This is achieved with a digital, deterministic simulation. It

simulates the robot’s behavior in the given modelled

environment, precisely documents the resulting performance

and can be programmed to automatically repeat the

measurements often enough to obtain a statistically useful

result.

The simulation is deterministic, meaning that if it is started

twice under similar conditions it gives equal results. These

results may however differ from a physical measurement that

tries to replicate the same conditions. This does not imply that

the simulation is faulty, but that the system is sensitive to

perturbations that are so small that they become difficult to

accurately replicate in the simulation and vice versa. In other

words, the significant perturbations are smaller than what can

be measured and thus replicated in the simulation. The

simulation can therefore not be quantitatively validated by

comparing a single simulated robot behavior with a single

physical measurement. It needs to be validated qualitatively by

observing behavioral patterns and quantitatively by repeatedly

executing the physical robot and statistically comparing the

physical results with the simulated results. The simulation

needs to be validated such that it gives correct relative results

when comparing different solutions. This means that if a

solution performs in average over many simulations twice as

good then it also needs to perform twice as good in average

over many physical measurements. Although this requires

repeated physical measurements this process is still

significantly time saving if afterwards the simulation is used to

compare many more solutions. In cases of popular and often

well documented robot platforms a proven simulation software

already exists (for example for mobile educational, animal-like,

humanoid and planetary exploration robots [10]).

An additional advantage that exists only with the simulation

is that perturbations can be controlled. This means that the

system can be tested while avoiding all perturbations but one

allowing the developers to test the robustness of a solutions to

a single type of perturbation. For example, does the

performance change significantly if a sensor is less accurate

and feeds the control algorithm with more fluctuating

measurement values or if the speed of an actuator changes. This

allows the developers to make better design choices when

choosing hardware requirements and thereby save costs.

3. The example setup

We illustrate the presented approach with examples. We

first briefly explain the robot and the task that it is supposed to

solve and then use this example to illustrate the accuracy of the

approach for comparing different solutions and how to use it

for determining the robustness of a solution to a single type of

perturbation.

3.1. Task and robot

The task is to program the robot to autonomously remove

three objects from a 1.8 square meter rectangular area within

the quickest time possible after starting the robot. The robot is

supposed to complete the task from any starting position within

the rectangular area. This white rectangular area is surrounded

by a darker 17 centimeter wide frame. The robot has a

downwards pointing reflection sensor that can detect the

decreased reflectivity of the darker frame. The entire

construction is elevated by 3 centimeters, which means that if

the robot falls off it cannot get back and the task cannot be

completed. The removable objects are cube-shaped with

reflectors for ultrasound waves. The robot has a forward aiming

ultrasonic distance sensor to detect those cubes. Furthermore,

radially outwards shining blinking lights can be placed in the

middle of those cubes. The robot has on each side a forward

pointing light sensor for detecting the intensity of those

blinking lights. The robot drives by controlling the speed of a

motor that drives a belt on each side making it possible to drive

forward, backwards and turn. A detailed description of the task

and the robot can be found in [11] and [12].

3.2. The simulation

The simulation is based on a 2D top view digital replication

of the physical setup in Unity. It was developed by replicating

the environment to scale and individually measuring the

physical robot behavior for each sensor and actuator,

interpolating the measurements and implementing the

corresponding fit into the simulation. The simulation executes

the different algorithms that control the robot from 99 different

starting positions of the robot and documents the task

completion time as the measure of performance.

The simulation we use in this publication is verified by

qualitative and quantitative comparison with measurements of

the robot completing the task in the real world.

The development details and verification of the simulation

can be found in [13].

248 Publications included in the PhD work

 Author name / Procedia CIRP 00 (2019) 000–000 3

3.3. Example algorithms

To illustrate how to compare several solutions we use three

different algorithms, two of which use the ultrasonic sensor to

detect the cubes and the third uses the blinking lights as

beacons.

Ultrasound solution 1: This ultrasound-based algorithm

makes the robot drive straight ahead whenever the ultrasound

sensor detects a cube within a distance of 120 centimeters or

otherwise turns the robot clockwise. This distance evaluation is

done continuously and when the robot aims to drive past the

cube the robot corrects instantly and turns towards the cube.

The robot does not fall off the cardboard because the cubes that

are detected by the ultrasound sensor are removed as soon as

they are fully outside the white area.

Ultrasound solution 2: The second solution is also

ultrasound based. It also turns clockwise until the ultrasonic

sensor detects a cube within a distance of 120 centimeters.

When the cube enters the acceptance angle of the ultrasonic

sensor the robot begins to drive straight ahead until it reaches

the edge of the white area regardless if it has collected the cube

or not. After reaching the edge, the robot continues driving for

half a second longer to ensure that the cube is fully pushed

outside of the white area. It then turns clockwise back towards

the white area and continues searching cubes with the

ultrasonic sensor.

Blink solution: This solution uses blink lights in each cube

to detect cubes. It turns clockwise in 20 degree steps until the

robot measures a blink value that is larger than a threshold.

Measuring the blinking light intensity requires that the light

sensor recognizes a full blinking period (light on, off and on

again). After each turn, the robot stops in this position for 1

second to allow for an accurate intensity measurement. The

robot aborts the search after 18 turning steps (one full rotation)

without finding a blinking light and then drives straight for two

seconds in order to start a new search in a different area. If the

robot detects a blinking light it drives straight ahead until it

reaches the edge of the white area or it no longer detects a blink

light in front of the robot for more than one second.

4. How the simulation is applied

In the following sections, we apply the general concept

explained abstractly in the beginning of this paper to the three

example algorithms. We execute the three algorithms in the

simulation and document the task completion times. Each

algorithm is simulated 99 times from different starting

positions. Those starting positions are such that the robot is

fully within the white rectangular area and not already touching

any cube. The starting x, y positions and the orientation angle

of the robot are generated with a randomizer to avoid an

involuntary bias that may be introduced by manually selecting

the starting positions. Every algorithm is executed from the

same 99 starting configurations to guarantee comparison under

equal conditions. The simulation is verified to give similar

results for simulation speeds of up to 60 times the original

simulation speed. This means that, depending on the

performance of the algorithm, these 99 simulation runs can be

executed in between half a minute to 10 minutes. If those runs

were executed manually with the physical setup this would take

between several hours to a full day and the manual reset of the

starting position is a considerable time loss.

5. Comparing the performance of the three example

algorithms

Table 1 shows the sample size N - that is the number of times

the algorithm completed the task and a task completion time

could be documented -, the mean task completion time and the

standard deviation of the task completion time.

Table 1. Descriptive statistics of the task completion times for the three

example algorithms

Evaluated algorithm N M SD

Ultrasound solution 1 99 15.16 1.06

Ultrasound solution 2 99 22.8 8.9

Blink light solution 97 68.9 34.5

We observe that ultrasound solution 1 in the mean

outperforms ultrasound solution 2 which again outperforms the

blink solution. Another performance indicator is that the blink

solution only completed the task in 97 out 99 simulation runs.

The question now is if these results are statistically significant.

We therefore perform an independent sample t-test that

compares each of the algorithm’s performances. The t-value

comparing ultrasound solution 1 with ultrasound solution 2 is

t(196) = 8.48. This results in a highly significant p value of less

than 0.0001. The task completion time of ultrasound solution 1

is statistically significantly lower than the task completion time

of ultrasound solution 2. The t-value comparing ultrasound

solution 1 with the blink solution is t(194) = 15.5. This results

in a highly significant p value of less than 0.0001. The task

completion time of ultrasound solution 1 is statistically

significantly lower than the task completion time of the blink

solution. The t-value comparing ultrasound solution 2 with the

blink solution is t(194) = 12.6. This results in a highly

significant p value of less than 0.0001. The task completion

time of ultrasound solution 2 is statistically significantly lower

than the task completion time of the blink solution.

This shows how different solutions can be compared

statistically and that the method can give quantitative answers

to the expected and qualitatively observed performance

differences of the task solutions.

In the three examples we expected the following

performance differences from the qualitative robot behavior

observations.

Ultrasound solution 1 approaches the cubes in a right turn

because it always aims slightly to the left of the cubes and does

a corrective right turn when it misses it. This means that the

solution drives a slightly longer distance than the “perfect

solution” that aims precisely at the cubes and then minimized

C.8. Contribution 8: Evaluating and Optimizing Chaotically Behaving

Mobile Robots with a Deterministic Simulation 249

4 Author name / Procedia CIRP 00 (2019) 000–000

the distance driven by driving straight. However, ultrasound

solution 1 works very reliably and never misses or loses a cube.

The standard deviation of the task completion time is therefore

small and the variation only depends on the distance driven

which is determined by the starting position of the robot.

Ultrasound solution 2 has the potential to complete the task

faster because it orientates the robot towards the cube and then

drives straight. It thus drives a shorter distance than ultrasound

solution 1 if it does not miss or lose a cube. However, we

observe than this solution often does so and then needs to

approach the cube again. This leads a larger deviation of task

completion times and also causes a longer mean task

completion time.

The sensitivity for measuring the blinking lights is not

sufficient to achieve a detection range that is as long as the

ultrasonic detection range. Therefore, the robot often searches

for the blinking light in the cube but cannot detect it and needs

to change its location hoping to detect a light from the new

position. Furthermore, a precise measurement of the blinking

light intensity takes about one second. This means that the

robot can only turn slowly while searching for a blink light.

These two factors make this blink solution very slow.

6. Resolution of the approach

The three examples we compared perform very differently

and we can predict those differences already from observing

the qualitative behavior and this extensive quantitative

evaluation was not necessary to determine which solution

solves the task the fastest. Now we want to find out how small

a differences in task performance can be and is still detectable.

For this we execute ultrasound solution 1 with a 2% decreased

maximum speed of the robot while driving straight ahead.

Qualitatively the robot behaves the same and executes a similar

trajectory but does so slightly slower. Is the resulting increase

in task completion time measurable?

The slower robot solved the task in all 99 simulation runs

with a mean task completion time of 15.54 seconds and a

standard deviation of 1.13 seconds. The comparison of the task

completion time means between ultrasound solution 1 with full

motors speed and decreased speed leads to a t-value of t(196)

= 2.24 and this corresponds to a p-value of 0.016. This means

that a 2% decrease in motor top-speed leads to a statistically

significant decrease in mean task performance time which is

detectable with this approach.

7. Quantifying the influence of minimally rotated starting

positions

We now evaluate how robust the example solutions are to

perturbations of the starting positions. We use the starting

positions from before but rotate the starting orientation of the

robot by one degree counterclockwise. By comparing the mean

task completion times with the unperturbed mean task

completion time we can estimate if the perturbation causes a

significant difference. In addition, we calculate the absolute

pairwise difference between the task completion time from

each unperturbed simulation run with the corresponding

perturbed simulation run. The average of this absolute pairwise

difference gives a measure for the sensitivity to perturbations

and how chaotic the system reacts (table 2).

Table 2. Descriptive statistics of the task completion times for the three

example algorithms after rotating the robot’s starting orientation one degree

counterclockwise.

Evaluated algorithm N M SD

Ultrasound solution 1 99 15.22 1.16

Ultrasound solution 2 99 22.6 9.7

Blink light solution 97 70.4 42.1

The results of the t-tests are shown in table 3. None of the

examples shows a significant sensitivity of the average task

completion time to the perturbation.

Table 3. Comparative statistics comparing the mean task completion times.

Compared algorithms df t-value p-value

Ultra1 vs. ultra1 rotated 196 0.38 0.70

Ultra2 vs. ultra2 rotated 196 0.15 0.88

Blink vs. blink rotated 192 0.27 0.79

This is what we expect for the mean task completion time

because, even if the system reacts chaotically to this

perturbation, in average the consequences of the perturbation

average out over 99 simulation runs. In other words, if 99

starting positions are sufficient to accurately determine the

performance of a solution then 99 altered starting positions

must give the same result for the same solution.

From the t-tests we know that the mean task completion

times do not differ significantly. However, to illustrate that

perturbations can change the outcome of a single simulation

run we calculate the absolute value of the task completion time

difference between the simulation from the unperturbed robot

starting positions and the time from the same starting position

with a one degree counterclockwise perturbation. The mean of

these absolute pairwise task completion time differences in

relation to the mean task completion time is a measure for how

sensitive the solution is to this type of perturbation. We observe

that the mean absolute difference of the task completion times

is about 4 times the amount of the difference in mean task

completion times for ultrasound solution 1. It is 5 times as large

for ultrasound solution 2 and 42 times as large for the blink

solution. Another way to determine how chaotically a solution

reacts to the perturbation is by calculating the Pearson

correlation between the unperturbed and perturbed simulations.

We see that the blink solution that already shows the large

relative absolute pairwise difference also shows a low

correlation of the task completion times between the

unperturbed and perturbed simulation runs while the two

ultrasound solutions show a strong correlation. Those results

are shown in detail in table 4.

250 Publications included in the PhD work

 Author name / Procedia CIRP 00 (2019) 000–000 5

Table 4. Pairwise comparison of the simulation results of the unperturbed and

by 1 degree perturbed starting positions of the robot.

Compared algorithms N of

compared

pairs

Difference

of means

Mean

pairwise

difference

Ultra1 vs. ultra1 rotated 99 0.06 0.23

Ultra2 vs. ultra2 rotated 99 -0.23 1.22

Blink vs. blink rotated 95 0.55 22.8

Since ultrasound solutions 1 and 2 turn clockwise until the

robot detects a cube, one degree counterclockwise rotation of

the robot’s starting orientation makes little difference to the

robot’s behavior. This explains the very high correlation for the

pairwise comparison between unperturbed and perturbed task

completion times for both ultrasound solutions 1 and 2.

In contrast, the blink solution searches by turning the robot

in 20 degree increments. The perturbation is not negated soon

after starting the robot and propagates leading to diverging

trajectories and missing a cube happens frequently. While for

example the unperturbed simulation run removes the cube, the

perturbed simulation may only touch and spins the cube which

leads to a qualitatively very different trajectory afterwards.

Furthermore, the blink solution reacts when it reaches the edge

of the white area. When driving almost parallel to the edge, a

small angular difference has a large impact on where the sensor

detects and reacts to the edge of the white area resulting a

largely varying trajectories. Although these differences average

out in the mean task completion time over 99 simulation runs,

they cause a large difference when pairwise comparing the

unperturbed and perturbed task completion times and the two

task completion times no longer correlate.

When evaluating the performances with the physical robot

it is not possible to manually place the robot with such accuracy

that a measurement can be repeated with a sufficiently similar

robot placement when starting the robot. By determining the

influence a one-degree misalignment of the robot can have on

the outcome of the measurement we demonstrate the

infeasibility of manually comparing individual measurements

obtained with the physical robot.

We replicate the setup physically and execute the same

algorithm repeatedly with the physical robot. The robot

qualitatively behaves similarly in each repetition but the task

completion time varies between repeated measurement despite

trying our best to replicate the test conditions as precisely as

possible. This confirms that the solutions are indeed sensitive

to uncontrollable perturbations and studying the influence of

such perturbations requires a deterministic simulation.

8. Quantifying the robustness under imprecise motor

speeds

The approach of introducing one well-defined perturbation

into the simulation cannot only be used to determine which

influence an environmental perturbation has on an algorithm

but also how changes in hardware influence the robot’s

behavior.

For example, we can introduce motors that do not precisely

keep their speeds and quantitatively evaluate the consequences

for robot performance for each of the example solutions. In this

scenario the maximum speed of the left motor is decreased by

2% and the maximum speed of the right motor is increased by

2%. This means that the robot drives a slight left turn when it

is programmed to drive straight at full speed. The simulation

results for this are shown in table 5.

Table 5. Descriptive statistics of the task completion times for the three

example algorithms with imprecise motor speeds.

Evaluated algorithm N M SD

Ultrasound solution 1 99 15.01 1.48

Ultrasound solution 2 98 26.42 8.20

Blink light solution 99 82.50 46.4

We expect that ultrasound solution 1 remains mostly

unaffected by this motor speed perturbation because if the

slight left turn causes the robot to drive past one of the cubes

the algorithm immediately recognizes this and adjusts the

robot’s orientation back towards the cube. Ultrasound solution

2 does not correct the robot’s orientation after initially

detecting and aiming at a cube. At a larger robot-to-cube

distance the slight left turn caused by the perturbed motor

speeds makes the robot drive past and miss the cube needing to

approach it again and thus taking longer to complete the task.

The blink solution has a similar issue. Therefore, we expect

ultrasound solution 2 and the blink solution to perform worse

after introducing imprecise motor speeds. Table 6 shows the

independent sample tests that compare the task completion

times under unperturbed conditions with the results with

imprecise motor speeds.

Table 6. Comparative statistics comparing the mean task completion times of

the unperturbed versus the results with imprecise motor speeds.

Compared algorithms df t-value p-value

Ultra1 vs. ultra1 imprecise 196 0.82 0.41

Ultra2 vs. ultra2 imprecise 195 2.97 0.0034

Blink vs. blink imprecise 194 2.32 0.0211

We can confirm our assumption that introducing imprecise

motor speeds does not cause a significant difference in task

completion time for ultrasound solution 1 but significantly

increases task completion time for ultrasound solution 2 and

the blink solution.

Simulations like these can help finding appropriate

requirements and can be cost saving by finding the lowest

fidelity requirements necessary to satisfy the needs. In this

case, having unmatched motor speeds does not significantly

change the performance of ultrasound solution 1 while it

worsens the performance of ultrasound solution 2 and the blink

solution. This means that the requirements on motor speed

reliability are stricter for the latter two solutions or - vice versa

- the better solution allows motors with lower specification.

C.8. Contribution 8: Evaluating and Optimizing Chaotically Behaving

Mobile Robots with a Deterministic Simulation 251

6 Author name / Procedia CIRP 00 (2019) 000–000

9. Conclusion and Outlook

Autonomous mobile robots behave chaotically. Small

perturbations to the robot’s state have large implications on its

trajectory and thus also on how it performs a task. If one wants

to compare the performance of different solutions to the task it

is necessary to accurately replicate the test conditions. In the

physical world this is usually not possible as even small

deviances like misplacing the robot by one degree causes

different test results. In order to achieve a valid comparison of

solutions it is necessary to collect data from repeated

measurements until the fluctuation caused by uncontrolled

perturbations average out. Collecting this data can be

inconvenient and time consuming. If those measurements can

be made deterministic by perfectly replicating the test

conditions then a desired perturbation can be introduced on

purpose to study its effect on the robot’s performance. A digital

simulation is deterministic and offers the possibility to control

and introduce perturbations and allows the robot developers to

automate and speed up the measurements considerably. Since

the robot behavior is chaotic, this simulation can never

accurately replicate the behavior of the physical robot in a

single run but it can give valid results when comparing the

mean performance of solutions. We used this approach to

compare three different solutions and quantify their

performance in an example task. We determined a mean of a

performance metric and used t-tests to estimate statistical

significance. We were able to observe a statistically significant

performance difference between two solutions where we know

that the performance difference is 2%. The resolution is

however dependent on the standard deviations and thus on how

consistently the solutions performs. Although this method can

give fairly accurate performance comparisons and gives hints

where to look, it does not, by itself, give qualitative insights

and observing the robot’s behavior is still essential to make

improvements. However, it allows the developers to

quantitatively verify their assumptions.

In addition, the simulation cannot only plainly compare

different solutions under a set of given conditions but can also

alter these conditions and evaluate how robust a solution is to

those perturbations. We demonstrated this by introducing an

initial rotation to the starting orientation of the robot and by

introducing a motor imprecision making the robot drive in a left

turn when the algorithm assumes the robot to drive straight

ahead.

Not surprisingly, a solution that uses more frequently

updated measurements and adapts constantly showed more

robustness to these perturbations than solutions that rely on less

frequent measurements.

This means that the simulation is useful to optimize the

interplay between the algorithm that controls the robot and the

robot hardware and helps finding the least restrictive, and

therefore often cheapest, hardware requirements necessary to

still ensure the desired performance.

For example, the solution with frequently measurements can

have less restrictive hardware requirements for the speed

regulation of the motors.

In the future we envision that the development of the

algorithm - hardware combination can be automated by using

genetic algorithms that use the performance metric as feedback

for further iterations.

Acknowledgements

This research is supported by the Research Council of

Norway through its user-driven research (BIA) funding

scheme, project number 236739/O30S. Thanks to Letizia

Jaccheri for providing useful feedback while writing this paper.

References

[1] Nehmzow U, Walker K. The behaviour of a mobile robot is chaotic. AISB

journal 2003;1:373-388.

[2] Nakamura Y, Sekiguchi A. The chaotic mobile robot. IEEE Transactions

on Robotics and Automation 2001;17:898-904.

[3] Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov

exponents from a time series. Physica D: Nonlinear Phenomena

1985;16:285-317.

[4] Nehmzow U. Quantitative analysis of arobot-environment interaction – on

the difference between simulation and the real thing. Proceedings of

Eurobot 2001.

[5] Schrage M. The culture(s) of prototyping. Design Management Journal

1993;4:55-65.

[6] Smith RP, Tjandra P.Experimental observation of iteration in engineering

design. Research in Engineering Design 1998;10:107-117.

[7] Dow S, Heddleston K, Klemmer SR.The efficacy of prototyping under time

constraints. Proceedings of the Seventh ACM Conference on Creativity and

Cognition 2009; 165-174.

[8] Pahl G, Beitz W, Feldhusen J, Grote KH. Engineering design: A systematic

approach. 3rd ed. London: Springer 2007.

[9] Jacoff A, Messina E, Evans J. Performance evaluation of autonomous

mobile robots. Industrial Robot: An International Journal 2002;29:259-

267.

[10] Robot models included in the Webot simulation software.

https://cyberbotics.com/doc/guide/robots. Accessed: 2019-02-09

[11] Gerstenberg A, Steinert M. Open ended problems – a robot programming

experiment design to compare and test different development and design

approaches. Proceedings of NordDesign 2018

[12]Gerstenberg A. RobotExpSetup on GitHub. 2018.

https://github.com/AchimGerstenberg/RoboExpSetup (retrieved March

29th, 2019.

[13] Gerstenberg A, Steinert M. Development and verification of a simulation

for leveraging results of a human subjects programming experiment.

arXiv eprint: 1903.10420. March 2019

252 Publications included in the PhD work

C.9. Contribution 9: The Relevance of Testing in Engineering Product

Development Investigations on a Robot Programming Task 253

C.9 Contribution 9: The Relevance of Testing in En-
gineering Product Development Investigations on
a Robot Programming Task

Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the CIRP Design Conference 2019

29th CIRP Design 2019 (CIRP Design 2019)

The Relevance of Testing in Engineering Product Development -

Investigations on a Robot Programming Task

 Achim Gerstenberg*a, Martin Steinerta

aNorwegian University of Science and Technology, Department of Mechanical and Industrial Engineering, Richard Birkelands vei 2B, 7491 Trondheim, Norway

* Corresponding author. Achim Gerstenberg. E-mail address: achim.gerstenberg@ntnu.no

Abstract

Prototyping iterations have been linked to design performance in complex problems solving. Does prototyping also enhance design performance

in engineering product development where the information needed to solve the problem is already available? In this paper we experimentally

compare if early testing of prototypes leads to different development outcomes compared to an approach that entirely relies on planning in the

earlier phases of the project. In the experiment we ask participants to program a mobile robot to autonomously perform a task with a quantifiable

performance outcome. The task is open-ended and allows for several solutions to the problem. To enhance the statistical validity of the results

we develop and use a digital simulation. Both in the manually recorded and in the simulated results we observe a tendency that the participants

that are allowed and encouraged to test their prototypes frequently perform better than participants that are not allowed to test prototypes. The

performance of the initially non-testing participants equalizes after they had time to test and improve their designs and may even become better

than the performance of the testing participants. However, both these performance differences are not statistically significant and a study with a

larger number of participants is required. From qualitative observations, we conclude that the testing behavior of the individual developer may

have a stronger influence on the outcome than if or how often a developers test their designs and further studies are needed.

© 2019 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the CIRP Design Conference 2019

 Keywords: prototyping iteration; mobile robot; quantitative experiment;

1. Introduction

Iterations seem to be an inevitable and potentially desired

part of product development [1]. Some literature describes

iterations as opportunities for front-loading problem solving

[2], speeding up the development process [3,4] and discovering

unknown unknowns [5,6] while others see iterations as

potentially wasteful repetitions that shall be minimized [7]. In

this paper we experimentally compare if early testing of

prototypes leads to different development outcomes compared

to a development approach that entirely relies on planning in

the earlier phases of the project. To investigate the influence of

early iterations on the development performance of an

autonomous mobile robot, we compare two experimental

conditions where one is allowed and encouraged to test their

designs frequently while the other is initially not allowed to

test. Later we allow both conditions to test in order to see the

influence of delayed testing on the performance.

The task used in the experiment is a complicated open-ended

task according to the definition of Boone and Snowden [8] and

has a quantifiable performance outcome that we use as a

dependent variable. Open-ended means that multiple solutions

exist, it is not easy to predict which solution works best. The

information provided to the participants is sufficient to solve

the task without acquiring additional information.

2. Experimental concept and conditions

In this experiment we want to quantitatively investigate if

early testing of prototypes help with developing better robotic

solutions. The study participants are assigned to two wither the

non-testing or testing experimental condition. The non-testing

2 Author name / Procedia CIRP 00 (2019) 000–000

condition can compile their codes to discover syntax mistakes

but they cannot load their codes onto the robot and thus cannot

execute them during the first 80 minutes of the programming

phase. In the testing condition the participants are allowed and

encouraged to load and execute their codes frequently.

Participants in the testing condition are reminded that they can

test if they have not tested during the last 5 minutes. However,

the participants are free to decide if and when they want to test.

80 minutes after the programming phase started, both groups

are requested to run their solutions in order to measure if the

non-testing to testing stimulus in the first 80 minutes leads to a

difference of performance. After this first evaluation after 80

minutes, four more evaluations follow in 10 minutes intervals

to see if the performances progresses differently over time

depending on the testing behavior during the initial 80 minutes.

The initially non-testing group is also allowed to test after the

first evaluation, i.e. from minutes 80 to 120 both experiment

conditions are equal.

The participants of the experiment are recruited from 3rd

year cybernetics students at the Norwegian University of

Science and Technology. The participants volunteer and are not

paid individually but receive a collective financial contribution

for a class trip. 31 participants took part in the study. Three

participants are excluded because of a malfunction of the

experimental setup. One participant quit the experiment due to

insufficient programming knowledge. Information about the

participants included in this study are shown in table 1.

Table 1. Random assignment of the participants to the conditions

 male female Sum

Non-testing condition 11 2 13

Testing condition 11 3 14

Sum 22 5 27

The participants are assigned randomly to the two conditions

and the time slots are equally distributed between the two

conditions to avoid biases from the time of the day or the

weekday. The participants are invited by a standardized email

which includes information about the experiment content, the

time and place with a way description to the experiment and it

informs that the experiment is conducted without direct

personal interaction with the experimenter.

2.1. The task

For studying the influence of testing prototypes on robot

development performance, we use a task that offers a

quantitative performance metric. Additionally, we want this

task to be open-ended, meaning that there are several

reasonable paths to solving the task and it is not obvious which

one to prefer in order to study creative problem solving

performance. The task also needs to be solvable within the

given programming time of 120 minutes and repeatable under

similar condition for every participant.

The task is to program the robot such that it can

autonomously remove three cube objects out of an area with

white surface in the shortest time possible. The robot shall be

capable of solving the task from every starting position inside

the white area while the starting positions of the cube objects

remains the same. This means that the participants cannot find

a solution that is specialized to one position but need to find a

solution that adapts to the different conditions.

The participant can choose if and where to place up to three

blinking lights. These lights can be detected by the robot and

they fit into cut outs in the cube objects such that the light can

shine out radially. Figure 1 shows the white area with the robot

and the cube objects that need to be pushed outside of the white

area.

A more detailed description of the experimental setup can

be found in [9].

Fig. 1. (a) the physical setup with the playing field, the cube objects and the

robot; (b) detailed view of the robot; (c) a cube object with a blinking light

2.2. Testable hypothesis

The research question is if early testing of prototypes

influences the performance when developing robotic solutions.

We therefore generate two falsifiable hypothesis, which reflect

this research question.

Hypothesis 1:

After 80 minutes of programming, the solutions of participants

in the testing condition in average remove more cubes and

solve the task faster than the solutions from the non-testing

condition.

Hypothesis 2:

After 120 minutes of programming, the solutions of

participants in the testing condition in average remove more

cubes and solve the task faster than the solutions from the non-

testing condition.

2.3. Detailed timeline and interaction with the participant

Generally throughout the experiment, the interaction

between the experimenter and the participant is avoided to not

introduce biases caused by this interaction. The participants are

254 Publications included in the PhD work

 Author name / Procedia CIRP 00 (2019) 000–000 3

informed that the experiment is conducted without direct

personal interaction already in the invitational email.

Fig. 2. Timeline of the experiment.

An overview of the experiment sequence is shown in Fig. 2.

After the welcoming by the computer generated voice the

participant is asked to sign a consent form that informs about

the purpose of the experiment, that the data is captured

anonymously and the possibility to abort the experiment at any

time. In a questionnaire the participants are asked to self-report

their coding experience in C, Python, Arduino and using Lego

Mindstorms. C is chosen because it is close to the language for

programming the robot used in the experiment (NXC) and

Python because it is the most taught language in the study

program the participants were recruited from. Experiences with

Lego Mindstorms or Arduino are relevant because they are

related to the task given during the experiment. The

participants are then introduced to NXC by a short code

example. It also serves as a vague test of programming

knowledge.

Next the participants get access to the robot and are given

an introduction to the robot by a standardized and automated

presentation on a screen. The participants receive a datasheet

about the accuracy of the sensors and the driving capabilities

as well as description of the library developed for the

experiment. The library includes various functions for easy

access to the sensor measurements and simplified commands

for moving the robot. The participants are given 15 minutes to

study this information and can keep the information sheets until

the end of the experiment.

This is followed by in introduction into the development

environment for programming the robot (BricX) that includes

how to write, load and execute a code on the robot. After the

participants have successfully loaded an example code onto the

robot they receive the task description. The robot description

and the task description are given by an automated presentation

with images and computer generated voice. In addition the

participants get the task description on paper and keep it until

the end.

Before starting the programming phase the participants are

informed about the experimental condition. For the non-testing

conditions the key needed for loading code onto the robot is

disabled during the first 80 minutes of the programming phase.

After the 80 minutes of building time with or without

testing, all participants are asked to execute their best code at

defined points in time. These evaluations occur at 80, 90, 100,

110 and 120 minutes of the building phase in order to gather

data that is comparable between participants. The participants

execute the code on the robot from given starting positions. The

starting positions are different for each evaluation to avoid a

single solution optimized for one position. To keep the results

and the experience comparable every participant is given the

same starting position and orientation of the robot.

The experimenter can observe and document the number of

removed cubes and the time the robot needs to complete the

task from a video stream. This stream and the executed codes

are documented.

3. Manually recorded results

These result are obtained by observing how the robot fulfills

the task during the five predefined evaluations. The positioning

of the cubes is the same in all evaluations but each evaluation

has a different starting position and orientation of the robot.

Each participant experiences the same starting configuration.

This means that we get one result for the number of removed

cubes and a task completion time if the task is completed for

each participant and evaluation. The dataset about the number

of removed cubes therefore consists of 65 (13 participants

times 5 evaluations) data points for the non-testing condition

and 70 (14 participants times 5 evaluations) data points for the

testing condition. The amount of data points for task

completion time varies, depending on the evaluation, between

7 and 24 out of 27. This means that a meaningful comparison

of task completion times between evaluations is not possible.

In the earlier evaluations with less task completion, the

comparison between the experimental conditions is also

pointless. Although the intended performance metric was the

task completion time we therefore concentrate on how many

cubes the solutions removed, i.e. how close it came to

completing the task.

Fig. 3 and 4 show the results for the non-testing and testing

condition. They show histograms of how often a certain

number of cubes are removed for each evaluation. Each

evaluation consists of 27 data points and the height of the bars

indicates how often no, one, two or three cubes are pushed off

the white area. The evaluation is over when either the robot

completes the task, the robot falls off the cardboard area, the

participant aborts the execution of the program or none of the

afore mentioned happens within 400 seconds after starting the

robot.

We observe a bimodal distribution, meaning that the robot

tends to either remove very few, often no, cubes or completes

the task. Instances where the robot removes one or two cubes

are rare. This phenomenon seems more pronounced for the

non-testing condition and in the first evaluation of the testing

group.

In the depth direction, we can compare the trend over time

from evaluation 1 to evaluation 5. The participants keep

developing their solutions between evaluations and we can

C.9. Contribution 9: The Relevance of Testing in Engineering Product

Development Investigations on a Robot Programming Task 255

4 Author name / Procedia CIRP 00 (2019) 000–000

observe for both conditions that over time an increasing

number of solutions complete the task successfully and the

amount of solutions that remove no cube decreases.

Fig. 3. Results of the non-testing participants. The histograms show how

often a certain number of cubes are removed and in which evaluation.

Fig. 4. Results of the testing participants.

The improvement between the first evaluation and the fifth

evaluation is in both conditions statistically significant.

However, we observe no statistically significant difference

between the non-testing and the testing conditions when

comparing the two groups within one evaluation. From these

results we cannot confirm any of the proposed hypothesis.

3.1. Limitations of the data and how to leverage it

The participants execute their solutions once at every

evaluation. This means that we gather one data point per

solution. The task demands that the solution works from any

starting position of the robot. Since we only gather data from

one position we do not know how this position influences the

result and a single result may therefore not be a representative

evaluation of the performance of the solution. To solve the

issue the robot can be rerun after the experiment has ended

from many additional starting positions to determine the

average performance.

Furthermore, we observed that the result is very sensitive to

the exact initial placement of the cubes and the robot and

reproducing sufficiently similar conditions for every

participant is not possible.

Both problems can be solved using a deterministic

simulation. It can rerun the solutions from many starting

positions and under perfectly repeatable conditions and

automatically document the results.

The simulation we use in this publication is verified by

qualitative and quantitative comparison with measurements of

the robot completing the task in the real world. A precise

description of the simulation and how it is verified can be found

in [10].

4. Simulated results

The simulation reruns each solution from 99 randomly

generated starting positions of the robot. For evaluating every

solution, we use the same 99 positions each.

In each of those 99 simulation runs between zero and three

cubes will be removed. This allows us to calculate the mean

number of removed cubes for each solution as a performance

measure and the standard deviation to estimate how

consistently the solution performs. Similarly to the manually

recorded results section, we can count how many solutions

have a mean value of removed cubes within a certain interval.

This data is plotted as histograms in Fig. 5 and Fig. 6 with a bin

size of 0.75.

Fig. 5. Simulated results of the non-testing participants.

Fig. 6. Simulated results of the testing participants.

256 Publications included in the PhD work

 Author name / Procedia CIRP 00 (2019) 000–000 5

Similarly, to the manually recorded results, also the

simulated results show a bimodal distribution especially for the

non-testing group but also for the testing group and a

performance improvement over time for both groups. The

simulation results therefore confirm the manually recorded

results. To compare the two experimental conditions we use the

median and the mean of the standard deviations of the number

of removed cubes calculated for each solution from the 99

simulation results. This is because the data for the two

conditions are bimodal and the mean would not give a

representative result for the number of removed cubes. The

standard deviation of the number of removed cubes is not

bimodal and we can therefore use the mean.

Table 2. Descriptive statistics (N – sample size, Mdn – median, MSD – mean

of standard deviations) of the number of removed.

 Non-testing Testing

Evaluation N Mdn MSD N Mdn MSD

1 13 0.21 0.37 14 1.57 0.39

2 13 1.59 0.24 14 1.69 0.45

3 13 2.78 0.38 14 2.33 0.44

4 13 2.64 0.44 14 2.43 0.52

5 13 2.75 0.38 14 2.27 0.58

From the medians, we can see that the number of removed

cubes improves during the first three evaluations for both

groups and then remains constant with a higher number for the

non-testing group. The medians in the first evaluation seem to

differ largely. However, this is caused by the bimodal nature of

the results. The tendency would have been reversed if one more

solution for the non-testing group had performed successfully.

Although the median of removed cubes is lower for the non-

testing group during the early evaluations it is higher in the last

three evaluations. The mean of the standard deviations of the

solutions coded by the non-testing participants is lower

throughout all evaluations and indicates that testing may lead

to more consistently performing solutions.

Table 3. Comparative statistics comparing the non-testing and testing

condition with a Mann-Whitney U test for the number of removed cubes and

an independent sample t-test for comparing the standard deviations of the

number of removed cubes.

 Mann-Whitney U test Independent sample t-test

Evaluation U statistic p-value t value p - value

1 87 0.432 0.17 0.865

2 84 0.376 1.77 0.090

3 87 0.433 0.51 0.612

4 84 0.376 0.67 0.510

5 70 0.166 1.75 0.093

To determine if the differences between the two experimental

conditions are statistically significant we perform a Mann-

Whitney U test on the number of removed cubes and a two-

tailed independent sample t-test on the standard deviations.

None of the differences in the number of removed cubes is

statistically significant and there is a tendency that the solutions

by the non-testing participants perform more consistently in

evaluations 2 and 5. However, there is no experimental

argument why this should be the case in these two evaluations

and the significances for the other evaluations do not show any

indication that there is such an effect.

In cases where the robot removed all three cubes and hence

completed the task we can use the task completion time as a

performance measure. The simulation is aborted if the task is

not completed after 400 seconds and then the task is considered

incomplete. We can count how often a solution completed the

task out of the 99 simulation runs and if it completed the task

at least once we calculate a mean task completion time and a

standard deviation. To compare the two groups we use the

mean of the mean task completion times and the mean of the

standard deviations. The results are shown in table 4.

Table 4. Descriptive statistics (N – number of solutions with task completion

times, MM – mean of the mean task completion times in seconds, MSD –

mean of the standard deviations of the task completion times in seconds)

 Non-testing Testing

Evaluation N MM MSD N MM MSD

1 6 111.0 64.6 9 109.2 61.7

2 7 86.2 47.4 9 117.7 56.6

3 10 97.6 45.8 13 96.0 62.6

4 12 118.3 52.0 13 111.8 67.1

5 11 78.3 42.1 13 100.6 59.5

We do not see that the solutions of one group are

consistently faster. However, there is a tendency that the testing

group produces more solutions that complete the task. This

difference is largest in the first evaluation (6 out of 13 (46%)

of non-testing and 9 out of 14 (64%) of testing participants have

a solution that completes the task) and decreases in later

evaluations.

Generally, we expect that the task completion times improve

over time as the already working solutions are further

improved. In some cases the performance decrease in later

evaluations can be explained by that more solutions complete

the task and newly contribute to the statistic.

Except for the first evaluation, the mean of the standard

deviations of the task completion times is lower for solutions

of the non-testing group. Surprisingly, this standard deviation

does not decrease over time for the testing group.

We assign the task completion times into 5-second intervals

and count how often out of the 99 simulation runs a solution

completed the task in each time interval. The results can be seen

in the histogram plots in Fig. 7 for the non-testing and Fig. 8

for the testing participants. In the unlabeled axis, every line

corresponds to one solution by one participant. The lines are

ordered by how many entries the histogram has, that is how

often the solution completed the task in this evaluation. The

histograms of the solutions that solved the task the least often

are located towards the left while the histograms of the more

successful solutions are on the right side of the plot.

C.9. Contribution 9: The Relevance of Testing in Engineering Product

Development Investigations on a Robot Programming Task 257

6 Author name / Procedia CIRP 00 (2019) 000–000

Fig. 7. Histogram of task completion times over 99 simulation runs for the

non-testing condition

Fig. 8. Histogram of task completion times over 99 simulation runs for the

testing condition.

258 Publications included in the PhD work

 Author name / Procedia CIRP 00 (2019) 000–000 7

In the histogram, we cannot only observe how many

solutions complete the task at least once but also the time

distribution for every solution. We see that some solutions,

although they complete the task more often, do not necessarily

have a more consistent task completion time. The three most

consistently performing solutions are developed by the non-

testing group.

5. Conclusion

In this experiment, we deal with the question if the solutions

developed by participants who tested their designs while

developing robot control software perform differently from the

solutions of participants that could not test their designs within

the first 80 minutes of the development time. We measure the

performance of the solutions during the experiment when the

participant executes the robot during pre-defined evaluations.

The amount of this manually collected data is limited and

difficult to obtain under precisely similar conditions.

Therefore, we develop a digital simulation that can leverage

this data by post-experimentally executing the codes that the

participants produced during the experiment. Although not the

primary aim of the experiment, this method proved very helpful

to obtain more accurate results.

Hypothesis 1 was if testing leads to more removed cubes and

faster task completion times in average after 80 minutes.

We observed a tendency that solutions developed by the

testing participants in average removed more cubes and more

frequently completed the task and thus perform better.

However, this difference could not be confirmed to be

statistically significant. This is mostly because the differences

between participants within each group were very large. The

development skill of the individual participant was more

influential than, if the participants were able to test their

designs. We did not observe a difference in task completion

time.

The second hypothesis was that the group that could test

during the initial 80 minutes of development still perform better

after further 40 minutes of development time where both

groups could test.

Again, we see no statistically significant difference. If at all,

we see a tendency that the initially non-testing participants

performed better by a small margin. They removed in average

more cubes and did so, although only equally fast, with a more

consistent task completion time.

A qualitative observation we made is that the non-testing

participants planned the structure of their codes more carefully

while the testing participants tended to discover flaws in their

designs during testing and then patched those in a hustled way

resulting in confusing code architectures that made improving

the codes unnecessarily complicated.

As we saw from the results in evaluation 1, a sizable amount

of participants who could not test their designs developed

solutions that completed the task. Especially one participant

proved that the provided information is sufficient to solve the

task reliably in over 95% of the simulation runs. For this

participant the task was simple enough to flawlessly construct

and execute a mental model of the solution. We are aware that

many product development problems are more complex and

cannot be solved within two hours and, more importantly, are

extremely difficult to solve by constructing and executing

flawless mental models from already available information.

This is because they either the necessary information is not

available or the problem is too complex to be flawlessly

developed without testing. This experiment is limited in this

sense as finding a task is a compromise between making it as

complex and representable for product development as possible

while still make it possible to solve the task within the given

time, have a quantifiable performance metric and ensuring

identical conditions for all participants.

To make conclusive statements if there is an effect of testing

prototypes early during the development process we need more

participants to obtain statistically significant results. From this

study we can say that the individual difference between

developers seem to be larger than the effect of testing despite

recruiting participants from the same study program and the

same year.

Although we cannot find a quantitatively significant

difference when introducing the testing versus non-testing

stimulus we observed qualitatively differences. The way how

participants plan their tests and how they react to test results

has a major influence on their individual result. To better

understand this we need to combine quantitative research with

qualitative research to uncover connections and develop new

hypothesis for further quantitative research.

Acknowledgements

This research is supported by the Research Council of

Norway through its user-driven research (BIA) funding

scheme, project number 236739/O30S.

References

[1] Smith RP, Tjandra P.Experimental observation of iteration in engineering

design. Research in Engineering Design 1998;10:107-117.

[2] Thomke S, Fujimoto T. The Effect of “Front-Loading” Problem-Solving on

Product Development Performance. Journal of Product Innovation

Management 2003;17: 128-142.

[3] Schrage M. The culture(s) of prototyping. Design Management Journal

1993;4:55-65.

[4] Leon HCM, Farris JA, Letens G,Hernandez A. An analytical management

framework for new product development processes featuring uncertain

iterations. Journal of Engineering and Technology Management;30:45-71.

[5] Steinert RM, Leiffer LJ. Finding one’s way: Rediscovering a hunter-

gatherer model based on wayfaring. International journal of engineering

education 2012;28:251-252.

[6] Jensen MB, Elverum C, Steinert M. Eliciting unknown unknowns with

prototypes: Introducing prototrials and prototrial-driven cultures. Design

Studies 2017;49:1-31.

[8] Snowden ME, Boone DJ. A Leader’s Framework for Decision Making.

Harvard Business Review 2007;85:1-9.

[9] Gerstenberg A, Steinert M. Open ended problems – a robot programming

experiment design to compare and test different development and design

approaches. Proceedings of NordDesign 2018

[10] Gerstenberg A, Steinert M. Development and verification of a simulation

for leveraging results of a human subjects programming experiment.

arXiv eprint: 1903.10420. March 2019

C.9. Contribution 9: The Relevance of Testing in Engineering Product

Development Investigations on a Robot Programming Task 259

260 Publications included in the PhD work

C.10 Contribution 10: Fixation on Premature Concept
Choices - a Pitfall of Early Prototyping?

Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the CIRP Design Conference 2019

29th CIRP Design 2019 (CIRP Design 2019)

Fixation on premature concept choices - a pitfall of early prototyping?

 Achim Gerstenberg*a, Heikki Sjömana, Martin Steinerta

aNorwegian University of Science and Technology, Department of Mechanical and Industrial Engineering, Richard Birkelands vei 2B, 7491 Trondheim, Norway

* Corresponding author. Achim Gerstenberg. E-mail address: achim.gerstenberg@ntnu.no

Abstract

Building prototypes is an essential element in conceptual design. We argue that using resources to build prototypes may induce adherence to

the chosen concept and prevents further exploration into other concepts. This phenomenon has previously been attributed to sunk cost caused

by building prototypes. In a controlled human subject experimental study in a robot development context we investigate the influence of

building and testing prototypes by allowing one group of participants to test their prototypes frequently while the other group is not allowed to

test and can only rely on the provided information about the hardware. We report about participants prematurely committing to concept choices

and adhering to those after building and testing prototypes while non-testing participants make superior concept choices based on the provided

information. While planning may be feasible in some projects with low uncertainty, problems that are more complex require prototyping for

knowledge acquisition. We give suggestions on how to reduce the costs of prototyping and the associated effect it has on design fixation. These

suggestions are very similar to the test driven development approach known from software development. They include the definition of critical

functions and the respective tests before building the prototypes. When designing the prototypes the focus lies on making a conscious choice of

how to prototype with the lowest fidelity necessary to comply with the previously defined test and attempting risky development stages early

with the intention of maximizing the work not done.

© 2019 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the CIRP Design Conference 2019

 Keywords: design fixation; sunk cost; conceptual design

1. Introduction

While several studies show the benefits of building and

testing prototypes during the conceptual design phase [1-6]

other studies argue that prototypes can be a waste of resources

[7] and potentially lead to design fixation [8,9]. In this

publication we use Jansson’s and Smith’s definition of design

fixation [10].

 Viswanathan and Linsey did not find evidence that building

prototypes in itself is a cause for design fixation [2] but that the

sunk cost associated with building prototypes can lead to

increased design fixation [11] following the theory of the sunk

cost effect [12,13].

According to this literature we expect that spending

resources on prototyping the initial concept can lead to a design

fixation on this concept due to the sunk cost effect. This

adherence to the initial selection then prohibits the development

and comparison of alternative concepts leading to premature

concept choices. Developers may be particularly susceptible to

this effect if the prototypes show somewhat promising results

even when a better concept choice exists.

We investigate design fixation in an experimental study with

a robotic task. The experiment aims to answer the question if

testing prototypes allows for comparison and therefore better

selection of concepts or if it leads to fixation onto the prototype

that is initially built.

All participants are given sufficient information to make

intelligible concept choices without the need of testing

prototypes and are primed by a functioning but inferior solution

just before developing the solutions to induce a bias towards the

inferior concept. The participants who can test and evaluate

their prototypes are compared to participants who solve the task

after planning their solutions using mental models without

testing and evaluating those physically.

2 Author name / Procedia CIRP 00 (2019) 000–000

We first describe the experimental setup and explain and

compare the different concepts used by the participants. We

proceed with the statistics about the concept choices of the

participants from both experimental conditions, a discussion

about the implications on early stage product development, how

we think prototypes shall be used and what future work can be

done to further understand and quantify the effect.

2. Experimental design

We perform a controlled human subjects study in a

laboratory setting to compare if testing of prototypes leads to

different concept selection than deciding and planning based on

mental models of solutions. The participants of the study are

asked to individually program a provided physical mobile robot

in a way that it autonomously finds and moves objects. In this

context testing a prototype means loading the developed code

onto the robot and executing it to observe the robot behavior.

The first group can build, test and compare prototypes of

different concepts and can base their final concept decision on

the discoveries from testing while the other group needs to

compare their mental models of different concepts and then

execute the concept that appears most favorable based on

information provided prior to the design phase of the

experiment. The same information is also provided to the first

group and in principle those participants can also decide purely

based on this information but participants of this group are

encouraged to test prototypes at regular time intervals and are

reminded after every 5 minutes without testing that they can

test. The participants that are allowed to test are reminded but

can still decide themselves if and when they want to test. The

design phase lasts 80 minutes for both groups.

As the last instruction before the design phase both groups

are primed with an inferior solution by mentioning a hint

towards this inferior solution. Thereby the need of evaluating

the concepts, either by testing or by carefully studying the

information, is amplified.

2.1. Participants of the study

The participants are voluntarily recruited from a third year

cybernetics class at a technical university (more precise

information disclosed for blind review). The participants do not

get paid for participation individually but are indirectly

monetarily rewarded towards a class trip. A total of 27

participants (22 male, 5 female) take part in the study and are

randomly assigned to either condition. The non-testing group

includes 13 participants and the testing group includes 14

participants.

2.2. The task

Participants are given a Lego Mindstorms robot that they

program so that it can autonomously solve an open-ended task.

The task is to remove three cube objects from a white area of

1.8 m2 in the shortest time possible after starting the robot. The

starting position of the robot is unknown to the participant and

the solution shall work from any possible starting position of

the robot. The robot has two motors to drive forwards,

backwards and turn and sensors to detect the reflectivity of the

surface underneath the robot, an ultrasonic distance sensors and

light sensors that can detect the color of an object and

recognizes a blinking light. Three blinking lights are provided

and they can be placed anywhere including inside the cube

objects.

The possibility of fitting the lights into the cube objects in a

way the robot can detect them from any direction relative to the

cube object is given as the last part of the task description. This

serves as priming all participants initially towards using the

blinking lights for finding the cube objects.

All participants see a programming environment with

several similar simultaneously opened coding windows. This

makes it possible to develop several codes in parallel.

More detailed information about the physical setup, a more

precise description of the robot and the programming library,

the standardized interaction with the participants and other

experiment examples this setup can be used for are described

in [14]. Figure 1 shows the playing field with the robot and the

cube objects that the robot needs to move outside of the white

area while not falling off the cardboard area itself.

Fig. 1. (a) the physical setup with the playing field, the cube objects and the

robot; (b) detailed view of the robot; (c) a cube object with a blinking light

2.3. Possible concepts

We retrospectively identified four concepts that were used

by the participants to detect and remove the cube objects. In the

following we will explain and compare those four concepts.

1. Object detection based on the ultrasonic distance sensor

2. Object detection based on detecting the blinking lights

inside the cube objects with the light sensors

3. Combination of the ultrasonic and the light sensor

4. No sensor used – random trajectory to remove cube

objects by chance

Concept 1: The ultrasonic distance sensor sends out an

ultrasound pulse and waits until a reflection of this pulse returns

to the sensor and calculates a distance reading from the time of

flight of the pulse. Receiving a reading from this sensor can be

regarded as almost instant and this sensor can be used for very

frequent and accurate measurements while the robot is moving.

The range of the sensor is larger than the operating area of the

C.10. Contribution 10: Fixation on Premature Concept Choices - a Pitfall of

Early Prototyping? 261

 Author name / Procedia CIRP 00 (2019) 000–000 3

task. This means that a cube object at any position can be

detected with the ultrasonic sensor from any position of the

robot. A disadvantage of the ultrasonic distance sensor is its

wide acceptance angle. This means that the sensor detects an

object when the sensor and thus the robot is not necessarily

directly pointing at the object.

A solution using this sensor to detect cube objects has the

largest potential to solve the task quickly and with the shortest

code. The best ultrasound based solution written by a

participant takes 19 seconds to solve the task averaged from 99

random starting positions of the robot. The shortest functioning

ultrasound based code takes four lines of code. Being the fastest

and simplest to realize concept makes the ultrasound based

solution superior over all other concepts.

Concept 2: The robot has forward pointing light sensors on

either side that can detect the blinking light sources provided to

the participants. If these blinking lights are placed in the cube

objects, they can be used as beacons for detecting the cube

objects. The intensity of the blinking light correlates with the

distance between the sensor and the light. The lights blink with

a frequency of 0.93 Hz and the algorithm needs a full blink

cycle to differentiate the blinking light source from a non-

blinking light source. This means that the minimum time for

measuring the blinking light intensity accurately is one blink

cycle. The detection range is less than the operating area of the

robot and this means that a robot that is turning to search for an

object may be out of range for detecting one and needs to move

closer first.

This means that even if all cube objects are within the

detection range the measurement delay makes the detection

slow because the robot needs to wait for an accurate

measurement and in some cases the robot needs to change

location after an unsuccessful search to get into detection range.

This requires extensive code and the search speed is limited by

the measurement frequency. The fastest blinking light based

solution averaged over 99 starting positions is 52 seconds and

therefore significantly slower than the ultrasound based

solution. The code needed for a reliably working solutions is

longer and more difficult to implement that an ultrasound based

solution.

Concept 3: Some participants combined both search

methods. This redundancy makes this solution potentially more

resilient although the ultrasound methods already works very

reliably. The non-testing group could not find this out without

testing. The solution is slowed down by the measurement time

needed for accurately determining the intensity of the blink

lights and is therefore usually slower and more complex to code

than the purely ultrasound based solutions.

Concept 4: The last concept employed by one participant is

to use no search method at all. The robot drives straight until it

detects the edge of the operating area and then turns until it is

facing back towards the center and drives straight again. The

benefit of this solution is that the robot can always drive at full

speed because it does not need to take accurate measurements.

The disadvantage is that it does not recognize any cube objects

and only removes those by chance. The first cube is often

removed very quickly but finding the last remaining cube by

chance is less likely. When the robot is started from different

starting positions the time for completing the task varies

significantly between repetitions.

All the mentioned information about the sensors are

available to the participants in a printed datasheet.

This means that ultrasound based solutions are clearly the

most favorable and easiest to implement solutions. From the

provided information it is possible to conclude that the blinking

light based solution is slow because of the measurement delay

and its range can be insufficient in some cases. The solution

that did not use any search method is difficult to develop

without testing because it is nearly impossible to mentally

compute the trajectory even if the provided information is

accurate.

3. Experimental results

We examined the final codes that the participants developed

during the programming time of 80 minutes. We identify the

search method used for detecting and approaching the cube

objects and categorize them into the above mentioned concepts.

We observe that most participants use the ultrasound based

concept: 8 out of 13 (62%) in the non-testing group and 8 out

13 (62%) in the testing group. 5 out of 14 (35%) of the testing

participants chose the blinking light concept as their final

concept while none of the non-testers chose it as their final

concept. The solutions that combines both concepts were used

4 times by the non-testing and 2 times by the testing

participants. The one participant who used no search method

was in the non-testing condition.

Table 1. Frequency of concept choices for the non-testing and testing

experimental condition. The non-testing condition includes 13 participants

and the testing condition includes 14 participants.

Concept Non-testing testing

Concept 1, ultrasound based 8 7

Concept 2, blink light based 0 5

Concept 3, combination of concept 1 and 2

Concept 4, no object detection used

4

1

2

0

4. Interpretation of the data

The majority of the participants from both groups use the

superior ultrasound solution. This means that it is reasonable to

come to this conclusion both with and without testing of

prototypes. However, we observe that exclusively the non-

testing group chooses the inferior blinking light based concept.

Since the only experimental difference between the groups is

that one of them can test their prototypes while the other cannot

we conclude that this difference leads to a poorer concept

choice.

The non-testing group is reliant only on the provided

information. This forces them to make and compare mental

models to decide which concept is most favorable. In contrast,

262 Publications included in the PhD work

4 Author name / Procedia CIRP 00 (2019) 000–000

the testing participants are encouraged to test their solution

early. This means that they may decide more prematurely and

without carefully studying the information. From the provided

information it is possible to deduct, but not immediately

obvious, that the ultrasound based solution will outperform the

blinking light based one. We therefore assume that some of the

testing participants were not aware of this and initially chose

the inferior concept. The testing participants could have built

and tested several different concepts and then decide which one

works better. None of the testing participants tried out a

different concept but instead began and continued with the

initially chosen concept. We assume that this is due to avoiding

the sunk cost of giving up development work already done or

using additional time for developing a concept that then later

proves inferior. Indeed spending time on developing something

new in case the superior concept is already started is ineffective

but it can help discover inferior premature concept choices.

The described effect may have been enhanced by the

partially positive feedback gained from testing the inferior

blink light solution. Although this solution is inferior, it is still

a viable option and a promising test result may impede the

participants from questioning their concept choice.

Although we biased participants towards making an inferior

initial concept choice and incentivized them to test their

designs early, which may have increased the chance for

premature decisions, we belief that too early testing and

focusing on an initial idea is generally a reasonable scenario

during conceptual design. This is also demonstrated by Purcell

& Gero [15].

5. Implications on product development

In this experiment the information provided was sufficient

to plan a successful solution. However, many product

development projects are more complex and require

prototyping to gain insights necessary to solve the problem and

prototyping becomes an integral part of the development

process. In those projects without sufficient information early

concept choices often cannot be rationally made and are likely

premature. If the sunk cost of building prototypes leads to an

adherence to this prematurely chosen and possibly inferior

concept then it is important to minimize the sunk cost while

still gaining the required insights from the prototypes and

comparing several concept design choices. To minimize sunk

cost we suggest to limit the prototyping to critical functions and

reduce the fidelity of the prototype to the minimum necessary

to gain the desired insights. This means that before starting to

build a prototype one needs to define the most critical,

absolutely needed, requirements of the entire project (e.g. a

plane needs to fly) and how to test the prototypes according to

those critical functions as well as the criteria for a passed test.

Secondly, the developers need to choose a concept where

they find that the critical functions can be prototyped easily.

The focus shall be on what is the minimum building effort

needed to gain sufficient insight when testing the prototypes for

later comparison of concepts. This will lead to the prototypes

with the lowest necessary resolution and the focus lies on

maximizing the work not done. Here we aim to firstly develop

the solutions to the critical function that is most likely to fail. If

the solutions fail and we find out that we cannot solve the

critical function the concept has failed early, can be given up

sooner and the sunk cost is minimized. The intention of testing

is not primarily to find out how concepts different compare in

absolute numbers as these are influenced by how well the

prototypes are built and we cannot precisely compare

prototypes that are built to different standards.

The intention is to find unsuspected flaws in the designers

mental model, get an impression of the order of magnitudes of

performances and performance potentials of the solution, a

feeling for how difficult a further development of the

technology will become and where the benefits and

disadvantages lie.

When minimizing sunk cost and knowing about the danger

of design fixation it is possible to use the remaining available

resources and testing of other concepts and allow for an

informed comparison when deciding which concepts to

proceed with.

The general concept resembles many ideas from test-driven

development (TDD) [16] of software. In TDD the developers

first define the desired behavior and write code that tests if the

software solution fulfills this behavior. These tests are called

unit tests and are written before any code that solves the tests

is written. They focus on one specific behavior that shall be

added to the solution and concisely define criteria for when the

test is considered as passed.

In our proposed method for physical projects those unit tests

correspond to the definition of critical functions and the

associated test criteria that must be fulfilled to pass the test.

Then the software developers program the minimal code

necessary to pass the unit test while avoiding development of

unnecessary features that are not fundamental for passing the

test. Since the unit tests as well as the solutions to these unit

tests focus on the essential requirements, the development and

testing of unneeded features is avoided and potentially sunk

costs are minimized. In physical projects, this means that the

lowest prototype fidelity that is necessary to pass the test

criteria and provide learning insights from testing is sufficient.

The resources saved can then be used for building, testing and

comparing other concepts and design fixation can be decreased.

The final step in TDD is refactoring where code duplications

are removed and performance gets optimized. In the physical

world this is equivalent to optimizing the chosen concept with

the insights gained earlier by prototyping using conventional

product development models.

In software projects, the unit tests can easily be repeated to

check if future software versions still fulfill the unit tests. In the

case of hardware development testing a prototype is usually not

as automated as rerunning a code and is therefore more time

consuming. Furthermore, the prototype may be destroyed

during the test and using it again for another test is not possible.

We now illustrate this approach with an example from the

experiment used in this study. The most critical function when

developing the robot is to ensure that the robot does not fall off

the cardboard as this makes completing the task impossible. A

reasonable unit test therefore is that the robot needs to approach

the edge of the cardboard at full speed from all possible angles

and manage to stop before falling off the cardboard. The

C.10. Contribution 10: Fixation on Premature Concept Choices - a Pitfall of

Early Prototyping? 263

 Author name / Procedia CIRP 00 (2019) 000–000 5

minimum solution that passes this test is to use the downwards

reflection sensor and stop the motors when the reflectivity is

below a threshold. Obviously, this does not solve the entire

task. The complete solution requires the robot to turn around

and then continue searching but this does not need to be

developed before we know that we can detect the edge and

prevent the robot from falling off.

6. Conclusion

Building and testing prototypes is a known method in

product development. It allows to compare competing concepts

and make design decisions based on test results. One would

therefore assume that testing prototypes helps with selecting

favorable concepts.

In contrast to this, some literature suggests that the sunk cost

of creating and then having to discard prototypes leads to

design fixation. After building an initial prototype designers

then adhere to the chosen concept to avoid spending resources

on building additional prototypes. This saves resources but if

the initial concept choice is inferior to other concepts, the

design fixation consolidates the poor concept choice.

In an experiment, based on developing a robotic solution,

we nudge participants into prematurely making an inferior

concept choice by presenting them with information about an

inferior solution. We then observe if participants that have the

chance to test prototypes are more or less likely to ignore the

inferior concept and choose a superior concept than

participants that make their concept choices only based on

provided information and comparing mental models of their

ideas. The results show that participants, if provided with

sufficient information that rely on mental models and thus have

less sunk cost are able to make superior concept choices than

participants that in principle can test and compare different

concepts but refuse to do so.

The results are indicative but not significant enough to

conclude that the sunk cost of prototyping leads to design

fixation. However, we see this possibility and suggest a process

that is adapted from test-driven software development and aims

to minimize sunk cost while still using comparison of

prototypes to make concept choices.

Acknowledgements

This research is supported by the Research Council of

Norway through its user-driven research (BIA) funding

scheme, project number 236739/O30S.

References

[1] Schrage M. Cultures of prototyping. Design Management Journal

1993;4:55-65.

[2] Viswanathan VK, Linsey JS. Physical Models in Idea Generation:

Hindrance or Help?. ASME proceedings, 22nd International Conference on

Design Theory and Methodology 2010;5:329-339.

[3] Steinert RM, Leiffer LJ. Finding one’s way: Rediscovering a hunter-

gatherer model based on wayfaring. International journal of engineering

education 2012;28:251-252.

[4] McKim RH. Experiences in Visual Thinking. Boston: PWS Publishing

Company; 1972.

[5] Gerstenberg A, Sjöman H, Reime T, Abrahamsson P, Steinert M. A

Simultaneous, Multidisciplinary Development and Design Journey –

Reflections on Prototyping. Proceedings of Entertainment Computing –

ICEC 2015:409-416.

[6] Dow S, Heddleston K, Klemmer SR.The efficacy of prototyping under time

constraints. Proceedings of the Seventh ACM Conference on Creativity and

Cognition 2009; 165-174.

[7] Baxter M. Product design: Practical methods for the systematic

development of new products. London: Chapman & Hall; 1996

[8] Christensen B, Schunn C. The relationship of analogical distance to

analogical function and pre-inventive structure: The case of engineering

design. Creative cognition: Analogy and Incubation 2005;35:29-38.

[9] Kiriyama T, Yamamoto T. Strategic Knowledge Acquisition: A case study

of learning through prototyping. Knowledge-based systems 1998;11:399-

404

[10] Jansson DG, Smith SM. Design Fixation. Design Studies 1991;12:3-11

[11] Viswanathan VK, Linsey JS. Design Fixation in Physical Modeling: An

Investigation on the Role of Sunk Cost. ASME proceedings at the

International Design Engineering Technical Conferences & Computers and

Information in Engineering 2011;119-130.

[12] Arkes H, Blumer C. The psychology of sunk cost. Organizational behavior

and human decision process 1985;35:124-140

[13] Kahnemann D, Tversky A. Prospect theory: An analysis of decision under

risk. Econometrica 1979;47:263-291

[14] Gerstenberg A, Steinert M. Open ended problems – a robot programming

experiment design to compare and test different development and design

approaches. Proceedings of NordDesign 2018

[15] Purcell AT, Gero JS. Design and other types of fixation. Design Studies

1996;17: 363-383

[16] Beck K. Test-driven development: by example. Addison-Wesley

Professional; 2003

264 Publications included in the PhD work

C.11. Contribution 11: A low-cost predictive display for teleoperation:

investigating effects on human performance and workload 265

C.11 Contribution 11: A low-cost predictive display
for teleoperation: investigating effects on hu-
man performance and workload

 1

A low-cost predictive display for teleoperation:

investigating effects on human performance and workload

Henrikke Dybvik1, Martin Løland1, Achim Gerstenberg1, Kristoffer Bjørnerud Slåttsveen1, Martin

Steinert1

1Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology

(NTNU), Richard Birkelands vei 2B, 7491 Trondheim, Norway

Henrikke.dybvik@ntnu.no, +47 95417245

Abstract

Teleoperation in an environment with latency is difficult and highly stressful for human operators, resulting in

high cognitive workload and decreased human performance. This work investigates if a simple predictive display

can increase performance and lower subjective workload for the human operator when teleoperating a remotely

operated vehicle (ROV). A predictive display based on image transformation was developed by applying positional

and scale transformations to the video feed and tested. An experiment was designed, consisting of a simple

navigational task (peg-in-hole game) with a ground ROV, in three distinct conditions: C1. Latency, C2. Latency

with predictive display (PD) and C3. Baseline (no added latency). Findings from N = 57 participants show a

statistically significant increase of 20% in human performance with the aid of the predictive display. Although

differences in subjective workload was not statistically significant, both subjective performance and actual game

performance did increase significantly by using the predictive display. In fact, the latter almost doubled for

participants defining themselves as regular gamers. Lastly, A principle component analysis (PCA) was conducted

investigating confounding factors with confirmatory results.

Keywords: predictive display, human operator, performance, subjective workload

Acknowledgements

This research is supported by strategic funds from the department for Mechanical and Industrial Engineering

(MTP) at NTNU.

 2

1 Introduction – Predictive technology can combat the detrimental effects

of latency in teleoperation

Teleoperation, also called remote operation, is electronic remote control of machines or vehicles and it includes

applications of remotely operated vehicles (ROVs) on ground, under water, subsea, aerial and in space (Draper et

al., 1998). Teleoperation is a subclass of telepresence; “the perception of presence within a physically remote or

simulated site” (Draper et al., 1998). Telepresence is generally viewed as being beneficial to mission performance

and is furthermore hypothesized to improve efficiency and/or reduce operator workload (Draper et al., 1998).

There are multiple challenges related to teleoperation, one of which is latency. In this work, we are interested in

latency, also called time delay, which refers to the delay between operator input action (steering commands) and

visible output response of the video feed (Chen et al., 2007). Teleoperation in an environment with latency,

especially basic driving, is difficult and highly stressful for the human operator, resulting in high cognitive

workload (Matheson et al., 2013) and decreased human performance (Chen et al., 2007), e.g. observed as an

increase in task completion time or reduced accuracy (Lane et al., 2002). Approaches to overcome the detrimental

effects of latency in teleoperation include increasing the level of automation (which excludes the human from the

loop), provide information to increase the situational awareness of the human operator and predictive technology.

Predictive technology spans several approaches, either categorized as dynamic system models or free model

approaches. Model free approaches include superimposed information models, 3D graphic models, and video

manipulation. Superimposed information and 3D graphics models show promising results by greatly reducing task

completion times, but require advanced algorithms, potentially expensive equipment and extensive information

regarding the environment and the ROV. Video manipulation can increase performance of human operators’ and

it is simpler in comparison, as it alters the delayed video feed to mimic movements and environment in real time.

Simple video manipulation can provide time efficient and inexpensive means to enhance performance of human

operators’ in settings where extensive information regarding the ROV and its environment is unavailable, or the

opportunity to utilize expensive equipment or highly advanced algorithms is not a possibility.

With basis in existing video manipulation methods based on image transformation, we developed a simpler

predictive display by applying image positional and scale transformations to the video feed. This predictive display

requires a few lines of code and can be applied to several ROV configurations. In this work, we are interested in

human operators’ performance and their subjectively experienced workload while using predictive technology.

The aim of this article is to investigate if a simple predictive display can increase performance and lower subjective

workload of human operators’ during teleoperation. To do so an experiment was set up to investigate changes in

human operator performance and workload when operating an ROV under three distinct conditions, each condition

with a distinct display and latency. The participants were presented with a single, simple navigational task, framed

as a peg-in-hole game using a ground ROV with a first-person camera view. The conditions were C1. Latency, 2.

Latency with Predictive Display (w/PD) and 3. Baseline. Data collected included objective performance (task

score), and subjective workload (RTLX), demographics and other variables. N=57 participants were recruited and

the hypotheses (task performance and subjective workload) tested using ANOVA. A post hoc Exploratory Data

Analysis (EDA), specifically a principal component analysis (PCA) explore influencing factors.

Following the introduction, the article is structured as follows; the background second section covers challenges

in teleoperation, focusing on latency and its detrimental effects on human performance and workload. Means to

compensate for latency are discussed, emphasizing various predictive technologies. The third section describes

development and implementation of a predictive display, and the experiment design, including stimuli, data

collection, procedure, and data analysis. Section four presents the results of the statistical tests before providing

the result from the EDA. A discussion of the presented results follows in section five, before the conclusion.

2 Background – Latency in teleoperation, human performance, and

workload

This section describes challenges in telepresence, detailing latency and its detrimental effects, with a focus on

human operator performance and subjectively experienced workload. Human operator performance decrease and

workload increase as latency is introduced in teleoperation. Means to compensate for latency are discussed,

predictive technologies in particular. Lastly, the section provides means to measure human operator performance

objectively and workload subjectively.

266 Publications included in the PhD work

 3

2.1 Latency in teleoperation and its related challenges

2.1.1 Telepresence and related challenges

Draper et al. (1998) defines telepresence as “the perception of presence within a physically remote or simulated

site”. Teleoperation is one subclass of telepresence (Sheridan, 1995). Telepresence is beneficial to mission

performance and is furthermore hypothesized to improve efficiency and/or reduce operator workload. Chen et al.

(2007) reviewed 150 articles investigating factors in telepresence, and how they influence operator performance

and challenges related. They found eight main factors; field-of-view (FOV), orientation, camera viewpoint, depth

perception, video quality and frame rate, time delay (or latency) and motion.

2.1.2 Latency challenges in telepresence

In this work, we are interested in time delay, or latency, which will be used throughout this article, which refers to

the delay between operator input action (steering commands) and visible output response of the video feed (Chen

et al., 2007). Latency is usually a result of information having to be conveyed over a communication network

(Chen et al., 2007). The total latency of the teleoperation system can further result from a combination of a number

of reasons, such as software design, hardware design, physical limitations such as distance and obstacles, signal

processing, etc. Thus, total latency can be both fixed and variable (Lane et al., 2002). There are important

distinctions between the two, e.g. they influence performance differently (Davis et al., 2010; Neumeier et al., 2019;

Oboe & Fiorini, 1998).

The causes of latency are not within the scope of this work, and we consider fixed delay only. We are interested

in the total perceived latency; i.e. the time from when the human operator issues a command until they visually

perceive a reaction in the vehicle in the video feedback.

2.1.3 Latency in teleoperation and its detrimental effects

Latency produces a mismatch between given input commands and visual feedback of vehicle reactions. This

creates a conflict for human perception. To correct for this during operation the human operator must remember

the inputs command given until they see the desired output produced by the vehicle in the video feed (Matheson

et al., 2013). In addition, as new information is prompted on the video feedback this must be mentally connected

with the commands issued previously (i.e. the vehicles previous state), and thereafter combined that with issuing

new commands based on this conjunction of information (Ricks et al., 2004). Latencies as low as 10 - 20 ms can

be detected by humans’ visual perception (Chen et al., 2007). Taken together, this can degrade human performance

(Chen et al., 2007) and can increase subjectively experienced workload (Ricks et al., 2004).

2.1.4 Latency in teleoperation degrades human performance

The detrimental effect of latency on human performance can be seen in Table 2.1.1, which includes relevant

research investigating the effect of video feed latency on human performance in a given task. Human performance

includes course completion time, task completion time, task score, accuracy, etc. This table describe the task and

the related increase factor, where a 40% increase in task completion time corresponds to an increase factor of 1.40.

For example a needle-driving task at 100 ms latency had an increase factor of 1.5 (Xu et al., 2014). The relationship

between latency and task completion time is task dependent, notably it is similar for similar tasks. For example; a

linear relationship between latency and task completion time was found in a mobile robot operating task (Ando

et al., 1999) and a vehicle peg-in-hole task (Lane et al., 2002), whereas an exponential relationship was found in

a telerobotic surgical technique task (Xu et al., 2014).

2.1.5 Latency in teleoperation increase workload

The notion of workload or cognitive load is argued to be predictive of both performance in human-machine

interactions as well as the mental state of the operator. Workload is described as a relation between the mental

resources a task demands and the resources available from the human operator (Parasuraman et al., 2008). It is a

multidimensional construct emerging from the interaction between task, context, operator capabilities, behavior,

perceptions and (mental and physical) state (Hart & Staveland, 1988a; Parasuraman et al., 2008). This mental load

posed on a human operator by latency in teleoperation negatively affects their ability to control a vehicle in an

efficient manner (Ricks et al., 2004). The human operator’s subjectively experienced workload is important (Hart

& Staveland, 1988a), since this might alter behavior. Should an operator experience a situation as high workload,

the operator might adopt strategies to mitigate workload. In the specific case of teleoperation human operators

tend to perform steering commands correcting for the mismatch in given input and visually perceived output,

causing the vehicle to oscillate and limiting top speed (Appelqvist et al., 2007). Teleoperation in an environment

with time delay, in particular basic driving, is difficult and highly stressful for the human operator, resulting in

high cognitive workload (Matheson et al., 2013). Extended exposure to such an environment can create cognitive

overload leading to mental fatigue (Lim et al., 2010; Matheson et al., 2013).

C.11. Contribution 11: A low-cost predictive display for teleoperation:

investigating effects on human performance and workload 267

 4

Table 2.1.1. Task completion time for a variety of tasks and latencies.

Author Task Participants Latency [ms] and increase factor

 100 – 300 ms 400 – 700 ms 800 – 1500 ms

(Fabrizio et al., 2000) Pin transfer N = 6 1.04 - 1.21* 1.17 - 1.41* 1.11 - 1.58*

(Xu et al., 2014) Energy dissection N = 16 1.4 - 1.8 2.7 - 4.3

(Xu et al., 2014) Needle-driving N = 16 1.5 - 2.1 2.5 - 6.2

(Perez et al., 2016) Surgical simulator N = 37 0.75 1.5

(Lum et al., 2009) Block transfer N = 14 1.45 2.04

(MacKenzie & Ware, 1993) Target acquisition N = 8 1.64

* Estimated from graph

2.1.6 Latency compensation

There are multiple approaches to reduce the detrimental effects of latency. First, increasing the level of automation

(LOA) reduces the operator workload and improve safety (Dorais et al., 1999; ENDSLEY, 1999; Goodrich et al.,

2001; Luck et al., 2006; Schutte, 2017). A second option is providing the human operator with information and/or

previously given input commands, increasing situational awareness and leading to higher performance and/or

decreasing subjective workload (Chen et al., 2007; Miller & Machulis, 2005; Nielsen et al., 2007). A third option

is predictive technology, which can be displays, control algorithms and graphical models attempting to predict the

state of the ROV based on the vehicles current state and commands issued by the operator. Chen et al. (2007)

conclude it is the most promising solution if eliminating latency from the system is impossible, and highlight that

predictive displays has been shown to reduce task performance time by up to 150%.

2.1.7 Predictive technology

A range of experiments where predictive technology has been used are shown in Table 2.1.2, illustrating a wide

variety of experimental tasks, robot configurations and predictive method. Exact robot configuration can be

known, including examples such as robot-arm manipulators fixed to a user defined reference frame, or not known,

such as vehicles subjective to external forces or floating freely. The unknown robot configuration challenges the

predictive technology as it must account for unknown and changing external factors. Common for the experiments

in Table 2.1.2 is that they involve lateral movement in an alignment or aiming task, which are particularly exposed

to detrimental effects of latency in video feedback. Correctional behavior commonly occurs, causing operators to

overshoot a target or employ a wait-and-move strategy. This behavioral strategy increases task completion time

and occurs around one second latency (Lane et al., 2002).

In general, predictive technology calculates a future predicted state of the robot based on different variables and

methods. Methods can rely on dynamic system equations, such as Zhang and Li. (2016) who used a spacecraft’s

state equations and its dynamic properties to calculate the predicted state. An image of the predicted state is

provided to the operator which can issue commands accordingly. In contrast, a model free approach, which

excludes dynamics, is often used in contexts where accurate modeling of external forces isn’t a possibility, such

as in space applications. Predictive technology within model free approaches includes superimposed predictive

information, 3D graphic models and video manipulation.

The first category superimposes (or overlays) information on a delayed video feed, providing the operator with an

estimate of the vehicles future state. Superimposed predictive information is often visualized as vector graphics

where lines of dots follow a path. For example, Mathan et al. (1996) superimposed directional velocity information

of a lunar rover on a video display. Further, airplane and helicopter displays have a tunnel in the sky showing

where the aircraft should be going and a cross indicating the predicted trajectory (Grunwald et al., 1981). In cases

with large amounts of lateral movement this approach might not be applicable as the predicted heading can come

off screen.

3D graphics model (or virtual reality (VR) based predictive display) use sensor technology input such as

Monocular Simultaneous Location and Mapping (SLAM), stereo imagery, vision-based structure from motion

(SFM), light detection and ranging (LiDAR), or radio detection and ranging (radar), etc., to construct a three-

dimensional world, wherein images from ordinary cameras are rendered on the surface of the virtual world.

Then, a virtual camera is placed inside the virtual world in the predicted position of the real camera and operators’

are presented with the virtual video feed as virtual reality (VR) or augmented reality (AR). This method is

268 Publications included in the PhD work

 5

particularly popular in combination with robot arm manipulators. The 3D environment can be constructed a priori,

and exact location of the robot arm is known (Ricks et al., 2004). A limitation arises when tasks are performed in

unknown and unstructured areas, and since environment geometry is unknown real time mapping and rendering

can be difficult. Additional hardware may be required and calculations can become computationally intensive.

Moreover, additional challenges, such as oscillopsia occur when latency is introduced in VR head-mounted

displays (Allison et al., 2001).

Video manipulation does not require 3D information about the environment. It alters the delayed video feed to

mimic movements and environment in real time. A simple example would be to zoom into the image if the robot

is moving forward. Matheson et al. (2013) halved task completion time at a latency of three seconds in an ROV

experiment using this method, by cropping and projecting the image. A similar result is obtained by capturing a

wide FOV video, possibly 360 degrees, and then only displaying a section of that image to the operator. The

section can be moved around in the video as a response to steering commands and thus provide fluid and seemingly

real time feedback (Baldwin et al., 1999). Advantageous to video manipulation techniques are low cost, ease of

implementation and not requiring a structured environment. Furthermore, prediction error propagation cannot

occur since the presented video feed consists only of alterations to the latest image. However, it cannot recreate

parallax movement (such as passing an object or corner) which 3D graphics models can achieve.

Table 2.1.2. Predictive technology with task completion time reduction.

Author Robot system

Task

Predictive technology

Camera

Participants

Latency

Reduction in task

completion time

(Lu et al., 2018) Car simulator

Driving

Model-free framework

Simulated human

N = 12

Not reported

8%

(Hu et al., 2016) 2-6 DOF manipulator

Camera alignment

Simulated 3D

Virtual

N = 15

300 ms, 500 ms,

1000 ms

33%, 58%, 65%*

(Zheng et al., 2016) Car simulator

Driving

Model-free framework

Simulated human

N = 5

900 ms

35%

(Lovi et al., 2010) Robot arm on Segway

Object alignment

Vision-based monocular modelling

At end effector

N = 5

300 ms

33%*

(Matheson et al., 2013) Rover

Driving

Projected field of view

Fixed to car

N = 12

3000 ms

48% - 64%*

(Rachmielowski et al., 2010) Virtual with Phantom OMNI

Alignment

Reconstructed 3D environment

At end effector

N = 12

300 ms

29% - 30%*

(Mathan et al., 1996) Lunar vehicle

Manoeuvring

Superimposed directional information

Fixed to car

N = 8

5000 ms

24% - 30%

(Bejczy et al., 1990) 6DOF PUMA robot

Tapping

Superimposed phantom robot

Fixed

N = 2

1000 ms, 4000

ms

13% - 34%, 40% -

56%

* Estimated from graph

3 Method - Experiment investigating a predictive display under three

conditions

An experiment was set up to investigate changes in human operator performance and workload when operating an

ROV under three distinct conditions, each condition with a distinct display and latency. The participants were

presented with a single, simple navigational task, framed as a peg-in-hole game which was the same for all three

conditions. The conditions were C1. Latency, C2. Latency with Predictive Display (w/PD) and C3. Baseline, and

they are described in detail in this section. First, this section describes development and implementation of a

predictive display Then, the experiment design follow, which includes research objective, hypotheses, stimuli

C.11. Contribution 11: A low-cost predictive display for teleoperation:

investigating effects on human performance and workload 269

 6

(description of task and conditions), data collection (objective performance and subjective workload), setup,

experimental procedure, and data analysis.

3.1 Predictive display development

Predictive technology that reconstructs a 3D environment based on sensory data requires advanced algorithms,

potentially expensive equipment, and extensive information regarding environment and ROV. In cases where this

is not a possibility video manipulation provides simple and inexpensive means to increase human operators’

performance.

The projected display by Matheson et al. (2013) is the simpler video manipulation method of the ones considered

in Table 2.1.2, while retaining a great increase in human operator performance. However, information on the

vehicles’ ground trajectory is required to calculate changes in perspective. By disregarding the effects of change

in perspective and applying positional and scale transformations to the video feed we obtain an even simpler

approach. As such, by applying positional and scale transformations to the video feed we developed a predictive

display based on image transformation. The predictive display can be applied to several robot configurations

though it was developed for ROVs initially; It is appropriate only for screen-based systems and other alternatives

are needed for predictive head-mounted display systems.

3.1.1 Predictive display implementation in detail

The developed predictive display repositions the delayed video feed on the monitor so objects in the video feed

appear in correct size and position on the screen as if there was no latency (see Figure 1 and Figure 2). It uses user

input (i.e. steering commands) and predefined ROV speed to predict how the FOV would move in the scene,

repositioning and scaling the video feed accordingly.

The positional transformation can be explained by considering an ROV with an onboard camera rotating about its

center of mass, turning with an angular velocity of /s. The camera FOV is φ, with horizontal resolution Rh

pixels. A counterclockwise rotation for ∆t s moves the ROV ∆. Objects in the video feed moves

(Rh/φ)∆t=∆t=∆Ph pixels to the right. = pixel turn rate, which depends on screen resolution, angular velocity

and camera FOV. The pixel turn rate, user input and total system delay td is used to create the predictive display.

The video feeds’ position on the monitor is calculated at a set interval dt (preferably at a minimum video frame

rate (FPS)). If the ROV moves to the left, time since last update dt multiplies with pixel turn rate to find change in

horizontal video position ∆Ph. The video feed then moves ∆Ph to the right on the monitor. When a time td has

passed (system delay has caught up), the video feed is moved back.

For backward and forward translation, similarly as for pixel turn rate, a pixel scale rate can be found and used to

scale the video feed. For backwards and forwards ROV translation, scaling of objects depends on how close they

are to the camera. An average distance is used as an approximation. The video feed scale transformation works as

the aforementioned positional transformation.

Finally, the predictive display uses a red arrow to visualize the future position as illustrated in Figure 2.

Figure 1. Monitor for the human operator. The

outer box is total screen size, whereas the inner

box is the video feed.

Figure 2. Predictive display visualization. The

operator has recently turned the ROV to the

right, and as a result the video has moved to the

left. The red arrow has not moved and works as

an indication of where the ROV will be heading

when the video feed has caught up with the time

delay.

270 Publications included in the PhD work

 7

3.2 Research objective and hypotheses

Research objective: Investigate if such a simple predictive display still increase human operators’ performance

and reduce workload.

Based on the research objective, we sought to test the following hypotheses:

• A simple predictive display significantly increases human operators’ performance (objectively measured

by task score performance, - i.e. the number of hits achieved in 90s by the participant).

• A simple predictive display significantly decreases human operators’ subjective workload (subjectively

measured by RTLX’s six dimensions, mental demand, physical demand, temporal demand, performance,

effort and frustration, evaluated on eleven-point scales (Hart, 2006)).

3.3 Stimuli – Peg-in-hole-game under three conditions

The experiment encompassed a single, navigational task, in which we measured operator performance by means

of an achieved score over a fixed time period.

3.3.1 Rationale behind task selection

Chen et al. (2007) reports benefits of predictive technology to be very task dependent. A peg in hole task was

selected due to its applicability in teleoperation (Lane et al., 2002). A task encompassing as much lateral navigation

as possible was selected, as this is where the predictive display can provide the most help, in contrast to for example

navigational tasks with longer stretches of forward motion (and the maximal velocity of the ROV would create a

ceiling effect). A short timeframe of 90 seconds was chosen to reduce any learning effect that might accompany a

longer maneuvering course. A fixed time period made total experiment length predictable, participants used 10

min and 56 s on average (SD 1 min and 12 s). This aided in recruiting new participants. Furthermore, time pressure

in combination with score achievement made participants fully devoted to the task at hand, and we argue this led

to participants performing close to the best of their ability. We further argue that a single, simple task will minimize

the effect of other factors on performance, e.g. trouble understanding the task, or being highly experienced in

related tasks such as gaming, driving, or other navigational tasks.

3.3.2 Task

Participants were given a modified ‘peg-in-hole’ task. The peg was mounted on a remotely controlled ground

vehicle, and there were three rectangular holes in three rectangular boxes with accompanying LEDs. One LED

would light up at a time, in random order, to which the participant was instructed to perform as many ‘hits’ as

possible by inserting the peg in the hole within the given timeframe. Task and time given (90s) was the same for

three distinct conditions. During the task, a red timer indicating remaining time was constantly visible in the

screens’ upper right corner.

3.3.3 Three conditions

All participants repeated the task three times, under three distinct conditions. The display provided to the

participants would differ in each condition. The conditions, latency and displays were as follows:

Condition 1. Latency: 700 ms delay (250 ms inherent system delay + 450 added delay). No predictive display.

Condition 2. Latency with Predictive Display (PD): 700 ms delay (250 ms inherent system delay + 450 added

delay). With predictive display.

Condition 3. Baseline: 250 ms inherent system delay1. No predictive display.

Throughout the paper we refer to the conditions as:

C1. Latency

C2. Latency w/PD

C3. Baseline

3.3.4 3x3 Latin Square Design

The sequence of the conditions was randomized according to a 3x3 Latin Square Design to avoid potential order

and/or learning effects. All six combinations were used. Each participant was automatically assigned to one of the

combinations, ensuring equal group sizes across conditions as far as possible. Due to the number of participants

recruited; three of the combinations had 10 participants, and three combinations had 9 participants.

1 The variability of inherent system delay was repeatedly quantified (10 times) to 1 – 5 ms difference each time. The average of those 10

measurements was used as inherent system delay.

C.11. Contribution 11: A low-cost predictive display for teleoperation:

investigating effects on human performance and workload 271

 8

3.4 Data collection – Performance measured objectively and workload measured

subjectively

N = 58 participants were recruited to test the predictive display. We collected objective measures of human

performance and subjective measures of workload. Demographic data were also collected.

3.4.1 Participants

Participants were voluntary selected from NTNU, Department of Mechanical and Industrial Engineering. Our aim

was to recruit as many participants as possible within the time constraint we were working with. A total of 58

participants performed the experiment, one participant was excluded in the analysis due to incomplete information.

The remaining N = 57 participants received the same information and were included in the analysis. Age ranged

from 23 to 30 years (24.7 1.5). There were 19 female and 38 men. We gathered level of education, how often

they played video games, how often they use a computer and eye health information, which can be found in Table

3.4.1.

Table 3.4.1. Participant data.

Variable Options Frequency Percent

Gaming Daily 2 3.5

 Weekly 15 26.3

 Monthly 8 14.0

 Yearly 17 29.8

 Never 15 26.3

Education Nursery school 1 1.8

 Some college credit, no degree 38 66.7

 Bachelor’s degree 10 17.5

 Master’s degree 8 14.0

Eye health No visual aid 32 56.1

 Spectacles 4 7.0

 Contact lenses 10 17.5

 Both spectacle and contact lenses 11 19.3

3.4.2 Objective performance measurements

Two performance measurements are common among experiments on predictive technology: course completion

time and task score (Lu et al., 2018; Mathan et al., 1996; Matheson et al., 2013; Zhang & Li, 2016; Zheng et al.,

2016). In the former, the task is to navigate through a predefined pathway with the vehicle and measuring the time

necessary to complete the course. In the latter, the task typically involves aligning or aiming at a given target,

assigning a score to the number of times the target was met. Using a task score as a performance measure enables

a fixed time for experiments, which was desirable for us to be able to recruit more participants. The number of hits

made by participants in each of the 90 s test period was used as a performance measure.

Additional objective data collected included total number of hits made in all three test periods, and number of key

presses in each of the test periods.

3.4.3 Subjective workload measurements

NASA Task Load Index (TLX) is common and highly accepted for remote operation and ROV applications (Hart,

2006; Hill et al., 1992; Hu et al., 2016; Ma & Kaber, 2006; Zhang & Li, 2016), and was initially developed for

experimental tasks that include cognitive and manual control tasks, and supervisory control tasks (Hart &

Staveland, 1988b). TLX is multidimensional, provide good diagnostic properties for assessing underlying

mechanisms of subjective workload, and has been shown to have high sensitivity (Hart, 2006; Hendy et al., 1993;

Hill et al., 1992; Vidulich & Tsang, 1987). A modified version of TLX, Raw TLX (RTLX) was chosen to assess

workload. The six dimensions (mental demand, physical demand, temporal demand, performance, effort and

frustration) were rated on eleven-point scales. The weighting process in TLX consists of pairwise comparison of

all six dimensions. It was not conducted, since we are not interested in the subjective importance of each dimension

in a specific task, rather we’re interested in comparing the subjective workload of different tasks (the three

conditions). Furthermore, this weighing process consumes time, and, in this context, it was deemed more important

to have a short survey, leaving more time for recruiting participants and conducting experimental runs. This

272 Publications included in the PhD work

 9

modification is what is referred to as RTLX. One additional modification was made to the survey, as a pilot study

of the experiment showed that a participant found it more intuitive to rate good performance with a high number.

In the original survey a low value corresponds to good performance. Therefore, this metric and the corresponding

description was reversed, such that a high value corresponded to good performance. After data collection, this

value was reversed back for conventional analysis and reporting.

Furthermore, a question of perceived delay time was added to the survey, to investigate participants’ subjective

experienced latency in each individual condition and to compare the individual conditions, the latter in hopes of

providing a measure of effectiveness for the predictive display in reducing the subjectively perceived latency of

the system.

3.4.4 Data collection procedure

Both survey data and experiment data were recorded with the ROV computer using an SQLite database.

3.5 Setup

A 17” laptop running a 2.3GHz Intel Core i7-3610QM CPU and Windows 10 was used. The laptop screen served

as monitor and the keyboard’s arrow keys were used to steer the ROV. The keyboard and a remote mouse were

used to answer the surveys. The ROV was running a Raspberry Pi 3 Model B+, and equipped with a forward

facing Raspberry Pi Camera V2 and a wide angle lens with horizontal FOV of 76.5°. The robot was constructed

using three wheels, two of them connected to a DC motor and the third a caster wheel for support (see Figure 4).

A wooden box with three holes and LEDs were used to register task performance. The distance between the holes

(center to center) was D = 30 cm while the holes itself has a width of W = 10cm. This translates to a Fitts’s index

of difficulty of Id = log2 (2D/W) = 2.58 bits (Fitts, 1954). The robot ran eduROV2 software, which provided an

interface to control the robot, handling control commands, adding desired latency to the communication, and

logging data.

Figure 3. Experiment setup. The participant can

only see the robot through the display provided

on the laptop screen, which is a first-person

camera view.

Figure 4. Experiment setup. The three wheeled

ROV with the peg mounted and the wooden box.

3.6 Experimental procedure

After entering the experiment room, participants were shown the setup to ensure that they understood the situation

and what they were tasked to do. The participant was placed in a chair at a desk with a laptop, with their back to

the game (see Figure 3). The participant would have no visual perception of the physical setup during the

experiment. To ensure there was no auditory perception of the ROV, participants wore an ear protection headset.

Information was given in writing on the computer screen. After giving consent to participate in the experiment,

participants filled out a demographic survey. Information describing the experiment was provided; How to steer

the vehicle, the task and performance measure, and the following procedure of the experiment. Each participant

was automatically assigned to one of the groups corresponding to the 3x3 Latin Square Design. The participant

would then conduct a 30s practice period followed by a 90s test period. After each block of practice and test period

the participant filled out a survey of mental workload and perceived delay time. The starting position (indicated

by the black mark in Figure 3 and Figure 4) was identical for all periods. The third block concluded the experiment

and the participants were escorted out.

The participant was not informed of the fact that one of the conditions would have a predictive display, nor how it

worked. To be able to take advantage of the predictive display is therefore dependent on the individual participants

2 https://github.com/trolllabs/eduROV/

C.11. Contribution 11: A low-cost predictive display for teleoperation:

investigating effects on human performance and workload 273

 10

ability to intuitively understand the display. It was assumed that the practice period before each test would suffice

in giving the participant the needed training in the display for the game. However, the questionnaire included a

question of time delay, which could have influenced participant’s attention to delay in the next conditions.

3.7 Analysis – Classical statistics and exploratory multivariate analysis

3.7.1 Classical statistics – Analysis of variance (ANOVA)

Subjective measurements used for analysis were collected after each condition and performance measurements

were collected continuously during each condition. An analysis of variance (ANOVA) was conducted to

investigate the effects of the predictive display on both subjective and objective measurements, i.e. this statistical

test investigated the predetermined hypotheses. The characteristics of the data was inspected and in the case of

violations of assumptions, the non-parametric alternative to one-way repeated measures ANOVA, the Friedman

test was conducted. Data distribution was visually inspected using Normal Q-Q Plots for all variables and

conditions. ANOVA F-test is found to be insensitive or robust (Krishnaiah, 1980; Schmider et al., 2010) to general

nonnormality, and can for equal group sizes be used with confidence in most practical situations. We consider the

sample size of 57 to be high, and we have continued with the analysis and when possible conducted a Friedman

test for comparison purposes. Mauchly's test evaluates sphericity, an assumption which is considered difficult not

to violate in practice (Weinfurt, 2000), over-detecting deviations from sphericity in large samples (Kesselman et

al., 1980). Maxwell & Delaney (2003), recommend using an adjusted test, interpreting the result of using a

Greenhouse-Geisser correction and thus ignoring the result of Mauchly’s test. This was done here, calculating

epsilon according to Greenhouse & Geisser (1959), and using it to correct the one-way repeated measures

ANOVA. The Bonferroni post hoc test (Maxwell, 1980, Maxwell &Delaney 2004) was used to test all possible

pairwise combinations of conditions. Statistical tests were performed using SPSS Statistics (IBM SPSS Statistics

25, 2017).

3.7.2 Exploratory data analysis

Furthermore, we wanted to explore and hypothesize regarding other potential relationships between the variables.

Therefore, an exploratory data analysis (EDA) (Tukey, 1977), specifically a principal component analysis (PCA)

was conducted to explore whether there were any interesting patters or observations in the data collected. Here,

no hypothesis was determined, and all effects described emerged post-hoc. The PCA was conducted using scikit-

learn (Pedregosa et al., 2011) and Jupyter Lab Notebook (Kluyver et al., 2016).

4 Results

The following section presents the results of the statistical tests before providing the result from the EDA.

4.1 Performance (objective)

A one-way repeated measures ANOVA was conducted to determine whether differences in human performance

(the number of hits, an objective measure) between the three conditions were statistically significant. Descriptive

statistics of performance data are illustrated in Figure 5, and Table 4.1.2 shows all pairwise comparisons of the

conditions. Table 4.1.1 contains the ANOVA F-test statistic, data characteristics and pretests.

Performance was statistically significant different in the three conditions, with a performance increase of 20%

from C1. Latency to C2. Latency w/PD. Performance increased from M = 6.2 hits in C1. Latency, to M = 7.5 hits

in C2. Latency w/PD, to M = 16 hits in C3. Baseline. There was a statistically significant increase in performance

of M = 1.3 hits (SD = 0.26) from C1. Latency to C2. Latency w/PD. In summary, there was a statistically

significant difference between means and, therefore, we accept the alternative hypothesis; The predictive display

significantly increases performance of the human operator.

274 Publications included in the PhD work

 11

Figure 5. Descriptive statistics of performance (objective). Original data reported. Statistically significant

differences at p<0.01 are indicated by p**.

Table 4.1.1. One-way repeated measured ANOVA F-test for Performance (objective)

Variable

Performance

N Outli

ers

Normality

Sphericity

Epsilon

(ε)
F-statistic Sig.

Sample

effect size

Population

effect size c

Performance

[number of hits]

(outlier

removed)

57
Yes

(1)a

Approx.

normalb

, χ2(2) =

25.7, p

<0.0001

0.728

F(1.46,

81.54) =

316.34

p<.0001*

*
η2 = 0.850 ω2 = 0.787

56

No
Approx.

normalb

χ2(2) =
26.4, p

<0.0001
0.721

F(1.44,
79.32) =

308.69

p<.0001*

*
η2 = 0.849 ω2 = 0.786

*: p < 0.05, **: p < 0.01

a) There was one outlier in C2. Latency w/ PD, as assessed by visual inspection of a boxplot. SPSS Statistics defines outliers as values greater than 1.5 box-plots from the edge

of the plot. This value (14 hits) is genuinely unusual, we know from the experiment and the data that this participant performed above average in all three conditions. We ran

the analysis both with and without outliers, reporting both results.

b) Visual inspection of Normal Q-Q Plots and histograms for all three conditions

c) Calculated according to (Wickens & Keppel, 2004).

Table 4.1.2. Pairwise comparisons of performance (objective).

Variable

C1. Latency – C2. Latency w/PD C1. Latency – C3. Baseline C2. Latency w/PD – C3. Baseline

Mean

Diff.
SD Sig.b

Mean

Diff.
SD Sig.b

Mean

Diff.
SD Sig.b

Performance

[number of hits]
-1.298 0.264 p < 0.0001** -9.754 0.491

p <

0.0001**
-8.456 .471

p <

0.0001**

b: Adjustment for multiple comparisons: Bonferroni.

*: p < 0.05, **: p < 0.01

4.2 Subjective workload

This section presents the results from statistical analysis of subjective workload measures. Overall Subjective

Workload is presented first, before also presenting the individual workload dimensions.

Since we conducted RTLX, the values of the individual workload dimensions (mental, physical, temporal,

performance, effort and frustration) were averaged to obtain an estimate of the overall workload (Hart, 2006). This

averaged score is addressed as Subjective Overall Workload in the following. Separate one-way repeated measures

ANOVA was conducted for overall workload and the six individual workload dimensions to determine the effects

of the predictive display on lowering subjective workload in the three conditions. The results from the ANOVA

C.11. Contribution 11: A low-cost predictive display for teleoperation:

investigating effects on human performance and workload 275

 12

F-test, including pretests for all variables can be found in Table A2, Appendix A, whereas descriptive statistics

and pairwise comparisons can be found in Table A1, Appendix A, and Table 4.2.1, respectively. The following

paragraphs describe individual results before providing an overall explanation.

4.2.1 Subjective Overall Workload

Subjective Overall Workload was statistically significant different under the three conditions. There was a

decreased subjective workload from M = 5.3 (SD = 0.2) in C1. Latency, to M = 4.9 (SD = 0.2) in C2. Latency

w/PD, to M = 3.5 (SD = 0.2) in C3. Baseline. Pairwise comparisons of the three conditions was carried out using

the Bonferroni post hoc test, which revealed that the mean decrease in subjective workload from C1. Latency to

C2. Latency w/PD was not statistically significant (M = 0.35, SD = 0.16, p = 0.133). There was a statistically

significant mean decrease in subjective workload from C2. Latency w/PD to C3. Baseline (M = 1.44, SD = 0.18,

p < 0.001), and from C1. Latency to C3. Baseline (M = 1.775, SD = 0.14 p < 0.001). A Friedman test produced

corroborating results. Therefore, we cannot reject the null hypothesis and cannot accept the alternative hypothesis.

The predictive display does not decrease human operators’ subjective overall workload.

4.2.2 Mental demand (Individual workload dimension)

Mental demand was statistically significantly different in the three conditions, however, post hoc analysis with a

Bonferroni adjustment revealed that mental demand did not significantly decrease from C1. Latency to C2.

Latency w/PD. There was a statistically significant decrease in mental demand from C1. Latency to C3. Baseline

and from C2. Latency w/PD to C3. Baseline. The predictive display did not reduce participants’ mental demand.

4.2.3 Physical demand (Individual workload dimension)

Physical demand was statistically significantly different in the three conditions, however, post hoc analysis with a

Bonferroni adjustment revealed that physical demand did not significantly decrease from C1. Latency to C2.

Latency w/PD. A Friedman test with pairwise comparisons using a Bonferroni correction for multiple comparisons

was carried out for comparison purposes, which gave the same result. There was a statistically significant decrease

in physical demand from C1. Latency to C3. Baseline, and from C2. Latency w/PD to C3. Baseline. The predictive

display did not reduce participants’ physical demand.

4.2.4 Temporal demand (Individual workload dimension)

Temporal demand was not statistically significantly different in the three conditions, according to both ANOVA

and Friedman test. The predictive display did not reduce participants’ temporal demand.

4.2.5 Subjective Performance (Individual workload dimension)

Subjective Performance was statistically significantly different in the three conditions. Subjective Performance

was evaluated at M = 5.53 in C1. Latency, M = 4.74 in C2. Latency w/PD, and M = 2.70 in C3. Baseline, with a

low value corresponding to a performance closer to perfect. There was a statistically significant decrease of M =

0.79 (SD = 0.24, p = 0.006) between C1. Latency and C2. Latency w/PD, a statistically significant decrease of M

= 2.83 (SD = 0.24, p < 0.001) between C1. Latency to C3. Baseline, and a statistically significant decrease of M

= 2.04 (SD = 0.21, p < 0.001) between C2. Latency w/PD to C3. Baseline. A Friedman test with a Bonferroni

correction for multiple comparisons was carried out for comparison purposes, corroborating result at p < 0.001.

The median of Subjective Performance was statistically significant different between C1. Latency (Mdn = 5) and

C3. Baseline (Mdn = 2) (p < 0.001), statistically significant between C2. Latency w/PD (Mdn = 5) and C3.

Baseline (p < 0.001), but not statistically significant different between C1. Latency condition and C2. Latency

w/PD (p < 0.132). In addition to a statistically significant decrease from both latency conditions (C1. Latency and

C2. Latency w/PD) to C3. Baseline, it is also noteworthy that the mean decrease towards C3. Baseline is greater

from C1. Latency than the decrease from C2. Latency w/PD; Which means participants thought they performed

better with the predictive display than without it, given different latencies, and given equal latency. In summary,

the predictive display increased participants subjective performance, i.e. participants thought their performance

was better with the predictive display.

4.2.6 Effort (Individual workload dimension)

Effort was statistically significant different in the three conditions, however, post hoc tests with a Bonferroni

adjustment revealed that there was not a statistically significant difference between C1. Latency and C2. Latency

w/PD. There was a statistically significant decrease from C3. Baseline to the two latency conditions (C1. Latency

and C2. Latency w/PD). A Freidman test with a Bonferroni correction for multiple comparisons corroborated these

results. The predictive display did not reduce participants’ effort.

276 Publications included in the PhD work

 13

4.2.7 Frustration (Individual workload dimension)

Frustration was statistically significantly different in the three conditions and post hoc tests with a Bonferroni

adjustment revealed that there was a statistically significant decrease in frustration from C1. Latency to C3.

Baseline, as well as from C2. Latency w/PD to C3. Baseline, though not from C1. Latency to C2. Latency w/PD.

The predictive display did not reduce participants’ frustration.

4.2.8 Overall result for workload

The analysis of Subjective Overall Workload and the individual workload dimensions did not show a statistically

significant difference between C1. Latency and C2. Latency w/PD, with the exception of the individual variable

Subjective Performance, in which participants reported a statistically significant mean increase of 0.789.

The predictive display does not reduce participants’ mental demand, physical demand, temporal demand, effort,

nor frustration; However, the predictive display increased participants’ subjective performance, i.e. participants’

thought they performed better with the predictive display. In summary for subjective workload, we cannot reject

the null hypothesis, i.e. the predictive display does not reduce participants subjective workload.

Table 4.2.1. Pairwise comparisons Subjective variables.

Variable

C1. Latency – C2. Latency

w/PD
C1. Latency – C3. Baseline

C2. Latency w/PD –C3.

Baseline

Mean

Diff.

SD

Sig.b

Mean

Diff.

SD

Sig.b

Mean

Diff.
SD Sig.b

Subjective Overall

Workload
0.336 0.163 p = 0.133 1.775 0.141

p =

0.000**
1.439* 0.177

p =

0.000**

Mental Demand 0-

10
0.158 0.235 p = 1.000 2.105 0.226 p = 0.000 1.947* 0.306

p =

0.000**

Physical Demand 0-

10f
0.035 0.221 p = 1.000 0.702 0.227 p = 0.009 .667* 0.211

p =

0.008**

Temporal Demand

0-10
0.175 0.221 p = 1.000 0.456 0.236 p = 0.176 .281 0.288 p = 1.00

Subjective

Performance 0-10
0.789 0.244

p =

0.006*
2.825 0.240 p = 0.000 2.035 0.212

p =

0.000**

Effort 0-10f 0.246 0.234 p = 0.894 1.351 0.213 p = 0.000 1.105 0.241
p =

0.000**

Frustration 0-10 0.679 0.283 p = 0.059 3.179 0.304 p = 0.000 2.500 0.306
p =

0.000**

b: Host hoc Pairwise comparisons were adjusted for Bonferroni

f: A Friedman test with pairwise comparisons using a Bonferroni correction for multiple comparisons was carried out for comparison purposes. Results were corroborated.

*: p < 0.05, **: p < 0.01

4.3 Subjective latency

A one-way repeated measures ANOVA was conducted on Subjective Latency to determine if there was a

statistically significant reduction from C1. Latency – to C2. Latency w/PD condition. Subjective latency (evaluated

in ms by the participants) was statistically significantly different in the three conditions. Post hoc tests with a

Bonferroni adjustment revealed that there was a statistically significant decrease in Subjective Latency from C1.

Latency to C3. Baseline condition as well as from C2. Latency w/PD to C3. Baseline condition, but not from C1.

Latency to C2. Latency w/PD. A Friedman test corroborated these results.

There were multiple outliers for this measure, and we reran the analysis with the extreme outliers removed, which

only slightly increased effect size, however it did not change the overall result. The predictive display did not

reduce participants’ estimation of latency when comparing C1. Latency and C2. Latency w/PD.

C.11. Contribution 11: A low-cost predictive display for teleoperation:

investigating effects on human performance and workload 277

 14

Figure 6. Descriptive Statistics Subjective Latency. Original data reported. Statistically significant

differences at p<0.01 are indicated by p**.

Table 4.3.1. One-way repeated measured ANOVA F-test Subjective Latency.

Variable
N

Outliers Normality Sphericity
Epsilon

(ε)
F-statistic Sig.

Sample

effect size

Population

effect sizec

Subjectiv

e latency

(5

extreme

outliers

removed)

57 Yes

(13)a

(10

unique)

Approx.d

Yes

χ2(2) = 5.575,

p = 0.062

-
F(2,112) =

45.734

p <

0.001**
η2 = 0.450 ω2 = 0.343

52

4 unique Approx.d

Yes

χ2(2) = 3.617,

p = 0.164

-
F(2,102) =

44.684

p <

0.001**
η2 = 0.467 ω2 = 0.359

*: p < 0.05, **: p < 0.01

a) Number of outliers in parentheses. There was no reason to exclude any outliers and so they were kept in first analysis. In the second, 5 extreme outliers were excluded, which

yielded a dataset with 4 unique outliers. Further reduction did not yield a dataset without outliers. Both results are reported here.

Table 4.3.2. Pairwise comparisons Subjective Latency.

Variable

C1. Latency – C2. Latency w/PD C1. Latency – C3. Baseline
C2. Latency w/PD – C3.

Baseline

Mean

Diff.

SD

Sig.b

Mean

Diff.

SD

Sig.b Mean Diff. SD Sig.b

Subjective Latency [ms] 78.33 68.42 p = 0.771 582.21 73.14
p =

0.000**
503.88 55.37

p =

0.000

**

b: Host hoc Pairwise comparisons were adjusted for Bonferroni

*: p < 0.05, **: p < 0.01

4.4 Gamers

Those who play games weekly or more often were defined as gamers. The potential increased performance gain,

measured objectively, by gamers is investigated here. A two-way mixed ANOVA was conducted, comparing the

mean differences of performance (objective) between two independent groups, Gamers and Non-Gamers, under

the three conditions. Descriptive statistics can be found in Table 4.4.1 and Figure 7.

278 Publications included in the PhD work

 15

Table 4.4.1. Descriptive statistics Gamer vs Non-Gamer. Original data reported.

Variable
Group

N C1. Latency C2. Latency w/PD C3. Baseline

 Mean SD Mean SD Mean SD

Performance

[number of hits]

Gamer
17

6.47 0.42 8.41 0.46 17.71 0.92

Non-Gamer 40 6.08 0.27 7.10 0.30 15.20 0.60

Figure 7. Performance of Gamers vs. Non-gamer. Original data reported. Statistically significant

differences at p<0.01 are indicated by p**.

The interaction between gaming experience and conditions on performance had a level of significance of p =

0.088. Univariate post hoc tests indicated that there was not a statistically significant difference between gamers

(M = 6.5 hits) and non-gamers (M = 6.1 hits) in C1. Latency (F(1,55) = 0.622, p = 0.43, sample effect size η2 =

0.01). However, there was a significant increase in performance for gamers in C2. Latency w/PD (F(1,55) = 5.71,

p = 0.02, sample effect size η2 = 0.094), in which gamers had M = 8.4 hits, whereas non-gamers had M = 7.1 hits.

Furthermore, there was a significant increase in performance for gamers in C3. Baseline (F(1,55) = 5.203, p =

0.026, sample effect size η2 = 0.086), in which gamers had M = 17.7 hits, whereas non-gamers had M = 15.2 hits.

When considering the two independent groups (Gamer, Non-Gamer), there was a significant main effect of gaming

(F(1,55) = 6.311, p = 0.015, sample size effect η2 = 0.103), with gamers performing better than non-gamers.

Gamers performed on average M = 10.9 hits, which is M =1.4 hits (SD = 0.6) above the performance of non-

games with M = 9.5 hits.

The analysis was also conducted without outliers, which yielded more than a doubling of effect size (sample effect

size η2 = 0.102 and population effect size ω2 = 0.057), and a lower p value (p = 0.009), which means that the

interaction between gaming experience and conditions on objective performance reached statistical significance.

Univariate post hoc tests (on the pruned dataset) indicated a statistically insignificant difference between gamers

(M = 6.3 hits) and non-gamers (M = 6.0 hits) in C1. Latency (F(1,51) = 0.240, p = 0.63, sample effect size η2 =

0.005), and a statistically insignificant difference increase in performance for gamers in C2. Latency w/PD

(F(1,51) = 3.52, p = 0.066, sample effect size η2 = 0.065), in which gamers had a M = 7.9 hits, whereas non-

gamers had M = 6.0 hits. There was a significant increase in performance for gamers in C3. Baseline (F(1,51) =

8.249, p = 0.006, sample effect size η2 = 0.1.39), in which gamers achieved M = 18.4 hits, whereas non-gamers

had M = 15.1 hits. When considering the two independent groups (Gamer, Non-Gamer), there was a significant

main effect of gaming (F(1,51) = 6.929, p = 0.011, sample size effect η2 = 0.12), with gamers performing better

than non-gamers. Gamers performed on average M = 10.9 hits, which is M =1.5 hits (SD = 0.6) above the

performance of non-games with M = 9.4 hits.

Gamers performed better than non-gamers on average.

C.11. Contribution 11: A low-cost predictive display for teleoperation:

investigating effects on human performance and workload 279

 16

Table 4.4.2. Two-way mixed ANOVA F-test on Performance (objective) for Gamers vs. Non-gamer.

Variable

N

Outliers
Normali

ty

Homogen

eity

Sphericit

y

Epsilo

n
F-statistic Sig.

Sample

effect

size

Population

effect size g

Performancea

[number of

hits]

(outliers

removed)

57

Yes (4)bc Yesd Yese

No

χ2(2) =

24.895, p

= .000

ε =

0.728

F(1.46,

80.32) =

2.72f

p =

0.088

η2 =

0.047
ω2 = 0.02

53

No Yesd Yese

No

χ2(2) =
21.406, p

= .000

ε =

0.742

F(1.48,

75.65) =

5.769f

p =

0.009**

η2 =

0.102
ω2 = 0.057

*: p < 0.05, **: p < 0.01

a) Performance was separated for the two independent groups.

b) Assessed by visual inspection of a boxplot. SPSS Statistics defines outliers as values greater than 1.5 box-plots from the edge of the plot. The 4 outliers were kept in the first

analysis as there was no reason to exclude them. In the second, they were excluded. Both results are reported here.

c) By examination of studentized residuals for values greater than ±3, one outlier was found with a studentized residual value of 3.04. The outlier was kept in the subsequent

analysis since its value is close to the threshold and as there was no reason to exclude it.

d) Visual inspection of Normal Q-Q Plots of the distribution and the distribution of studentized residuals for all three conditions.

e) Levene's test assessed homogeneity of variance, and Box's test evaluated homogeneity of covariances.

f) A Greenhause Geisser correction was applied.

g) Calculated according to (Wickens & Keppel, 2004).

Table 4.4.3. Pairwise comparisons of differences in Performance (objective) for Gamer vs. Non-Gamer.

Variable

Performance

[number of hits]

C1. Latency C2. Latency w/PD C3. Baseline

Mean

Diff.
SD Sig.b

Mean

Diff.

SD

Sig.b

Mean

Diff.
SD Sig.b

Gamer – Non-Gamer .396 .501 p = 0.434 1.312 .549 p = 0.020* 2.506 1.099 p = 0.026*

(outliers removed) 0.260 0.53 p = 0.626 0.954 0.509 p = 0.066 3.300 1.149
p =

0.006**

b: Host hoc Pairwise comparisons were adjusted for Bonferroni

*: p < 0.05, **: p < 0.01

4.5 Exploratory data analysis - PCA

A principal component analysis (PCA) was conducted to explore whether there were any interesting patters or

observations in the data collected. We had no predetermined hypothesis, and all effects described in this section

emerged post-hoc.

A total of 35 variables collected during the experiment were standardized (removing the mean and scaling to unit

variance) and used in the PCA. Figure 8 shows a Scree plot of the Principal Components (PCs) eigenvalues. The

first 10 eigenvalues are larger than 1, the first 5 have an eigenvalue above 2, the first two are greater than 4 and

the first eigenvalue is greater than 7. Figure 9 shows the cumulative sum of explained variance, which did not have

a clear ‘elbow-shape’, however the first 7-10 PCs retains 72.1% – 82.8%3 of the variance of the original data.

3 Accurate percentage of explained variance retrieved from data, and not estimated from graph.

280 Publications included in the PhD work

 17

Figure 8. Scree plot.

Figure 9. Cumulative sum of variance explained.

A Score plot, and a Loading plot of the two first Principal Components (PCs) can be found in Figure 10 and Figure

11, and Figure 12 respectively. The first two PCs explains 22.6% and 13.6% of the total variance. The following

result emerged post-hoc, and thus interpretations made accordingly.

4.5.1 Interpreting the Score plot

Figure 10. Score Plot of the first two principal

components gender.

Figure 11. Score Plot of the first two principal

components with gaming experience.

Figure 10. shows the Score Plot of PC1 and PC2 with legends indicating gender, from which we can see that PC2

tend to separate woman and men quite accurately. The woman cluster in the positive range of PC2 and the men in

the negative range, with only a few datapoints crossing zero. Figure 11 show the Score plot with gaming

experience, in which we observe subtle trends in the scatterplot based on gaming experience; Those who never

gamed predominantly resides in the positive range of PC2; Furthermore those who games more often tended to

cluster in the negative range of PC2. When viewing Figure 10 and Figure 11 simultaneously we observe that the

women in this experiment typically gamed yearly or never, with two exceptions of woman gaming on a monthly

basis. Men gamed most often, typically yearly, monthly, weekly and two participants daily.

C.11. Contribution 11: A low-cost predictive display for teleoperation:

investigating effects on human performance and workload 281

 18

4.5.2 Interpreting the Loading plot

Figure 12. Loadings plot.

From the loading plot in Figure 11, we see that the total hits in each of the conditions seem to be correlated as they

cluster together. Total hits in each condition (Total hits C1 – C3) and total hits for all conditions combined (Total

hits C1 + C2 + C3) cluster together, as does subjective performance (Performance C1 – C3). We observe that eye

health and computer usage have a loading close to zero, thus not contributing to the definition of the principal

components, and unimportant for defining the direction of some underlying latent variable. All participants used

a computer daily, thus this variable had the same value across the participant population. The eye health, level of

education, key strokes in C1. Latency (Key strokes C1) and C2. Latency w/PD (Key strokes C2), and age also

have a loading close to zero and are less important for the model.

The subjective performance is negatively correlated with the other TLX dimensions, especially noteworthy is the

opposite positions of subjective performance (Performance C1 – C3) and frustration (Frustration C1 – C3). The

hits in each condition, and the total hits for all three conditions are clustered together and are therefore correlated.

Furthermore, we see that gender and gaming experience have a high loading on PC2, thus contributing greatly to

defining PC2 (that gender contributed to PC2 we also knew from the scores plot), and that they are positioned

quite close together in comparison to the other variables and therefore are correlated. Among these participants

men tended to game more than woman, which is also reflected when looking at the raw data.

282 Publications included in the PhD work

 19

5 Discussion

5.1 Performance

The results show that there is a statistical difference in performance when controlling the ROV without and with

the help of the predictive display. Subjects performed on average 20% better with a sample effect size η2 = 0.850,

and population effect size of ω2 = 0.787. This can be categorized as a medium to large effect (Kirk, 2013),

especially when considering the simplicity and low cost of implementing the predictive display. Previous research

describes a wide range (8% to 65%) of task time reduction from predictive technology. A direct comparison to

any specific experiment is challenging, however a performance increase of 20% in this experiment is probably in

the lower range of what was found in the other experiments in Table 2.1.1. The task time reduction measure is

considered to be comparable to the performance gain measured in this experiment. However, the predictive method

used here is the simplest solution to implement at the lowest cost. Moreover, the participants only had 30 seconds

to intuitively learn and train in using the predictive display, since none of the participants were told that there

would be a predictive display nor how it worked. Some immediately understood what the predictive display was

trying to tell them, others did not understand that there had been a predictive display until the experiment was over.

The ones who tried to use the predictive display the way it was intended typically performed better than those who

did not use it. It may be that performance could have been improved more if participants were informed about the

predictive display’s functionality.

As expected, participants performed significantly better in the baseline condition, in which there was only 250 ms

latency. This latency is well above what human perception is able to pick up on, which most participants did. As

discussed under 5.4, most participant underestimated the latency in the third condition reporting barely above 0

ms.

5.2 Subjective workload

Subjects reported minimal differences between C3. Baseline, C1. Latency and C2. Latency w/PD. There was a

statistically significant difference in subjective overall workload between the three conditions, however Bonferroni

post hoc tests revealed that differences between C1. Latency and C2. Latency w/PD was not statistically

significant. Therefore, we cannot say that the predictive display reduces subjective workload. The only significant

difference was found in subjective performance, in which participants felt that they on average performed 14%

better when using the predictive display. The actual performance increase was 20%. They also reported that they

felt 11% less frustrated using the PD, though this is not statistically significant. Participants also stated that C3.

Baseline was better in all metrics, with an exception of temporal demand where the difference was not significant.

Participants reported no significant difference in mental, physical and temporal demand between C1. Latency and

C2. Latency w/PD. We consider these three metrics to be a good description of the total subjective workload in

this experiment setup. Some participants, especially those who did not understand what the predictive display was

trying to tell them, even reported it as distracting. Due to the predictive display’s functionality, the video feed is

constantly moving around and scaling up and down. This can understandably be distracting. Some participants

immediately understood how the predictive display worked, and they typically reported the predictive display as

helpful. To the experimenter they also seemed to be more relaxed, however there are no recorded data illustrating

this. During the task, a red timer indicating the remaining time was constantly visible for participants to see in the

upper right corner. In addition, the ROV had rapid acceleration and was able move fast if the operator managed to

do so. Overall, this made for a hectic and exiting experience for the subjects. This may explain why there is no

significant change in the temporal demand, even compared to C3. Baseline. The fact that the participants reported

a better value (smaller) in the other five metrics for the no delay condition, is as expected. The experimenter also

observed a tendency of participants performing correcting steering commands, causing the ROV to oscillate

greatly before hitting or missing the target, which corroborates prior research (Appelqvist et al., 2007). This was

particularly prominent in the C1. Latency condition, again illustrating the detrimental effect of latency on both

human performance and behavior. These findings support earlier research describing how video latency negatively

affects the user experience in teleoperation.

5.3 Gaming

The gamers performed 30% better with the predictive display, while non-gamers performed 17% better.

Interestingly the gamers increased their score almost twice as much as non-gamers when shifting from C1. Latency

to C2. Latency w/PD, though the exact reason for this is unclear. The arrow in the predictive display acts as an

aiming device, which could be a more familiar concept for gamers. This finding could also indicate that gamers

are more used to having to adapt to unfamiliar setting and interfaces in a computer competing context. Furthermore,

C.11. Contribution 11: A low-cost predictive display for teleoperation:

investigating effects on human performance and workload 283

 20

when comparing the scores of gamers and non-gamers, it is interesting to note that gamers only performed better

than non-gamers in C2. Latency w/PD and C3. Baseline, but not in C1. Latency. This could indicate that the

amount of experience may not be crucial for obtaining a high score (equal to high performance) in a situation with

considerable latency. Thought post hoc tests on the pruned dataset were not statistically significant at p<0.05 in

C2. Latency w/PD, the level of significance p = 0.066 was close to that threshold. A level of statistical significance

may have been achieved with additional participants conducting the experiment, and equal group sizes, as both

may have a large effect on p-values (Krishnaiah, 1980). In both analysis, there was a significant main effect of

gaming, meaning gamers performed better on average. More interesting is the population effect size, which

increased from ω2 = 0.02, a small association to ω2 = 0.057, a medium association (Kirk, 2013), which means that

the effect of gaming, and the ability gamers had to take advantage of the PD, reaches some practical significance.

Taken together, we interpret this to mean gamers were better able to take advantage of the predictive display to

increase objective performance.

We observe that the combination of predictive display and related training (in the form of playing similar games

at least once a week) results in twice a performance gain compared to only predicative display. In this experiment

participants were not informed of the predictive display’s functionality, which leads us to consider what the

performance gain might have been if participants’ were aware of the functionality a priori and if they received

training in using the predictive display. Simultaneously considering an increased effect size when removing

outliers, i.e. a stronger result, leads us to believe that a greater performance gain might have been the result of

specialized training prior to the experiment. Therefore, we hypothesize that the combination of predictive display

and extensive training produces a greater increase in performance. Research corroborates this; A priori gaming

experience have been found to relate to performance in desktop and immersive virtual environments (Richardson

et al., 2011), and video gaming suggested a s a training regimen to increase processing speed, which contributes

to increased cognitive performance (Dye et al., 2009). Moreover, studies investigating causality supports action

video gaming as a training method (Dye et al., 2009; Green & Bavelier, 2003; Richardson et al., 2011). Generally,

we hypothesize that assistive technology in combination with (potentially minimal) training produces high

performance gain (output). When compared to the necessary implementation of technology and training (input),

we consider this a good trade-off between input and output.

5.4 Subjective latency

About 75% of the participants underestimated the latency in the third condition. Many of them barely reported

over 0 ms, but the actual latency was 250 ms. These findings support previous research, which states that smaller

latencies closer to zero is difficult to differentiate from no latency. Questioning participants about latency could

have influenced their attention to latency in the forthcoming conditions. However, the randomized Latin Square

Design of conditions should account for any order effects caused by this question. Furthermore, this question was

primarily included to investigate whether participants experienced lower latency with the aid of the predictive

display when comparing conditions with equal latencies, which was not the case. The predictive display did not

decrease the subjectively experienced latency for participants in this experiment.

5.5 Exploratory data analysis discussion

Effects discussed here emerged post hoc; Thus, is interesting to see effects of gender and gaming experience show

up in the PCA, since there are known effects of both. From the scores plots (Figure 10 and Figure 11) we see that

PC2 separates women and men quite accurately with a few exceptions. Furthermore, PC2 tends to separate

participants by their gaming experience, and by combining the loadings plot (Figure 11) and scores plot (Figure

10 and Figure 11) we observe that the male participants, the exceptions in the upper regions of PC2, never gamed.

When further investigating the loadings plot (Figure 11) and scores plots (Figure 10 and Figure 11) simultaneously

we see that gender and gaming both had high loadings on PC2, thus contributing to PC2. In the loadings plot

(Figure 11) we see participants objective performance (Total hits C1 – C3) having a high negative loading, which

means it also contributes to the definition to PC2. Males are generally more experienced in gaming (Richardson

et al., 2011), and in both studies investigated by Richardson et al. (2011) high gaming experience was related to

higher task performance. Video gaming involves several spatial and cognitive abilities, and studies investigating

causation show that gaming experience can improve mental rotation and visual attention (Moffat et al., 1998;

Richardson et al., 2011). For instance, performance in visual search tasks, visual attention, visual memory, contrast

sensitivity, and judging relative velocity have all been shown to improve with gaming experience (Dye et al., 2009;

Moffat et al., 1998; Richardson et al., 2011). Performance in dynamic spatial tasks that required reasoning about

moving stimuli (e.g. tracking objects) also improved (Richardson et al., 2011); And all those abilities are important

for a high objective performance (Total hits C1 – C3) in this experiment. When specifically considering spatial

abilities, there are known gender differences, including visuospatial abilities such as spatial orientation and spatial

visualization (Moffat et al., 1998). Males outperform females in spatial performance tasks; In particular when it

284 Publications included in the PhD work

 21

involves mental rotations, whether that task is paper-and-pencil (manipulations and transformations of geometric

figures and forms) or in a virtual environment (Moffat et al., 1998; Richardson et al., 2011). Since males generally

have more gaming experience than females and video game experience influence visuospatial processes, this might

further contribute to gender differences in spatial tasks (Richardson et al., 2011), and moreover the objective

performance (Total hits C1 – C3) in this experiment. In fact, females and males with similar levels of gaming

experience did not differ in dynamic spatial ability, and gender differences were eliminated when gaming

experience was included as a covariate (Richardson et al., 2011). Since the females in our experiment generally

had less gaming experience, and those who did tended to cluster towards the male gamers, and since non-gaming

males tended to cluster towards the females, we therefore identify an effect of gaming experience. We do recognize

the high collinearity between gender and gaming experience, both had a high loading on PC2 (Figure 11);

However, further analysis is needed to examine what exactly separates the data here. Still, PC2 consists mainly of

objective measures, e.g. gender, gaming experience, and objective performance (Total hits C1 – C3). For PC1, we

have high loadings on individual workload dimensions (which are subjective), in which all are correlated except

for subjective performance, and so they contribute to the definition of PC1. In summary, PC1 consists mainly of

subjective variables from surveys, whereas PC2 consists mainly of objective variables collected in the experiment.

6 Conclusion – An increase in human performance

This work investigated human operators’ performance and their subjectively experienced workload in a

teleoperation context when using a predictive display. Human operator performance decrease and workload

increase as latency is introduced in teleoperation, but there exist several approaches to combat these detrimental

effects; One of which is predictive technology. A predictive display based on image transformation was developed

by applying positional and scale transformations to the video feed and tested experimentally. An experiment was

set up to test the predictive display and investigate changes in human operator performance and workload when

operating an ROV. N = 57 participants conducted a simple navigational task (peg-in-hole game), under three

conditions: C1. Latency, C2. Latency with predictive display and C3. Baseline. ANOVAs showed a statistically

significant increase of 20% in human performance with the aid of the predictive display. Differences in overall

subjective workload was not statistically significant, except for with subjective performance where participants

felt they performed better with the predictive display. Gaming experience was advantageous, in fact gamers

increased their score with almost twice as much as non-gamers. An exploratory data analysis (EDA) investigated

confounding factors with confirmatory results.

References

Allison, R. S., Harris, L. R., Jenkin, M., Jasiobedzka, U., & Zacher, J. E. (2001). Tolerance of temporal delay in

virtual environments. Proceedings IEEE Virtual Reality 2001, 247–254.

https://doi.org/10.1109/VR.2001.913793

Ando, N., Lee, J.-H., & Hashimoto, H. (1999). A study on influence of time delay in teleoperation—Quantitative

evaluation on time perception and operability of human operator. IEEE SMC’99 Conference Proceedings.

1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028), 5, 1111–

1116 vol.5. https://doi.org/10.1109/ICSMC.1999.815712

Appelqvist, P., Knuuttila, J., & Ahtiainen, J. (2007). Development of an Unmanned Ground Vehicle for task-

oriented operation—Considerations on teleoperation and delay. 2007 IEEE/ASME International

Conference on Advanced Intelligent Mechatronics, 1–6. https://doi.org/10.1109/AIM.2007.4412567

Baldwin, J., Basu, A., & Zhang, H. (1999). Panoramic video with predictive windows for telepresence

applications. Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat.

No.99CH36288C), 3, 1922–1927 vol.3. https://doi.org/10.1109/ROBOT.1999.770389

Bejczy, A. K., Kim, W. S., & Venema, S. C. (1990). The phantom robot: Predictive displays for teleoperation with

time delay. , IEEE International Conference on Robotics and Automation Proceedings, 546–551 vol.1.

https://doi.org/10.1109/ROBOT.1990.126037

Chen, J. Y. C., Haas, E. C., & Barnes, M. J. (2007). Human Performance Issues and User Interface Design for

Teleoperated Robots. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 37(6), 1231–1245. https://doi.org/10.1109/TSMCC.2007.905819

Davis, J., Smyth, C., & McDowell, K. (2010). The Effects of Time Lag on Driving Performance and a Possible

Mitigation. IEEE Transactions on Robotics, 26(3), 590–593. https://doi.org/10.1109/TRO.2010.2046695

Dorais, G., Bonasso, R. P., Kortenkamp, D., Pell, B., & Schreckenghost, D. (1999). Adjustable autonomy for

human-centered autonomous systems. 16–35.

Draper, J. V., Kaber, D. B., & Usher, J. M. (1998). Telepresence. Human Factors, 40(3), 354–375.

https://doi.org/10.1518/001872098779591386

C.11. Contribution 11: A low-cost predictive display for teleoperation:

investigating effects on human performance and workload 285

 22

Dye, M. W. G., Green, C. S., & Bavelier, D. (2009). Increasing Speed of Processing With Action Video Games.

Current Directions in Psychological Science, 18(6), 321–326. https://doi.org/10.1111/j.1467-

8721.2009.01660.x

ENDSLEY, M. R. (1999). Level of automation effects on performance, situation awareness and workload in a

dynamic control task. Ergonomics, 42(3), 462–492. https://doi.org/10.1080/001401399185595

Fabrizio, M. D., Lee, B. R., Chan, D. Y., Stoianovici, D., Jarrett, T. W., Yang, C., & Kavoussi, L. R. (2000). Effect

of Time Delay on Surgical Performance During Telesurgical Manipulation. Journal of Endourology,

14(2), 133–138. https://doi.org/10.1089/end.2000.14.133

Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement.

Journal of Experimental Psychology, 47(6), 381. https://doi.org/10.1037/h0055392

Goodrich, M. A., Olsen, D. R., Crandall, J. W., & Palmer, T. J. (2001). Experiments in adjustable autonomy.

Proceedings of IJCAI Workshop on Autonomy, Delegation and Control: Interacting with Intelligent

Agents, 1624–1629.

Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939),

534–537. https://doi.org/10.1038/nature01647

Hart, S. G. (2006). Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the Human Factors and

Ergonomics Society Annual Meeting, 50(9), 904–908. https://doi.org/10.1177/154193120605000909

Hart, S. G., & Staveland, L. E. (1988a). Development of NASA-TLX (Task Load Index): Results of empirical and

theoretical research. Advances in Psychology, 52, 139–183.

Hart, S. G., & Staveland, L. E. (1988b). Development of NASA-TLX (Task Load Index): Results of empirical and

theoretical research. Advances in Psychology, 52, 139–183.

Hendy, K. C., Hamilton, K. M., & Landry, L. N. (1993). Measuring subjective workload: When is one scale better

than many? Human Factors, 35(4), 579–601.

Hill, S. G., Iavecchia, H. P., Byers, J. C., Bittner, A. C., Zaklade, A. L., & Christ, R. E. (1992). Comparison of

Four Subjective Workload Rating Scales. Human Factors, 34(4), 429–439.

https://doi.org/10.1177/001872089203400405

Hu, H., Perez, C., Sun, H., & Jagersand, M. (2016). Performance of Predictive Display Teleoperation under

Different Delays with Different Degree of Freedoms. 2016 International Conference on Information

System and Artificial Intelligence (ISAI), 380–384. https://doi.org/10.1109/ISAI.2016.0087

IBM SPSS Statistics 25. (2017). IBM Corp.

Kirk, R. (2013). Experimental Design: Procedures for the Behavioral Sciences. SAGE Publications, Inc.

https://doi.org/10.4135/9781483384733

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout,

J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., & Willing, C. (2016). Jupyter Notebooks – a publishing

format for reproducible computational workflows. In F. Loizides & B. Schmidt (Eds.), Positioning and

Power in Academic Publishing: Players, Agents and Agendas (pp. 87–90). IOS Press.

https://doi.org/10.3233/978-1-61499-649-1-87

Krishnaiah, P. R. (1980). Analysis of variance (Vol. 1). North-Holland.

Lane, J. C., Carignan, C. R., Sullivan, B. R., Akin, D. L., Hunt, T., & Cohen, R. (2002). Effects of time delay on

telerobotic control of neutral buoyancy vehicles. Proceedings 2002 IEEE International Conference on

Robotics and Automation (Cat. No.02CH37292), 3, 2874–2879 vol.3.

https://doi.org/10.1109/ROBOT.2002.1013668

Lim, J., Wu, W., Wang, J., Detre, J. A., Dinges, D. F., & Rao, H. (2010). Imaging brain fatigue from sustained

mental workload: An ASL perfusion study of the time-on-task effect. NeuroImage, 49(4), 3426–3435.

https://doi.org/10.1016/j.neuroimage.2009.11.020

Lovi, D., Birkbeck, N., Herdocia, A. H., Rachmielowski, A., Jägersand, M., & Cobzaş, D. (2010). Predictive

display for mobile manipulators in unknown environments using online vision-based monocular

modeling and localization. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,

5792–5798. https://doi.org/10.1109/IROS.2010.5649522

Lu, S., Zhang, M. Y., Ersal, T., & Yang, X. J. (2018). Effects of a Delay Compensation Aid on Teleoperation of

Unmanned Ground Vehicles. Companion of the 2018 ACM/IEEE International Conference on Human-

Robot Interaction, 179–180. https://doi.org/10.1145/3173386.3177064

Luck, J. P., McDermott, P. L., Allender, L., & Russell, D. C. (2006). An Investigation of Real World Control of

Robotic Assets Under Communication Latency. Proceedings of the 1st ACM SIGCHI/SIGART

Conference on Human-Robot Interaction, 202–209. https://doi.org/10.1145/1121241.1121277

Lum, M. J. H., Rosen, J., King, H., Friedman, D. C. W., Lendvay, T. S., Wright, A. S., Sinanan, M. N., &

Hannaford, B. (2009). Teleoperation in surgical robotics – network latency effects on surgical

performance. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology

Society, 6860–6863. https://doi.org/10.1109/IEMBS.2009.5333120

286 Publications included in the PhD work

 23

Ma, R., & Kaber, D. B. (2006). Presence, workload and performance effects of synthetic environment design

factors. International Journal of Human-Computer Studies, 64(6), 541–552.

https://doi.org/10.1016/j.ijhcs.2005.12.003

MacKenzie, I. S., & Ware, C. (1993). Lag As a Determinant of Human Performance in Interactive Systems.

Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing Systems,

488–493. https://doi.org/10.1145/169059.169431

Mathan, S., Hyndman, A., Fischer, K., Blatz, J., & Brams, D. (1996). Efficacy of a Predictive Display, Steering

Device, and Vehicle Body Representation in the Operation of a Lunar Vehicle. Conference Companion

on Human Factors in Computing Systems, 71–72. https://doi.org/10.1145/257089.257147

Matheson, A., Donmez, B., Rehmatullah, F., Jasiobedzki, P., Ng, H.-K., Panwar, V., & Li, M. (2013). The Effects

of Predictive Displays on Performance in Driving Tasks with Multi-Second Latency: Aiding Tele-

Operation of Lunar Rovers. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,

57(1), 21–25. https://doi.org/10.1177/1541931213571007

Maxwell, S. E., & Delaney, H. D. (2003). Designing experiments and analyzing data: A model comparison

perspective. Routledge.

Miller, D. P., & Machulis, K. (2005). Visual aids for lunar rover tele-operation. proceedings of 8th International

Symposium on Artificial Intelligence, Robotics and Automation in Space, edited by R. Battrick, ESA

Publishing, Noordwijk, Netherlands.

Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a “Virtual” Maze: Sex Differences and

Correlation With Psychometric Measures of Spatial Ability in Humans. Evolution and Human Behavior,

19(2), 73–87. https://doi.org/10.1016/S1090-5138(97)00104-9

Neumeier, S., Wintersberger, P., Frison, A.-K., Becher, A., Facchi, C., & Riener, A. (2019). Teleoperation: The

Holy Grail to Solve Problems of Automated Driving? Sure, but Latency Matters. Proceedings of the 11th

International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 186–

197. https://doi.org/10.1145/3342197.3344534

Nielsen, C. W., Goodrich, M. A., & Ricks, R. W. (2007). Ecological Interfaces for Improving Mobile Robot

Teleoperation. IEEE Transactions on Robotics, 23(5), 927–941.

https://doi.org/10.1109/TRO.2007.907479

Oboe, R., & Fiorini, P. (1998). A Design and Control Environment for Internet-Based Telerobotics. The

International Journal of Robotics Research, 17(4), 433–449.

https://doi.org/10.1177/027836499801700408

Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2008). Situation Awareness, Mental Workload, and Trust in

Automation: Viable, Empirically Supported Cognitive Engineering Constructs. Journal of Cognitive

Engineering and Decision Making, 2(2), 140–160. https://doi.org/10.1518/155534308X284417

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,

Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., &

Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research,

12, 2825–2830.

Perez, M., Xu, S., Chauhan, S., Tanaka, A., Simpson, K., Abdul-Muhsin, H., & Smith, R. (2016). Impact of delay

on telesurgical performance: Study on the robotic simulator dV-Trainer. International Journal of

Computer Assisted Radiology and Surgery, 11(4), 581–587. https://doi.org/10.1007/s11548-015-1306-y

Rachmielowski, A., Birkbeck, N., & Jägersand, M. (2010). Performance evaluation of monocular predictive

display. 2010 IEEE International Conference on Robotics and Automation, 5309–5314.

https://doi.org/10.1109/ROBOT.2010.5509652

Richardson, A. E., Powers, M. E., & Bousquet, L. G. (2011). Video game experience predicts virtual, but not real

navigation performance. Computers in Human Behavior, 27(1), 552–560.

https://doi.org/10.1016/j.chb.2010.10.003

Ricks, B., Nielsen, C. W., & Goodrich, M. A. (2004). Ecological displays for robot interaction: A new perspective.

2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.

No.04CH37566), 3, 2855–2860 vol.3. https://doi.org/10.1109/IROS.2004.1389842

Schmider, E., Ziegler, M., Danay, E., Beyer, L., & Bühner, M. (2010). Is It Really Robust? Methodology, 6(4),

147–151. https://doi.org/10.1027/1614-2241/a000016

Schutte, P. C. (2017). How to make the most of your human: Design considerations for human–machine

interactions. Cognition, Technology & Work, 19(2), 233–249. https://doi.org/10.1007/s10111-017-0418-

2

Sheridan, T. B. (1995). Teleoperation, telerobotics and telepresence: A progress report. Control Engineering

Practice, 3(2), 205–214. https://doi.org/10.1016/0967-0661(94)00078-U

Tukey, J. W. (1977). Exploratory data analysis (Vol. 2). Reading, Mass.

C.11. Contribution 11: A low-cost predictive display for teleoperation:

investigating effects on human performance and workload 287

 24

Vidulich, M. A., & Tsang, P. S. (1987). Absolute Magnitude Estimation and Relative Judgement Approaches to

Subjective Workload Assessment. Proceedings of the Human Factors Society Annual Meeting, 31(9),

1057–1061. https://doi.org/10.1177/154193128703100930

Wickens, T. D., & Keppel, G. (2004). Design and analysis: A researcher’s handbook. Pearson Prentice-Hall.

Xu, S., Perez, M., Yang, K., Perrenot, C., Felblinger, J., & Hubert, J. (2014). Determination of the latency effects

on surgical performance and the acceptable latency levels in telesurgery using the dV-Trainer® simulator.

Surgical Endoscopy, 28(9), 2569–2576. https://doi.org/10.1007/s00464-014-3504-z

Zhang, Y., & Li, H. (2016). Handling qualities evaluation of predictive display model for rendezvous and docking

in lunar orbit with large time delay. 2016 IEEE Chinese Guidance, Navigation and Control Conference

(CGNCC), 742–747. https://doi.org/10.1109/CGNCC.2016.7828878

Zheng, Y., Brudnak, M. J., Jayakumar, P., Stein, J. L., & Ersal, T. (2016). An Experimental Evaluation of a Model-

Free Predictor Framework in Teleoperated Vehicles**This work was supported by the Automotive

Research Center (ARC) in accordance with Cooperative Agreement W56HZV-14-2-0001 U.S. Army

Tank Automotive Research, Development and Engineering Center (TARDEC) Warren, MI.

UNCLASSIFIED: Distribution Statement A. Approved for public release. #27479. IFAC-PapersOnLine,

49(10), 157–164. https://doi.org/10.1016/j.ifacol.2016.07.513

Appendix A

Table A1. Descriptive Statistics Subjective variables.

Variable

C1. Latency C2. Latency w/PD C3. Baseline

Mean SD Mean SD Mean SD

Subjective Overall Workload 5.263 0.197 4.927 0.192 3.488 0.193

Mental Demand 0-10 5.667 0.273 5.509 0.301 3.561 0.271

Physical Demand 0-10 2.877 0.285 2.842 0.293 2.175 0.245

Temporal Demand 0-10 5.842 0.277 5.667 0.280 5.386 0.307

Subjective Performance 0-101) 5.526 0.307 4.737 0.274 2.702 0.214

Effort 0-10 6.018 0.260 5.772 0.266 4.667 0.278

Frustration 0-10 5.625 0.319 4.946 0.275 2.446 0.243

Table A2. One-way repeated measured ANOVA F-test.

Variable

N

Outliersae
Normality

Sphericity

Epsilon

(ε)
F-statistic Sig.

Sample

effect

size

Population

effect sizec

Subjective

Overall

Workload

(outlier

removed)

57
Yes (1) Yes

Yes

χ2(2) = 3.787, p

= 0.151

-
F(2, 112) =

68.322
p< 0.001** η2 = 0.55 ω2 = 0.441

56

No Yes

Yes

χ2(2) = 3.999, p

= 0.135

-
F(2, 110) =

68.311
p< 0.001** η2 = 0.55 ω2 = 0.445

Mental

demand

57

No Yesd

No

χ2(2) =

9.962198, p =

0.007

ε =

0.858b

F(1.716,
96.082) =

41.286
p<0.001** 0.424 ω2 = 0.32

Physical

demand

57
Yes (1) f Yesd Yes -

F(2, 112) =

6.474

p =

0.002**

η2 =

0.104
ω2 = 0.060

288 Publications included in the PhD work

 25

(outlier

removed)

χ2(2) = 0.357, p

= 0.837.

56

No Yesd

Yes

χ2(2) = 1.198 ,

p = 0.549.

-
F(2, 110) =

5.601

p =

0.005**

η2 =

0.092
ω2 = 0.052

Temporal

demand

(outlier

removed)

57

Yes (2) f Yesd

No

χ2(2) = 6.498, p

= 0.039.

ε =

0.900b

F(1.799,

100.771) =

1.690

p = 0.192
η2 =

0.029
ω2 = 0.008

55

No Yesd

No

χ2(2) = 6.504, p

= 0.039.

ε =

0.896

F(1.793,

96.819) =

1.686

p = 0.193
η2 =

0.030
ω2 = 0.008

Subjective

performance

(outlier

removed)

57

Yes (2) f Yesd

Yes

χ2(2) = 1.552, p

= 0.460.

-
F(2, 112) =

78.578

p <

0.001**

η2 =

0.584
ω2 = 0.476

55

Yes (3)g Yesd

Yes

χ2(2) = 1.972, p

= 0.373.

-
F(2, 108) =

81.030

p <

0.001**

η2 =

0.600
ω2 = 0.492

Effort

(outlier

removed)

57

Yes (1) f Yesd

Yes

χ2(2) = 1.143, p

= 0.565

-
F(2, 112) =

19.641

p <

0.001**

η2 =

0.260
ω2 = 0.179

56

No Yesd

Yes

χ2(2) = 1.277, p

= 0.528

-
F(2, 110) =

18.627

p <

0.001**

η2 =

0.253
ω2 = 0.173

Frustration

56

Noh Yesd

Yes

χ2(2) = 0.519, p

= 0.771

-
F(2,112) =

63.275

p <

0.001**

η2 =

0.535
ω2 = 0.426

*: p < 0.05, **: p < 0.01

a) Number of outliers in parentheses.

b) A Greenhause Geisser correction was applied.

c) Calculated according to (Wickens & Keppel, 2004).

d) Visual inspection of Normal Q-Q Plots and histograms for all three conditions.

e) Visual inspection of a boxplot.

f) Outliers was kept in the first ANOVA as there was no reason for excluding them and a Friedman test with pairwise comparisons using a Bonferroni correction was carried

out for comparison purposes, as this test is less affected by outliers. Results were corroborated. We also reran the analysis with outliers excluded, which resulted in somewhat

higher effect size. The overall result was the same.

g) Excluding initial outliers did not yield a dataset without outliers. Further outlier removal was not conducted to avoid constructing a highly reduced, and thus unrepresentative

dataset.

h) There were three outliers in the sample with N=57. One outlier in C2. Latency w/PD, reported the highest frustration while feeling like their performed the worst with PD.

We assume this was due to not understanding what PD was trying to do and thus we removed this participant from the analysis of Frustration. The two outliers in C3. Baseline

reported high frustration in all three conditions and were therefore kept. When excluding the abovementioned participant and rerunning the analysis, there were not outliers in

the data. N=56 data points were used for this specific analysis.

C.11. Contribution 11: A low-cost predictive display for teleoperation:

investigating effects on human performance and workload 289

ISBN 9788232651245 (printed ver.)
ISBN 9788232651252 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2020:389

Achim Gerstenberg

Prototyping Cyber-Physical
Systems using Wayfaring

An Experiment and Insights for Early-Stage
Development

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2020:389
Achim

 G
erstenberg

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ria
l

En
gi

ne
er

in
g

	Blank Page
	Blank Page
	Blank Page
	Blank Page

