
ISBN 978-82-326-5146-7 (printed ver.)
ISBN 978-82-326-5147-4 (electronic ver.)

ISSN 2703-8084 (online)
ISSN 1503-8181 (printed ver.)

Doctoral theses at NTNU, 2020:399

Yordanos Tibebu Woldeyohannes

Efficient Allocation of Resources
in NFV-Enabled Networks

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2020:399
Yordanos Tibebu W

oldeyohannes

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
t.

of
 In

fo
rm

at
io

n
Se

cu
rit

y
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

Thesis for the Degree of Philosophiae Doctor

Trondheim, December 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Yordanos Tibebu Woldeyohannes

Efficient Allocation of Resources
in NFV-Enabled Networks

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

© Yordanos Tibebu Woldeyohannes

ISBN 978-82-326-5146-7 (printed ver.)
ISBN 978-82-326-5147-4 (electronic ver.)
ISSN 2703-8084 (online)
ISSN 1503-8181 (printed ver.)

Doctoral theses at NTNU, 2020:399

Printed by NTNU Grafisk senter

iii

Abstract

The network traffic and number of devices that are connected within a net-
work are increasing, driven by the increase in network coverage as well as
the types of network services provisioned. The provisioning of network ser-
vices requires different network functions that are often chained in specific
order. The traditional implementation of network functions is hardware-
based, in which each network function (NF) has its own specific proprietary
hardware and software. Besides being costly, this approach has complicated
the network management and slowed the pace in which new services are
adapted to the market. To address these issues, the networking industry is
pursuing Network Function Virtualization (NFV), which enables cost effi-
cient, softwarized and flexible network service provisioning. One of the key
challenges in NFV is resource allocation. This thesis work is purposed at ad-
dressing the problem of allocating resources efficiently in an NFV-enabled
network by striking a balance across multiple objectives and satisfying the
performance and availability requirements of service requests. The research
contributions of the PhD work are classified into three parts.

First, an efficient NFV resource allocation algorithm called ClusPR is pro-
posed. ClusPR is developed based on observations made from the optimal
solution obtained by solving an Integer Linear Programming (ILP) model.
ClusPR strikes a balance between multiple objectives including minimizing
the path stretch, maximizing the utilization of the network and balancing
the load among NF instances. Compared to the state-of-the art approaches,
ClusPR is able to satisfy the service performance (i.e., delay) requirement of
more flows. In addition, an online algorithm called iClusPR that performs
dynamic horizontal scaling by creating and/or removing NF instances de-
pending on the traffic demand is proposed. The performance of iClusPR is
close to its offline counterpart ClusPR.

Second, a set of new network structural dependency measures are proposed
to overcome a major shortcoming of the existing measures, which is that
they do not take into account network fragmentation caused by failure of
a node. The proposed measures referred to as dependency indexes assess
the impact failure of a node has on the information communication between
two nodes (path), between one node and the other network nodes (node),

iv

and between any one of the remaining network nodes (network) by expli-
citly considering possible fragmentation. The applicability of the network
dependency index for correctly identifying the critical nodes of a network is
also demonstrated.

Third, for ensuring high availability of services redundant or backup ser-
vice chains should be allocated. The NFV redundancy allocation problem
is modeled by using two ILP models referred to as AllOne and AllAny. Al-
though the models give the optimal result the execution time of the models
increases exponentially with an increase in the size of the network as the
problem is NP-hard. To address this problem, a scalable redundancy al-
location scheme called CoShare is proposed. CoShare meticulously select
backups to avoid the simultaneous unavailability of both the primary and
backup chains due to network structural dependencies. In addition, CoShare
uses resources efficiently by adopting an approach referred to as NF shared
reservation, in which the reserved capacity at a backup NF instance is shared
among service requests or flows that are not expected to fail simultaneously.
The results show that by utilizing NF shared reservation, CoShare is able to
reduce the resource overbuild, which is measured as the amount of extra ca-
pacity (i.e., number of backup NF instances) required as a percentage of the
capacity needed without redundancy (i.e., number of primary NF instances).

In summary, this thesis work provides algorithms that find efficient alloca-
tion of resources in an NFV-enabled network while ensuring the fulfillment
of both the performance and availability requirements of service requests.

v

Preface
This dissertation is submitted in partial fulfillment of the requirements for
the degree Philosophiae doctor (PhD) at NTNU, Norwegian University of
Science and Technology. The PhD thesis work is carried out in the De-
partment of Information Security and Communication Technology (IIK).
The PhD was partly financed by the EU FP7 Marie Curie Actions by the
EC Seventh Framework Programme (FP7/2007-2013) Grant Agreement No.
607584 (the Cleansky ITN project).

vi

vii

Acknowledgment
Above all I thank God, for all is made possible by his grace. "Thanks be to
God for his indescribable gift!" (2 Corinthians 9:15)

It is with deep gratitude that I thank my supervisor Prof. Yuming Jiang, to
whom I will forever be grateful for taking a leap of faith in me and entrust-
ing me with the PhD position. He has been tremendously supportive and
understanding throughout the PhD work, and has facilitated great research
collaborations for me. He has encouraged me to explore new research areas
and has shaped my research work. I am also very grateful to Prof. K. K.
Ramakrishnan, who has played a key role in my thesis work by introducing
me to the NFV resource allocation problem and by tirelessly providing his
guidance. His immense knowledge and critical views have had an invalu-
able impact on the PhD research work. It has been such a great privilege and
honor to work with Prof. K. K. Ramakrishnan. I would also like to thank
Ali Mohammadkhan for the discussions we had during our research collab-
oration. My great thanks to Besmir Tola for the fruitful collaborations we
had as well as for opening my eyes to all the bureaucracy I had overlooked
and being a nice office-mate throughout the years.

I would like to thank my hosts during my secondments at UNINETT, Adj.
prof Otto Jonassen Wittner, and at Nokia Bell labs, Dr. Volker Hilt, for the
knowledge shared as well as for the friendly work environment. I also like
to extend my thanks to all the members of the Cleansky ITN, our meet-
ing in Cleansky workshops and conferences have been quite informative. I
would also like to thank my colleagues and group-mates at the department
of IIK for the nice and friendly work environment especially Mona, Katina,
Katrien De Moor, and David.

My special thanks and deep appreciation to my parent, my heroic dad, Tibe,
and my sweet mom, Enatye, for their endless love, for always encouraging
me to aim high and for believing in me even when I doubt myself. They
have led the foundation for who I am today, all this would not have been
possible without their love, support and prayer. I would also like to thank
my siblings, my lovely sisters Alem, Betty, and brothers Johnny and Abrish,
who have always been there for me in thick and thin. I am blessed to have

viii

you all.

It is with much love that I thank my dear husband Merkebu and my son
Noah, who have first-hand traversed the ups and downs of the PhD journey
with me, you two are my world. My husband has been incredibly sup-
portive in every aspects, from handling all daily chores during my travels,
proofreading my papers and PhD thesis, to emotional support during my
tough times of the PhD work. Mare, I am blessed to have such a good-
hearted, thoughtful husband and best friend like you. To my sweet son, my
greatest gift of all, you are my sunshine and joy. It has been such a wonder-
ful blessing to watch you grow up.

ix

Dedication

This PhD thesis is dedicated to my mom, the most kind, caring and loving
person. Enatye you will forever live in our hearts.

x

Contents

Abstract iv

Preface v

Acknowledgment viii

Dedication ix

List of Acronyms xvi

List of Tables xvii

List of Figures xix

I Thesis Summary 1

1 Introduction and Research Objectives 3

1.1 Outline of the Thesis . 3

1.2 Introduction . 3

1.3 Research Objective . 6

xi

xii CONTENTS

1.4 List of Publications . 7

2 Background and Related Work 11

2.1 Background . 11

2.1.1 Network Function Virtualization (NFV) 11

2.1.2 Service Function Chaining 14

2.1.3 Software-Defined Networking (SDN) 15

2.2 Related Work . 18

2.2.1 Resource Allocation in NFV 18

2.2.2 Network Structural Dependency 21

2.2.3 Service Availability in NFV 25

3 Research Methodology and Contributions 27

3.1 Research Methodology . 27

3.2 Research Contributions . 31

3.3 Summary of the Included Papers 32

4 Conclusion and Future Work 37

4.1 Conclusion . 37

4.1.1 Discussion on Generality 38

4.2 Future Work . 38

References 40

II Included Papers 53

Paper A: A Scalable Resource Allocation Scheme for NFV: Balancing Util-
ization and Path Stretch 65

CONTENTS xiii

Paper B: ClusPR: Balancing Multiple Objectives at Scale for NFV re-
source allocation 82

Paper C: Measures for Network Structural Dependency Analysis 89

Paper D: Towards Carrier-Grade Service Provisioning in NFV 99

Paper E: CoShare: An Efficient Approach for Redundancy Allocation in
NFV 101

xiv CONTENTS

List of Acronyms

CAPEX Capital Expenditure

CNP Critical Node Problem

COTS Commercial off-the-shelf

DPI Deep Packet Inspection

ETSI European Telecommunications Standards Institute

IDS Intrusion Detection System

IETF Internet Engineering Task Force

ILP Integer Linear Programming

MANO Management and Operation

MILP Mixed Integer Linear Programming

NFVI Network Function Virtualization Infrastructure

NFVO Network Function Virtualization Orchestrator

NFV Network Function Virtualization

NF Network Function

NOS Network Operating System

NSH Network Service Header

NS Network Service

xv

xvi CONTENTS

OPEX Operational Expenditure

SDN Software-Defined Networking

SFC Service Function Chaining

SLA Service Level Agreement

SPI Service Path Identifier

VIM Virtual Infrastructure Management

VM Virtual Machine

VNE Virtual Network Embedding

VNFM Virtual Network Function Manager

VNF Virtual Network Function

WAN Wide Area Network

List of Tables

1.1 List of publications included . 8

1.2 Other publication during the PhD work 8

xvii

xviii LIST OF TABLES

List of Figures

1.1 Relation of the included papers 9

2.1 NF instances running on different virtualizaion technologies [9]. . 12

2.2 NFV reference architectural framework [39]. 13

2.3 Service function chaining example [8]. 15

2.4 Software-defined networking [106]. 16

2.5 SDN in NFV reference architectural framework [38]. 17

3.1 Research methodology . 28

3.2 Main research contributions in relation to the included papers . . . 30

xix

xx LIST OF FIGURES

Part I

Thesis Summary

1

Chapter 1

Introduction and Research
Objectives

1.1 Outline of the Thesis
This thesis is structured in two parts. Part I presents the summary of the thesis and
part II contains the papers included in the thesis. Part I is further structured in four
chapters. Chapter one includes the introduction of the thesis work, the research
questions addressed as well as the list of publications included in the thesis and
their relationship with each other. The background and related works are described
in Chapter two. In Chapter three, the contributions of the thesis and a summary of
the included papers are explained. Finally, Chapter four presents the conclusion
and future work.

1.2 Introduction
Network services such as mobile voice/data, video streaming are provisioned by
composing different network functions (NFs), which are utilized for various pur-
poses [107, 116], such as improving security (e.g., firewall, Intrusion Detection
Systems (IDS)), network performance (e.g., proxies, WAN optimizer), providing
value-added services (e.g., parental control) etc. Traditional NFs are hardware-
based in which each network functionality is implemented using a purpose-built
proprietary hardware and software. The increase in network traffic as well as the
type of network services provisioned has necessitated the deployment of a large
number of diverse types of NFs in telecommunication networks. In turn, the opera-
tion and management of the network is increasingly becoming complex and inflex-
ible due to the hardware-based implementation of the NFs, which also has resulted

3

4 Introduction and Research Objectives

in high capital expenditure (CAPEX) and operational expenditure (OPEX) [107].
This is because the management tools of NFs vary across different types as well
as vendors. In addition, provisioning new network services or expanding service
coverage requires the installation and operation of new NF hardware [107, 88].

On the other hand, the network traffic is increasing at a fast rate, with forcasts pre-
dicting three fold increase within a period of five years (2017-2022) [24]. In addi-
tion, with the realization of 5G being on the horizon, new disruptive and innovative
services are envisioned by massive connectivity between people, machines, and
things. To support these emerging services telecommunication networks should
have features like agility, cost efficiency, as well as programmablity [118], which
are features not possessed by the legacy networks developed using hardware-based
NFs. To address these problems, the concept of Network Function Vertualization
(NFV) was first conceived in 2012 by the European Telecommunications Stand-
ards Institute (ETSI) [23].

NFV decouples the software implementation of network functions from the spe-
cialized dedicated hardware and runs the NFs in virtualized environment such as
virtual machines (VMs) or containers [88, 23]. NFV brings flexibility in the provi-
sioning of services and is envisioned to revolutionize the way telecommunication
networks are designed and managed [55]. NFV has attracted enormous attention
both from academia and industry. However, despite the momentum, NFV tech-
nology is not mature enough yet and network providers are reluctant to adopt it
because of a number of challenges [89, 10, 3]. One of the key challenges is re-
source management and orchestration (MANO) [89, 3].

The NFV resource allocation problem is new and challenging as it incorporates
different levels of decision making, which are at a network-level (NF placement)
and flow-level (service chaining and routing). In NFV, NF instances are created
on the fly depending on the traffic demand and network status. This means, NF
instances should be placed optimally on the physical host Commercial-off-the-
Shelf (COTS) hardware, the capacity of the NF instances need to be scaled in or out
dynamically, and for each network service (NS) request the NF instances should
be selected optimally and chained to a service function chain (SFC) of the NS [37,
89]. In addition, customers expect their services to have the required performance
(e.g delay, throughput) and dependability (availability and reliability).

One of the main factors hindering the widespread adoption of NFV is performance.
Service providers want the guarentee that NFV will be able to provide the quality
of service (in terms of latency, throughtput, etc) which is comparable to the dedic-
ated specialized hardware [88, 10]. Thus, NFV resource allocation schemes should
satisfy the performance requirements of users and also use resources efficiently so

1.2. Introduction 5

that the cost saving benefits of NFV are materialized.

Considering the cruciality of the NFV resource allocation problem, a number of
works have developed either mathematical models that find exact solutions and/or
heuristic algorithms that are more scalable than the models but give sub-optimal
solutions. In [57], a comprehensive survey of the literature in NFV resource al-
location is provided. However, the reviewed works do not efficiently solve the
problem. The first reason is that the NF placement and flow routing decisions are
inherently correlated as service chains of flows’ are composed during flow routing
by utilizing instances placed in NF placement. This interdependency should be
taken into account to enable efficient utilization of resources. However, the NF
placement and flow routing problems are solved separately without factoring in
their interdependency in works like [26, 75, 28, 65, 60]. The second reason is that,
resource allocation decisions need to be made by balancing across multiple object-
ives including minimizing the path stretch (delay), maximizing utilization of the
network, so that service providers could guarantee that they are able to fulfill ser-
vice performance requirements of flows while using resources efficiently to ensure
their profitability. However, existing works either minimize path stretch disregard-
ing its effect on the network utilization [105, 103, 13], or maximize the utilization
without considering the delay performance [94, 36, 71, 67, 84].

Another main challenge is fulfilling the service availability requirements of flows.
NFV-enabled networks are expected to be able to support carrier-grade services
that need five nines (99,999%) availability (which is equivalent to 5.26 minutes of
downtime per year) or higher [40]. High service availability cannot be achieved by
the mere provisioning of a primary service chain [31, 42]. As the COTS servers
used in NFV-enabled networks are less reliable compared to the dedicated hard-
ware [53, 52]. In addition, service function chaining also exacerbates the problem
as the failure of one of the NFs of a chain will result in service discontinuity [41].
As redundancy is the “de-facto” technique for achieving high availability [15], a
redundant or backup NF should be assigned to takeover the service in case the
primary instance fail. However, redundancy could become ineffective due to cor-
related failures that also result in the unavailability of the backup.

To increase the effectiveness of redundancy, backups should be selected metic-
ulously so as to avoid the simultaneous unavailability of both the primary and
backup chains. Inherent network stuctural dependencies could result in correlated
failures that might undermine the effect of the redundancy [119]. Thus, under-
standing and quantifying the network structural dependency facilitates the provi-
sioning of robust services. The existing centrality measures quantify the structural
dependency in a network by measuring the connectivity degradation that is caused
by a removal or failure of a node [74, 66]. However, as will be demonstrated in

6 Introduction and Research Objectives

this thesis, the existing measures have a major shortcoming that is they do not take
into account the possibility of network fragmentation after the removal of a node.
Thus, there is a need for a new measure that addresses this shortcoming.

In addition, unless planned carefully redundancy can be inefficient and costly in
terms of resource usage especially for achieving high availability [42]. The re-
dundancy allocation approaches in the literature have considered restrictive setups
that limit the resource utilization effciency. For example, a backup chain is con-
strained to use NFs hosted on one node in [76, 43], or a backup NF instance serves
one flow or single-tenancy in [95, 30, 120]. In traditional IP/MPLS networks shar-
ing of resources in redundancy has been shown to be effective in achieving effi-
ciency [99, 77, 114]. However, in most of the exising works, backup resources are
not shared, instead are dedicated to a flow or instance [95, 30, 120, 43]. Thus, the
development of an NFV redundancy allocation approach that utilizes resources
efficiently by serving multiple flows on one NF instance, constructing a backup
chain using NF instances that might also be hosted on different nodes and sharing
redundancy resources is an open issue.

Another important aspect that has been disregarded in the existing works is the
effect of network structural dependency that could render the redundancy ineffect-
ive. For example in [76], a neighboring node of a primary node is selected as a
backup without checking if the two nodes are inherently dependent due to the to-
pology. This PhD thesis addresses these gaps by tackling the following research
questions,

RQ1. How to make efficient resource allocation decisions in NFV-enabled net-
works considering the inter-dependency between NF placement and flow routing
decisions and balancing across multiple objectives? (Paper A and Paper B)

RQ2. How to measure network structural dependencies by taking into consid-
eration the possibility that failure of a node might result in fragmentation of the
network? (Paper C)

RQ3. How to perform efficient redundancy allocation considering the effect of
network structural dependencies and utilizing resources efficiently? (Paper D and
Paper E)

1.3 Research Objective
The objective of this thesis work is to propose schemes for enabling efficient alloc-
ation of resources in NFV-enabled networks by striking a balance across multiple
objectives while fulfilling the service performance and availability requirements.
Specifically,

1.4. List of Publications 7

• (O1): To develop a mathematical model that finds the optimal allocation of re-
sources while guaranteeing that the delay requirements are satisfied by striking a
balance between multiple objectives (including path stretch, network utilization
and load balancing).

• (O2): To make observations from the optimal decision making of the mathemat-
ical model, based on which, to propose a scalable algorithm whose performance
is close to the optimal.

• (O3): To develop an algorithm that dynamically scales the number of NF in-
stances depending on the traffic demand and network status.

• (O4): To demonstrate the shortcoming of existing network structural depend-
ence measures and propose new measures that address this issue.

• (O5): To develop mathematical models that find optimal allocation of backups
for the NFV redundancy allocation problem.

• (O6): To develop a scalable algorithm that allocates backup chains, considering
the effect of network structural dependencies and utilizing resources efficiently.

1.4 List of Publications
Table 1.1 shows a list of publications included in this thesis work. The relation-
ships of the papers with each other, the research questions and objectives are also
depicted in the Fig 1.1. The relationships indicate paper extensions and/or usage
of proposed measures, results or algorithms. For example, paper B is an extended
version of paper A. In papers D and E the measures proposed in paper C are used.
The included papers have been published in peer-reviewed international journals
(Paper B, paper C) and conferences (paper D, paper A) while Paper E is available
on arXiv at https://arxiv.org/abs/2008.13453, and to be submitted to a journal.

8 Introduction and Research Objectives

Paper A Yordanos Tibebu Woldeyohannes, Ali Mohammadkhan, K. K. Ra-
makrishnan, and Yuming Jiang. “A Scalable Resource Allocation
Scheme for NFV: Balancing Utilization and Path Stretch.” 21st Con-
ference on Innovations in Clouds, Internet and Networks (ICIN), Paris,
February 2018.

Paper B Yordanos Tibebu Woldeyohannes, Ali Mohammadkhan, K. K. Ra-
makrishnan, and Yuming Jiang.“ClusPR: Balancing Multiple Object-
ives at Scale for NFV resource allocation”. IEEE Transactions on Net-
work and Service Management 15, no. 4 (2018): 1307-1321.

Paper C Yordanos Tibebu Woldeyohannes, and Yuming Jiang. “Measures for
Network Structural Dependency Analysis”. IEEE Communications Let-
ters 22.10 (2018): 2052-2055.

Paper D Yordanos Tibebu Woldeyohannes, Besmir Tola, and Yuming Ji-
ang.“Towards Carrier-Grade Service Provisioning in NFV.” 15th In-
ternational Conference on the Design of Reliable Communication Net-
works (DRCN), Coimbra, Portugal 2019.

Paper E Yordanos Tibebu Woldeyohannes, Besmir Tola, Yuming Jiang,
and K. K. Ramakrishnan. “CoShare: An Efficient Approach
for Redundancy Allocation in NFV”, available on arXiv at ht-
tps://arxiv.org/abs/2008.13453, and to be submitted to a journal.

Table 1.1: List of publications included

Paper F Mao, Zhifei, Yuming Jiang, Xiaoqiang Di, and Yordanos Tibebu
Woldeyohannes. "Joint Head Selection and Airtime Allocation for Data
Dissemination in Mobile Social Networks. Computer Networks. 2020
Jan 15;166:106990.

Table 1.2: Other publication during the PhD work

1.4. List of Publications 9

Paper D Paper E

Paper CPaper A

Paper B

RQ1 RQ2

RQ3

O1 O2 O3

O4

O5 O6

Figure 1.1: Relation of the included papers

10 Introduction and Research Objectives

Chapter 2

Background and Related Work

In this chapter, background concepts of the thesis work as well as an overview of
the related work to the addressed research questions are presented. This chapter
is composed of two sections in which Section 2.1 presents the background by
discussing Network Function Virtualization (NFV), service function chaining as
well as software defined networking (SDN), and the relationship between SDN
and NFV. In Section 2.2, the problems addressed in this thesis are discussed in
conjunction with the related works, namely resource allocation in NFV, network
structural dependency analysis and service availability in NFV.

2.1 Background
To enable cost efficient, flexible and programmable networks, the networking in-
dustry is adverting to network softwarization, which is enabled by Network Func-
tion Virtualization (NFV) and Software-Defined Networking (SDN) [45]. NFV
aims at decoupling the hardware and software of network functions. SDN on the
other hand makes the network programmable by separating the control and data
plane.

2.1.1 Network Function Virtualization (NFV)

NFV decouples the software implementation of NFs from their specialized ded-
icated hardware and runs the software on virtualized environment (e.g., virtual
machines (VMs) or containers). Figure 2.1 shows NF instances running on virtual-
ized environments that are created using different virtualization technologies. The
VMs or contrainers running on the same server are interconnected using vSwitches
like Open vSwitch (OvS) [7], VALE [102]. The introduction of high performance
packet I/O libraries such as DPDK [2], netmap [101] have enabled the software

11

12 Background and Related Work

Server

Host OS

Hypervisor

Guest
OS

Libraries &
runtime

NF

Guest
OS

Libraries &
runtime

NF

(a) Virtual machine

Server

Host OS

Libraries & runtime

NF NF

(b) Container

Server

Host OS

Hypervisor

Libraries &
runtime

NF
Libraries &

runtime

NF

(c) Unikernel

Figure 2.1: NF instances running on different virtualizaion technologies [9].

based vSwitches to process packets at the line rate of 10Gbps or higher. Various
software dataplane frameworks have been proposed for NFV, based on different
virtualization technology and packet I/O [93].

The virtualized environment considered first to be used in NFV is VM [23]. VMs
can be created using hypervisor technologies such as KVM [4], Xen [11], VM-
ware. The hypervisors provide isolation between the VMs running on the same
server. Thus, the failure of a VM will not affect the other VMs running on the
server. Dataplane frameworks that are based on VM include softNIC [54] and
NetVM [63], which utilize KVM for virtualization and Intel DPDK for packet I/O.
The disadvantage of using VMs to run network functions is their overhead. VMs
typically consume large amount of memory in the order of hundreds of megabytes
to several gigabytes as they require their own guest OS, so the instantiation of a
VM takes time in the order of seconds [79].

Considering this, the usage of container technologies such as dockers [1] and
Linux containers [5] is gaining momentum. Containers consume fewer resources
(a few MBs or tens of MBs) than virtual machines since they do not include their
own operating system, instead relying on the host’s kernel [122]. Frameworks
that are based on containers include OpenNetVM [122], GNF [29], Flurries [121].
However, containers do not have a strong isolation mechanism making them the
target of an ever increasing number of exploits [79]. In addition, any container
that can monopolize or exhaust system resources (e.g., memory) will cause a DoS
attack on all other containers on that host [79].

The other virutalization technology being considered is unikernel, which is a light-
weight or minimalistic virtual machine that provides the mimimum set of libraries
required for running a specific application [79]. Unikernel aims to incorporate the
high security feature of VM while having an efficiency close to that of containers.
ClickOS [82] is an NFV dataplane framework that is based on unikernel. ClickOS
runs lightweight virtual machines using Xen hypervisor and mini-OS, customized

2.1. Background 13

for network packet processing. It uses netmap [101] and the VALE switch [102] to
efficiently move packets between the lightweigth VMs. The downside of ClickOS
is its limited flexibility as NFs must be designed within the Click framework’s
specification and do not run within a standard Linux environment [122].

Virtual
Computing

Virtualisation Layer

Virtual
Storage

Virtual
Network

Computing
Hardware

Storage
Hardware

Network
Hardware

NFVI

OSS/BSS

Service, VNF and Infrastructure
Description

EMS 1 EMS 2 EMS 3

VNF 1 VNF 2 VNF 3

Orchestrator

VNF
Manager(s)

Virtual
Infrastructure

Manager(s)

Or-Vi

Or-Vnfm

Vi-Vnfm

Os-Ma

Se-Ma

Ve-Vnfm

Nf-Vi

Vn-Nf

NFV Management and Orchestration

Execution reference
points

Execution reference
points

Execution reference
points

VI-Ha Hardware resources

Figure 2.2: NFV reference architectural framework [39].

NFV ETSI Architecture

The European Telecommunications Standards Institute (ETSI) is the standardiza-
tion body for NFV and defines a reference architecture of an NFV platform [39],
which is shown in Fig. 2.2. On a high-level, the architecture consists of three main
components: NFV Infrastructure (NFVI), Virtualised Network Functions (VNFs)
and NFV Management and Orchestration (MANO) [39]. The components are de-
scribed briefly below.

NFV Infrastructure (NFVI): NFVI contains all the hardware and software com-
ponents required for building up the virtualized environment in which NF instances
are deployed. This includes the physical resources (such as compute, network,
storage), which can span across several locations, virtualization layer and virtual
resources.

Virtualised Network Functions (VNFs): Virtual Network Functions (abbrevi-
ated as VNFs, or NFs) are the software components that implement the network

14 Background and Related Work

functions, which will run on a virtualized environment created by the adopted vir-
tualization technology.

NFV Management and Orchestration (MANO): MANO is responsible for the
overall control and management of an NFV-enabled network. The MANO is made
of three modules each of which has a specific functionality [98]. These include
Virtual Infrastructure Management (VIM), Virtual Network Function Manager
(VNFM) and NFV Orchestrator (NFVO).

NFV Orchestrator: The NFV Orchestrator is responsible for the creation and man-
agement of end-to-end services. It has two main components, resource orchestra-
tion and service orchestration. The resource orchestration is purposed at support-
ing the service delivery by managing NFVI resources, which in turn are controlled
by one or more VIMs. While service orchestration is targeted at life cycle man-
agement of network services.

Virtual Network Function Manager (VNFM): The VNFM is responsible for the
lifecycle management of NF instances. The specific functions of VNFM include
NF instance creation, modification, scaling out/in and up/down, NF configuration
(if required), performance and fault management. Each NF instance needs to have
a VNFM, which may also manage other NF instances as well.

Virtual Infrastructure Management (VIM): The Virtual Infrastructure Management
(VIM) is responsible for managing the resources in the NFVI, including physical
resources (compute, storage and network), virtual resources (VMs) and software
resources (hypervisors), which are usually within one operator’s infrastructure do-
main [98].

2.1.2 Service Function Chaining

The delivery of an end-to-end service (e.g. mobile voice/data, Internet access, a
virtual private network) usually requires multiple network functions, which often
need to be interconnected in a specific order. Service Function Chaining (SFC)
is the definition and instantiation of an ordered list of NF instances and the sub-
sequent steering of traffic flows through those NFs [97]. For example, Fig 2.3
shows two flows that require different service function chains. SFC presents a
model addressing the problematic aspects of existing service deployments, includ-
ing topological dependence and configuration complexity [51].

The IETF has proposed Network Service Header (NSH) [96], which is a data-plane
protocol, to enable service function chaining. The NSH facilitates the forwarding
of packets between service functions or NFs of a service chain by creating a dedic-
ated service plane which is independent of the underlying transport protocol. The

2.1. Background 15

Figure 2.3: Service function chaining example [8].

NSH consists of a mandatory base header, service path header and context header.
The base header consists of information like version, TTL, flags. The service path
header contains Service Path Identifier (SPI), which specifies where packets as-
signed to a service path must go, and service index, which provides the location
within a service path. The context header is optional and carries the metadata
information. NSH is appended to a packet/frame and an outer transport encapsu-
lation (e.g., MPLS, VXLAN) is imposed on the NSH.

The NSH is topology independent and offers a common and standards-based header
for service chaining to all network and service nodes. Furthermore, the NSH
provides service-specific Operations, Administration, and Maintenance (OAM)
messages which are useful for monitoring and troubleshooting a service chain [96].

2.1.3 Software-Defined Networking (SDN)

In traditional IP networks, networking devices perform both control plane tasks of
deciding how to handle network traffic as well as the data plane functionality of
forwarding packets. This tight coupling between the control and data planes has
resulted in a static architecture that is complex to manage and control. In addition,
it has hindered innovation and evolution of the networking infrastructure, as the
design, evaluation and deployment of new protocols takes years [70].

Software-Defined Networking (SDN) alters the vertically-integrated architecture
of the current networks by decoupling the control plane from the data plane. The

16 Background and Related Work

SDN Controller

Network
App1

Network
App2

Network
App3

Control
Plane

Data
Plane

Management
Plane

API API API

Figure 2.4: Software-defined networking [106].

control plane functionalities will be managed by a logically-centralized control-
ler called the SDN controller or the Network Operating System (NOS). The SDN
controller communicates with the data plane forwarding devices through the south-
bound interface using APIs such as Openflow [83]. The SDN controller will have a
network-wide view of the network topology and is responsible for making all rout-
ing and control policies. The switches will simply be packet forwarding devices
based on the rules stated in their flow tables, the contents of which are decided
by the SDN controller. SDN makes the network programmable by offering APIs,
which application developers can use to create different network applications. That
is application developers interact with the network operating system through north-
bound interface using the northbound APIs like REST API, and programming lan-
guages like Pyretic [100], Procera [113]. Typically, a northbound interface ab-
stracts the low level instruction sets used by southbound interfaces to program
forwarding devices [70].

SDN adoption has until now mainly focused on data-center (DC) networks and
intra-domain wide area networks (WANs) [87, 70]. For example, Google is us-
ing B4 [64], its software-defined inter-DC WAN solution, to interconnect data-
centers that are geographically distributed. The centralized control plane approach
of SDN has enabled B4 to achieve 100% utilization level on many of the links
of the network. Microsoft uses an SDN based solution called SWAN (software-
driven WAN), for inter-data center commmunication [59]. SWAN is also able to

2.1. Background 17

achieve high level of utilization.

In comparison, inter-domain WANs still heavily rely on legacy routing and traffic
engineering technologies [87]. In inter-domain networks, autonomous systems
are operated by different parties with different network equipment, policies, and
business objectives that cannot be shared with other networks [87]. This com-
plicates the process of applying a logically centralized control across multiple ad-
ministrative domains. Software Defined Internet Exchange Point (SDX), which is
an SDN based Internet Exchange Point (IXP) where network operators exchange
traffic and route information, has been proposed to enable SDN based inter-domain
WAN [69, 49].

Virtual
Computing

Virtualisation Layer

Virtual
Storage

Virtual
Network

Computing
Hardware

Storage
Hardware

Network
Hardware

NFVI

OSS/BSS

EMS 1 EMS 2 EMS 3

VNF 1 VNF 2 VNF 3

Os-Ma

Ve-Vnfm

Nf-Vi

Vn-Nf

VI-Ha Hardware
resources

4

2

3

NFV
Orchestrator

Virtual
Infrastructure

Manager(s)

VNF
Manager(s)

Or-Vnfm

Vi-Vnfm

NFV Management and Orchestration

Or-Vi

Service VNF
and

Infrastructure
Description

SDN Controller &
SDN Application

1

Figure 2.5: SDN in NFV reference architectural framework [38].

Relationship Between NFV and SDN

Software-defined networking (SDN) and network function virtualization (NFV)
are enabling technologies for the softwarization of the telecommunication net-
work. SDN and NFV can be implemented and used independently. However,
if applied together they highly complement each other. NFV can benefit from the
functionalities provided by SDN and vise-versa [88]. The SDN controller is not
necessarily a standalone physical entity, which could for example be a software
component which runs on a VM or container (i.e., an NF instances). Thus, SDN

18 Background and Related Work

can make use of the elasticity, dynamicity and agility that NFV provides for run-
ning the SDN controller. On the other hand, SDN can be used to steer the network
traffic through a chain of NF instances in an NFV-enabled network. For example,
the OpenDaylight SDN controller [6] presents a service chaining solution built on
top of Software Defined Networking (SDN) using network service header (NSH).

ETSI has defined an SDN integrated NFV reference framework, which specifies
possible locations for the SDN controller, applications and resources (physical/virtual
routers and switches) in the NFV framework [38], which is shown in Fig 2.5. The
classical location of the SDN controller is the NFVI, other possible choices are as
part of the VIM, VNF or the OSS. The data plane forwarding components which
the SDN controller manages might be physical routers/switches or virtual switches
(vSwitches). The SDN controller will communicate with the NFV orchestrator
through the orchestration interface to exchange information like the network topo-
logy [38].

2.2 Related Work
In this section, the state-of-the-art in the reviewed literature is presented focusing
on the problems addressed in this thesis.

2.2.1 Resource Allocation in NFV

To enable flexible NF orchestration, resource allocation decisions need to be made
both at network-level (NF placement) and flow-level (flow routing). The Network-
level decisions include: (1) finding the optimal number of NF instances, and (2)
placing the instances at optimal locations. The flow-level decisions consist of: (3)
selecting the NF instances that will serve the flows, and (4) finding optimal routing
paths. The NF placement and flow routing decisions are inter-dependent since
flows will be assigned instances that are instantiated during NF placement. Thus,
for efficient resource allocation, all the four decisions need to be made holistically.

The NFV resource allocation problem has some similarities with the virtual net-
work embedding problem (VNE), which is a problem of allocating resources to
virtual network requests onto a shared substrate network i.e., the physical net-
work. VNE deals with the allocation of virtual resources both in nodes (virtual
nodes mapped to physical nodes) and links (virtual links mapped to paths con-
necting the virtual nodes) [44]. The NFs in a service chain can be regarded as the
virtual nodes in VNE. However, there are important differences between the two
problems [16], which include,

1. NF instance sharing: In NFV resource allocation the virtual nodes, i.e., the NF
instances, are shared among multiple flows. That is an NF instance might be

2.2. Related Work 19

used by multiple service chains [16, 86]. However, in VNE virtual nodes in
different virtual networks are independent.

2. NF ordering in a chain: In NFV, a flow’s traffic has to traverse through the NFs
of the service chain in a specific sequence as required by the network service [16,
123]. For example, traffic might have to traverse through a firewall before going
through a load balancer. However, the VNE problem does not impose this kind
of constraint.

Therefore, the NFV resource allocation and VNE problems are different and need
to be dealt with accordingly.

In addition, the NFV resource allocation decisions have to be made taking into
account the inherent constraints on network resources while fulfilling the service
performance and availability requirements. Service providers have a limited set of
resources, which include bandwidth of links and computing as well as memory of
network nodes. Thus, capacity constraints of resources should not be violated and
also resources should be used efficiently. Therefore, the NFV resource allocation
decisions need to be made taking into account multiple objectives. In this thesis,
the following identified factors will be focused on for efficient resource allocation
in an NFV-enabled network.

• (P.1): The inter-dependency between network-level (NF placement) and flow-
level (flow routing) problems has to be captured in the resource allocation de-
cision making.

• (P.2): An NF instance should be shared by multiple flows, whose service chains
include the NF type of the instance, at the maximum possible extent.

• (P.3): The precedence constraints among NFs of a service chain need to be taken
into account. Disregarding this in the NF selection process might result in the
elongation of the path of the flow.

• (P.4): It is important to strike a balance between multiple objectives that could
at times be in conflict with each other.

In summary, the NFV resource allocation problem is a new and challenging prob-
lem. Considering the paramount importance of NFV resource allocation various
approaches have been proposed in the literature, which include both exact ap-
proaches as well as heuristics and metaheuristics. However, the reviewed ap-
proaches disregard one or multiple of the factors that are required for efficient
allocation of resources as listed above. Survey of the existing approaches can be

20 Background and Related Work

found in [57, 117]. Below we give a review of the most related and recent literat-
ure.

Exact approaches

Mathematical programming methods such as Integer Linear Programming (ILP)
and Mixed ILP (MILP) are commonly used by the exact approaches, which find
the optimal solutions [12, 78, 90, 111, 104, 91, 47, 62, 92, 86, 26, 65, 60, 75, 28,
109]. The models are solved by using solvers such as CPLEX, LINGO, GLPK,
Gurobi [117]. Some of the existing models do not consider one or more of the
factors listed above (P.1 - P.4) in their resource allocation. For example, the models
in [12, 78, 90, 111, 109] do not fulfill (P.3) as they do not route flows keeping the
ordering constraint among NFs of their service chains. Some other models do not
capture (P.1) as they solve either the NF placement problem [26, 75, 28] or the
flow routing problem [65, 60]. More recently, comprehensive models have been
proposed in [47, 62, 92].

However, the NFV resource allocation problem is NP-hard [86, 103]. Therefore,
the run time of solving the models increases exponentially with an increase in the
size of the network or number of flow requests. Efforts have been made to increase
the scalablity of solving the models in [62, 92, 109]. However, the performance
achieved even after these improvements still fails short of what is demanded in real
systems. For example, the model in [62] can only be used in networks that do not
have more than 50 nodes and takes tens of minutes to allocate resources, which
is not acceptable in real time systems. To address the scalability problem that is
associated with the exact approaches, heuristic and meta heuristic approaches have
been proposed.

Heuristic and metaheuristic approaches

A number of heuristic approaches have been proposed in the literature. They can
be divided into three groups. The first group of algorithms solve either the NF
placement or the flow routing problem only (i.e., not considering P.1). Heuristics
for the NF placement have been proposed in [25, 26, 19, 21, 75, 28] and flow
routing algorithms are proposed in [65, 61, 35, 85, 60]. These algorithms do not
capture the inter-dependency between the NF placement and flow routing decisions
as they solve them separately.

The second group of algorithms solve the NFV resource allocation problem as
a virtual network embedding (VNE) problem in which the network or graph to
be embedded is the service chain request with the NFs being the virtual nodes
[115, 84, 34, 78, 18]. These algorithms create NF instances for each of the admitted
requests so NF instances are not being shared by multiple flows, not satisfying P.2.

2.2. Related Work 21

As a result, these algorithms are inefficient in their allocation of resources.

In the final group are algorithms that do not take into account the inherent trade-off
across multiple objectives that need to be addressed for efficient allocation of re-
sources in NFV-enabled networks. For example, the resource allocation algorithm
in [105], [103], [33] and centrality-based heuristics in [21] and [13] avoid path
stretch by serving the flows utilizing NF instances placed on its shortest path dis-
regarding its effect on network utilization. In CoMb [105], a flow is constrained to
use NF instances running in the same node that is found on its path. However, the
CoMb approach can considerably limit the utilization of the network since flows
are constrained to stay on their path and use a single node for all their services.
Relatively, the centrality-based heuristic in [13] has a relaxed restriction as it al-
lows a flow to use NFs placed on more than one node, but still the nodes have to
be located on the shortest path of the flow.

On the other hand, algorithms proposed in [94, 36, 71, 67, 84] try to increase the
utilization of the network disregarding the path stretch. In [71], an algorithm that
tries to make better use of network resources by promoting flows to reuse instances
which have been created instead of instantiating new ones is proposed. In [36],
the objective of consolidating NF instances to reduce the number of running host
servers is considered. However, they do not consider the effect this will have on the
performance of the flows and the SLA satisfaction. Another heuristic approach is
the E2 framework [94] which is developed for allocating NF instances and routing
flows inside a central office or small data centers. The placement is modeled as a
graph partitioning problem and solved using a modified Kernighan-Lin heuristic.
Flows are assigned to NFs balancing load across the NF instances.

Thus, there is a need for a resource allocation scheme that enables efficient utiliz-
ation of resources by considering all the four points, i.e., P.1 to P.4, which leads us
to the first research question

RQ1. How to make efficient network-level and flow-level resource allocation de-
cisions considering their inter-dependency and balancing across multiple object-
ives ?

2.2.2 Network Structural Dependency

Due to the inherent structural dependency in a network, the impact of a node’s
failure on the connectivity of the other network nodes varies from node to node.
For example, in a star topology, in which all the nodes except the central node have
only one link that is connected to the central node, failure of the central node will
result in a connectivity loss between all nodes of the network while failure of any
other node won’t have an effect on the network connectivity of the others. Here

22 Background and Related Work

arises an important question, what measures may be used to assess the network
structural dependency-caused impact?

The impact of a node’s failure might be analyzed at different levels: (1) at a path
level on information communication from one node to another node in the network,
(2) at the node level on information communication from one node to other nodes
in the network and (3) at the network level on information communication among
any nodes in the network.

A number of graph-theoretic or centrality measures have been introduced for quan-
tifying the importance of a node in a network. The classical centrality measures
are degree, closeness and betweeness [46]. A brief description of these measures
is given below. For the purpose of this, a network which is represented as an un-
directed graph G(N ,L), where N is the set of N nodes and L is the set of L links
of the network, with each link having a weight of one, is considered. The shortest
path distance, also known as the geodesic, between nodes i and j is represented as
dij .

The degree centrality measures the importance of a node by the number of ties it
has with the other network nodes. The degree centrality of node i is given as

CD
i =

∑

j∈N
aij (2.1)

where aij = 1 if there is a link between nodes i and j, zero otherwise. Thus,
according to the degree centrality, the more the number of links of a node the more
important the node is.

The closeness centrality [17] quantifies the importance of a node by how near it
is with the other nodes of the network. It is measured based on the geodesic. The
closeness centrality of node i is given as

CC
i =

N − 1∑
j∈N dij

, (2.2)

where dij is the geodesic between nodes i and j. The inverse of CC
i , i.e.,

∑
j∈N dij
N−1 ,

is the average distance from node i to all the other nodes. Thus, the smallest the
average distance the more important a node is based on the closeness centrality.

The betweenness centrality assesses the importance of a node by the number of
shortest paths that pass through the node. The betweenness centrality of node i is
given as

CB
k =

∑

i

∑

j

gikj
gij

, (2.3)

2.2. Related Work 23

where gij is the number of geodesic between nodes i and j, and gikj is the number
of geodesic between nodes i and j which pass through node k. So based on the
betweenness centrality measure, the more the number of routes that go through a
node the more important the node is.

In addition, a number of variants of these classical measures have been proposed
in the literature [20]. However, these measures are not suitable for the structural
dependency-impact problem. This is because their definition of importance of a
node is based on prominence and reachability [14], not considering connectivity,
which is the base for the network structural dependency analysis.

Existing network structural dependency measures

In [74], a new class of centrality measures called Delta centrality are introduced.
Delta centrality measures assess the importance of a node in relation to the ability
of a network to respond to the deactivation of the node from the network. These
measures quantify the structural dependency at the network level, i.e., the effect
failure of a node will have on the information communication between any nodes
of the network. A type of delta centrality, referred to as information centrality, is
also proposed in [74]. The information centrality is given as

CI
i =

E[G]− E[G−i]

E[G]
(2.4)

where G−i is graph G with node i removed. E[G] and E[G−i] denote the effi-
ciency of the network G and G−i respectively. The network efficiency, which is
initially introduced in [73] based on the geodesic, is defined as:

E[G] =
1

N(N − 1)

∑

∀i 6=j∈N

1

dij
. (2.5)

Information centrality measures the structural dependency only at the network
level, i.e., the impact failure of a node will have on the connectivity among the
rest of the network nodes.

In [66], measures that quantify the structural dependency at path and node levels
are introduced. The path level measure, denoted as D(i → j|n), measures the
impact of a node n on the path from node i to node j. It is defined as

D(i → j|n) =
1

dij
− 1

d−n
ij

, (2.6)

where d−n
ij denotes the geodesic distance between nodes i and j in the network

G−n. By the definitions, it is clear that d−n
ij ≥ dij . Also in [66], based on the

24 Background and Related Work

path level measure D(i → j|n), a node level measure, denoted as D(i|n), is
introduced. D(i|n) measures the average influence or impact of node n on node i
and is defined as:

D(i|n) =
1

N − 1

∑

j∈N−n

D(i → j|n), (2.7)

where the set N−n is equivalent with the set of nodes N with node n removed. By
applying equation (2.6), it can be further written as

D(i|n) =
1

N − 1

∑

j∈N−n

(
1

dij
− 1

d−n
ij

). (2.8)

However, the existing dependency measures have a major shortcoming, which is
they do not take into account network fragmentation that failure of a node might
cause. This limits their applicability and even correctness in analyzing the network
structural dependency. Thus, there is a need for new network structural depend-
ency measures that takes into explicit consideration if network fragmentation due
to failure or removal of a node.

Critical Node Detection

Critical nodes of a network are nodes whose removal significantly degrades net-
work connectivity [72]. That is removal of the critical nodes results in the max-
imum network fragmentation [14]. The classical centrality measures like degree,
closeness and betweenness assess the importance of a node based on only its char-
acteristics [14, 48], without considering the effect its removal will have on the
other nodes. A comparative study in [48] has demonstrated that the criticality of
a node in a network cannot be effectively assessed independent of evaluating the
connectivity between the other remaining nodes in the network. Thus, these clas-
sical measures are not suitable for finding the critical nodes of a network [14, 32].

In [14], an optimization based approach for identifying critical nodes was intro-
duced. Given a graph and an integer k, the objective of the critical node problem
(CNP) is to find a set of k nodes in the graph whose deletion results in the max-
imum network fragmentation [14]. Since then a number of variants of the CNP
problem have been proposed in the literature. A recent survey provides a review
of these works [72]. However, the optimization model approach has shortcomings
the first of which is scalability. The CNP problem has been proven to be NP-
complete [14], thus the model can not be used for large-scale networks. Although
heuristics have been proposed for addressing this problem [14], the heuristics are
sub-optimal. The second problem is that the optimization model does not quantify
the criticality level of the nodes it identifies. The number of critical nodes to be

2.2. Related Work 25

determined is given to the algorithm as an input. However, depending on the struc-
ture of the network under consideration failure of the critical nodes might have
different levels of impact, so the number of critical nodes is generally a function
of the network type.

In [48], it is shown that the impact of removal or failure of a node is dependent
on the spatial structure of the network, not necessarily on the characteristics of
individual nodes or arcs. Network-level structural dependency measures quantify
the effect that removal of a node will have on information communication among
the other nodes of the network. Thus, the critical node detection problem has
similarities with the network structural dependency analysis problem. However,
the existing network structural dependency measures do not factor in fragment-
ation [74], thus they are also not suitable for identifying the critical nodes of a
network [14, 32]. To address this issue, the following research question is formu-
lated in this thesis work.

RQ2. How to measure network structural dependencies at path, node and the
network levels by taking into consideration the possibility of fragmentation of the
network?

2.2.3 Service Availability in NFV

NFV-enabled networks should be able to support services that have diverse levels
of availability requirements ranging from best-effort services like data transfer
to real time communication based services that demand high-levels of availabil-
ity [40]. Redundancy based fault tolerance strategy is often required for fulfilling
the availability requirement of services as primary service chains might not have
the required availability levels [31, 42]. Considering this, redundancy allocation
schemes both exact [112, 58] as well as based on heuristics [42, 56, 43, 41, 30]
have been proposed for the NFV redundancy allocation problem.

In [58] three ILP models which allocate service chains that are resilient against
single-node/link, single-link and single-node failures. A scalable exact method
based on a decomposition model using column generation is proposed for allocat-
ing link-disjoint backup path in [112]. However, both [112, 58] do not verify if the
backup chain allocated is able to satisfy the service availability requirement. Thus,
these schemes are not able to guarantee that the services provisioned to users are
in accordance with their availability requirements.

A greedy algorithm that allocates off-site backup NFs by iteratively allocating
backup to the least available NF of a service chain is proposed in [41]. A Cost-
Importance Measure (CIM) is used for selecting the NF instance to be provi-
sioned a backup instead of the least available NF in [30]. In [120] backup NFs

26 Background and Related Work

are allocated with the purpose of minimizing the backup resource consumption
while considering the heterogeneity of VNF resource requirements. The schemes
in [30, 41, 120] consider cloud services that require upto 99% or 99.9% service
availability. The authors of [41] extend their work in [42] considering hetero-
geneous availability requirements including carrier-grade services that demand
99.999% availability with the objective of maximizing the number of service chain
requests served. The adoption of simplified assumptions such as all the backup
nodes have the same availability [120, 56], considering only the failure of NFs
and disregarding physical nodes, or assuming NF instances fail independently ir-
respective of their placement [42] limit the applicability of these works.

Redundancy can be costly so efficient utilization of resources is crucial in backup
allocation. In traditional IP/MPLS networks sharing of resources in redundancy
has been shown to be effective in achieving efficiency [99, 77, 114]. In [95] com-
puting resources on the same physical host machine are allowed to be shared by ad-
jacent VNF backups, but, a backup NF instance serves one flow or single-tenancy,
as in [95, 30, 120]. In [76], a multi-tenancy based approach that allows multiple
flows to be served by a backup NF instance is proposed and shown to outperforms
single-tenancy based approaches. However, in [76], a backup chain is constrained
to only use NFs hosted on one node, similar to [43], which limits the resource util-
ization efficiency as backup chains cannot be constructed by utilizing NFs from
different host nodes there.

Another important aspect that has been disregarded in the existing works is the
effect network structural/topological dependencies have on the redundancy. Unless
planned carefully, network structural dependencies could lead to the failure of both
the primary and backup chains, undermining the effect of the redundancy. For
instance, in [76], a neighboring node of a primary node is selected as a backup
without checking if the two nodes are inherently dependent due to the topology.
These trigger the following research question:

RQ3. How to perform redundancy allocation considering the effect of network
structural dependencies and utilizing resources efficiently?

Chapter 3

Research Methodology and
Contributions

In this chapter, the research methodology followed in the thesis work is explained
first. Then, the research contributions made are highlighted followed by a brief
summary of the included papers.

3.1 Research Methodology
The research methodology adopted in this thesis work follows the standard sci-
entific research process [68], and is outlined in Fig. 3.1. For a research problem,
the related literature is first studied extensively, which leads to the development
of the research questions. Following that, the system model and assumptions are
defined. In this thesis work, the research questions are addressed by proposing
measures, mathematical optimization models and/or heuristic algorithms based on
the research questions being tackled.

Mathematical optimization

A mathematical optimization problem, or just an optimization problem, has the
form

minimize
x

f0(x)

subject to fi(x) ≤ bi, ; i = 1, . . . ,m.
(3.1)

where the vector x = (x1, . . . , xn) is the optimization variable of the problem,
the function f0(x) : Rn −→ R is the objective function, while the functions
fi(x) : R

n −→ R, i = 1, . . . ,m, are the inequality constraint functions, and the
constants bi, i = 1, . . . ,m, are the limits, or bounds, for the constraints [22].

27

28 Research Methodology and Contributions

Literature review

Research questions

System model &
assumptions

Model Heuristic algorithm Measures

Solvers (CPLEX) Implementation or
Simulation (in C++, Matlab)

Experiments Experiments

Results Results

ob
se

rv
at

io
ns

Im
pr

ov
em

en
ts

Im
pr

ov
em

en
ts

Research
problem

Figure 3.1: Research methodology

A vector x∗ is called optimal, or a solution of the problem, if it has the smallest
objective value among all vectors that satisfy the constraints, for any feasible z
i.e fi(z) ≤ bi, for all i, . . . ,m and f0(z) >= f0(x∗). There are different classes
of optimization problems based on the form of the objection and constraint func-
tions. For example, if the objective and constraint functions are all linear, the
optimization problem is referred to as linear program. In Quadratic programming
optimization problems the objective function is a quadratic function and the con-
straint functions are linear. Convex optimization problems are a class of optimiza-
tion problems whereby the objective and constraint functions are convex. Convex
optimization can also be defined as optimizing a convex function over a convex
set.

Definition 1 (Convex set) A set C is convex if the line segment between any two

3.1. Research Methodology 29

points in C lies in C, i.e., if for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we
have

θx1 + (1− θ)x2 ∈ C (3.2)

Definition 2 (Convex function) A function f : Rn → R is convex, if for every
x, y ∈ Rn and 0 ≤ θ ≤ 1 the inequality (3.3) is satisfied.

f (θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (3.3)

Convex optimization encompasses different optimization classes including least
square, linear programming, geometric programming e.t.c,. The complexity of
an optimization problem depends on factors such as the class of the optimization
problem (i.e., the form of the objective and constraint functions), and the size of
the problem (i.e., the number of variables and constraint functions). The optimal
solution of convex optimization problem can be found in polynomial time, even
for large-sized problems, using effective algorithms such as interior-point method,
sub-gradient method, [22].

Another class of optimization problems is discrete optimization in which some or
all of the variables are restricted to be discrete. Integer linear programming (ILP) is
a type of discrete optimization in which the variables are integers and the objective
and constraint functions are linear. Algorithms such as cutting plane methods and
branch and bound are able to find exact solutions of ILP problems for small-sized
problems [108]. Optimization solvers such as CPLEX [27] and Gurobi [50] have
implementation of these algorithms. ILP problems are generally NP-hard, so the
run time of the algorithms increases exponentially with an increase in the size of
the network. Thus, heuristic algorithms are required for solving most practical ILP
problems

NFV resource allocation problem is modeled as an ILP (Integer Linear Program).
A number of experiments are conducted on a small network by varying different
parameters. The purpose of these experiments is to get insight into the optimal
decision making. Based on these insights, heuristic algorithms that are scalable
and give close to optimal solutions are developed.

Heuristic algorithms

The observations obtained from solving the mathematical models are used as input
for developing scalable heuristic algorithms. The proposed algorithms are imple-
mented using C++ and Matlab. Several experiments are conducted to validate and
test the performance of the algorithms. The test results are used to further improve
the algorithms. In addition, the results of the algorithms are compared with the

30 Research Methodology and Contributions

optimal solutions of the models for small networks. This is done to test how close
the results of the heuristic algorithms are to the optimal solutions.

When required, besides the implementation of the tests, simulations are conducted
to test the performance of algorithms. The simulation settings used are close to
real systems in which flows arrive to a system randomly, get service for a random
amount of time and depart. The performance of the models is analyzed by using
realistic network topologies such as the Rocketfuel network topology [110]. In
addition, the performance of the algorithms is compared with the existing state-of-
the art algorithms.

Measures

For the network structural dependency analysis, measures are developed. The per-
formance of the measures is compared with the existing measures using different
network topologies.

- Dependency
index

measures

- AllOne and
AllAny ILP

models
- Structural
correlation

- CoShare
-NF shared
reservation
- Structural
correlation

Paper A Paper B
Paper C

Paper D

Paper E

- ILP model
-ClusPR

- ILP model
-ClusPR

-iClusPR for
dynamic
scaling

Load
balancing

Resource
utilization

Delay
Availability

Structural
dependency

Critical node

Shared
reservation

Figure 3.2: Main research contributions in relation to the included papers

3.2. Research Contributions 31

3.2 Research Contributions
In this thesis work, six main contributions are made. Fig 3.2 highlights the main
contributions in relation to the included papers. The contributions are explained in
brief below,

• Contribution 1 : The first contribution of this thesis is an Integer Linear Pro-
gramming (ILP) model that optimally allocates resources for NFV-enabled net-
works (papers A and B). The model is comprehensive as it solves the NF place-
ment and flow routing problems holistically thereby capturing their inter-dependency.
It also ensures that the delay performance requirements of flows are met, the
ordering constraint among NF of a service chain is kept and the capacity con-
straints of major resources such as, processing, memory, bandwidth are not vi-
olated. In addition, insightful observations are made by solving the proposed
model on different settings.

• Contribution 2 : The observations from Contribution 1 are used as input for
developing a scalable resource allocation algorithm called ClusPR (paper A
and B). ClusPR strikes a balance across multiple objectives (minimizing path
stretch (delay), maximizing total utilization of the network and balancing the
load among NF instances). ClusPR captures the inter-dependency between NF
placement and flow routing decisions by utilizing a new approach that is based
on clustering. This approach helps balance between the objectives of minim-
izing path stretch and maximizing network utilization. A novel flow routing
algorithm that is based on dynamic programming is used to strike a balance
between minimizing the path stretch and balancing the load among NF instances
in Paper B. Experimental results show that ClusPR outperforms the state-of-the
art approaches it is compared with.

• Contribution 3 : The third contribution is a dynamic scaling algorithm referred
as iClusPR (paper B). iClusPR adjusts the number of NF instances in the net-
work depending on the traffic demand and network status. iClusPR is developed
based on the principle of ClusPR so it also inherits the performance advantages
of ClusPR. The performance of iClusPR is analyzed in a simulation setting that
resembles a real system setting.

• Contribution 4 : A set of new measures called dependency indexes that quantify
the network structural dependencies at different levels (i.e., path, node and net-
work) are the fourth contribution. The path, node and network dependency in-
dexes assess the dependency between a node, and a path, another node and the
network respectively. The novelty of the measures is their ability to take into
explicit consideration the possibility of network fragmentation upon removal or

32 Research Methodology and Contributions

failure of a node. The usability of the network dependency index in identifying
critical nodes of a network is also demonstrated in paper C. In addition, the node
dependency index is used in papers D and E to identify nodes that have strong
structural correlation with a given node, i.e., identify nodes that are likely to
become unavailable following failure of the node due to their network structural
dependency.

• Contribution 5 : To fulfill the high-availability requirement of carrier-grade ser-
vice, which could reach five nines (0.99999) or higher, two ILP models referred
to as AllOne and AllAny are proposed for the optimal assignment of redundant
or backup chains in paper D. The proposed models apply chain level redund-
ancy where they assign backup NF instances for each of the NFs of a primary
chain. The difference between them is that in the AllOne model each flow uses
one backup node for all of the NFs of its chain while the AllAny model is more
relaxed as the backup NFs of a chain could be hosted on different backup nodes.

• Contribution 6 : A scalable and efficient backup chain allocation algorithm
called CoShare is proposed in paper E. To utilize resources efficiently in CoShare,
a backup NF instance serves more than one flows, a backup chain can be con-
structed by utilizing NF instances hosted on different nodes and an approach
called NF shared reservation, in which the same reserved capacity at a backup
NF instance can be shared among flows that are not susceptible to simultan-
eous failures, is employed. CoShare also assigns backups meticulously to avoid
the unavailability of both the primary and backup chains due to correlated un-
availability caused by network structural dependency. In addition, CoShare also
ensures that the backup chain delay as well as availability requirements of flows
are met.

These six contributions are purposed at addressing the three research questions
of the PhD work. Specifically, contributions 1-3 answer the first research ques-
tion (RQ1), contribution 4 addresses the second research question (RQ2). The
third research question (RQ3) is tackled by contributions 5 and 6.

3.3 Summary of the Included Papers
In this section, a summary of the papers included in the thesis is given.

Publication A

Yordanos Tibebu Woldeyohannes, Ali Mohammadkhan, K. K. Ramakrishnan, and
Yuming Jiang. “A Scalable Resource Allocation Scheme for NFV: Balancing Util-
ization and Path Stretch.” 21st Conference on Innovations in Clouds, Internet and
Networks (ICIN), Paris, February 2018.

3.3. Summary of the Included Papers 33

The NFV resource allocation problem is addressed in this paper. First a com-
prehensive multiple objective MILP model is proposed for the problem. The ob-
jectives of the model are maximizing the number of flows admitted, minimizing
the utilization of the nodes and links with the purpose of leaving spare resources
for future incoming flows. The model solves both the NF placement and flow
routing (i.e., assignment of NF instances and end-to-end routing while keeping
the ordering) problems simultaneously, thus factoring in their inter-dependency.
In addition, besides capacity constraints on the resources (processing, memory,
bandwidth), flows’ performance constraints in terms of delay are incorporated in
the model. The model is solved using CPLEX for different kinds of setting (like
varying chain length, network capacity). By analyzing the solutions, four insight-
ful observations are made.

Based on the four observations, a scalable NFV resource allocation algorithm
called ClusPR is proposed to address the scalability problem of the model, which
is caused by the NP-hardness of the NFV resource allocation problem. ClusPR
uses a divide-and-conquer approach and solves the NF placement and flow routing
problems sequentially. To capture the inter-dependency between the two problems,
a novel approach that is based on clustering is adopted. This approach enables
ClusPR to create a balance between the objectives of maximizing the utilization of
the network and minimizing the path stretch, which is the additional delay from the
shortest path delay. The state-of-the-art approaches in the literature either maxim-
ize the utilization of network disregarding its effect on the path stretch or delay, or
avoid path stretch by placing the NF instances on the shortest path of flows without
considering the utilization of the network. In comparison to the state-of-the-art ap-
proaches, ClusPR is able to decrease the average delay by 1.2× − 1.6× and the
worst-case delay by more than 10×, while admitting the same or slightly larger
number of flows and satisfying the delay requirement of 25%-35% more flows.

Publication B

Yordanos Tibebu Woldeyohannes, Ali Mohammadkhan, K. K. Ramakrishnan, and
Yuming Jiang.“ClusPR: Balancing Multiple Objectives at Scale for NFV resource
allocation”. IEEE Transactions on Network and Service Management 15, no. 4
(2018): 1307-1321.
.

In paper B, besides the objectives of maximizing the utilization of resources and
minimizing the path stretch, load balancing is incorporated in ClusPR. A novel
flow routing algorithm that is based on dynamic programming is proposed to bal-
ance the load among NF instances while minimizing the path stretch. Simulation
results demonstrate that the proposed algorithm is able to balance the load and

34 Research Methodology and Contributions

also that load balancing has an added advantage of increasing the number of flows
whose delay requirement is satisfied.

One of the advantages of using NFV is the flexibility of creating instances dynam-
ically depending on the traffic demand and network status. Considering this, an
online dynamic scaling algorithm, referred to as iClusPR, is proposed. iClusPR
inherits the architecture of ClusPR so it also shares its properties like minimizing
path stretch and load balancing. iClusPR uses a threshold based approach to do
horizontal scaling of the NF instances (i.e., increase/decrease the number of NF
instances) in a network based on the traffic demand. The performance of iClusPR
is analyzed by using an experimental setting that resembles a real system in which
flows arrive randomly, get serviced for a random amount of time and depart.

Publication C

Yordanos Tibebu Woldeyohannes, and Yuming Jiang. “Measures for Network
Structural Dependency Analysis”. IEEE Communications Letters 22.10 (2018):
2052-2055.

In this paper, we demonstrate that the existing network structural dependency
measures have a major shortcoming, which is that they do not consider network
fragmentation inflicted by failure of a node. The effect this shortcoming has on
the values and correctness of the structural analysis is demonstrated by making
use of an example. In addition, the unification of the existing measures is also
proven. A new set of network structural dependency analysis measures, called de-
pendency indexes, which consider fragmentation that might be caused by failure
of a node are proposed to address the problem. The proposed measures assess the
dependency at the path level on information communication between two nodes (
path dependency index), at the node level on information communication from any
node in the network (node dependency index), and at the network level on inform-
ation communication between any one of the network nodes (network dependency
index). It is also proven that the values of the network dependency index are a
function of the level of fragmentation that the failure of a node will cause.

In addition, the usefulness of the network dependency index in solving the critical
node detection problem is demonstrated. The performance of the proposed meas-
ures is assessed on different types and sizes of networks ranging from small to
large scale. The results show that the critical nodes identified by network depend-
ency index are more in line with intuition compared to other measures like node
degree.

3.3. Summary of the Included Papers 35

Publication D

Yordanos Tibebu Woldeyohannes, Besmir Tola, and Yuming Jiang.“Towards Carrier-
Grade Service Provisioning in NFV.” 15th International Conference on the Design
of Reliable Communication Networks (DRCN), Coimbra, Portugal 2019.

In paper D, the problem of guaranteeing service availability in NFV is addressed.
The “de-facto” method for boosting and ensuring service availability is through
redundancy. Considering this, redundancy allocation schemes are proposed. The
schemes place backup NF instances and assign them to flows depending on their
availability requirement. However, unless planned carefully, network structural
dependencies could make the redundancy ineffective by causing the unavailability
of the backup as well. Thus, a primary NF instance should not have a strong
structural correlation with its backup counterpart. In paper D, an algorithm which
identifies network nodes that have high level of structural correlation is proposed.
The algorithm uses the node dependency index, proposed in paper C, to quantify
the level of dependency between a pair of network nodes.

To tolerate correlated unavailability that is caused by network structural depend-
encies, flows are not assigned backup NF instances which are hosted on backup
nodes having strong structural correlation with a primary node of the flow. The
redundancy allocation schemes, referred to as AllOne and AllAny, utilize the pro-
posed algorithm for identifying nodes that have high level of structural correla-
tion. Both AllOne and AllAny models assign chain level redundancy that is all
the NFs of a primary chain are assigned a backup. Their difference is that in the
AllOne model all the backup NFs of a flow are hosted on one backup node, while
in the AllAny model the backup NFs of a flow might be hosted on one or more
backup nodes. The models are solved by using CPLEX. The results show that not
considering the structural dependency affects the effectiveness of the redundancy
allocation effort. When the structural correlation is not taken into account during
the redundancy allocation, many of the flows that are ideally expected to have five
nines (99.999%) availability may actually only receive two nines (99%) or three
nines (99.9%) availability.

Publication E

Yordanos Tibebu Woldeyohannes, Besmir Tola, Yuming Jiang, and K. K. Ra-
makrishnan. “CoShare: An Efficient Approach for Redundancy Allocation in NFV”,
available on arXiv at https://arxiv.org/abs/2008.13453, and to be submitted to a
journal.

Although the AllOne and AllAny models proposed in paper D give optimal res-
ults, they are not scalable for large scale networks. To address this problem, a

36 Research Methodology and Contributions

scalable redundancy allocation scheme called CoShare is proposed. To avert the
effect of network structural dependencies that might lead to the unavailability of
both the primary and backup chains, CoShare meticulously assigns backup chains
by considering the structural dependency among nodes. For this purpose, CoShare
utilizes an algorithm that identifies structurally correlated nodes using the network
dependency index measure. For utilizing resources efficiently, CoShare takes ad-
vantage of the flexibility benefits of NFV by constructing a backup chain utilizing
NF instances that are potentially hosted on different nodes and serving multiple
flows at each NF instance.

CoShare also enables the sharing of backup resources by adopting an approach
called NF shared reservation. In NF shared reservation, the reserved processing
capacity of an NF instance can be shared among multiple flows whose primary
chains are not susceptible to simultaneous failures. Service chains that do not have
a common node, whose flows are referred to as independent flows, are not expec-
ted to fail simultaneously upon failure of a single node. In NF shared reservation,
the corresponding flows can share a reserved processing capacity at an NF instance
provided that the flows have the NF type in their service chains. In this case, the
instance will reserve a capacity that is enough for only one of the independent
flows. CoShare incorporates NF shared reservation while allocating backup ser-
vice chains to flows. The results show that by adopting NF shared reservation,
CoShare is able to significantly decrease the resource overbuild (i.e., the number
of backup NF instances as a percentage of the number of primary NF instances).

Chapter 4

Conclusion and Future Work

4.1 Conclusion
The traditional approach of having a dedicated hardware device designed to per-
form a specific network functionality has proven to be costly and inflexible, slow-
ing the innovation of new network services. NFV alters this rigid architecture by
decoupling the software implementation of NFs from the dedicated hardware, and
instead runs the NF software on a virtualized environment (e.g., VMs or contain-
ers) created on top of general-purpose hardware. Thus, different types of NFs
can be consolidated into a given hardware and NF instances can be created and/or
removed dynamically. Thus, NFV brings flexibility in the management and pro-
visioning of network services. However, NFV also introduces new resource al-
location problems that are of paramount importance for actualizing the flexibility.
This thesis addresses the problem of allocating resources efficiently in an NFV-
enabled network by striking a balance across multiple objectives while fulfilling
the service performance and availability requirements of flows. In summary, the
solutions proposed for addressing this problem are:

• An efficient NFV resource allocation algorithm called ClusPR, which is de-
veloped based on observations made in solving an ILP model proposed for find-
ing the optimal solution. Compared to the state-of-the art approaches, ClusPR
is able to satisfy the service performance requirement of more flows. An online
algorithm called iClusPR that performs horizontal scaling is also proposed.

• A set of new network structural dependency measures, called dependency in-
dexes, are proposed to overcome a major shortcoming of the existing measures,
which is that they do not take into account the possibility of network fragment-

37

38 Conclusion and Future Work

ation inflicted by failure of a node. In addition, the usability of the measures
in identifying critical nodes of a network and in finding nodes that have strong
structural correlation is demonstrated.

• An efficient redundancy allocation scheme referred to as CoShare is proposed
to guarantee the service availability requirements of flows. CoShare efficiently
utilizes resources by adopting a new approach called NF shared reservation,
which enables the sharing of reserved processing capacity at an NF instance
among flows whose primary chains are not susceptible to simultaneous failures.

4.1.1 Discussion on Generality

The measures and algorithms proposed in this thesis are applicable directly or in
modified form on other related problems. For instance, the dynamic programming
based routing algorithm of ClusPR can be utilized for allocating resources by bal-
ancing across multiple objectives in Virtual Network Embedding (VNE) [44],
that is the problem of embedding virtual networks in substrate networks. The
CoShare algorithm might also be adapted and used to enable efficient utilization
of resources for the redundancy allocation problem in VNE. The proposed depend-
ency index measures, on the other hand, could be utilized to analyze the path, node
and network level dependency among nodes of a network from different applica-
tion areas.

4.2 Future Work
As future work, the following research directions are worth exploring.

Learning algorithms: An interesting problem is to explore the applicability of
learning algorithms, which are based on machine learning and artificial intelli-
gence, for the NFV resource allocation problem. Inspired by recent advances in
deep reinforcement learning for AI problems, the usage of deep reinforcement
learning (DRL) for resource management problems is gaining attraction [80]. For
example, DRL has been used to develop adaptive bitrate algorithms for video play-
ers [81]. It will be interesting to explore the possibility of developing learning
algorithms for the NFV resource allocation problem.

NF vertical scaling: Dynamic scaling of NF instances includes horizontal scal-
ing (i.e., creating or removing instances) and vertical scaling (i.e., increasing or
decreasing the amount of resources assigned to an NF instance). However, in this
thesis work only horizontal scaling is addressed. Thus, it will be interesting to
study further vertical scaling approaches.

Implementation: The performance of the proposed heuristics are analyzed using

4.2. Future Work 39

simulations. As a future work, it will be interesting to implement and evaluate the
algorithms in a real test bed.

Bibliography

[1] Docker. https://www.docker.com/. Accessed: 2019-01-19.

[2] Dpdk. https://www.dpdk.org/. Accessed: 2019-01-19.

[3] How to meet the challenges of nfv orchestration.
https://searchnetworking.techtarget.com/tip/

How-to-meet-the-challenges-of-NFV-orchestration. Ac-
cessed: 2019-03-06.

[4] KVM. https://www.linux-kvm.org/. Accessed: 2019-01-19.

[5] LXC. https://linuxcontainers.org/. Accessed: 2019-01-19.

[6] Opendaylight. https://www.opendaylight.org/. Accessed: 2019-
01-19.

[7] Openvswitch. http://www.openvswitch.org/. Accessed: 2019-01-
19.

[8] Service function chain. https://www.

reply.com/en/topics/architecture/

introduce-dynamic-service-chaining-by-using-sdn-and-nfv-technologies.
Accessed: 2019-01-19.

[9] Unikernels meet NFV. https://www.ericsson.com/en/blog/2016/
6/unikernels-meet-nfv. Accessed: 2019-01-19.

[10] Virtual versus reality: The challenges of enterprise nfv adop-
tion. https://www.sdxcentral.com/articles/contributed/

the-challenges-of-enterprise-nfv-adoption/2017/10/. Ac-
cessed: 2019-03-06.

41

42 BIBLIOGRAPHY

[11] Xen. https://xenproject.org/. Accessed: 2019-01-19.

[12] B. Addis, D. Belabed, M. Bouet, and S. Secci. Virtual network functions
placement and routing optimization. In 2015 IEEE 4th International Con-
ference on Cloud Networking (CloudNet), pages 171–177. IEEE, 2015.

[13] S. Ahvar, H. P. Phyu, S. M. Buddhacharya, E. Ahvar, N. Crespi, and
R. Glitho. CCVP: Cost-efficient centrality-based vnf placement and chain-
ing algorithm for network service provisioning. In 2017 IEEE Conference
on Network Softwarization (NetSoft), pages 1–9. IEEE, 2017.

[14] A. Arulselvan, C. W. Commander, L. Elefteriadou, and P. M. Pardalos. De-
tecting critical nodes in sparse graphs. Computers & Operations Research,
36(7):2193–2200, 2009.

[15] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE transactions on
dependable and secure computing, 1(1):11–33, 2004.

[16] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. On orchestrat-
ing virtual network functions. In 2015 11th International Conference on
Network and Service Management (CNSM), pages 50–56. IEEE, 2015.

[17] A. Bavelas. Communication patterns in task-oriented groups. The Journal
of the Acoustical Society of America, 22(6):725–730, 1950.

[18] M. T. Beck and J. F. Botero. Coordinated allocation of service function
chains. In 2015 IEEE Global Communications Conference (GLOBECOM),
pages 1–6. IEEE, 2015.

[19] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan.
Optimal virtual network function placement in multi-cloud service function
chaining architecture. Computer Communications, 102:1–16, 2017.

[20] S. P. Borgatti and M. G. Everett. A graph-theoretic perspective on centrality.
Social networks, 28(4):466–484, 2006.

[21] M. Bouet, J. Leguay, T. Combe, and V. Conan. Cost-based placement of
vdpi functions in nfv infrastructures. International Journal of Network
Management, 25(6):490–506, 2015.

[22] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university
press, 2004.

BIBLIOGRAPHY 43

[23] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen, W. Khan,
M. Fargano, C. Cui, H. Deng, et al. Network functions virtualisation: An
introduction, benefits, enablers, challenges and call for action. In SDN and
OpenFlow World Congress, volume 48. sn, 2012.

[24] V. Cisco. Cisco visual networking index: Forecast and trends, 2017–2022.
White Paper, 1, 2018.

[25] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca. The dy-
namic placement of virtual network functions. In 2014 IEEE network oper-
ations and management symposium (NOMS), pages 1–9. IEEE, 2014.

[26] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz. Near optimal place-
ment of virtual network functions. In 2015 IEEE Conference on Computer
Communications (INFOCOM), pages 1346–1354. IEEE, 2015.

[27] I. I. Cplex. V12. 1: UserâĂŹs manual for cplex. International Business
Machines Corporation, 46(53):157, 2009.

[28] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros. Dynamic, latency-optimal
vnf placement at the network edge. In IEEE INFOCOM 2018-IEEE Con-
ference on Computer Communications, pages 693–701. IEEE, 2018.

[29] R. Cziva and D. P. Pezaros. Container network functions: bringing nfv to
the network edge. IEEE Communications Magazine, 55(6):24–31, 2017.

[30] W. Ding, H. Yu, and S. Luo. Enhancing the reliability of services in nfv
with the cost-efficient redundancy scheme. In Communications (ICC), 2017
IEEE International Conference on, pages 1–6. IEEE, 2017.

[31] N.-T. Dinh and Y. Kim. An efficient availability guaranteed deployment
scheme for iot service chains over fog-core cloud networks. Sensors,
18(11):3970, 2018.

[32] T. N. Dinh, Y. Xuan, M. T. Thai, P. M. Pardalos, and T. Znati. On new ap-
proaches of assessing network vulnerability: hardness and approximation.
IEEE/ACM Transactions on Networking, 20(2):609–619, 2012.

[33] S. Dräxler and H. Karl. Specification, composition, and placement of net-
work services with flexible structures. International Journal of Network
Management, 27(2):e1963, 2017.

44 BIBLIOGRAPHY

[34] S. Dräxler, H. Karl, and Z. A. Mann. Joint optimization of scaling and place-
ment of virtual network services. In Proceedings of the 17th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing, pages 365–
370. IEEE Press, 2017.

[35] A. Dwaraki and T. Wolf. Adaptive service-chain routing for virtual network
functions in software-defined networks. In Proceedings of the 2016 work-
shop on Hot topics in Middleboxes and Network Function Virtualization,
pages 32–37. ACM, 2016.

[36] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca. An approach for ser-
vice function chain routing and virtual function network instance migration
in network function virtualization architectures. IEEE/ACM Transactions
on Networking, 25(4):2008–2025, 2017.

[37] M. Ersue. Etsi nfv management and orchestration-an overview. In Proc. of
88th IETF meeting, 2013.

[38] I. ETSI. Network functions virtualisation (nfv); ecosystem; report on sdn
usage in NFV architectural framework. ETSI GS NFV-EVE, 5:V1, 2015.

[39] I. N. ETSI. ETSI GS NFV 002 v1. 1.1: Network Functions Virtualisation
(NFV); Architectural Framework, 2013.

[40] I. N. ETSI. ETSI GS NFV-REL 001 v1. 1.1: Network Functions Virtualisa-
tion (NFV); Resiliency Requirements, 2015.

[41] J. Fan, C. Guan, Y. Zhao, and C. Qiao. Availability-aware mapping of
service function chains. In IEEE INFOCOM 2017-IEEE Conference on
Computer Communications, pages 1–9. IEEE, 2017.

[42] J. Fan, M. Jiang, and C. Qiao. Carrier-grade availability-aware mapping
of service function chains with on-site backups. In 2017 IEEE/ACM 25th
International Symposium on Quality of Service (IWQoS), pages 1–10. IEEE,
2017.

[43] J. Fan, M. Jiang, O. Rottenstreich, Y. Zhao, T. Guan, R. Ramesh, S. Das, and
C. Qiao. A framework for provisioning availability of nfv in data center net-
works. IEEE Journal on Selected Areas in Communications, 36(10):2246–
2259, 2018.

[44] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach. Virtual
network embedding: A survey. IEEE Communications Surveys & Tutorials,
15(4):1888–1906, 2013.

BIBLIOGRAPHY 45

[45] H. Freeman and R. Boutaba. Networking ind ustry transf ormation through
softwarization [the president’s page]. IEEE Communications Magazine,
54(8):4–6, 2016.

[46] L. C. Freeman. Centrality in social networks conceptual clarification. Social
networks, 1(3):215–239, 1978.

[47] M. Gao, B. Addis, M. Bouet, and S. Secci. Optimal orchestration of virtual
network functions. Computer Networks, 142:108–127, 2018.

[48] T. H. Grubesic, T. C. Matisziw, A. T. Murray, and D. Snediker. Comparat-
ive approaches for assessing network vulnerability. International Regional
Science Review, 31(1):88–112, 2008.

[49] A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster, J. Rexford,
and L. Vanbever. An industrial-scale software defined internet exchange
point. In 13th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 16), pages 1–14, 2016.

[50] I. Gurobi Optimization. Gurobi optimizer reference manual. URL
http://www. gurobi. com, 2018.

[51] J. Halpern and C. Pignataro. Service function chaining (sfc) architecture.
Technical report, 2015.

[52] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function virtualiza-
tion: Challenges and opportunities for innovations. IEEE Communications
Magazine, 53(2):90–97, 2015.

[53] B. Han, V. Gopalakrishnan, G. Kathirvel, and A. Shaikh. On the resiliency
of virtual network functions. IEEE Communications Magazine, 55(7):152–
157, 2017.

[54] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy. Soft-
nic: A software nic to augment hardware. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2015-155, 2015.

[55] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal. Nfv: State of the art,
challenges and implementation in next generation mobile networks (vepc).
arXiv preprint arXiv:1409.4149, 2014.

[56] S. Herker, X. An, W. Kiess, S. Beker, and A. Kirstaedter. Data-center archi-
tecture impacts on virtualized network functions service chain embedding
with high availability requirements. In Globecom Workshops (GC Wkshps),
2015 IEEE, pages 1–7. IEEE, 2015.

46 BIBLIOGRAPHY

[57] J. G. Herrera and J. F. Botero. Resource allocation in nfv: A compre-
hensive survey. IEEE Transactions on Network and Service Management,
13(3):518–532, 2016.

[58] A. Hmaity, M. Savi, F. Musumeci, M. Tornatore, and A. Pattavina. Virtual
network function placement for resilient service chain provisioning. In 2016
8th International Workshop on Resilient Networks Design and Modeling
(RNDM), pages 245–252. IEEE, 2016.

[59] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer. Achieving high utilization with software-driven wan. In
ACM SIGCOMM Computer Communication Review, volume 43, pages 15–
26. ACM, 2013.

[60] P. Hong, K. Xue, D. Li, et al. Resource aware routing for service function
chains in sdn and nfv-enabled network. IEEE Transactions on Services
Computing, 2018.

[61] H. Huang, S. Guo, J. Wu, and J. Li. Joint middlebox selection and routing
for software-defined networking. In 2016 IEEE International Conference
on Communications (ICC), pages 1–6. IEEE, 2016.

[62] N. Huin, B. Jaumard, and F. Giroire. Optimal network service chain provi-
sioning. IEEE/ACM Transactions on Networking, 26(3):1320–1333, 2018.

[63] J. Hwang, K. K. Ramakrishnan, and T. Wood. Netvm: High performance
and flexible networking using virtualization on commodity platforms. IEEE
Transactions on Network and Service Management, 12(1):34–47, 2015.

[64] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Ven-
kata, J. Wanderer, J. Zhou, M. Zhu, et al. B4: Experience with a globally-
deployed software defined wan. In ACM SIGCOMM Computer Communic-
ation Review, volume 43, pages 3–14. ACM, 2013.

[65] S. Jiao, X. Zhang, S. Yu, X. Song, and Z. Xu. Joint virtual network function
selection and traffic steering in telecom networks. In GLOBECOM 2017-
2017 IEEE Global Communications Conference, pages 1–7. IEEE, 2017.

[66] D. Y. Kenett, T. Preis, G. Gur-Gershgoren, and E. Ben-Jacob. Dependency
network and node influence: Application to the study of financial markets.
International Journal of Bifurcation and Chaos, 22(07):1250181, 2012.

[67] S. Khebbache, M. Hadji, and D. Zeghlache. Virtualized network functions
chaining and routing algorithms. Computer Networks, 114:95–110, 2017.

BIBLIOGRAPHY 47

[68] C. R. Kothari. Research methodology: Methods and techniques. New Age
International, 2004.

[69] V. Kotronis, X. Dimitropoulos, and B. Ager. Outsourcing the routing control
logic: better internet routing based on sdn principles. In Proceedings of the
11th ACM Workshop on Hot Topics in Networks, pages 55–60. ACM, 2012.

[70] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig. Software-defined networking: A comprehensive survey. Pro-
ceedings of the IEEE, 103(1):14–76, 2015.

[71] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai. Deploying chains of
virtual network functions: On the relation between link and server usage.
IEEE/ACM Transactions on Networking (TON), 26(4):1562–1576, 2018.

[72] M. Lalou, M. A. Tahraoui, and H. Kheddouci. The critical node detec-
tion problem in networks: a survey. Computer Science Review, 28:92–117,
2018.

[73] V. Latora and M. Marchiori. Efficient behavior of small-world networks.
Physical review letters, 87(19):198701, 2001.

[74] V. Latora and M. Marchiori. A measure of centrality based on network
efficiency. New Journal of Physics, 9(6):188, 2007.

[75] D. Li, P. Hong, K. Xue, et al. Virtual network function placement con-
sidering resource optimization and sfc requests in cloud datacenter. IEEE
Transactions on Parallel and Distributed Systems, 29(7):1664–1677, 2018.

[76] D. Li, P. Hong, K. Xue, and J. Pei. Availability aware vnf deployment in
datacenter through shared redundancy and multi-tenancy. IEEE Transac-
tions on Network and Service Management, 2019.

[77] G. Li, D. Wang, C. Kalmanek, and R. Doverspike. Efficient distributed res-
toration path selection for shared mesh restoration. IEEE/ACM Transactions
on Networking (TON), 11(5):761–771, 2003.

[78] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gas-
pary. Piecing together the nfv provisioning puzzle: Efficient placement and
chaining of virtual network functions. In 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pages 98–106. IEEE,
2015.

48 BIBLIOGRAPHY

[79] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Yasukata,
C. Raiciu, and F. Huici. My vm is lighter (and safer) than your container. In
Proceedings of the 26th Symposium on Operating Systems Principles, pages
218–233. ACM, 2017.

[80] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource management
with deep reinforcement learning. In Proceedings of the 15th ACM Work-
shop on Hot Topics in Networks, pages 50–56. ACM, 2016.

[81] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming
with pensieve. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 197–210. ACM, 2017.

[82] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici. Clickos and the art of network function virtualization. In 11th
{USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 14), pages 459–473, 2014.

[83] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[84] M. Mechtri, C. Ghribi, and D. Zeghlache. A scalable algorithm for the
placement of service function chains. IEEE Transactions on Network and
Service Management, 13(3):533–546, 2016.

[85] A. M. Medhat, G. Carella, C. Lück, M.-I. Corici, and T. Magedanz. Near op-
timal service function path instantiation in a multi-datacenter environment.
In 2015 11th International Conference on Network and Service Manage-
ment (CNSM), pages 336–341. IEEE, 2015.

[86] S. Mehraghdam, M. Keller, and H. Karl. Specifying and placing chains of
virtual network functions. In 2014 IEEE 3rd International Conference on
Cloud Networking (CloudNet), pages 7–13. IEEE, 2014.

[87] O. Michel and E. Keller. Sdn in wide-area networks: A survey. In 2017
Fourth International Conference on Software Defined Systems (SDS), pages
37–42. IEEE, 2017.

[88] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba. Network function virtualization: State-of-the-art and research
challenges. IEEE Communications Surveys & Tutorials, 18(1):236–262,
2016.

BIBLIOGRAPHY 49

[89] R. Mijumbi, J. Serrat, J.-L. Gorricho, S. Latré, M. Charalambides, and
D. Lopez. Management and orchestration challenges in network functions
virtualization. IEEE Communications Magazine, 54(1):98–105, 2016.

[90] H. Moens and F. De Turck. Vnf-p: A model for efficient placement of
virtualized network functions. In 10th International Conference on Network
and Service Management (CNSM) and Workshop, pages 418–423. IEEE,
2014.

[91] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. Ramakrishnan, and
T. Wood. Virtual function placement and traffic steering in flexible and dy-
namic software defined networks. In The 21st IEEE International Workshop
on Local and Metropolitan Area Networks, pages 1–6. IEEE, 2015.

[92] T.-M. Nguyen, M. Minoux, and S. Fdida. Optimizing resource utilization
in nfv dynamic systems: New exact and heuristic approaches. Computer
Networks, 148:129–141, 2019.

[93] Z. Niu, H. Xu, L. Liu, Y. Tian, P. Wang, and Z. Li. Unveiling performance
of nfv software dataplanes. In Proceedings of the 2nd Workshop on Cloud-
Assisted Networking, pages 13–18. ACM, 2017.

[94] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and
S. Shenker. E2: a framework for NFV applications. In Proceedings of the
25th Symposium on Operating Systems Principles, pages 121–136. ACM,
2015.

[95] L. Qu, M. Khabbaz, and C. Assi. Reliability-aware service chaining in
carrier-grade softwarized networks. IEEE Journal on Selected Areas in
Communications, 36(3):558–573, 2018.

[96] P. Quinn, U. Elzur, and C. Pignataro. Network service header (nsh). Tech-
nical report, 2018.

[97] P. Quinn and T. Nadeau. Problem statement for service function chaining.
Technical report, 2015.

[98] J. Quittek, P. Bauskar, T. BenMeriem, A. Bennett, M. Besson, and A. Et.
Network functions virtualisation (nfv)-management and orchestration. ETSI
NFV ISG, White Paper, 2014.

[99] S. Ramamurthy and B. Mukherjee. Survivable wdm mesh networks. part
i-protection. In IEEE INFOCOM’99. Conference on Computer Commu-
nications. Proceedings. Eighteenth Annual Joint Conference of the IEEE

50 BIBLIOGRAPHY

Computer and Communications Societies. The Future is Now (Cat. No.
99CH36320), volume 2, pages 744–751. IEEE, 1999.

[100] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker. Modular sdn
programming with pyretic. Technical Reprot of USENIX, 2013.

[101] L. Rizzo. Netmap: a novel framework for fast packet i/o. In 21st USENIX
Security Symposium (USENIX Security 12), pages 101–112, 2012.

[102] L. Rizzo and G. Lettieri. Vale, a switched ethernet for virtual machines.
In Proceedings of the 8th international conference on Emerging networking
experiments and technologies, pages 61–72. ACM, 2012.

[103] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye. Provably efficient algorithms
for joint placement and allocation of virtual network functions. In IEEE
INFOCOM 2017-IEEE Conference on Computer Communications, pages
1–9. IEEE, 2017.

[104] M. Savi, M. Tornatore, and G. Verticale. Impact of processing costs on
service chain placement in network functions virtualization. In 2015 IEEE
Conference on Network Function Virtualization and Software Defined Net-
work (NFV-SDN), pages 191–197. IEEE, 2015.

[105] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and
implementation of a consolidated middlebox architecture. In Presented as
part of the 9th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 12), pages 323–336, 2012.

[106] N. Shah, P. Giaccone, D. B. Rawat, A. Rayes, and N. Zhao. Solutions
for adopting software defined network in practice. International Journal of
Communication Systems, page e3990.

[107] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: network pro-
cessing as a cloud service. ACM SIGCOMM Computer Communication
Review, 42(4):13–24, 2012.

[108] G. Sierksma. Linear and integer programming: theory and practice. CRC
Press, 2001.

[109] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache. Online and batch
algorithms for vnfs placement and chaining. Computer Networks, 2019.

BIBLIOGRAPHY 51

[110] N. Spring, R. Mahajan, and D. Wetherall. Measuring isp topologies
with rocketfuel. ACM SIGCOMM Computer Communication Review,
32(4):133–145, 2002.

[111] M. M. Tajiki, S. Salsano, M. Shojafar, L. Chiaraviglio, and B. Akbari.
Energy-efficient path allocation heuristic for service function chaining. In
2018 21st Conference on Innovation in Clouds, Internet and Networks and
Workshops (ICIN), pages 1–8. IEEE, 2018.

[112] A. Tomassilli, N. Huin, F. Giroire, and B. Jaumard. Resource requirements
for reliable service function chaining. In 2018 IEEE International Confer-
ence on Communications (ICC), pages 1–7. IEEE, 2018.

[113] A. Voellmy, H. Kim, and N. Feamster. Procera: a language for high-level
reactive network control. In Proceedings of the first workshop on Hot topics
in software defined networks, pages 43–48. ACM, 2012.

[114] K. Walkowiak and M. Klinkowski. Shared backup path protection in elastic
optical networks: Modeling and optimization. In 2013 9th International
Conference on the Design of Reliable Communication Networks (DRCN),
pages 187–194. IEEE, 2013.

[115] L. Wang, Z. Lu, X. Wen, R. Knopp, and R. Gupta. Joint optimization of
service function chaining and resource allocation in network function virtu-
alization. IEEE Access, 4:8084–8094, 2016.

[116] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An untold story of middle-
boxes in cellular networks. In ACM SIGCOMM Computer Communication
Review, volume 41, pages 374–385. ACM, 2011.

[117] B. Yi, X. Wang, K. Li, M. Huang, et al. A comprehensive survey of network
function virtualization. Computer Networks, 133:212–262, 2018.

[118] F. Z. Yousaf, M. Bredel, S. Schaller, and F. Schneider. Nfv and sdnâĂŤkey
technology enablers for 5g networks. IEEE Journal on Selected Areas in
Communications, 35(11):2468–2478, 2017.

[119] E. Zhai, R. Chen, D. I. Wolinsky, and B. Ford. Heading off correlated
failures through independence-as-a-service. In 11th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 14), pages 317–
334, 2014.

[120] J. Zhang, Z. Wang, C. Peng, L. Zhang, T. Huang, and Y. Liu. Raba:
Resource-aware backup allocation for a chain of virtual network functions.

52 BIBLIOGRAPHY

In IEEE INFOCOM 2019-IEEE Conference on Computer Communications,
pages 1918–1926. IEEE, 2019.

[121] W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, and T. Wood. Flur-
ries: Countless fine-grained nfs for flexible per-flow customization. In Pro-
ceedings of the 12th International on Conference on emerging Networking
EXperiments and Technologies, pages 3–17. ACM, 2016.

[122] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi, K. Ra-
makrishnan, and T. Wood. Opennetvm: A platform for high performance
network service chains. In Proceedings of the 2016 workshop on Hot topics
in Middleboxes and Network Function Virtualization, pages 26–31. ACM,
2016.

[123] Y. Zhang, C. Truchan, M. Tatipamula, N. Beheshti, L. Beliveau, G. Lefeb-
vre, R. Manghirmalani, R. Mishra, R. Patneyt, M. Shirazipour, et al. Steer-
ing: A software-defined networking for inline service chaining. In 2013
21st IEEE international conference on network protocols (ICNP), pages 1–
10. IEEE, 2013.

Part II

Included Papers

53

Paper A

A Scalable Resource Allocation Scheme for
NFV: Balancing Utilization and Path Stretch
Yordanos T. Woldeyohannes, Ali Mohammadkhan, K. K. Ramakrishnan, and Yuming
Jiang
In Proceedings of the 21th Conference on Innovations in Clouds, Internet and Networks
(ICIN), Paris, February 2018.

A Scalable Resource Allocation Scheme for
NFV: Balancing Utilization and Path Stretch

Y.T. Woldeyohannes∗, Ali Mohammadkhan†, K.K. Ramakrishnan†, Yuming Jiang∗
∗Norwegian University of Science and Technology, NTNU, Trondheim, Norway

†University of California Riverside, California, USA

Abstract—Network Function Virtualization (NFV) im-
plements network middlebox functions in software, en-
abling them to be more flexible and dynamic. NFV resource
allocation methods can exploit the capabilities of virtual-
ization to dynamically instantiate network functions (NFs)
to adapt to network conditions and demand. Deploying
NFs requires decisions for both NF placement and routing
of flows through these NFs in accordance with the required
sequence of NFs that process each flow. The challenge in
developing NFV resource allocation schemes is the need to
manage the dependency between flow-level (routing) and
network-level (placement) decisions.

We model the NFV resource allocation problem as a
multi-objective mixed integer linear programming prob-
lem, solving both flow-level and network-level decisions
simultaneously. The optimal solution is capable of provid-
ing placement and routing decisions at a small scale. Based
on the learnings from the optimal solution, we develop
ClusPR, a heuristic solution that can scale to larger,
more practical network environments supporting a larger
number of flows. By elegantly capturing the dependency
between flow routing and NF placement, ClusPR strikes a
balance between minimizing path stretch and maximizing
network utilization. Our experiments show ClusPR is
capable of achieving near-optimal solution for a large sized
network, in an acceptable time. Compared to state-of-the-
art approaches, ClusPR is able to decrease the average
normalized delay by a factor of 1.2− 1.6× and the worst-
case delay by 9 − 10×, with the same or slightly better
network utilization.

I. INTRODUCTION

Middleboxes such as firewalls, VPN gateways, prox-
ies, intrusion detection and prevention systems, etc.,
play a central role in today’s Internet by providing net-
work resident functionality that examines and potentially
modifies the end-to-end traffic flow [1]. Implementation
of network resident functionality is gradually migrating
to software platforms, providing additional flexibility
and extensibility for the capabilities of the network com-
pared to purpose-built hardware appliances. Evolving
the network’s capabilities can thus involve lower capital
expenditures as the software can run on commercial off-
the-shelf (COTS) hardware. Network Function Virtual-
ization (NFV) decouples the software of network func-
tions from the physical machine and runs it on virtual
machines, or more recently on “containers” [2]. This
also brings greater flexibility in resource management as
instances of the network functions (NFs) can be created

dynamically, and the capacity for a particular function
can be scaled up or down depending on traffic demand.
Sequences of NFs are common, and the overall service
provided by the network by such sequences of NFs is
termed “service function chaining” [3].

A. The Challenge

Resource management of NF service chains continues
to be a challenge because of the complexity involved.
An NFV resource allocation (NFV-RA) mechanism has
to make decisions at multiple levels to ensure resources
are properly utilized, while performance requirements
of flows are met. Resource allocation decisions have
to be made both at the network-level and at the flow-
level. At the network-level, the allocation algorithm
determines the number of NF instances to instantiate
in the network to process the flows. In addition, the
algorithm needs to determine the placement of the NFs
or the physical machines that should host the NFs.
However, this network-level decision making has to be
coupled with the decision making at the flow-level, as
the flow has to be sequenced through the NF instances to
form the desired service chain. The flow-level decision
making includes the determination of the route for the
flow based on the service chain requirement and the
choice of the NF instances initiated in the network.

Suboptimal decisions, resulting in NFs placed on
network nodes not along the shortest path will result
in “path stretch”, contributing to increased latency for
the flow. In addition, it is important to use resources
efficiently and avoid over provisioning of resources so
as to maximize the utilization of the network. Finally,
it is critical to consider both link capacity and node
processing capacity (in terms of CPU cores) when mak-
ing the resource allocation decisions. The interdepen-
dence between network-level (placement, instantiating
the requisite number of NFs) and flow-level (routing)
decisions makes the NFV-RA problem new and chal-
lenging, warranting the recent attention it has received
in the literature.

There have been a number of papers on NFV-RA
published in the recent past. A detailed survey on
existing NFV-RA approaches can be found in [4]. Some
have focused on NF placement alone [5], [6]. Some

recent works have tried to solve NF placement and flow
routing jointly. One group of works seeks to minimize
the path stretch (delay) while limiting the utilization
of the network [7], [8] and thereby limiting capacity.
Another seeks to increase capacity by allowing the
network utilization to increase, but at the expense of
higher delay [9], [10]. Additionally, some of the existing
approaches consider only the node capacity constraint
(e.g. the MILP formulation in [11] and [12]), ignoring
link capacity constraints.

In general, these literature approaches have only ad-
dressed part of the NFV-RA problem, far from solving
it completely, which demands balancing between path
stretch and utilization, factoring all the key resources,
and concurrently solving the NF placement and flow
routing problem.

B. Our Contributions

Our first contribution is that we model the joint NF
placement and flow routing problem as a multi-objective
mixed integer linear programming (MILP) problem. The
model is able to allocate NF instances and find end-to-
end routes of flows while maintaining the precedence
constraint among NFs of a service chain. The MILP
is solved using conventional (CPLEX) solvers for a
reasonable scale problem with realistic parameters. The
results provide us valuable insights to develop a heuristic
solution capable of solving the NFV-RA problem for
larger scale in a reasonable time.

Secondly, we develop a heuristic-based NFV-RA
scheme, ClusPR, which strikes a balance between min-
imizing the path stretch experienced by flows and max-
imizing the utilization of the network. ClusPR captures
the dependency between the routing and placement de-
cisions. Both our MILP model and ClusPR consider link
and node capacity constraints in making their decision.
Unlike most papers in the literature that restrict the
placement of NFs in the Cloud [10], [13], ClusPR can be
used in a more general setting where NFs may be hosted
not only in the cloud but also on the edge computing
nodes.

To the best of our knowledge, there is no existing
work that is scalable, creates a balance between min-
imization of the path stretch and maximization of the
utilization of the network and considers the various
resource limitations as our proposed approach ClusPR.

In summary, the contributions of this paper are:

• A novel multi-objective MILP formulation for the
joint NF placement and flow routing problem.

• ClusPR, a heuristic-based scalable resource alloca-
tion scheme that is developed taking as input the
insights observed from the MILP’s results.

• Results from a number of experiments with realistic
topologies demonstrate the effectiveness of ClusPR.

II. THE SYSTEM MODEL

We consider a network of nodes and links, modeled as
a directed graph, G(N ,L), where N is the set of nodes
in the network and L is the set of links interconnecting
the nodes. A node can be, a data-center, a router or
a commercial off-the-shelf (COTS) hardware together
with a router. The network carries a set of flows, F ,
and supports a set of NFs, denoted as V . For each NF
type, multiple instances may be instantiated on one or
multiple nodes.

A node n is characterized by the number of cores at
the node, denoted as Kn. An NF instance can be hosted
on any node that has enough number of cores. An NF
instance v ∈ V hosted on node n is characterized by its
service rate of requests, µv

n. Here, we assume that the
instances of the same NF type at the same node have
the same processing capacities. Note that an instance of
type v may need multiple cores, kv . In addition, an NF
instance can process multiple flows whose NF service
chains include the NF of the instance. We use Dv

n to
denote the expected nodal delay for type v NF at node n,
consisting of both processing delay and queueing delay
for flows with NF type v at the node.

Each link l ∈ L is assumed to be bi-directional, and
we use ln

n′ to represent the link from node n to n
′

and
Cl its expected transmission rate of bits. Each node n
has a set of outgoing links represented by Lout

n and a
set of incoming links, Lin

n . The expected delay on link
l, that comprises transmission and propagation delays,
is written as Dl.

A flow f ∈ F is a sequence of data packets that
are generated at expected rate λf and sent from a
source to a destination node, traversing a sequence of
intermediate nodes and links in the network. Each flow
f has a specified service chain of NFs, denoted as−→
S f = (S1

f , S
2
f ..., S

Jf

f), which is an ordered sequence
of required NFs that the flow’s packets must go through,
where Sj

f ∈ V denotes the jth NF on flow f ’s service
chain and Jf := |−→S f | is the length of the NF chain
of flow f . We assume that the NFs in a flow’s service
chain are different.

In this paper, in addition to the sequence of NFs to be
followed for the service chain, each flow f also has an
end-to-end delay requirement, denoted as Df , between
the source node sf and the destination node df of the
flow. The end-to-end delay is composed of two types
of delays: total delay on links, denoted as DT and total
delay on nodes, denoted as DP .

III. THE NFV RESOURCE ALLOCATION PROBLEM

As discussed earlier, in a network supporting NFV,
resource allocation decisions should be made both at
the network-level and at the flow-level. For the former,
an NFV resource allocation mechanism needs to decide
the number of NF instances to instantiate in the network

to process the flows and at which nodes in the network
such NF instances should be placed. For the latter, the
mechanism needs to decide how to route the flows to go
through the NF instances according to the order of NFs
in their service chains and at the same time to meet the
flows’ throughput and delay requirements.

A flow is admitted to the network if and only if
there are NF instances that can serve all the services in
the NF service chain of the flow without violating the
flow’s delay requirement. Indicator variable Ivn(f ; j) = 1
denotes that an NF instance v hosted at node n is used
by the jth service on the service chain of flow f , and
indicator variable Il(f ; j, nj ; j + 1, nj+1) = 1 denotes
that link l is used by flow f to route from the jth

to (j + 1)th NF service, hosted at node nj and nj+1

respectively. Since more than one instance of the same
NF type may be hosted at the same node, we use an
integer decision variable yvn to represent the number of
NF type v instances that are hosted at node n. Note that,
while yvn is a network-level decision variable that decides
the number and placement of NF instances, Ivn(f, j) and
Il(f ; j, nj , j+1, nj+1) are flow-level decision variables
that specify which NF instances will be used by a given
flow and which links will be used to route the flow
respectively.

For this NFV resource allocation problem, three ob-
jectives are of interest: (1) to maximize the number
of flows admitted to the network, (2) to minimize the
use of nodal processing capacities or cores, and (3) to
minimize the utilization of link capacities, where (2) and
(3) are purposed to maximally leave resources for future
use. The objective functions can then be represented as:

max.
∑

∀f∈F

⌊∑Jf

j=1

∑
∀n∀v I

v
n(f ; j)

Jf

⌋
(1)

min.
∑

∀n∀v

yvnk
v

Kn
(2)

min.
∑

∀l∀f∀nj∀nj+1

Jf∑

∀j

Il(f ; j, nj ; j + 1, nj+1)λf

Cl
(3)

The above three objective functions are combined
into a single-objective function, using the traditional
weighted sum method [14]. Since, maximizing a given
function is equivalent to minimizing the negative of the
function, the single-objective function is to minimize the
summation of the objective functions (2), (3) and neg-
ative of (1). The three objective functions are weighted
equally, with unit weights. For positive weights, the
optimal solution of the single-objective representation
is also a Pareto optimal solution of the multi-objective
problem [14].

A. Constraints

In solving the MILP problem, a number of constraints
must be satisfied, which can be classified as: capacity
constraints, delay constraints, and NF chaining con-
straints.

The capacity constraints are to ensure that the total
traffic rate on any link does not exceed the link’s
transmission capacity (i.e., Constraint (III-A)), the total
number of cores allocated to NF instances at any node
does not exceed the cores at that node (i.e., Constraint
(5)), and the total processing capacity required for
admitted flows for any NF instance does not exceed that
instance’s processing capacity (i.e., Constraint (6)):

∑

∀f∀nj∀nj+1

Jf∑

∀j
Il(f ; j, nj ; j+1, nj+1)λf ≤ Cl ∀l ∈ L

(4)

∑

∀v
yvnk

v ≤ Kn ∀n ∈ N (5)

∑

∀f

Jf∑

∀j
Ivn(f ; j)λf ≤ µv

n ∀v ∈ V,∀n ∈ N (6)

Related also are two constraints implied by the defi-
nition of Ivn(f ; j). One is that a flow is assigned to use
NF instance of type v on node n only if there is at
least one instance of NF type v hosted on node n. (i.e.,
Constraint (7)). Another is the constraint that any NF in
the service chain of any flow is served at most by one
such NF instance (i.e., Constraint (8)).

yvn ≥ Ivn(f ; j) ∀n ∈ N ,∀v ∈ V,∀f ∈ F ,∀j ∈ Jf
(7)∑

∀n∀v
Ivn(f ; j) ≤ 1 ∀f ∈ F ,∀j ∈ Jf (8)

The second category are delay constraints to ensure
that a flow is admitted only if its end-to-end delay
requirement is met (i.e., Constraint (3)):

DT +DP < Df ∀f ∈ F (9)

where DT =
∑

∀l∀nj∀nj+1

∑Jf

∀j Il(f ; j, nj ; j +

1, nj+1)Dl and DP =
∑Jf

∀j
∑

∀v
∑

∀n I
v
n(f ; j)D

v
n are

respectively the total link delay and the total nodal delay
that the admitted flow f experiences in the network.

The third category is NF chaining constraints, which
are used to ensure that the order of NFs of any flow is
followed when it is routed from its source node, through
NF instances of its service chain and finally to its
destination node. As shown below, several constraints,
i.e., (10) – (16), are involved in this category. In these
constraints, variable j is used to represent the service
order, i.e., j = 1 represents the first service, j = 2 the
second service, and so on in an NF service chain. For the

source and the destination we use j = 0 and j = J +1,
respectively.

We start with Constraints (10) and (11) that can be
regarded as the flow conservation equations for the set
of nodes that host NF instances assigned to serve a
flow. Specifically, Constraint (10) ensures that one of the
outgoing links of node nj that is running the jth service
of flow f has to be assigned for routing flow f from its
jth to (j + 1)th service order. The placement decision
variables Ivnj

(f ; j) and Ivnj+1
(f ; j+1) are multiplied to

make sure that the constraint applies to the cases where
node nj is used for the jth service and node nj+1 is
utilized for the (j + 1)th service. Similarly, Constraint
(11) makes sure that one of the incoming links of node
nj+1 that runs (j + 1)th service of flow f has to be
assigned for routing flow f from its jth to (j + 1)th

service. We remark that both (10) and (11) are not linear
but since they are multiples of binary variables they can
easily be substituted by a set of linear equations.

∀f ∈ F ,∀j ∈ 1, ..J − 1,∀nj , nj+1 ∈ N :
∑

l∈Lout
nj

Il(f ; j, nj ; j + 1, nj+)I
v
nj
(f ; j)Ivnj+1

(f ; j+) = 1

(10)∑

l∈Lin
nj+

Il(f ; j, nj ; j +1, nj+)I
v
nj
(f ; j)Ivnj+1

(f ; j+) = 1

(11)
Constraint (12) is a flow conservation constraint of

the intermediate nodes that do not host NF instances for
the flow but still should route the flow in a given service
order path. It makes sure that, if one of the incoming
links of a node is assigned for a given service order then
one of the outgoing links of the same node has to be
assigned to the same service order.

∀f ∈ F ,∀j ∈ 0, ..J,∀n ∈ N/n 6= nj , nj+1 :
∑

l∈Lin
n

Il(f ; j, nj ; j + 1, nj+1)

−
∑

l∈Lout
n

Il(f ; j, nj ; j + 1, nj+1 = 0,
(12)

Constraints (13) and (14) are source node flow con-
servation constraints. Constraint (13) ensures that one of
the outgoing links of the source node of flow f is used
to route from the 0th to 1st service of the service chain.
As defined earlier, the source node represents the 0th

service. That is, node n0 is indeed sf , the source node
of flow f . In addition, Constraint (14) is used to assign
one of the incoming links of a node (n1) serving the 1st

service of the service chain.

n0 = sf ,∀n0, n1 ∈ N ,∀f ∈ F :
∑

l∈Lout
n0

Il(f ; 0, n0; 1, n1) = Ivn1
(f ; 1) (13)

∑

l∈Lin
n1

Il(f ; 0, n0; 1, n1) = Ivn1
(f ; 1) (14)

Constraints (15) and (16) are flow conservation con-
straints for the destination node. Constraint (15) makes
sure that one of the incoming links of the destination
node is assigned to route from the node hosting the last
NF of the service chain (nJ) to the destination node (df)
that is also represented as the J + 1 service, as defined
earlier. Constraint (16) completes the route by assigning
one of the incoming links of the destination node to the
last J to (J + 1)th service order path.

nJ+1 = df , J = Jf ,∀nJ , nJ+1 ∈ N ,∀f ∈ F :

∑

l∈Lin
nJ+1

Il(f ; J, nJ ; J + 1, nJ+1) = IvnJ
(f, ; J)

(15)

∑

l∈Lout
nJ

Il(f ; J, nJ ; J + 1, nJ+1) = IvnJ
(f ; J) (16)

B. Observations from Solving the MILP Problem

We implemented our MILP model and used CPLEX
to arrive at the optimal placement on a small topology
of 11 nodes and 13 links. Though the results from such
small scale experiments are not generalizable, the results
provide us guidance to develop a heuristic solution that
can solve the placement and routing problem at much
larger scale. Based on solving the MILP for a number of
scenarios (service chains varying in length, nodes having
varying number of cores, and NFs needing multiple, but
different numbers of cores), whose details are omitted
due to space limitation, we make the following obser-
vations.

1) Observation 1 (O1): It is desirable that all the nodes
chosen for NF placement are on the shortest path of
at least one of the flows. If a node that is on the
shortest path of many flows has enough capacity to
host all the NFs required for those flows, the optimal
solution places all the NFs on that node.

2) Observation 2 (O2): Different instances of the same
type of NF are mostly placed on different nodes in
the optimal solutions.

3) Observation 3 (O3): The total number of flows that
can be accommodated is a function of many factors
such as the the node and link capacities, NFs’ service
rate and flow types. Prioritizing flows that require
popular services (at least one) increases the total
number of flows that can be accommodated in the
network.

4) Observation 4 (O4): More than the minimum num-
ber of NF instances needed might be instantiated to
satisfy the performance requirements (e.g., stringent
delay) of some flows.

IV. CLUSPR: A HEURISTIC APPROACH FOR NFV
RESOURCE ALLOCATION

Based on the observations summarized in Sec. III-B,
we develop ClusPR, a heuristic-based NFV resource
allocation algorithm. ClusPR consists of three phases:
Initialization/Clustering, Placement, and Routing phase.
Fig. 1 shows the overall design of ClusPR.

Shortest Path
Initialization Phase

Placement Phase

Routing Phase

Nodes

NFs

N
e

tw
o

rk

Le
ve

l

D
e

cisio
n

F
lo

w

Le
v
e

l

D
e

cisio
n

Number of NF

instances

Clustering

NFsNFsNFs

Placement

Heuristics

Flow Routing

Placment of NF

instances

Flow service

chaining & routing

Fig. 1: ClusPR Resource Allocation Phases
Given that a number of flows potentially need to share

the same NF instance, the NF may not be on the shortest
path of all of the flows. Thus, a significant number of
flows may have to deviate from their shortest path to be
served by the NFs instantiated. However, this deviation
needs to be constrained, so as not to violate the delay
requirement of flows.

ClusPR uses clustering of access nodes (e.g. last
hop routers to sources and destinations in a wide-area
network) to minimize the deviation. Access nodes are
clustered based on their proximity to each other i.e
access nodes that are close to each other are clustered
together. Because of the proximity between clustered
access nodes, flows originating from access nodes of
a cluster and going to access nodes in another cluster
have a high probability of sharing path, thus, can also
potentially share NF instances with no or minimal path
stretch. Inspired by this insight, ClusPR groups flows
into intra-cluster(cluster) and inter-cluster(cluster-pair)
flows and performs the placement of NF instances for
each of these groups of flows independently.

After clustering, nodes that are on the shortest path of
flows are identified for each of the intra-cluster and inter-
cluster set of flows. Note that the clustering is targeted
at finding close by access nodes, and the shortest path
nodes need not necessarily belong to a cluster or cluster-
pair. The shortest path nodes that have a processing
power for hosting NFs are regarded as the “best” can-
didates for hosting NFs. Information about the path of
each group of flows is captured through the shortest path
nodes selected. In the placement phase, NF instances
are placed on the “best” candidate shortest path nodes
or their neighboring nodes. Subsequently, flows are
mapped to instances and routed while respecting their
precedence constraints for service chains. A flow will be
assigned to NF instances that have the minimum overall
end-to-end communication cost.

A. Initialization Phase
The first module in the initialization phase is cluster-

ing. In this phase, access nodes are clustered based on
proximity. Nodes that are either the source or destination
of one or more flows are identified as access nodes. A
network clustering algorithm, Kruskals algorithm [15],
which is a minimum spanning tree (MST) based clus-
tering algorithm [16], is used.

The second module is the shortest path. Dikjstra’s
shortest path algorithm is adapted for shortest path
calculation between all pairs of access nodes (in a cluster
or cluster-pair) and used to identify nodes that are on the
shortest path of flows. This set of shortest path nodes are
considered the “best” nodes for placing NFs (as noted in
O1). The number and type of services required by each
of the flows between access nodes can be different. To
account for these differences, each node keeps a weight
and a list. The weight is used to record the number
of flows between the access nodes whose shortest path
passes through the node. The list is used to record the
different types of services these flows require.

For example, if a node is on the shortest path between
three pairs of access nodes that have 3, 5 and 10 flows
between them, the node will have a weight equal to 18.
In addition, if these flows require DPI, proxy and firewall
services, the node will have a list containing these three
services.

Shortest path nodes are ordered based on their weight:
the higher the weight of a node the higher its priority for
hosting NF instances. In other words, nodes that are on
the shortest path of many flows are given higher priority,
as noted in (O1). If the weight of the nodes is equal,
then nodes that have higher processing power are given
priority over nodes that have lower processing power.
Next the placement decisions are made for intra-cluster
group of flows followed by inter-cluster flows starting
from a cluster that has the largest number of intra-cluster
flows.

B. Placement Phase
The placement phase receives the set of best candidate

nodes from the initialization phase. The required type
and number of instances to serve a set of flows in a
cluster or cluster-pair are calculated. This set of NF
types are ordered according to their popularity, which
is measured by the number of flows that require the NF.
The most popular NFs are prioritized to be placed first,
considering (O3), with ties broken by prioritizing the
NF requiring more processing power. NFs are prioritized
based on their type. The number of each type of NFs to
be instantiated is recorded.

Bin-Packing: The placement heuristic does a bin-
packing of the prioritized NFs on the set of “best” can-
didate shortest path nodes or their neighboring nodes.
An NF instance is placed on a node if and only if the

node has the NF type in its list. This constraint is used
to make sure that an NF instance placed on a node is
needed by the flows whose shortest path passes through
the node. An NF type that is on top of the priority queue
of NF types is taken and the ordered queue of “best”
candidate nodes is iterated through until a node that has
the NF type in its list is found. Once a node is found
the NF is placed and the number of instances of the NF
type is decreased. The node will then be regarded as an
active node for placing the next NF type.

Diversity: The placement heuristic diversifies the
types of NFs placed on a node. That is, if more than one
instance of a given type of NF is needed, the algorithm
prioritizes placing different types of NF instances in one
node rather than placing multiple instances of the same
type of NF on the node. If different types of NFs are
placed on one node, the probability that a flow can get
all of the services it requires from one node will be high,
as noted in (O2). Serving a flow’s chain in one node has
advantages such as decreasing the communication cost
and the delay experienced by the flow.

Next, the following NF type is picked from the queue
of NFs and placed on the active node provided that the
NF is found in its list. If not the algorithm returns to
the queue of the nodes, and looks for another node that
has the NF in its list. After placing one instance of all
types of NFs, the algorithm returns back to the top of
the queue of NFs and place the second instances.This
process is repeated until all the instances of all NF types
are placed.

C. Routing Phase
Finally, the routing phase assigns NF instances and

determines the routes for all flows. A flow will use
NF instances that are placed on the set of shortest path
nodes and/or their neighboring nodes for the cluster or
cluster-pair the flow belongs to. Out of this set of NF
instances, a flow is assigned to NF instances that have
the smallest end-to-end cost. In order to select these NFs,
a flow’s routing is modeled as a multi-stage shortest path
problem in which the stages of the multi-stage graph
represent the services in the service chain of the flow.

For constructing the graph, the costs on the links
of the graph need to be calculated. The costs can
be calculated using shortest path algorithms such as
Dijkstra’s algorithm. The shortest path costs of the links
from the source node to the nodes hosting the first NF
instance of the chain and the links from the destination
node to nodes hosting the last NF of the service chain
need to be calculated for each of the flows. The costs
of the links between the stages (nodes hosting NFs in
the chain) are calculated only once, which decreases the
computation complexity of constructing the multi-stage
graph.

Dynamic programming is used to find the optimal
shortest path in a multi-stage graph. To formulate the

dynamic program, two distance notations are adapted.
C(n, n

′
) is used to represent the cost of the shortest

distance between node n and n
′

that belong to two
consecutive stages. e.g., C(sf , n1stnf) represents the
cost of the shortest distance between the source node
of flow f (sf) and node (n1stnf) that hosts the 1st

service instance. D(n, j) represents the shortest distance
between node n that is hosting the jth service of the
flow to the destination node(df), e.g., D(n2ndnf , 2)
represents the shortest distance from node n2ndnf that
is hosting the 2nd service to the destination node.

The dynamic program formulation is given as

D(sf , df) = min
n1st∈N

1thnf

(C(sf , n1stnf)+D(n1stnf , 1))

(17)

D(njthnf , j) = min
n
jthnf

∈N
jthnf

(C(njthnf , n(j+1)thnf)

+D(n(j+1)thnf , j + 1))
(18)

Njthnf is the set of nodes that are on the shortest path
or the fewest hops away from the shortest path nodes and
are hosting the flow’s jth service type for the cluster or
cluster-pair the flow belongs to. The dynamic program
is solved starting from the destination node until the
source node is reached. Note that the clustering helps
in decreasing the computation complexity by decreasing
the possible set of instances(Njthnf) that a flow can
choose from, which increases the scalability of ClusPR.
The algorithm checks for all the possible pairs of combi-
nations of available instances and chooses the instances
that give the minimum overall communication cost.

V. EXPERIMENTAL RESULTS

We extensively analyze the performance of ClusPR
and compare its performance with two alternatives, E2
[10] and [9] (refered to as “Deploying” for ease of
reference). We report here on experiments with the
Rocketfuel topology AS 1221 [17] shown in Fig. 2 used
as a test network. We classify nodes in the topology as
“access” (in blue), “edge” (green) and “core” (orange)
nodes, in a manner similar to [18]. NFs are considered
to be hosted on (or adjacent to) edge and core nodes.
Each node hosting NFs has 4 cores and each instance
of an NF requires one core, with a service rate of
10Mbps.There are 5 types of NFs (e.g., Firewall, Deep
Packet Inspection (DPI), Network Address Translator
(NAT), Intrusion Detection System (IDS) and Proxy).
All the links have a capacity of 1 Gbps, and the delays
on the links are: access-edge: 3 ms; edge-core: 10 ms;
core-core: 40 ms. The source and destination nodes of
flows as well as the services required by the flows are
generated randomly. The arrival rate of flows is assumed
to follow a log-normal distribution [19] and the length

of the service chain for each flow is assumed to be equal
to two. The service types in the chain of each flow
are generated randomly. The MILP model in Section
III which is solved using CPLEX is not able to scale
to the network scenario considered in this experiment.
The main performance measures we evaluate are total
delay, path stretch and the number of flows admitted.
In addition, we have done a trade-off analysis between
the number of NF instances instantiated and the delay
of flows.

Fig. 2: Test Network:100 nodes and 294 links

Average and Worst-case Delays: ClusPR restricts
flows to use instances placed near/on the shortest path
nodes of a cluster or cluster-pair that flows belong to.
This constraint helps ClusPR minimize the worst-case
delay of flows. Fig. 4a and 4b show the average and
worst-case normalized delays of flows respectively. Fig.
5 shows Cumulative Distribution Function(CDF) of the
delay normalized with respect to the shortest path delay.
ClusPR is able to achieve a worst-case normalized delay
that is 9−10× less than the worst-case delay of E2 and
Deploying. In addition, the averaged normalized delay of
ClusPR is 1.2−1.6× less compared to E2 and Deploying

Total Delay and Path Stretch: The total com-
munication delay flows experience is a summation of
links propagation delay and queuing delay on the NF
instances of service chains. Assuming that the queuing
delay of flows is small compared to the propagation
delay [20], the total delay of a flow is then measured
as the summation of propagation delay on its links. The
path stretch is measured as the difference between the
total delay and the shortest path delay. Fig. 3 shows the
total delay and path stretch distributions with 720 flows
that have average flow arrival rate of 0.5 Mbps. Both
E2 and ClusPR instantiated 74 instances for serving the
flows.

ClusPR has a shorter path stretch compared to both
Deploying and E2 for the same number of instances.
The performance gain is achieved because ClusPR takes
as input the path of flows in making NF placement
decisions. ClusPR seeks to minimize the path stretch
by placing NF instances near the shortest path of flows.
In addition to placing NFs near the path of the flows that
need them, ClusPR diversifies the type of NFs placed on
a node by placing different types of NFs. This increases

0

20

40

60

80

100

120

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

11
0

11
5

1
2

0

1
2

5

1
3

0

1
3

5

1
4

0

1
4

5

1
5

0

1
5

5

N
u

m
b

er
 o

f
F

lo
w

s

Delay(ms)

ClusPR E2 Deploying

(a) Distribution of Delay

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

N
u
m

b
er

 o
f

F
lo

w
s

Path Stretch(ms)

ClusPR E2 Deploying

(b) Additional Delay from Path Stretch

Fig. 3: Delay Performance

0 1 2 3 4

ClusPR

E2

Deploying

Average Delay(X Shortest Path Delay)

(a) Average Delay

0 5 10 15 20

ClusPR

E2

Deploying

Worst Delay(X Shortest Path Delay)

(b) Worst Delay

Fig. 4: Average and Worst-case Normalized Delay

the probability that a flow can get all of the services
of its chain in one node. Which in turn can decrease
the additional path stretch incurred for fulfilling the
precedence constraint. Both E2 and Deploying do not
explicitly reduce the path stretch of flows.

Delay Requirement Satisfaction of Flows: For this
experiment, flows are assumed to have a specified delay
requirement in terms of the maximum normalized delay
that they can tolerate. The normalized delay requirement
of flows is assumed to be uniformly distributed between
1− 2.5× their shortest path delay.

The number of flows whose delay requirement is
satisfied is shown in Fig. 6. ClusPR is able to satisfy
the delay requirement of 87% of the flows while E2
and Deploying managed to fulfill the delay requirement
of 60% and 70% of the flows respectively. ClusPR
satisfies the delay requirement of 17% to 27% more
flows compared to E2 and Deploying.

Trade-off Analysis: One of the observation from
the optimal solutions of the MILP model in Section
III-B(O4) is that more NF instances might need to be
instantiated if stringent delay requirement of flows is
to be satisfied. An experiment is conducted in order
to analyze the trade-off between the number of NF
instances instantiated and the delay performance of
flows. Fig. 7 shows the path stretch of flows when
ClusPR is instantiating 74 and 88 NF instances. The path
stretch has decrease with an increase in the number of
NF instances.

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20

C
D

F

Delay(XShortest Path Delay)

ClusPR E2 Deploying

Fig. 5: CDF of Normalized
Delay

0

200

400

600

800

ClusPR E2 Deploying

N
u

m
b

er
 o

f
F

lo
w

s

Admitted Delay Satisfied

Fig. 6: Flow Statistics

0

100

200

300

400

500

0 5 10 15 20 25 30 35 40 45 50

Nu
mb

er
of

 F
low

s

Path Stretch(ms)

ClusPR-74 Instances ClusPR-88 Instances

Fig. 7: Additional Delay from Path Stretch

0

100

200

300

400

500

600

700

800

ClusPR-74 Instances ClusPR-88 Instances

N
u
m

b
er

 o
f

F
lo

w
s

Admitted Delay Satisfied

(a) Flow Statistics

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1 2 3 4 5

C
D

F

Delay(X Shortest Path Delay)

ClusPR-88 Instances ClusPR-74 Instances

(b) CDF of Normalized Delay

Fig. 8: Trade-off Analysis B/n Number of Instances and Delay

With 74 instances the delay requirement of 87% of the
flows is satisfied. By increasing 14 more NF instances,
the delay requirement of 92% of the flows is satisfied as
shown in Fig. 8a. As can be inferred from the CDF in
Fig. 8b, the average and worst-case normalized delays
have also seen a slight decrease with an increase in the
number of NF instances. The average normalized delay
has reduced from 1.36× to 1.32× and the worst-case
delay has decreased from 6× to 5× the short path delay.

VI. CONCLUSION

The flexibility brought about by NFV can potentially
change the way networks are managed and services
are provisioned. Nevertheless, an efficient resource al-
location algorithm is needed to instantiate NF instances
when and where needed, and route flows through them
accordingly. In this paper, a comprehensive novel multi-
objective MILP model is formulated for the NFV-RA
problem. Based on the useful insights obtained from the
optimal solutions of the MILP model, a clustering-based
heuristic scheme, ClusPR, is developed. ClusPR is scal-
able and balances between minimizing the path stretch
and maximizing the network utilization. By factoring in
information about the path of flows in the NF placement
decision making and diversifying NFs, ClusPR is able
to considerably minimize the path stretch. Compared
to the state-of-the-art approaches ClusPR has managed
to decrease the average normalized delay by a factor
of 1.2 − 1.6× and the worst-case delay by 9 − 10×,
while utilizing the same number of instances. This
minimization of the path stretch has enabled ClusPR
to satisfy the delay requirement of 17% to 27% more

flows. In addition, the trade-off between the number of
NF instances and delay is shown by demonstrating the
gain in delay performance for an increase in the number
of NF instances.

REFERENCES

[1] J. Sherry et al., “Making middleboxes someone else’s problem:
network processing as a cloud service,” ACM SIGCOMM Com-
puter Communication Review, vol. 42, no. 4, pp. 13–24, 2012.

[2] W. Zhang et al., “Opennetvm: A platform for high performance
network service chains,” in workshop on Hot topics in Middle-
boxes and Network Function Virtualization. ACM, 2016.

[3] Y. Zhang et al., “Steering: A software-defined networking for
inline service chaining,” in Network Protocols (ICNP), 2013 21st
IEEE International Conference on. IEEE, 2013, pp. 1–10.

[4] J. G. Herrera and J. F. Botero, “Resource allocation in nfv:
A comprehensive survey,” IEEE Transactions on Network and
Service Management, vol. 13, no. 3, pp. 518–532, 2016.

[5] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On
orchestrating virtual network functions,” in Network and Service
Management (CNSM), 2015 11th International Conference on.
IEEE, 2015, pp. 50–56.

[6] R. Cohen et al., “Near optimal placement of virtual network
functions,” in 2015 IEEE Conference on Computer Communica-
tions (INFOCOM). IEEE, 2015, pp. 1346–1354.

[7] V. Sekar et al., “Design and implementation of a consolidated
middlebox architecture,” in 9th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), 2012, pp.
323–336.

[8] Q. Li, Y. Jiang, P. Duan, M. Xu, and X. Xiao, “Quokka: Latency-
aware middlebox scheduling with dynamic resource allocation,”
Journal of Network and Computer Applications, vol. 78, pp. 253–
266, 2017.

[9] T.-W. Kuo et al., “Deploying chains of virtual network functions:
On the relation between link and server usage,” in INFOCOM,
2016 Proceedings IEEE. IEEE, 2016.

[10] S. Palkar et al., “E2: a framework for nfv applications,” in 25th
Symposium on Operating Systems Principles. ACM, 2015.

[11] B. Addis et al., “Virtual network functions placement and routing
optimization,” in Cloud Networking (CloudNet), 2015 IEEE 4th
International Conference on. IEEE, 2015, pp. 171–177.

[12] S. Mehraghdam et al., “Specifying and placing chains of virtual
network functions,” in Cloud Networking (CloudNet), 2014 IEEE
3rd International Conference on. IEEE, 2014, pp. 7–13.

[13] M. Xia et al., “Network function placement for nfv chaining in
packet/optical data centers,” in Optical Communication (ECOC),
2014 European Conference on. IEEE, 2014, pp. 1–3.

[14] R. T. Marler and J. S. Arora, “The weighted sum method
for multi-objective optimization: new insights,” Structural and
multidisciplinary optimization, vol. 41, no. 6, pp. 853–862, 2010.

[15] J. B. Kruskal, “On the shortest spanning subtree of a graph and
the traveling salesman problem,” Proceedings of the American
Mathematical society, vol. 7, no. 1, pp. 48–50, 1956.

[16] C. T. Zahn, “Graph-theoretical methods for detecting and de-
scribing gestalt clusters,” IEEE Transactions on computers, vol.
100, no. 1, pp. 68–86, 1971.

[17] N. Spring et al., “Measuring isp topologies with rocketfuel,”
ACM SIGCOMM Computer Communication Review, vol. 32,
no. 4, pp. 133–145, 2002.

[18] A. Afanasyev et al., “Interest flooding attack and countermea-
sures in named data networking,” in IFIP Networking Confer-
ence, 2013. IEEE, 2013, pp. 1–9.

[19] Y. Zhang et al., “On the characteristics and origins of internet
flow rates,” in ACM SIGCOMM Computer Communication Re-
view, vol. 32, no. 4. ACM, 2002, pp. 309–322.

[20] F. P. Kelly, “Models for a self–managed internet,” Philosophical
Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, vol. 358, no. 1773, pp.
2335–2348, 2000.

Paper B

ClusPR: Balancing Multiple Objectives at Sca-
le for NFV resource allocation
Yordanos T. Woldeyohannes, Ali Mohammadkhan, K. K. Ramakrishnan, and Yuming
Jiang
In IEEE Transactions on Network and Service Management 15, no. 4 (2018): 1307-
1321.

1

ClusPR: Balancing Multiple Objectives at Scale for
NFV Resource Allocation

Y. T. Woldeyohannes, Ali Mohammadkhan, K. K. Ramakrishnan Fellow, IEEE, and Yuming Jiang, Senior
Member, IEEE

Abstract—Network Function Virtualization (NFV) implements
network middleboxes in software, enabling them to be more
flexible and dynamic. NFV resource allocation methods can
exploit the capabilities of virtualization to dynamically instantiate
network functions (NFs) to adapt to traffic demand and network
conditions. Deploying NFs requires decisions for NF placement,
and routing of flows through these NFs in accordance with the
sequence of NFs required to process each flow. The challenges
in developing an NFV resource allocation scheme include the
need to manage the dependency between flow-level (routing)
and network-level (placement) decisions and to efficiently utilize
resources that may be distributed network-wide, while fulfilling
the performance requirements of flows.

We propose a scalable resource allocation scheme, called
ClusPR, that addresses these challenges. By elegantly captur-
ing the dependency between flow routing and NF placement,
ClusPR strikes a balance between multiple objectives including
minimizing path stretch, balancing the load among NF instances,
while maximizing the total network utilization by accommodating
the maximum number of flows possible. ClusPR addresses the
offline problem of NFV resource allocation. To address the online
problem of dynamically placing and routing flows upon their
arrival, we propose iClusPR. iClusPR is an online algorithm
that performs dynamic scaling by adjusting the number of NF
instances based on the traffic demand and the network state.

Our experiments show that ClusPR achieves the near-optimal
solution for a practical large-sized network in reasonable time.
Compared to the state-of-the-art approaches, ClusPR decreases
the average normalized delay by a factor of 1.2− 1.6× and the
worst-case delay by more than 10×, with the same or slightly
better network utilization and balances the load among NF
instances. Furthermore, the performance of iClusPR, the online
version, is comparable to the offline ClusPR algorithm.

Index Terms—NFV, orchestration, placement, flow routing,
multi-objective, load balancing, clustering.

I. INTRODUCTION

Middleboxes such as firewalls, VPN gateways, proxies,
intrusion detection and prevention systems play a central role
in today’s Internet by providing network resident functionality
that examines and potentially modifies the end-to-end traffic
flow [2]. Implementing middleboxes is gradually migrating
to software platforms, providing additional flexibility and
extensibility for the capabilities of the network compared
to purpose-built hardware appliances. Evolving the network’s

Y. T. Woldeyohannes and Yuming Jiang are with the Department of
Information Security and Communication Technology, Norwegian University
of Science and Technology, NTNU, Norway

Ali Mohammadkhan and K. K. Ramakrishnan are with the Department
of Computer Science and Engineering, University of California, Riverside,
California, USA.

Preliminary version of this article appeared in ICIN, 2018 conference [1].

capabilities can thus involve lower capital expenditures as
the software can run on commercial off-the-shelf (COTS)
hardware. Network Function Virtualization (NFV) decouples
the software of network functions from the physical machine
and runs it on virtual machines, or more recently on “con-
tainers” [3]. This also brings greater flexibility in resource
management as instances of the network functions (NFs) can
be created dynamically, and the capacity for a particular
function can be scaled up or down depending on the traffic
demand. Sequences of NFs are common, and the overall
service provided by the network by such sequences of NFs is
termed “service function chaining” [4]. Using the capability
of Software Defined Networks (SDN) to perform flow specific
routing, we can route the flows requiring the service chain
functionality through the NF service instances.

A. The Challenge

Resource allocation of NF service chains continues to be
a challenge because of the complexity of making network-
level as well as flow-level decisions holistically, since each
impacts the other. An NFV resource allocation (NFV-RA)
mechanism has determine at the network-level the number of
NF instances to instantiate across all the nodes in the network
to process all admitted flows. Further, the algorithm needs to
determine the placement of the NFs or the physical machines
that should host the NFs. The flow-level decision making
includes the assignment of NF instances for the service chain
of the flow and the determination of the route for each flow.
However, the network-level decision making has to be coupled
with the decision making at the flow-level, because placement
decisions resulting in NFs placed on network nodes not along
the shortest path will result in “path stretch”, contributing to
increased latency for the flow. This interdependence between
network-level (placement, instantiating the requisite number of
NFs) and flow-level (instance assignment, routing) decisions
makes the NFV-RA problem new and challenging, warranting
the recent attention it has received in the research community.

In addition, network resources such as bandwidth of links,
memory and processing capacities of nodes are limited. These
resource limitations call for efficient utilization of the available
resources, which could be achieved for example by minimizing
the number of NF instances, balancing the load among the NF
instances and/or minimizing the number of distinct resources
used. However, these efficient resource utilization objectives
could sometimes be in conflict with the objective of fulfilling
the performance requirement of flows. Thus, one of the chal-
lenges in developing an NFV resource allocation scheme is to

2

find a balance across multiple objectives, involving minimizing
path stretch, maximizing the number of flows accommodated,
and balancing the load among NF instances, while considering
the resource constraints in the network.

The end-to-end latency for flows can potentially decrease
if NF instances are placed closer to users instead of routing
the network traffic to a limited number of centralized data-
centers [5]. However, most of the work in the literature focus
only on the placement of NFs in the Cloud e.g., Stratos [6]
and [7] or at central offices (COs), as in E2 [8]. In this
paper, we develop a scalable resource allocation scheme for
the joint NF placement and flow routing problem in a geo-
distributed, general, network. The novelty of our approach
comes from considering multiple objectives at the same time
(minimizing path stretch, maximizing the total utilization of
the network and balancing the load among NF instances).
Our work furthers the state of the art by capturing the inter-
dependency between flow-level and network-level decisions
in a scalable manner and striking a balance across multiple
objectives. While existing works typically restrict the flow
to the shortest-path avoiding path stretch, and disregarding
its effect on network utilization [9], [10]. Others maximize
network utilization at the expense of increased path stretch
[11], [12].

B. Our Contributions

Our first contribution is that we model the joint NF place-
ment and flow routing problem as a multi-objective integer
linear programming (ILP) problem. The model is able to
allocate NF instances and find the end-to-end route of flows
while maintaining the precedence constraint among NFs of the
service chain. We solve the ILP using a conventional solver
(CPLEX) for a reasonable scale problem with realistic pa-
rameters. Although the ILP formulation gives optimal results,
the run time of the algorithm increases exponentially with
the size of the network and/or the number of flows. This is
because the joint NF placement and flow routing problem is
NP-hard, encompassing the two NP-hard problems (placement
and flow routing) [13]. The results obtained from solving the
ILP model provide us with valuable insights to develop a
heuristic solution capable of solving the NFV-RA problem at
a larger scale in reasonable time.

Secondly, taking as input the insights, we develop a
heuristic-based NFV-RA scheme called ClusPR. ClusPR
strikes a balance between multiple objectives including mini-
mizing the path stretch experienced by flows, maximizing the
total utilization of the network (the number of flows admitted)
and balancing the load among NF instances. ClusPR utilizes
a divide-and-conquer approach, decomposing the NFV-RA
problem into two sub-problems: for NF placement and flow
routing. To capture the dependency between the network-
level (NF placement) and flow-level (flow routing) decisions,
ClusPR adapts a novel hierarchical architecture in which first
flows are grouped based on their path proximity. Then, the
route information of flows is extracted and used as input when
making NF placement decisions.The features of ClusPR are:

• Network: ClusPR can be used in general settings where
NF instances may be hosted not only in the cloud but
also on the edge computing nodes.

• Path stretch vs utilization: Path stretch can be avoided
if NF instances that are needed by a flow are placed
on its (shortest) path as done in [9]. This can however
lead to low utilization of the network. ClusPR strikes a
balance between minimizing path stretch and maximizing
the network utilization.

• Load balancing vs path stretch: Studies have demon-
strated that NF overload is a common cause of failures
and therefore it is important to balance the load across
NFs [2], [14]. However, such load balancing decisions
might lead to increased delay and thus violating Service
Level Agreement (SLA) for flows. Our proposed flow
routing algorithm balances the load among NF instances
while taking into account the delay requirement of flows
without redirect existing flows.

Finally, we propose an online algorithm iClusPR, which
dynamically scales the number of NF instances depending on
the traffic demand and network state. iClusPR makes resource
allocation decisions on a time slot basis.

• Online algorithm features: iClusPR has the same design
principle as the offline algorithm, ClusPR, so it also has
the aforementioned features of ClusPR.

• Experiment: The performance of iClusPR is analyzed
through realistic experiments in which flows arrive ran-
domly and depart after being served for a random amount
of time.

II. THE SYSTEM MODEL

We consider a network of nodes and links, modeled as a
directed graph, G(N ,L), where N is the set of nodes in the
network and L is the set of links interconnecting the nodes. A
node can be in a data-center with multiple servers, a router or
a commercial off-the-shelf (COTS) server along with a router.
The network carries a set of flows, F , and supports a set of
NFs, denoted as V . For each NF type, multiple instances may
be instantiated on one or multiple nodes.

A node n is characterized by the number of CPU cores at
the node, denoted as Kn, and memory capacity, denoted as
Mn. A CPU core is dedicated to a single NF instance [15],
and does not span CPU cores to avoid Non-Uniform Memory
Access (NUMA) overheads. An NF instance can be hosted on
any node that has enough available resources.

An NF instance v ∈ V hosted on node n is characterized
by its service rate of requests, µv

n. Here, we assume that the
instances of the same NF type at the same node have the same
service rate. An instance of type v needs kv cores and mv

amount of memory. In addition, an NF instance can process
multiple flows whose service chains include the type of NF
instance. We use Dv

n to denote the expected nodal delay for
type v NF at node n, consisting of both processing delay and
queuing delay for flows with NF type v at the node.

Each link l ∈ L is assumed to be bi-directional, and we
use ln

n′ to represent the link from node n to n
′

and Cl its
expected transmission rate. Each node n has a set of outgoing

3

links represented by Lout
n and a set of incoming links, Lin

n .
The expected delay on link l, that comprises transmission and
propagation delays, is written as Dl.

A flow f ∈ F is a sequence of data packets that are
generated at expected rate λf and sent from a source to a
destination node, traversing a sequence of intermediate nodes
and links in the network. Each flow f has a specified service
chain of NFs, denoted as

−→
S f = (S1

f , S
2
f ..., S

Jf

f), which is an
ordered sequence of required NFs that the flow’s packets must
go through, where Sj

f ∈ V denotes the jth NF on flow f ’s
service chain and Jf := |−→S f | is the length of the NF chain
of flow f .

In addition to the sequence of NFs to be followed for
the service chain, each flow f also has an end-to-end delay
requirement, denoted as Df , between the source node sf and
the destination node df of the flow. The end-to-end delay is
composed of two types of delays: total delay on links, denoted
as DT , and total delay on nodes, denoted as DP .

III. THE NFV RESOURCE ALLOCATION PROBLEM

As discussed earlier, in a network supporting NFV, resource
allocation decisions should be made both at the network-level
and the flow-level. For the former, an NFV resource allocation
mechanism needs to decide the number of NF instances to
instantiate in the network to process the flows and where or
at which nodes in the network such NF instances should be
placed. For the latter, the mechanism needs to decide how to
route the flows to go through the NF instances according to the
order of NFs in their service chains and at the same time try
to meet the flows’ delay requirements by limiting path stretch.

For this NFV resource allocation problem, three objectives
are of interest: (1) to maximize the number of flows admitted
to the network, (2) to minimize the use of nodal processing
capacities or cores, and (3) to minimize the utilization of link
capacities, where (2) and (3) are purposed to maximally leave
resources for future use.

A flow is admitted to the network if and only if there are NF
instances that can serve all the services in the NF service chain
of the flow without violating the flow’s delay requirement. Let
indicator variable Ivn(f ; j) = 1 denoting that an NF instance v
hosted at node n is used by the jth service on the service chain
of flow f , and indicator variable Il(f ; j, nj ; j + 1, nj+1) = 1
denoting that link l is used by flow f to route from the jth to
(j+1)th service/NF hosted at node nj and nj+1 respectively.
Since more than one instance of the same NF type may be
hosted at the same node, we use an integer decision variable
yvn to represent the number of type v NF instances that are
hosted at node n. Note that, while yvn is a network-level
decision variable that decides the number and placement of
NF instances, Ivn(f ; j) and Il(f ; j, nj ; j + 1, nj+1) are flow-
level decision variables that specify which NF instances will
be used by a given flow and which links will be used in routing
that flow through, respectively.

The three objectives can then be respectively represented as

maximize
∑

∀f∈F

⌊∑Jf

j=1

∑
∀n∀v I

v
n(f ; j)

Jf

⌋
(1)

minimize
∑

∀n∀v

yvnk
v

Kn
(2)

minimize
∑

∀l∀f

Jf∑

∀j

Il(f ; j, nj ; j + 1, nj+1)λf

Cl
(3)

The above three objective functions are combined into a
single-objective function, using the traditional weighted sum
method [16]. Since, maximizing a given function is equivalent
to minimizing the negative of the function, the single-objective
function is to minimize the summation of the objective func-
tions (2), (3) and negative of (1). The objective functions are
weighted equally, with unit weights. For positive weights, the
optimal solution of the single-objective representation is also
a Pareto optimal solution of the multi-objective problem [16].

A. Constraints

In solving the ILP problem, a number of constraints must be
satisfied, which can be classified into three categories: capacity
constraints, delay constraints, and NF chaining constraints.
The first category is capacity constraints, which ensure that
the total traffic rate on any link does not exceed the link’s
transmission capacity (i.e., Constraint (4)), the total number of
cores allocated to NF instances at any node does not exceed
the number of cores at this node (Constraint (5)) and memory
capacity (Constraint (6)), and the total processing capacity
required for the admitted flows flowing through any NF
instance does not exceed that instance’s processing capacity
(Constraint (7)):

∑

∀f

Jf∑

∀j
Il(f ; j, nj ; j + 1, nj+1)λf < Cl ∀l ∈ L (4)

∑

∀v
yvnk

v < Kn ∀n ∈ N (5)

∑

∀v
yvnm

v < Mn ∀n ∈ N (6)

∑

∀f

Jf∑

∀j
Ivn(f ; j)λf < µv

n ∀v ∈ V,∀n ∈ N (7)

Related and hence put in this category are two constraints
implied by the definition of Ivn(f ; j). One is that a flow is
assigned to use NF instance of type v on node n only if
there is at least one instance of NF type v hosted on node
n. (i.e., Constraint (8)). Another is the constraint that any NF
in the service chain of any flow is served by only one such
NF instance (i.e., Constraint (9)).

yvn ≥ Ivn(f ; j) ∀n ∈ N ,∀v ∈ V,∀f ∈ F ,∀j ∈ {1 . . . Jf}
(8)∑

∀n∀v
Ivn(f ; j) = 1 ∀f ∈ F ,∀j ∈ {1 . . . Jf} (9)

The second category are delay constraints to ensure that a
flow is admitted only if its end-to-end delay requirement is
met (i.e., Constraint (10)):

DT +DP < Df ∀f ∈ F (10)

4

where DT =
∑

∀l
∑Jf

∀j∀nj∀nj+1
Il(f ; j, nj ; j+1, nj+1)Dl and

DP =
∑Jf

∀j
∑

∀n∀v I
v
n(f ; j)D

v
n are respectively the total link

delay and the total nodal delay that the flow f will experience
in the network if admitted.

The third category is NF chaining constraints, which are to
ensure that the order of NFs of any flow is followed when
it is routed from its source node, through NF instances of
its service chain and finally to its destination node. As shown
below, several constraints, i.e., (11) – (20), are in this category.
In these constraints, variable j is used to represent the service
order, i.e., j = 1 represents the first service, j = 2 the second
service, and so on in an NF service chain. The source and
the destination are represented by j = 0 and j = J + 1
respectively.

We start with Constraints (11) and (12) that can be regarded
as the flow conservation equations for the set of nodes that host
NF instances assigned to serve a flow. Specifically, Constraint
(11) ensures that one of the outgoing links of node nj that is
running jth service of flow f has to be assigned for routing
flow f from its jth to (j + 1)th service order. The NF
assignment decision variables Ivnj

(f ; j) and Ivnj+1
(f ; j + 1)

are multiplied to make sure that the constraint applies to the
case where node nj is used to serve the jth service and node
nj+1 the (j + 1)th service of flow f . Similarly, Constraint
(12) makes sure that one of the incoming links of node nj+1

that runs (j + 1)th service of flow f has to be assigned for
routing flow f from its jth to (j+1)th service. We remark that
both (11) and (12) are not linear but since they are multiples
of binary variables, they can easily be substituted by a set of
linear equations.

∀f ∈ F ,∀j ∈ {1 . . . Jf − 1},∀nj , nj+1 ∈ N :

∑

l∈Lout
nj

Il(f ; j, nj ; j + 1, nj+1)I
v
nj
(f ; j)Ivnj+1

(f ; j + 1) = 1

(11)∑

l∈Lin
nj+1

Il(f ; j, nj ; j + 1, nj+1)I
v
nj
(f ; j)Ivnj+1

(f ; j + 1) = 1

(12)
Constraints (13) and (14) are used to guarantee that no more

than one link outgoing from or incoming to a node are assigned
to a given service order of a flow respectively:

∀n ∈ N ,∀f ∈ F ,∀j ∈ {0, ..Jf} :

∑

l∈Lout
n

∑

nj ,nj+1∈N
Il(f ; j, nj ; j + 1, nj+1) ≤ 1 (13)

∑

l∈Lin
n

∑

nj ,nj+1∈N
Il(f ; j, nj ; j + 1, nj+1) ≤ 1 (14)

Constraint (15) is a flow conservation constraint of the
intermediate nodes, which are nodes that do not host NF
instances that are assigned to the flow but still should route
the flow in a given order of the route. It makes sure that, if
one of the incoming links of a node is assigned for a given

order of the route then one of the outgoing links of the same
node has to be assigned to the same order.
∑

l∈Lin
n

Il(f ; j, nj ; j + 1, nj+1)−
∑

l∈Lout
n

Il(f ; j, nj ; j + 1, nj+1)

= 0,∀f ∈ F ,∀j ∈ {0, ..Jf},∀n ∈ N/n 6= nj , nj+1, sf , df
(15)

Constraints (16) and (17) are source node flow conservation
constraints. Constraint (16) ensures that one of the outgoing
links of the source node of flow f is used to route from the
0th to 1st service of the service chain. As defined earlier,
the source node represents the 0th service. That is, node n0

is equivalent to sf , the source node of flow f . In addition,
Constraint (17) is used to assign one of the incoming links of
a node (n1), serving the 1st service of the service chain, to
the 1st service order of the service chain.

n0 = sf ,∀n1 ∈ N ,∀f ∈ F :
∑

l∈Lout
n0

Il(f ; 0, n0; 1, n1) = Ivn1
(f ; 1) (16)

∑

l∈Lin
n1

Il(f ; 0, n0; 1, n1) = Ivn1
(f ; 1) (17)

Constraints (18) and (19) are flow conservation constraints
for the (destination node). Constraint (18) makes sure that one
of the incoming links of the destination node is assigned to
route from the node hosting the last NF of the service chain
(nJ) to the destination node (df) that is also represented as
the J + 1 service, as defined earlier. In addition, Constraint
(19) assigns one of the outgoing links of the node serving the
last service to the (J + 1)th service order.

nJ+1 = df ,∀nJ ∈ N ,∀f ∈ F :
∑

l∈Lin
nJ+1

Il(f ; J, nJ ; J + 1, nJ+1) = IvnJ
(f ; J)

(18)

∑

l∈Lout
nJ

Il(f ; J, nJ ; J + 1, nJ+1) = IvnJ
(f ; J) (19)

Finally, Constraint (20) is used to avoid loops: If link ln
n′ is

assigned for a given service order then link ln
′

n should not be
assigned to the same service order.

Iln
n
′ (f ; j, nj ; j + 1, nj+1) + I

ln
′

n

(f ; j, nj ; j + 1, nj+1) ≤ 1,

∀l ∈ L,∀f ∈ F ,∀j ∈ {0 . . . Jf},∀nj , nj+1 ∈ N
(20)

B. Observations from Solving the ILP Problem

We implemented our ILP model and used CPLEX to arrive
at the optimal placement on a number of small size networks.
We realize that the results from these small scale experiments
are not generalizable, but the results provide us with valuable
guidance to develop a heuristic solution that can solve the
placement and routing problem at a much larger scale. Based
on solving the ILP model for a number of scenarios (service
chains varying in length, nodes having varying number of
cores, and NFs needing multiple, but different numbers of
cores), we make the following observations.

5

1) Observation 1 (O1): The nodes chosen for NF placement
are usually on the shortest path of at least one of the flows.
If a node that is on the shortest path of all the flows has
enough capacity to host all the NFs required for those flows,
the optimal solution places all the NFs on that node.
2) Observation 2 (O2): In the optimal solution, different
NF types are usually placed on a node rather than multiple
instances of the same NF type. If various types of NFs are
placed on a node, a flow will be able to get all the services of
its chain in one node with a high probability. This is especially
true for flows with shorter service chains.
3) Observation 3 (O3): The total number of flows that can be
accommodated in the network is a function of many factors,
including the amount of network resources available, the NFs’
service rate and flow types. Prioritizing flows that require
popular services (at least one) increases the total number
of flows that can be accommodated in the network. This is
because, if instances that are needed by very few flows are
instantiated a priori, those instances will occupy resources but
will be under utilized, thus not accommodating popular NFs
that could have been utilized more.
4) Observation 4 (O4): To satisfy the performance require-
ments (e.g., stringent delay) of some flows, more than the
minimum number of NF instances needed may be instantiated.

IV. CLUSPR: A HEURISTIC APPROACH FOR NFV
RESOURCE ALLOCATION

Based on the observations summarized in Sec. III-B, we
develop ClusPR, a scalable NFV resource allocation algorithm.
ClusPR consists of three phases: Initialization/Clustering,
Placement, and Routing phase. Fig. 1 shows the overall design
of ClusPR.

Shortest Path
Initialization Phase

Placement Phase

Routing Phase

Nodes

NFs

N
e

tw
o

rk

Le
ve

l

D
e

cisio
n

F
lo

w

Le
v
e

l

D
e

cisio
n

Number of NF

instances

Clustering

NFsNFsNFs

Placement

Heuristics

Flow Routing

Placment of NF

instances

Flow service

chaining & routing

Fig. 1: ClusPR Resource Allocation Phases
Network resources (such as CPU cores, memory, band-

width) should be used efficiently so as to maximize the total
utilization of the network (i.e., the total number of flows
admitted to the network with the minimum resources). On
the other hand, path stretch of flows needs to be minimized,
as increased latency could lead to violation of a flow’s SLA.
However, these objectives could be conflicting. For example,
path stretch can be avoided if flows are served by NF instances
placed on their shortest path as in [9], [10]. However, relatively
few flows share a specific end-to-end path and those that do
might have different service chain requirements. So this could
lead to under-utilization of the network. For increasing the
utilization of the network, an NF instance should serve a larger
number of flows.

Given that a number of flows may need to share the same
NF instance, that NF may not be on the shortest path of all of

the flows it serves. Thus, a significant number of flows may
have to deviate from their shortest path to be served by the NFs
instantiated. However, this deviation needs to be constrained
so as not to violate the delay requirement of flows. To strike
a balance between minimizing path stretch and maximizing
network utilization, ClusPR groups flows based on their path
information. That is, flows whose paths are in close proximity
to each other will be grouped together. Then flows within a
group will share NF instances. The intuition is that since flows
within a group have paths that are ’close’ to each other, they
can share NF instances with zero or minimal path stretch.

After grouping the flows, their path information is extracted
by identifying the nodes that are on the shortest path of each
group of flows. Then, NF instances are placed and assigned to
flows, and flows are routed end-to-end. In Summary, ClusPR’s
design principle is to first (1)group flows based on their
path proximity, (2) then extract the flows’ path information,
(3) place instances considering the path information and (4)
finally, assign NF instances and route flows taking into account
their performance requirement and the utilization level of the
instances.

A. Initialization Phase

1) Clustering: The purpose of the clustering module is to
find a set/group of flows whose paths are in close proximity to
each other. To group the flows, ClusPR clusters access nodes
(e.g., first/last hop routers to sources and destinations in a
wide-area network). Access nodes are clustered based on their
proximity to each other, i.e., access nodes that are close to each
other are clustered together. Because of the topological prox-
imity between clustered access nodes, flows originating from
access nodes of a cluster and going to access nodes in another
cluster or vice versa will have their paths close to each other.
Thus, these flows can also potentially share NF instances
with minimal path stretch. Inspired by this insight, ClusPR
groups flows into intra-cluster (i.e., flows whose source and
destination nodes are in the same access cluster) and inter-
cluster flows (i.e., flows whose source and destination nodes
belong to two different clusters) and performs the placement of
NF instances for each of these groups of flows independently.

To cluster the access nodes, a network clustering algorithm,
Kruskal’s algorithm [17], which is a minimum spanning
tree (MST) based clustering algorithm [18], is used. Given
a network graph G(N ,L), the algorithm first organizes all
nodes/vertices of the graph in disjoint sets with a set containing
one node/vertex. The edges of the graph are sorted and listed
in ascending order, based on their weight, which is equal to
the delay on the edge. Then, an edge that is on top of the
sorted list of edges is considered. If the vertices of the edge
belong to two different disjoint sets, the sets will be merged
into a single set. In order to find an MST, this step is repeated
until all the edges in the sorted list are visited.

Given the number of clusters k, an MST based clustering
algorithm can be used to find the k clusters by sorting edges
and merging sets until the heaviest k− 1 edges are left in the
sorted edge list [19].

6

a) Optimal Number of Clusters: Kruskal’s algorithm
can be used to find clusters given that the number of clusters
is known. But finding the optimal number of clusters apriori
might be challenging especially if the network size is large.
To solve this problem, cluster validation techniques can be
used to automatically find the optimal number of clusters [20].
One of the classical cluster validation techniques is the Dunn
index [21]. The Dunn index is useful for finding dense and
well-separated clusters. It is defined as the ratio between the
minimum inter-cluster distance to the maximum intra-cluster
distance.

D(k) = min
i,j∈{1...k},i6=j

{
δi,j

max1≤l≤k4l

}
(21)

Here δi,j is the inter-cluster distance between clusters i and
j, defined as the minimum distance between a pair of nodes
across clusters i and j, i.e., minxi∈Ci{minxj∈Cj d(xi, xj)}, Ci

is the set of nodes in cluster i. The distance metric, d(xi, xj),
is the edge cost or the shortest path cost between the nodes.
The intra-cluster distance of a given cluster l, 4l, is defined
as the maximum distance between a pair of nodes within that
cluster i.e., maxxl∈Cl

{maxxk∈Cl
d(xl, xk)}.

The Dunn index will be maximum when the minimum
inter-cluster distance is large and the maximum intra-cluster
distance is small. Larger values of the Dunn index corresponds
to good clusters. Therefore, the number of clusters (k) that
maximizes the Dunn index is taken as the optimal number of
clusters [22].

Algorithm 1 ClusPR: Clustering Phase

1: G(N ,L): where n , n
′ ∈ N

2: sort the links/edges l ∈ L in ascending order
3: k ← N number of disjoint sets(clusters)
4: kopt ← k
5: for l : {n, n′} ∈ L do
6: if n and n

′
are in disjoint sets then

7: merge sets’ of n and n
′

8: k ← k − 1
9: if D(k) > D(kopt) then

10: kopt ← k

11: return kopt
12: Kruscal’s Algorithm(kopt)

Finding the Optimal Number of Clusters: To find the
optimal number of clusters, Kruskal’s algorithm can be run
multiple times for different numbers of clusters, and the
number of clusters that maximizes the Dunn index value
will be considered the optimal. However, this approach can
be computationally cumbersome as it requires running the
clustering algorithm multiple times. To efficiently calculate
the optimal number of clusters, we propose an approach that
exploits the structure of Kruskal’s clustering algorithm.

Kruskal’s clustering algorithm is a hierarchical algorithm
in which the number of clusters decreases at each step until
the target number of clusters is reached. In the beginning, the
number of clusters is equal to the number of nodes in the
network (N). The number of clusters decreases step by step
from N until the target number of clusters is reached. The

Dunn index can be calculated in the middle of the MST based
clustering algorithm execution.

For example, in the beginning the Dunn index can be
calculated for N clusters, before two clusters are merged and
then the number of clusters decreases to N-1. The Dunn index
is then calculated for N-1 clusters before two sets are merged
and the cluster number becomes N-2 and so on. Algorithm
1 shows the pseudo code for efficiently calculating the Dunn
index inside the Kruskal’s clustering algorithm. At line 10, the
Dunn index for the current number of clusters k is calculated
using equation (21). If it is more than the Dunn index of the
temporarily optimal number of clusters (kopt), k will take the
place of kopt. After getting the optimal number of clusters
that has the maximum value of the Dunn index, Kruskal’s
clustering algorithm will finally be run for the optimal number
of clusters (line 13).

Number of NF Instances: Latency-sensitive flows have
less tolerance for path stretch. Thus, as noted in O4, a larger
number of NF instances might have to be instantiated to satisfy
the delay requirement for this type of flows. In this section, we
propose two ways for deciding the number of NF instances to
be created in the network. In the first approach, the minimum
number of instances required to serve all the flows in the set
(F) is calculated first, then these instances are divided among
the groups of flows. In the second approach, the minimum
number of instances needed to serve each group of flows is
calculated first, then the total number of instances instantiated
will be a summation of the number of instances created for
the groups.

First approach: this approach creates the minimum number
of instances needed to serve all the flows in the set F .

Theorem 1. Given a set of flows (F), each flow having an
average arrival rate of λ, out of which F v number of flows
require the v type NF. The minimum number of NF instances
of type v ∈ V (Ivmin), with service rate µv , required to serve
the set of flows is equal to Ivmin =

⌈
Fvλ
µv

⌉
.

Proof: refer to Appendix A.

The minimum number of instances of each type of NF (v ∈
V) needed to serve the flows in F is calculated using Theorem
1. The calculated number of instances will then be divided
among the groups of flows.

• For large numbers of flows: If the number of flows in
F is large, the minimum number of NFs calculated can
be proportionally divided among the groups of flows. Let
G represent the set of groups of flows. For each group
g ∈ G, the number of NF instances of type v instantiated
(Ivg) is allocated in proportion to the number of flows
in the group that require NF type v (F v

g) to the total

number of flows that need v, F v . That is Ivg =
Iv
minF

v
g

Fv .
Since this fraction might not always be an integer number,
two conditions are used for assigning positive integer
values to Ivg . If

Iv
minF

v
g

Fv > 1, Ivg = bI
v
minF

v
g

Fv c. If

0 <
Iv
minF

v
g

Fv < 1, Ivg = dI
v
minF

v
g

Fv e. The latter condition
is used to instantiate one instance for groups that have a
smaller number of flows. This approach works best when
the number of flows is large (Ivmin is large).

7

• For small numbers of flows: If the number of flows is
small and the objective is to minimize the number of NF
instances, the clustering module could be skipped. In this
case, all flows will be in one group and Iv = Ivmin.

Second approach: In this approach the minimum number
of NF instances needed to serve each group of flows (g ∈ G) is
calculated using Theorem 1. ClusPR groups flows into intra-
cluster and inter-cluster sets of flows. If there are k access
clusters, there will be k(k−1)

2 number of cluster-pairs. Thus,
there will be a maximum of k groups of intra-cluster flows and
k2−k

2 groups of inter-cluster flows. The maximum number of
groups of flows in G is equal to k2+k

2 . Ivg,min is the minimum
number of NF instances of type v needed for serving the
set of flows in group g. The maximum total number of NF
instances instantiated by ClusPR (Ivmax) is a summation of
the number of instances instantiated for each of the groups.
That is, Ivmax =

∑
∀g Ivg,min.

Theorem 2. The number of NF instances of type v ∈ V
instantiated by ClusPR, Iv , is bounded by Ivmin ≤ Iv ≤
Ivmin + k2+k

2 where k is the number of access clusters.
Proof: refer to Appendix B.

From Theorem 2, it can be observed that the number of
NF instances created by ClusPR using the second approach
is upper bounded. And the upper bound is a function of the
number of access clusters.

2) Shortest Path: The second module in the initialization
phase is the shortest path module. The purpose of this module
is to obtain path information about the groups of flows by
identifying nodes that are on the shortest path of flows. The
shortest path between access nodes of the flows is calculated
using classical shortest path algorithms such as Dijkstra’s
algorithm. The nodes that are on the shortest paths are regarded
as the “best” candidates for hosting NF instances (as noted in
O1). In addition, one hop and two hops neighboring nodes
of the shortest path nodes are also identified. This is done
to increase the number of candidate nodes for hosting NF
instances as the shortest path nodes might not have enough
resources. The path information captured through the selected
shortest path and neighboring nodes is then transferred to the
placement phase.

Flows have various service chain requirements. To ensure
that NF instances placed on a shortest path node are needed
by flows whose shortest path passes through the node, each
shortest path node keeps a list. The list is used to record the
different types of services the flows require. In addition, the
nodes will have a weight that is used to record the number
of flows whose shortest path passes through the node. For
example, if a node is on the shortest path between three pairs
of access nodes that have 3, 5 and 10 flows between them,
the node will have a weight equal to 18. In addition, if these
flows require DPI, proxy and firewall services, the node will
have a list containing these three services.

Shortest path nodes are ordered based on their weight:
the higher the weight of a node the higher its priority for
hosting NF instances. In other words, nodes that are on the
shortest path of many flows are given higher priority to host

NF instances, as noted in (O1). If the weight of the nodes is
equal, then nodes that have higher processing power are given
priority over nodes that have lower processing power. Next the
NF placement decisions are made for each group of flows.

B. Placement Phase
In this phase, NF instances are placed on the shortest path

nodes and/or their neighboring nodes. The type and number of
NF instances required to serve each of the groups of flows have
been calculated in the initialization phase. The set of NF types
to be placed for a group of flows are ordered according to
their popularity, which is measured by the number of flows that
require the NF type. The most popular NFs are prioritized to be
placed first, considering (O3), with ties broken by prioritizing
the NF requiring more processing power. The number of each
type of NF to be instantiated is recorded. The placement phase
places NF instances for each group of flows.

Algorithm 2 ClusPR’s Placement Heuristic

1: Qn ← priority queue of candidate nodes
2: Qnf ← priority queue of NF types to be placed
3: iv ← number of instances of NF type v to be placed
4: ActiveNode← null
5: n.(list) list of node n ∈ Qn

6: C ∈ {0, 1} ← C = 1 if consolidation is used
7: T ← per NF utilization threshold for consolidation
8: while Qnf not empty do
9: v ← NF type from top of Qnf

10: while Qn not empty do
11: if ActiveNode and v ∈ ActiveNode.(list)) then
12: if C & ActiveNode has v& ρvn < T then
13: iv = iv − 1, Continue to next v in Qnf

14: else if n has resources then
15: Place v on ActiveNode
16: iv = iv − 1, Continue to next v in Qnf

17: else
18: n← top of Qn

19: if v ∈ n.(list) then
20: if C &n has v hosted and ρvn < T then
21: iv = iv − 1, continue to next v in Qnf

22: else if n has resources then
23: Place v on n, ActiveNode← n
24: iv = iv − 1, Continue to next v in Qnf

Bin-Packing: The placement heuristic, summarized in Al-
gorithm 2, does a bin-packing of the ordered NF types on the
set of best candidate shortest path nodes and their one hop
and two hops neighboring nodes. An NF instance is placed on
a shortest path node if and only if the node has the NF type
in its list, which contains a list of the NF types needed by the
flows whose shortest paths pass through the node. An NF type
that is on top of the priority queue of NF types is taken and
the queue of “best” candidate nodes is iterated through until
a node that has the NF type in its list is found. Once a node
is found, it is checked if the node has enough processing and
memory capacity to support the NF type.

If all the “best” candidate shortest path nodes do not have
enough resources to host the NF type, the algorithm checks for

8

one hop neighboring nodes of the shortest path nodes followed
by two hops neighboring nodes. Once a node is found the NF
is placed and the number of instances of the NF type to be
placed is decreased by one. The node will then be regarded
as an active node for placing the next NF type. Nodes that
are more than two hops away from the shortest path nodes
could also be considered for hosting NFs but the farther the
candidate nodes are from the shortest path nodes, the higher
the probability that flows will experience larger path stretch
by using NFs hosted on these nodes.

Diversity: The placement heuristic diversifies the types of
NFs placed on a node. That is, the algorithm prioritizes placing
different types of NF instances on one node rather than placing
multiple instances of the same type of NF on the node. If
different types of NFs are placed on one node, the probability
that a flow can get all of the services it requires from one node
will be high, as noted in (O2). Serving a flow’s chain in one
node has advantages such as decreasing the communication
cost and the delay experienced by the flow.

Next, the following NF type is picked from the queue of
NFs and placed on the active node provided that the NF is
found in its list. If not the algorithm returns to the queue of
the nodes, and looks for another node following the same steps
as above. After placing one instance of all types of NFs, the
algorithm returns back to the top of the queue of NFs and
places the second instances. This process is repeated until all
the instances of all NF types are placed.

Consolidation: The aim of the consolidation step is to share
placed NF instances among groups of flows to facilitate better
utilization of the NF instances. If consolidation is applied,
before placing an NF instance at a given node, the algorithm
checks if the node has already hosted this type of NF for
the other groups of flows. If the estimated utilization of the
instance already placed on the node, ρvn, is below a given
threshold (e.g.,50%), it is assumed that the instance has enough
available capacity to host the flows in the other group as well
so a new instance will not be instantiated. Consolidation will
result in the instantiation of fewer number of instances.

Higher values of the threshold encourage consolidation thus
leading to the instantiation of less number of NF instances.
However, this has a risk of increased path stretch and rejection
of flows. Comparatively lower threshold values discourage
consolidation. If the first approach (initialization phase) is used
to decide the number of instances, then the instances created
are already the minimum number of instances needed to serve
the set of flows so the consolidation step should not be applied.

Fig. 2: Example of paths in Rk
nj

and R for k=2

C. Routing Phase
The routing phase is responsible for making flow-level

decisions of assigning NF instances to flows and routing

flows end-to-end i.e., from their source node through the
assigned NF instances of their service chain and finally to their
destination node. In making these decisions, two objectives are
considered: satisfying delay requirements of flows and load
balancing among NF instances.

A flow’s routing problem is modeled as a multi-stage graph
in which the stages of the multi-stage graph represent the
services in the service chain of the flow. The vertexes of a
stage of the graph represent the NF instances the flow can
be assigned to. At each stage, a flow can be assigned to one
of the NF instances that are placed for its group. These are
the NF instances placed on the shortest path nodes and their
neighboring nodes of the flow’s group.

For constructing the multi-stage graph, the costs on the links
of the graph also need to be calculated. The costs can be
calculated using shortest path algorithms such as Dijkstra’s
algorithm. The shortest path costs of the links from the source
node to the nodes hosting the first NF instance of the chain
and the links from the destination node to nodes hosting
the last NF of the service chain need to be calculated for
each of the flows. The costs of the links between the stages
(nodes hosting NFs in the chain) are calculated once, which
decreases the computational complexity of constructing the
graph. We propose a new algorithm that is based on the ideas
of dynamic programming and incorporates novel methods to
enable solving the flow routing problem considering both end-
to-end delay and the utilization level of instances. Before
explaining the algorithm, the dynamic programming based
shortest path algorithm is explained for completeness.

To formulate the dynamic program, two distance notations
are adopted: C(n, n

′
) and D(nj , df). C(n, n

′
) is used to

represent the cost of the shortest distance between nodes n and
n

′
that belong to two consecutive stages (NFs in the chain).

e.g., C(sf , n1) represents the cost of the shortest distance
between the source node of flow f (sf) and node n1 that hosts
the 1st service instance. D(nj , df) represents the shortest
distance between node nj that is hosting the jth service of
the flow to the destination node, e.g., D(n2, df) represents
the shortest distance from node n2 that is hosting the 2nd

service to the destination node (df).
The dynamic program formulation is given as

D(sf , df) = min
n1∈N1

(C(sf , n1) +D(n1, df)) (22)

D(nj , df) = min
nj+1∈Nj+1

(C(nj , n(j+1)) +D(n(j+1), df))

(23)
Nj is the set of nodes that are on the shortest path and one

hop and two hops away from the shortest path and are hosting
the flow’s jth service type for the group the flow belongs to.
The dynamic program is solved starting from the destination
node until the source node is reached.

1) The proposed flow routing algorithm: The objectives
of the proposed flow routing algorithm are to satisfy the
delay requirement of the flow and balance the load among
NF instances. To achieve these, the algorithm first (1) finds
a set of routes that satisfy the delay requirement of the flow,
then (2) out of these paths a flow is assigned to a path that
has the minimum maximum NF utilization (to balance the load
among NF instances).

9

To find a set of routes that could potentially satisfy the delay
requirement of the flow, k shortest paths are saved from a node
in a stage of a graph to the destination. That is the distance
D(nj , df), which represents the shortest distance between a
node nj that is hosting the jth service of the flow to the
destination node, is extended to a set of paths, Rk

nj
, which

has k elements (k shortest paths from a node nj of the jth

stage to the destination). Fig. 2 shows an example of the paths,
which are highlighted, saved for k=2. Rnj represents a set of
paths from a node nj that is hosting the jth service of flow f
to the destination node, so Rk

nj
⊆ Rnj

.
Nodes found in the last stage of the multi-stage graph have

a direct link with the destination node, so for each node in the
last stage, nJ ∈ NJ , Rk

nJ
will have one element only. The

distance from nodes in the last stage, J , to the destination node
i.e., D(nJ , df)) is calculated using shortest path algorithms.
A set of paths from nodes in the J−1 stage to the destination
node (RnJ−1

) can be calculated as:

RnJ−1
= {C(nJ−1, nJ) +D(nJ , df) : (24)

nJ ∈ NJ , nJ−1 ∈ NJ−1}
The set of k shortest paths from a node in the J − 1 stage

to the destination node (Rk
nJ−1

) is taken from the set RnJ−1
.

For a node in a stage j ∈ {1 . . . J − 2}, a set of distances
(Rnj

) can be calculated as

Rnj
= {C(nj , nj+1) +D(nj+1, df) : (25)

D(nj+1, df) ∈ Rk
nj+1

, nj+1 ∈ Nj+1, nj ∈ Nj}
The set Rnj is constructed by using the set of k shortest paths
to the destination saved in the j + 1th stage (i.e., Rk

nj+1
) and

costs between nodes in the stages j and j+1 of the multi-stage
graph, C(nj , nj+1). Similarly, a set of k shortest distances
(Rk

nj
) is found from the set Rnj

for each node nj ∈ Nj . That
is the k shortest paths from all NFs of a stage to the destination
node are calculated for the stages one to J − 1. Finally a set
of source to destination end-to-end paths are calculated as:

R = {C(sf , n1) +D(n1, df) : (26)
D(n1, df) ∈ Rk

n1
, n1 ∈ N1}

If there are N1 number of nodes in N1 i.e., the first stage
of the graph, with each node having k shortest paths to the
destination, there will be in total kN1 number of source to
destination end-to-end paths in the set R.

Out of these paths in R, the set of paths that are able to
fulfill the delay requirement of the flow (Rd) are identified.
Then, the objective of balancing the load among the NF
instances is considered by adopting the min-max fairness. The
maximum utilization of the NF instances on each of the routes
inRd is calculated. The route that has the minimum maximum
NF utilization is then chosen for serving and routing the flow.
In the situation where there are no routes that can satisfy the
delay requirement of the flows (Rd is empty), the flow is
assigned to a route that has the minimum end-to-end delay.

Theorem 3. ClusPR has a complexity of O(FNgL logN)),
where Ng is the average number of shortest path and neigh-
boring nodes per group. F,N and L are the number of flows,
nodes and links respectively.

Proof: refer to Appendix C.

V. ONLINE PLACEMENT AND FLOW ROUTING:
INCREMENTAL CLUSPR(ICLUSPR)

ClusPR is an offline algorithm that performs NF placement
and flow routing decisions for a set (F) of flows, i.e., the
information of all flows is known to ClusPR beforehand. In an
online environment, flows will arrive sequentially so resource
allocation decisions need to be made for the flows that arrive
without knowledge of future incoming flows. iClusPR is an
online NFV resource allocation algorithm. It is developed
based on ClusPR so it has a design similar to ClusPR (shown
in Fig. 1). iClusPR performs dynamic scaling specifically
horizontal scaling that is adjusting the number of NF instances
depending on the traffic demand. iClusPR makes resource
allocation decisions on a time slot basis. That is flows that
arrive at a given time will be assigned resources at the
subsequent decision time slot. The modifications made in
iClusPR for each of the modules are explained below:

A. Initialization phase

1) Clustering: The clustering module of iClusPR serves the
same purpose as in ClusPR, that is to group flows based on
the proximity of their path. The same clustering algorithm
as in ClusPR is used. iClusPR clusters access nodes once
when the algorithm is run for the first time on a network
topology. Upon arrival of flows, the clustering module simply
groups flows based on their source and destination nodes.
Then, the NF instances needed to serve each group of flows
are calculated using the second approach, which is explained
in the initialization phase of ClusPR.

2) Shortest Path: This module of iClusPR is similar to
its counterpart in ClusPR and it extracts path information by
identifying nodes that are on the shortest path of flows. This
calculation needs to be performed upon arrival of flows.

B. Placement phase

This phase performs dynamic scaling by adjusting the
number of NF instances instantiated in the network. It takes as
input the shortest path nodes and their one hop and two hops
neighboring nodes, the NF instances created on these nodes as
well as the type and number of NF instances needed to serve
each group of flows.

The NF instances instantiated in the previous decision slots
can serve the incoming flows as well provided that they have
enough available capacity. iClusPR uses a threshold based
approach to decide if an NF instance is able to serve the
incoming flows or not. That is NF instances whose residual
or available capacity is above the threshold value are assumed
to have enough available capacity for hosting the incoming
flows. Higher threshold values encourage the instantiation
of new NF instances and might lead to overprovisioning
or underutilization of resources. On the other hand, lower
threshold values encourage the use of existing NF instances
but could result in over-utilization of resources and rejection
of flows.

Similar to ClusPR’s placement heuristics, iClusPR orders
the set of NF types needed to be created based on their
popularity, which is measured by the number of flows that
need the NF type. The most popular NF type is prioritized to

10

!

"!

#!

$!

%!

&!!

&"!

&#!

' &' "' (' #' '' $')' %' *' &!' &&' &"' &(' &#' &''

+
,
-
.
/
01
2
31
34
2
5
6

7/489:-6;

<4,6=> ?" 7/@429ABC

(a) Distribution of total delay

!

"!

#!!

#"!

$!!

$"!

%!!

! " #! #" $! $" %! %" &! &" "! "" '! '" (! (")!)" *! *" #!!

+
,
-
.
/
0
12
31
34
2
5
6

789:11690/9;:<-6=

>4,67? @$ A/B42CDEF

(b) Distribution of path stretch

Fig. 3: Delay performance with service chain length=2

!

"!!

#!!

$!!

%!!

&'()*+ ," -./'01234

5
(
6
7
.
89
0
:9
:'
0
;
)

<=62>>.= -.'?19@?>2):2.=

(a) Network utilization, chain = 2

! " # $ %

&'()*+

,#

-./'01234

(b) Average delay, chain = 2

! " #! #" $!

%&'()*

+$

,-.&/0123

(c) Worst delay, chain = 2

! " #! #" $! $"

%&'()*

+$

,-.&/0123

(d) Worst delay, chain= 4

Fig. 4: Network utilization, average and worst-case normalized total delays for different chain lengths

!

"!

#!!

#"!

$!!

! #! $! %! &! "! '! (!)! *! #!! ##! #$! #%! #&! #"! #'!

+
,
-
.
/
0
12
31
34
2
5
6

789:1;90/9<:=-6>

?4,67@ A$ B/C42DEFG

Fig. 5: Path stretch distribution, chain length = 4

be placed first. The NF type that is on the top of the NF queue
is picked first and the placement heuristic checks whether there
is an existing NF of the same type whose residual capacity is
above the threshold specified. If so, the algorithm goes to the
next NF type without instantiating a new instance. If there
are no existing NF instances of the same type, a node that
is on top of the selected nodes queue is picked and a new
instance of the NF type is instantiated following the same steps
as in ClusPR’s placement heuristic. Besides creating new NF
instances, an instance might also be removed from the network
if all the flows it was serving have departed.

C. Routing phase

In this phase, flows are assigned NF instances and routed
end-to-end that is from their source node through the NF
instances of its chain finally to their destination node. The
same algorithm as in the routing phase of ClusPR is used.

VI. EXPERIMENTAL RESULTS

We analyze the performance of ClusPR and iClusPR ex-
tensively. ClusPR’s performance is also compared with two
alternatives, E2 [8] and [11] (referred to as “Deploying” here),
on realistic networks. We report results on experiments with a
practical ISP network topology, the Rocketfuel [23] topology

Fig. 6: Rocketfuel topology AS 1221:100 nodes and 294 links

AS 1221 shown in Fig. 6 used as a test network. The nodes in
the topology are classified as “access” (in blue), “edge” (green)
and “core” (orange) nodes, in a manner similar to [24]. NFs
are considered to be hosted on (or adjacent to) edge and core
nodes. It is assumed that each host has 4 CPU cores and 8GB
memory. Every NF instance requires one CPU core and 2GB
memory, with a service rate of 10Mbps. There are five types
of NFs (e.g., Firewall, DPI, NAT, IDS, and Proxy).

All the links have a capacity of 1 Gbps, and the delays
on the links are: access-edge: 3 ms; edge-core: 10 ms; core-
core: 40 ms. The source and destination nodes of flows as well
as the services required by the flows are generated randomly.
The arrival rate of each flow is assumed to follow a log-normal
distribution [25] with an average rate of 0.5 Mbps. The length
of the service chain for each flow is assumed to vary in the
range of 2 to 4 NFs and the service types in the chain for each
flow are selected randomly.

The performance metrics used are total delay, path stretch
(measured as the difference between the total delay and
shortest path delay), network utilization (measured by the
number of flows admitted and also by those whose delay
requirement is satisfied), number of NF instances created and
the per-NF utilization level. These performance metrics are
compared for different setups such as variable chain length
and distribution of node processing capacity.

11

!

"!

#!!

#"!

$!!

! " #! #" $! $" %! %" &! &" "! "" '!

(
)
*
+
,
-.
/
0.
01
/
2
3

4567.36-,6879*3:

;/-, <=>,.?.;/-,

(a) Distribution of path stretch

!

"!!

#!!

$!!

%!!

&'() *+,)-.-&'()

/
0
1
2
)
(-
'
3-
34
'
5
6

7+1899)+ :)4;<-6;98638)+

(b) Network utilization

!"!!

!"#!

!"$!

!"%!

!"&!

'"!!

'"#!

' # ($) % * & +

,
-
.

-/0123456789/59:196;

,78/ <=>/?@?,78/

(c) CDF of the Normalized Delay

Fig. 7: Effect of using edge computing nodes

A. Evaluation of ClusPR

Total Delay and Path Stretch:
The total delay of a flow is measured as the summation

of the delays on the links it is routed through. Fig. 3 shows
the total delay and path stretch distributions with 720 flows
that have a two NFs long service chain. Both E2 and ClusPR
instantiated 74 instances, which is the minimum number of
instances needed for the flows.

ClusPR has a shorter path stretch compared to both De-
ploying [11] and E2 for the same number of instances. The
performance gain is partly because ClusPR uses the flows’
path information in NF placement decision-making and it
diversifies the type of NFs placed on a node, thus increasing
the probability that a flow can get all of the services of its
chain at one node.

Average and Worst-case Delays: Fig. 4b and 4c show
the average and worst-case total delays, respectively. They
are normalized with respect to the shortest path delay of
flows. ClusPR is able to achieve a worst-case normalized delay
that is 10× less than the worst-case normalized delay of E2
and Deploying. The average normalized delay of ClusPR is
1.2− 1.6× less compared to E2 and Deploying.

Network Utilization: To analyze the delay satisfaction of
flows, flows are set to have a specified delay requirement
in terms of the maximum normalized total delay that they
can tolerate. The normalized delay requirement of flows is
assumed to be uniformly distributed between 1 − 2.5× their
shortest path delay.

Fig. 4a shows the number of flows that are admitted
out of the 720 flows and those whose delay requirement is
satisfied. ClusPR, E2 and Deploying achieve similar network
utilization in terms of the number of admitted flows, but their
delay performance differs considerably, which also results
in a noticeable difference in terms of the number of flows
whose delay is satisfied. The delay difference is due to the
following underlying reason. For E2, delay or path stretch
is not considered in the heuristic. Deploying, on the other
hand, prioritizes maximizing network utilization and does not
balance the load across NF instances. ClusPR satisfies the
delay requirement of 95% of the flows while E2 and Deploying
managed to fulfill the delay requirement of 60% and 70% of
the flows, respectively. ClusPR satisfied the delay requirement
of 25− 35% more flows compared to E2 and Deploying.

Effect of Service Chain Length: We now analyze the effect
of the service chain length. Fig. 5 demonstrates the path stretch
distribution of 650 flows with a service chain length of four.

Both E2 and ClusPR instantiated 132 NF instances for serving
the flows.

In comparison to the path stretch experienced by flows
with service chain length=2 (Fig. 3b), flows with a service
chain length of four experienced a larger path stretch. This
is because flows with longer service chains need to traverse
through multiple NF instances which might not be co-located
in the same node. The worst-case delay is shown in Fig. 4d.
Compared to the worst-case delay experienced for service
chain length of 2 (Fig. 4c), ClusPR’s worst-case delay for
a chain length of 4 has increased slightly from 5× to 6×
the shortest path delay. E2 and Deploying have observed 6×
and 7× increase in the worst-case normalized delay. Thus,
ClusPR can adapt better to the change in the service chain
length compared to both E2 and Deploying.

Effect of edge computing nodes: In this section, the effect
of using edge computing nodes as hosts of NF instances is
analyzed. Two network setups are considered. In the first setup
the processing power is concentrated in three centralized (core)
clouds. Each of the clouds has 44 cores. Thus, in total there
are 132 CPU cores in the network. In the second setup, some
of the processing power of the central clouds is distributed to
the edge nodes. The three central cloud nodes have 24 cores
each while 30 edge nodes have two cores each. We will refer
to this setup as “Edge + Core” and the first setup as “Core”.
Thus, in total the “Edge + Core” network setup will also have
132 CPU cores.

Fig. 7a shows the path stretch observed by 700 flows in the
“Edge + core” and “Core” network setups. The “Edge + core”
setup has a better performance as more flows experience zero
or a small amount of path stretch compared to the “Core”
setup. As can be inferred from the CDF of the normalized
delay shown in Fig. 7c, the “Edge + core” setup has a smaller
worst-case and average total delays. The number of flows that
are admitted and those whose delay requirement is satisfied is
shown in Fig. 7b. The delay requirement of 75% and 86%
of the flows is satisfied in the “Core” and “Edge + core”
setups respectively. These results demonstrate that hosting
NF instances on edge computing nodes also has a significant
performance gain by decreasing the latency.

B. Effect of load balancing across NF instances

ClusPR’s flow routing algorithm balances the load among
the instantiated NF instances. In this section, ClusPR’s load
balancing approach is analyzed and compared with the no load
balancing approach, which assigns to flows NFs that are on

12

n1

n2

n3

n5

n6

n9

n7

n4

Cloud
n8

(a) Test network

!

!"#

!"$

!"%

!"&

'

'"#

'"$

()*+,- (,./0 ()*+,- (,./0

12 1%

3
*
4
5
6
78
9
:8
3
;
8<
1
+=
>
1
?
6
+ ,79@A ;<76B>)) CDE D,C 3FG

(b) NFs on nodes n3 & n6

0

10

20

30

40

50

60

70

80

90

100

C
lu

sP
R

C
P

L
E

X

C
lu

sP
R

C
P

L
E

X

C
lu

sP
R

C
P

L
E

X

C
lu

sP
R

C
P

L
E

X

C
lu

sP
R

C
P

L
E

X

Proxy Firewall IDS DPI NAT

N
F

 U
ti

li
za

ti
o

n
(%

)

n3 n6

(c) Per-NF utilization

Fig. 8: Comparison between ClusPR and CPLEX

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

C
D
F

NF utilization

No Load Balance ClusPR (k=1)

ClusPR (k=2) ClusPR (k=3)

ClusPR (k=4)

(a) CDF of NFs utilization

!"!!

#!"!!

$!"!!

%!"!!

&!"!!

'!!"!!

'#!"!!

()*+),-*

.,+,/01

2+3456*789': 2+3456*789#: 2+3456*789;:

<
1
+,
=
*4
,
>?
4@
?1
-
*@
+)
A
47
B
:

(b) Network utilization

Fig. 9: Effect of load balancing

the shortest path of the multi-stage graph model of the flow,
provided the NFs are not 100% utilized. ClusPR’s flow routing
algorithm saves k shortest paths from a node at a given stage
to the destination node, then it balances the load considering
the multiple paths saved. k is an algorithmic parameter and
the impact of the value of k is also assessed.

In Fig. 9a the utilization of instances when no load balanc-
ing is applied is compared with ClusPR with k varying from
one to four. When no load balancing is applied, some of the
instances have very low utilization while some other instances
are highly utilized, going up to 100%. For ClusPR with k=1,
there is a better distribution of load among the instances. For
higher values of k, the load is balanced across the instances
with most instances having a utilization between 65%-75%.
There is only a slight difference in the utilization level of
instances for k more than 3. As a result of the load balancing,
ClusPR is able to satisfy the delay requirement of 8% more
flows compared to the no-load balancing approach (Fig. 9b).

C. Comparison of ClusPR and ILP Model
The performance of ClusPR is compared with the proposed

ILP model (solved using CPLEX) for a small Test network
topology with 9 nodes and 11 links shown in Fig. 8a. Nodes
n3, n4, n5, n6 and n8 are able to host NF instances and have
a processing capacity of 5,4,4,5 and 10 cores, respectively.

The number and type of instances instantiated for serving
50 flows are shown in Fig. 8b. Two nodes, node n3 and n6,
which are on the shortest path of flows are chosen to host NFs
by both CPLEX and ClusPR. As can be seen from the figure,
ClusPR has created the same number and type of instances as
the optimal CPLEX solution. The utilization of the instances
is shown in Fig. 8c. ClusPR balances the load across the NF
instances and the utilization is only very slightly different from
the utilization of the instances in the CPLEX solution. Both
ClusPR and CPLEX are able to satisfy the delay requirement
of all 50 flows. For the execution time, CPLEX takes 1 hour
while ClusPR takes less than 1 second. to get the solution,
on the same computer. This indicates that, ClusPR is able to
reach a near optimal result, but is much faster.

D. Evaluation of iClusPR

The performance of iClusPR is analyzed and compared with
ClusPR, and the effect of the parameter, α, which is a per-NF
utilization threshold value, is assessed. In this evaluation, a
flow-level simulation was performed.

Simulation setup: The flow arrival process is assumed to be
Poisson with an average arrival rate of 1 flow per time unit.
The sojourn time of flows is exponentially distributed with an
average of 700 time units. The decision time slot is assumed to
be 40 time units long. Under these settings, the network can
be modeled as an M/M/∞ system. From queuing theory,
theoretically, the average number of flows expected in the
network is 700.

Fig. 10a shows the number of flows in the system at
different decision time slots. In total, by time slot 125, 5000
flows have arrived. As expected, the number of flows in the
system converges to the theoretical average value i.e., 700.
The number of NF instances created for different values of the
threshold value (α) is shown in Fig. 10b. For α = 0.8, a new
NF instance will be instantiated if the existing NF instances
have less than 80% available capacity. Thus, the larger the
value of α the more the number of instances created. iClusPR
also balances the load across the NF instances as can be seen
from Fig. 10c. Figs. 11a and 11b show the percentage of flows
whose delay requirement is satisfied and the worst-case delays,
respectively, for different threshold values. For α = 0.2, the
network has the lowest performance of all and α = 0.4 and
0.8 have almost similar performance. An implication is, α
values that are in the middle e.g., α = 0.4 or 0.5, give a
good trade-off between the number of NF instances and the
network performance (delay, utilization).

VII. RELATED WORK AND DISCUSSION

In the literature, a number of approaches have been pro-
posed for the NFV-RA problem. A detailed survey can be
found in [26]. In the following, we review the most related
and recent works.

ILP models for the joint NF placement and flow routing
problem have been presented in papers such as [27], [28] and
[29]. In addition to the models, heuristic algorithms (based on
the models) have been proposed in [27] and [28] and a greedy
heuristic is proposed in [29]. A shortcoming of the [27] and
[29] models is that they do not keep the routing order among
services of a chain. In addition, the ILP models are generally
not scalable due to the complexity of the problem.

Recently, heurisitc approaches have been proposed to tackle
the scalability problem associated with the ILP models. Here

13

!

"!!

#!!

$!!

%!!

&!!

'!!

(!!

)!!

")

"
&

#
#

#
*

$
'

%
$

&
!

&
(

'
%

(
"

(
)

)
&

*
#

*
*

"
!
'

"
"
$

"
#
!

+
,
-
.
/
0
12
31
34
2
5
6

7/89692:1;9-/1642;

(a) Number of flows

!

"!

#!

$!

%!

&!!

&"!

& %

&
'

"
"

"
(

)
$

#
)

'
!

'
*

$
#

*
&

*
%

%
'

(
"

(
(

&
!
$

&
&
)

&
"
!

+
,
-
.
/
01
2
31
45
67
8
5
9
/
6

:/946425174-/16;27

4<;,6=>1?1!@1!A"B 4<;,6=>1?1!@1!A#B

4<;,6=>1?1!@1!A%B <;,6=>

(b) Number of instances

!

"!

#!

$!

%!

&!

! "! #! $! %! &! '! (!)! *! "!!

+
,
-
.
/
01
2
31
+
4
15
6
78
9
6
:
/
7

+41;85<5=98526>?@

5A<,7BC1>1!D1!E#@ 5A<,7BC1>1!D1!E%@

5A<,7BC1>1!D1!E)@

(c) Per-NF utilization

Fig. 10: Evalutaion of iClusPR for different values of per-NF utilization theshold(α)

!

"!

#!

$!

%!

&!!

&"!

'()*+,-./.!0.

!1"2

'()*+,-./.!0.

!1#2

'()*+,-./.!0.

!1%2

()*+,-

3
4
)5
6
.+
5
7'
+8
'4
9
.8
):
;
+.
/<
2

(a) Network utilization

!

"

#

$

%

&!

'()*+,-./.!0.

!1"2

'()*+,-./.!0.

!1#2

'()*+,-./.!0.

!1%2

()*+,-

3
4
5+
67
8
9
+:
.;
:
)9
<

(b) Worst-case Delay

Fig. 11: Evalutaion of iClusPR

we broadly divide the algorithms into two classes. The first
class includes algorithms that avoid path stretch by serving
the flows in their path. For example, the resource allocation
algorithm in, CoMb [9], [10] and centrality-based heuristics
such as [30] and [31] belong in this class. In CoMb, a flow
is constrained to use NF instances running in the same node
that is found on its path. However, the CoMb approach can
considerably limit the utilization of the network since flows
are constrained to stay on their path and use a single node for
all their services. Relatively, the centrality-based heuristic in
[31] has a relaxed restriction as it allows a flow to use NFs
placed on more than one node, but still the nodes have to be
located on the shortest path of the flow.

In the second class are algorithms that try to increase the
utilization of the network disregarding the path stretch. For
examples, algorithms proposed in [8], [11], [12], [32] and [33]
belong in this class. In [11], referred to as Deploying in this
paper, an algorithm that tries to make better use of network
resources by promoting flows to reuse instances which have
been created instead of instantiating new ones is proposed.
Another heuristic approach is the E2 framework [8] which
is developed for allocating NF instances and routing flows
inside a central office or small data centers. The placement is
modeled as a graph partitioning problem and solved using a
modified Kernighan-Lin heuristic. Flows are assigned to NFs
balancing load across the NF instances.

The proposed schemes, ClusPR and iClusPR, take an ap-
proach that can be regarded as being in the middle of these
two classes. They do not impose strict restrictions on flows
to not deviate from their shortest path. This is because flows
might have a relaxed delay requirement which may not be
violated even if they deviate from their shortest path. They
also do not disregard the effect of path stretch as methods in
the second class. ClusPR and iClusPR rather find a balance
between minimizing the path stretch, maximizing network
utilization and balancing the load among the NF instances.
ClusPR and iClusPR are targeted at general networks where
resources are distributed in the networks. For networks that
have minimal delay between the nodes, as for example in

a data-center network, we expect that the performance gain
with ClusPR will not be as significant, compared to [8]
and [21]. However, ClusPR and iClusPR address the more
general problem of having NFs placed at diverse locations,
including multiple data-centers across a WAN, which would
be required to address scale and diversity typically observed
in service provider networks. We believe that ClusPR’s ability
to consider the trade-off across multiple dimensions will prove
invaluable in production networks

VIII. CONCLUSION

The flexibility brought about by NFV can potentially change
the way networks are managed and services are provisioned.
However, efficient resource allocation algorithms are needed
to instantiate NF instances when and where needed, and route
flows through them accordingly. A comprehensive ILP model
is provided for the NFV-RA problem. Based on the useful
insights obtained from the optimal solution of the ILP model,
we develop an offline heuristic algorithm, ClusPR, that is
scalable and balances across multiple objectives. In addition,
an online algorithm, iClusPR, that dynamically adjusts the
number of NFs depending on the traffic demand and network
state is presented. By factoring in information about the path of
flows into the NF placement decision making and diversifying
the type of NFs placed on a node, ClusPR and iClusPR are
able to considerably minimize the path stretch and maxi-
mize the network utilization while balancing the load across
NF instances. Compared to the state-of-the-art approaches,
ClusPR manages to decrease the average normalized delay by
a factor of 1.2−1.6× and the worst-case delay by 10×, while
admitting the same or slightly larger number of flows. At the
same time, ClusPR satisfies the delay requirement of 25-35%
more flows and balances the load across NF instances. The
online algorithm iClusPR is also able to perform dynamic NF
scaling while having performance that is comparable to that
of ClusPR.

APPENDIX A
Proof of Theorem 1:

In order to have a stable system, a server (NF instance)
should not be loaded more than its service rate. The aggregate
arrival rate of flows that require an NF type v is equal to
F vλ. The total service rate of v type NF instances should
be more than the aggregate arrival rate of the flows, that is
F vλ < Ivminµ

v . Where Ivmin is the minimum number of v
type NF instances. Thus, Ivmin = dFvλ

µv e

14

APPENDIX B

Proof of Theorem 2:
For each of the group of flows g ∈ G, ClusPR calculates the

minimum number of NF instances needed to serve the flows
using Theorem 1. The maximum total number of NF instances
instantiated is a summation of the minimum number of NF
instances calculated for each of the groups, that is Ivmax =∑

∀gd
Fv

g λ

µv e, F v
g is the number of flows in group g that require

NF type v. The maximum value Ivmax can take is
∑

∀g(
Fv

g λ

µv +

1). Where
Fv

g λ

µv is an integer quotient of the float division.
Since there are a maximum of k2+k

2 number of groups.

Ivmax =
∑

∀g
(
F v
g λ

µv
+ 1) =

∑
∀g F

v
g λ

µv
+

k2 + k

2
. (27)

since
∑

∀g F
v
g = F v ,

Ivmax =
F vλ

µv
+

k2 + k

2
= Ivmin +

k2 + k

2
(28)

According to Theorem 1, the minimum number of instances
that need to be instantiated to serve the set of flows (F)
is Ivmin. Thus, the number of NF instances instantiated by
ClusPR(Iv) is bounded by

Ivmin ≤ Iv ≤ Ivmin +
k2 + k

2
(29)

APPENDIX C

Proof of Theorem 3:
The initialization phase has two modules these are cluster-

ing and shortest path. The clustering module uses Kruskal’s
algorithm which has a complexity of O(LlogL). The shortest
path utilizes Dijkstra’s shortest path algorithm which has
a complexity of O(L logN). Thus the complexity of the
initialization phase is O(L logL + L logN).

The complexity of the placement heuristics depends on, the
number of flow groups, number of instances to be placed and
the number of nodes that can host NFs. From Theorem 1, the
number of instances to be placed can roughly be approximated
by the number of flows (F). The placement heuristic is run
for each of the group of flows. For each group, ClusPR
utilizes the nodes that are on the shortest path of flows and
their neighboring nodes as candidate nodes for placing NF
instances. Let Ng be the number of these candidate nodes and
G be the total number of groups. Thus, the complexity of the
placement heuristics will be O(GFNg).

The routing of a flow is modeled as a multistage graph.
The maximum number of vertices of the graph is equal to
JNg where J the number of stages of the graph and Ng is
the number of candidate nodes. The number of edges between
the stages of the graph is equal to Ng(Ng − 1)(J − 1). In
addition, there will be 2Ng edges between the source node of
the flow and the nodes in the first stage and the destination
node and nodes in the last stage of the graph. Simplifying, in
total the multi-stage graph will have N2

g +Ng edges. Dijkstra’s
shortest path algorithm is used to find the cost of the edges,
which will have a complexity O(L logN(FNg +N2

g)).

ClusPR’s routing algorithm has complexity proportional to
the complexity of a dynamic programming shortest path algo-
rithm whose complexity is in the order of the summation of the
number of edges and vertices of the multi-stage graph. Since
the graph is constructed for each of the flows, the complexity
of solving the multi-stage graph for all of the flows will be
O(F (N2

g+Ng+JNg)). Thus, the complexity of the routing al-
gorithms is O(L logN(FNg+N2

g)+F (N2
g +Ng+JNg)). The

complexity of ClusPR will be a summation of the complexity
of the three phases and can be simplified to O(FNgL logN)).

ACKNOWLEDGMENT

The work for this paper was performed in the context of
the EU FP7 Marie Curie Actions project Grant Agreement
No. 607584 (the CleanSky project).

REFERENCES

[1] Y. Woldeyohannes et al., “A scalable resource allocation scheme for
NFV: Balancing utilization and path stretch,” in Innovations in Clouds,
Internet and Networks (ICIN), 2018 21th Conference on. IEEE, 2018.

[2] J. Sherry et al., “Making middleboxes someone else’s problem: network
processing as a cloud service,” ACM SIGCOMM Computer Communi-
cation Review, vol. 42, no. 4, pp. 13–24, 2012.

[3] W. Zhang et al., “Opennetvm: A platform for high performance network
service chains,” in Proceedings of the 2016 workshop on Hot topics in
Middleboxes and Network Function Virtualization. ACM, 2016, pp.
26–31.

[4] Y. Zhang et al., “Steering: A software-defined networking for inline
service chaining,” in Network Protocols (ICNP), 2013 21st IEEE Inter-
national Conference on. IEEE, 2013, pp. 1–10.

[5] A. L. Andreas Lemke, “Why service providers need an NFV platform:
Strategic white paper,” Tech. Rep., January, 2015.

[6] A. Gember et al., “Stratos: A network-aware orchestration layer for
middleboxes in the cloud,” Technical Report, Tech. Rep., 2013.

[7] M. Xia et al., “Network function placement for NFV chaining in
packet/optical data centers,” in Optical Communication (ECOC), 2014
European Conference on. IEEE, 2014, pp. 1–3.

[8] S. Palkar et al., “E2: a framework for NFV applications,” in Proceedings
of the 25th Symposium on Operating Systems Principles. ACM, 2015.

[9] V. Sekar et al., “Design and implementation of a consolidated middlebox
architecture,” in Presented as part of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), 2012.

[10] Y. Sang et al., “Provably efficient algorithms for joint placement
and allocation of virtual network functions,” in Proceedings of IEEE
INFOCOM 2017. IEEE, 2017, pp. 829–837.

[11] T.-W. Kuo et al., “Deploying chains of virtual network functions:
On the relation between link and server usage,” in INFOCOM, 2016
Proceedings IEEE. IEEE, 2016.

[12] S. Khebbache et al., “Virtualized network functions chaining and routing
algorithms,” Computer Networks, vol. 114, pp. 95–110, 2017.

[13] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Cloud Networking (CloudNet), 2014
IEEE 3rd International Conference on. IEEE, 2014, pp. 7–13.

[14] Z. A. Qazi et al., “Simple-fying middlebox policy enforcement using
sdn,” in ACM SIGCOMM computer communication review, vol. 43,
no. 4. ACM, 2013, pp. 27–38.

[15] W. Zhang et al., “SDNFV: flexible and dynamic software defined control
of an application-and flow-aware data plane,” in Proceedings of the 17th
International Middleware Conference. ACM, 2016, p. 2.

[16] R. T. Marler and J. S. Arora, “The weighted sum method for multi-
objective optimization: new insights,” Structural and multidisciplinary
optimization, vol. 41, no. 6, pp. 853–862, 2010.

[17] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proceedings of the American Mathematical
society, vol. 7, no. 1, pp. 48–50, 1956.

[18] C. T. Zahn, “Graph-theoretical methods for detecting and describing
gestalt clusters,” IEEE Transactions on computers, vol. 100, no. 1, pp.
68–86, 1971.

[19] O. Grygorash et al., “Minimum spanning tree based clustering algo-
rithms,” in 2006 18th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI’06). IEEE, 2006, pp. 73–81.

15

[20] N. Bolshakova and F. Azuaje, “Cluster validation techniques for genome
expression data,” Signal processing, vol. 83, no. 4, pp. 825–833, 2003.

[21] J. C. Dunn, “A fuzzy relative of the isodata process and its use
in detecting compact well-separated clusters,” Journal of cybernetics,
vol. 3, no. 3, pp. 32–57, 1974.

[22] U. Maulik et al., “Performance evaluation of some clustering algorithms
and validity indices,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 24, no. 12, pp. 1650–1654, 2002.

[23] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies
with rocketfuel,” ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4, pp. 133–145, 2002.

[24] A. Afanasyev et al., “Interest flooding attack and countermeasures in
named data networking,” in IFIP Networking Conference, 2013. IEEE,
2013, pp. 1–9.

[25] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the characteristics
and origins of internet flow rates,” in ACM SIGCOMM Computer
Communication Review, vol. 32, no. 4. ACM, 2002, pp. 309–322.

[26] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[27] B. Addis et al., “Virtual network functions placement and routing
optimization,” in Cloud Networking (CloudNet), 2015 IEEE 4th Inter-
national Conference on. IEEE, 2015, pp. 171–177.

[28] A. Mohammadkhan et al., “Virtual function placement and traffic
steering in flexible and dynamic software defined networks,” in Local
and Metropolitan Area Networks (LANMAN), 2015 IEEE International
Workshop on. IEEE, 2015, pp. 1–6.

[29] M. C. Luizelli et al., “Piecing together the NFV provisioning puzzle:
Efficient placement and chaining of virtual network functions,” in
Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on. IEEE, 2015, pp. 98–106.

[30] M. Bouet et al., “Cost-based placement of vdpi functions in NFV
infrastructures,” International Journal of Network Management, vol. 25,
no. 6, pp. 490–506, 2015.

[31] S. Ahvar et al., “CCVP: Cost-efficient centrality-based VNF placement
and chaining algorithm for network service provisioning,” in Network
Softwarization (NetSoft), 2017 IEEE Conference on.

[32] M. C. Luizelli et al., “A fix-and-optimize approach for efficient and
large scale virtual network function placement and chaining,” Computer
Communications, 2016.

[33] M. Mechtri et al., “A scalable algorithm for the placement of service
function chains,” IEEE Transactions on Network and Service Manage-
ment, vol. 13, no. 3, pp. 533–546, 2016.

82

Paper C

Measures for Network Structural Dependency
Analysis
Yordanos T. Woldeyohannes and Yuming Jiang
IEEE Communications Letters 22.10 (2018): 2052-2055.

In the published version of paperC, in equation (10) N-1 is used in the denominator
rather than N-2. However, since there are N -2 elements in N −n/i 6= j, for getting
the value 1 in total dependency, the denominator should be N-2. Note: the results
in table II and III are obtained by using N - 2.

As a result of the change in equation (10), the N-1 in equations (13) and (14)
denominator is replaced by N-2, and the N

N−1 below equation (14) is replaced by
N2

(N−1)(N−2)

1

Measures for Network Structural Dependency
Analysis

Yordanos T. Woldeyohannes, Yuming Jiang

Abstract—A set of new measures for network structural
dependency analysis is introduced. These measures are based on
geodesic distance, which is the number of links in a shortest path.
They capture the structural dependency effect at the path level,
the node level and the overall network level, and hence can be
used to index such dependencies. Unlike the related literature
measures, a novel aspect of the proposed measures is that
the impact of network fragmentation caused by a node failure
is taken into explicit consideration in deciding the structural
dependency effect. As a result, when applied to critical node
identification in a network, the proposed measures give results
that are more in line with intuition.

I. INTRODUCTION

Networked systems such as communication networks have
become an indispensable part of our daily life. As a conse-
quence, failure of such a system even for short time, e.g. a few
minutes or hours, could already be unacceptable let alone for
longer time. However, network component failures (e.g. due to
hardware, software and communication failures) are often. For
a network, its inherent structural dependencies among nodes
imply that the impact of one node’s failure on the services
provided by the network may significantly differ from that
of another node’s failure. Here arises a fundamental question,
referred to as the structural dependency impact problem in
this work, which is, what measures may be used to assess the
network structural dependency-caused impact?

The purpose of this paper is to propose an answer to the
structural dependency impact problem, following the idea that
“the importance of a node is related to the ability of the
network to respond to the deactivation of the node from the
network” [1]. To this aim, a new set of geodesic distance based
information centrality measures will be introduced, termed as
dependency indexes. Specifically, these measures are the path
dependency index, the node dependency index and the network
dependency index. They respectively quantify the impact of a
node’s failure, at the path level on information communication
from one node to another node in the network, at the node
level on information communication from one node to other
nodes in the network, and at the network level on information
communication from any node in the network.

The dependency impact problem is related to the critical
node detection problem, which is the problem of finding the
most important nodes in a network and has applications in
various fields [2]. In communication networks, such applica-
tions include network vulnerability analysis [3], critical node
discovery [4] and robustness study [5]. In the literature, various
measures have been proposed for critical node detection under
the concept of centrality [6]. The classic centrality measures
include node degree, closeness, betweenness and information
[5] [7]. However, these measures are generally for the network

level, where the impact of structural changes after the node
failure at the path level and the node level is not focused.

The most related works are [1] and [8]. In [1], a new cate-
gory of centrality measures, called delta centrality, are intro-
duced. However, as implied by the definition, delta centrality
measures only address the dependency impact problem at the
network level. In [8], absolute drop in reciprocal geodesic
distance is used as the basis to quantify the dependency impact,
but only at the path level and the node level. In addition,
as to be exemplified and analyzed, the dependency measures
introduced in [1] and [8] have a strong limitation: While the
removal of a node from a network may result in network
fragmentation, this effect is not factored in these measures.
Addressing this limitation and systematically quantifying the
different level dependencies for the dependency impact prob-
lem constitute the novelty and contribution of this work.

The rest is organized as follows. First, the unification of
the dependency measures in [1] and [8] is proved in Sec. II,
where an example showing their limitation will also be given
and discussed. Then, the set of new measures are proposed in
Sec. III. In Sec. IV, results and the application of the proposed
measures for critical node identification are demonstrated,
compared and discussed. Finally, Sec. V gives the conclusion.

II. NETWORK MODEL AND EXISTING MEASURES

A. Network Model
We consider a network G(N ,L), where N is the set of the

N nodes and L is the set of the L links. We assume that nodes
communicate through their shortest path.

The information measure [7] is used as the basis to quantify
the influence of a node on a path, another node or the network,
or in other words, how a path, another node or the network
depends on the node. We use G−n to denote the network that
is the same as the original network G but with all links of
node n removed, and N−n to denote the remaining set of N
after excluding node n. By definition, N−n has N − 1 nodes.

The concept of information between pairs of nodes was
originally introduced in [7] as a centrality measure based on
the theory of statistical estimation. For shortest path based
communication, the information measure Iij between node i
and node j can be written as the reciprocal of the topological
distance dij between the two nodes, i.e.

Iij =
1

dij
, (1)

where dij represents the geodesic distance, i.e. the number of
links in a shortest path, between node i and node j. For a
node to itself, it is defined that dii = 0 or Iii = ∞; if there
is no path between nodes i and j, dij = ∞ or Iij = 0.

2

B. Existing Measures

In [1], to quantify the influence of a node n on the
network G, a delta centrality measure, denoted as ∆(G|n),
is introduced as a measure of the relative drop in the network
efficiency caused by the deactivation of node n:

∆(G|n) =
E(G)− E(G−n)

E(G)
, (2)

where E(G) denotes the efficiency of the network G which,
initially introduced in [9] based on the communication or
information efficiency measure, is defined as:

E(G) =
1

N(N − 1)

∑

∀i 6=j∈N
Iij .

Note that the delta centrality measure ∆(G|n) only provides
measure at the network level, i.e. how the failure of node n
may impact the network.

In [8], a measure of the impact of node n on the path from
node i to node j, denoted as D(i → j|n), is defined as

D(i → j|n) =
1

dij
− 1

d−n
ij

= Iij − I−n
ij , (3)

where d−n
ij denotes the geodesic distance between node i

and node j in the network G−n and I−n
ij = 1

d−n
ij

. By the

definitions, it is clear that d−n
ij ≥ dij . Also in [8], based on

the path level measure D(i → j|n), a node level measure,
denoted as D(i|n), is introduced which essentially measures
the average influence or impact of node n on all the paths
from node i to all other nodes, defined as:

D(i|n) =
1

N − 1

∑

j∈N−n

D(i → j|n),

which, with (3) applied, can be further written as

D(i|n) =
1

N − 1

∑

j∈N−n

(Iij − I−n
ij). (4)

C. Unification of the Existing Measures

At a first glance, the network level measure ∆(G|n) seems
to be irrelevant to the two dependency measures D(i → j|n)
and D(i|n). In the following, we first extend the latter mea-
sures to a network level dependency measure, denoted as
D(G|n). Then, we prove the equivalency in ranking nodes
between ∆(G|n) and the new network level dependency
measure D(G|n). Through this, the three measures, ∆(G|n),
D(i → j|n) and D(i|n) are unified.

As defined, D(i → j|n) is a measure of the influence or
impact of node n on the path from node i to node j, based
on which D(i|n) essentially measures the average influence of
node n on all the paths from node i to all other nodes. Since
in (4), i can be any node in N , then by taking average over
all N such choices, we can extend the node level measure to
a network level measure of the impact to all nodes as:

D(G|n) =
1

N

N∑

i=1

D(i|n). (5)

The following theorem summarizes the equivalency between
∆(G|n) and D(G|n).

Fig. 1. Tadpole network
TABLE I

PATH DEPENDENCY MEASURES: TADPOLE NETWORK IN FIG. 1

j 3 4 5 8-14 15 16 17 18 19
D(1 → j|2) 0.42 0.24 0.15 0 0.5 0.66 0.25 0.2 0.17
DI(1 → j|2) 0.42 0.24 0.15 0 1 1 1 1 1

Theorem 1. The ranking result of nodes based on ∆(G|n) is
the same as that based on D(G|n).
Proof. Note that in the definition of ∆(G|n), E(G) is the
same for all nodes. Hence, the ranking result of nodes based
on ∆(G|n) is the same as that based on E(G) − E(G−n),
which after applying the definition of efficiency becomes

E(G)− E(G−n) =
1

N(N − 1)

∑

∀i 6=j

(Iij − I−n
ij). (6)

For D(G|n), by applying (4) and (3), it becomes:

D(G|n) =
1

N(N − 1)

N∑

i=1

N∑

j 6=i;j=1

(Iij − I−n
ij). (7)

A closer check on the right hand side of (6) and that of
(7) reveals that they are indeed equal, because

∑
∀i 6=j(Iij −

I−n
ij) =

∑N
i=1

∑N
j 6=i;j=1(Iij − I−n

ij). Hence, we have

D(G|n) = E(G)− E(G−n), (8)

which concludes the proof.

D. The Limitation

As shown by their expressions, the three dependency impact
measures D(i → j|n), D(i|n) and ∆(G|n) (or equivalently
D(G|n) = E(G)−E(G−n) as discussed above) are all defined
on Iij − I−n

ij . However, Iij − I−n
ij inherently has a limitation,

due to overlooking the possible fragmentation effect on the
network after the deactivation of node n.

Specifically, if node j is unreachable to node i after failure
or deactivation of node n, then the value of Iij−I−n

ij or D(i →
j|n) becomes Iij , since in this case I−n

ij = 0 by definition. As
a result, for such cases, D(i → j|n) = Iij−I−n

ij only depends
on how far node j is from node i in the presence of node n,
i.e., on the value of dij , and if dij is large, D(i → j|n) will be
small, giving an impression that the impact of node n on the
path is small, contradicting to the fact that the path between
i and j is unexistent after deactivation of n.

To demonstrate this limitation, consider a tadpole network
shown in Fig. 1. In Table I, D(1 → j|2) for different j is
shown, which indicates how each path starting with node 1
is impacted by the deactivation of node 2. Though simple,
several surprising observations are revealed by the example.

First, as can be observed from the figure, the nodes 15 to
20 will all be unavailable to node 1 after the failure of node 2.
However, Table I shows that for paths of 1 → 15, . . . , 1 → 20,
their D(1 → j|2) values fall within the range (0, 1) and differ
from each other.

Second, D(1 → j|2) of the paths 1 → 3 and 1 → 4 are
higher than of the paths 1 → 18 and 1 → 19, even though for

3

the latter two, no path exists any more while for the former
two, a path still exists after the deactivation of node 2.

Third, for 1 → 8 to 1 → 14, as easily verified from
the figure, they are independent of node 2. This is reflected
by their D(1 → j|2) being 0. In other words, the value
0 would naturally be considered as an indication of such
independency. However, as implied by Table I, by adding m
nodes sequentially to node 20, we would get for the new
end node, a D(1 → j|2) value equal to 1/(7 + m), which
approaches 0 when m becomes large. In other words, the
current way of calculating D(1 → j|2) gives an impression
that the farther a node were from node 2, the less the node
would be dependent on node 2, which is wrong.

The above observations assert that Iij − I−n
ij has an evident

limitation for being used as the basis in quantifying the
dependency impact. Since D(i → j|n), D(i|n), D(G|n)
and ∆(G|n) are all formulated based on Iij − I−n

ij , using
them to index the dependency impact is void. To address this
limitation, we propose a set of new measures for the purpose.

III. THE PROPOSED MEASURES: DEPENDENCY INDEXES

In order to take into account the fragmentation effect, the
proposed measures quantify the dependency level not only
based on the information measure but also on the availability
of nodes. For this, a binary indicator variable A−n

ij is used
to measure the availability of node i to node j after failure
of node n: A−n

ij = 1 if node j is reachable to node i, and
A−n

ij = 0 if node j is unreachable.
The path dependency index, denoted as DI(i → j|n), which

measures the dependency of the path i → j on node n is
defined as:

DI(i → j|n) ≡
{
Iij − I−n

ij if A−n
ij = 1

1 if A−n
ij = 0.

(9)

There are three possible cases. One is, node j is unreachable
to node i after failure of node n. In this case, the path (i →
j) is totally dependent on node n and will be assigned the
maximum dependency level of one. The second case is node
j is reachable and there is no change in the path length. This
implies that the path (i → j) is independent of node n, so
Iij = I−n

ij and DI(i → j|n) = 0. The third case is that node
j is reachable but the length of the path has increased, then the
path dependency index will have a value in the range (0, 1).

The node dependency index, denoted as DI(i|n), measures
the average level of dependency that node i has on node n for
connecting to the other nodes, which is calculated from the
path dependency index as:

DI(i|n) = 1

N − 2

∑

j∈N−n/i6=j

DI(i → j|n). (10)

There are also three possible cases. DI(i|n) = 1 means node i
is totally dependent on node n: It is not able to connect to any
other node in the network after failure of node n. DI(i|n) = 0
implies that node i is independent of node n, i.e. node i does
not observe any connectivity change, both in terms of path
length and availability. For 0 < DI(i|n) < 1, it implies that
the connectivity of node i to the rest of the nodes is affected
but it can still reach at least one other node in the network.

TABLE II
NODE DEPENDENCY INDEXES: TADPOLE NETWORK IN FIG. 1

n
i 1 2 6 9 15 17 19 20

2 0.38 X 0.34 0.33 0.72 0.72 0.72 0.72
9 0 0 0.02 X 0 0 0 0
15 0.27 0.27 0.27 0.27 X 0.78 0.78 0.78
19 0.05 0.05 0.05 0.05 0.05 0.05 X 1

The network dependency index, denoted as DI(G|n), mea-
sures the average level of dependency the network G has on
node n. That is DI(G|n) measures the average dependency of
the nodes in N−n on node n. The network dependency index
is hence calculated from the node dependency index as.

DI(G|n) = 1

N − 1

∑

j∈N−n

DI(i|n). (11)

Theorem 2. If the failure of node n fragments the network G
into M sub-networks where each sub-network Gm has αmN
number of nodes, 0 < αm < 1, then:

DI(G|n) ≥
∑

m∈{1..M}
αm(

∑

k∈{1..M}/k 6=m

αk). (12)

Proof. A node i in a sub-network Gm will not be able to
connect with the nodes in the other sub-networks after failure
of node n. Let set M = {1..M}. Thus,

DI(i|n) ≥ 1

N − 2

∑

k∈M\m
αkN, (13)

where only the effect of the αkN unavailable paths in each
Gk, (k 6= m), with A−n

ij = 0 and hence DI(i → j|n) = 1 is
counted. Similarly, we have

DI(G|n) ≥ 1

N − 1

∑

m∈M
αmN(

1

N − 2

∑

k∈M\m
αkN), (14)

which, with N2

(N−1)(N−2) ≥ 1, gives (12) and concludes.
If all the sub-networks have equal number of nodes, i.e.,

αm = α, or α is a lower bound on αm, ∀m, we get
DI(G|n) ≥ M(M − 1)α2. (15)

As a special case with M = N , the lower bound becomes
(N − 1)/N ≈ 1 for large N . An example is a star network,
where the failure of the central node makes all other nodes
disconnected, so the network fully depends on the central
node, i.e. DI(G|n) = 1, and the lower bound is approached.

Remark: As implied by their formulations, the time com-
plexity for calculating the proposed dependency indexes is the
same as for calculating the corresponding measures (3), (4)
and (2) proposed in [1] and [8].

IV. RESULTS

This section presents results of the proposed dependency
indexes and an application to critical node identification.

A. Dependency Indexes

For the path dependency index, DI(1 → j|2) is shown
for the tadpole network also in Table I, in comparison with
D(1 → j|2). From DI(1 → j|2), we see for paths 1 → 15,
. . . , 1 → 20, its value is 1, implying dependency of these paths
on node 2 as verified from the topology, which, however, is
not reflected by D(1 → j|2) as discussed in Sec. II-D.

4

TABLE III
NETWORK DEPENDENCY AND RANKING OF CRITICAL NODES IN THE TADPOLE NETWORK (FIG. 1)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
D(G|n) 0.022 0.081 0.022 0.018 0.014 0.012 0.011 0.010 0.010 0.010 0.011 0.012 0.014 0.018 0.059 0.05 0.039 0.028 0.015 0
Rank (6) (1) (6) (7) (9) (10) (11) (12) (12) (12) (11) (10) (9) (7) (2) (3) (4) (5) (8) (13)
DI(G|n) 0.023 0.467 0.023 0.019 0.015 0.013 0.012 0.011 0.011 0.011 0.012 0.013 0.015 0.019 0.41 0.35 0.28 0.19 0.1 0
Rank (7) (1) (7) (8) (9) (10) (11) (12) (12) (12) (11) (10) (9) (8) (2) (3) (4) (5) (6) (13)
Degree 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
Rank (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (3)

For the node dependency index, DI(i|n), it is exemplified in
Table II also using the tadpole network (Fig. 1). For example,
the entry on column two (i = 2) and row three (n = 15)
shows the value of the node dependency index DI(2|15), i.e.,
the dependency level that node 2 has on node 15. In addition,
the table shows DI(20|19) = 1, meaning node 20 is totally
dependent on node 19, as implied by the topology.

For the network dependency index, DI(G|n), it is shown
and compared with D(G|n) in Table III for the tadpole
network. While not surprisingly, the values of DI(G|n) and
D(G|n) are close for nodes 1, and 3 – 14, their difference is
high for the other nodes. This is essentially due to the value
differences in the underlying path level dependency indexes
DI(i|n) and D(i|n) discussed above.

As a highlight, the network dependency index of node 2 is
DI(G|2) = 0.467. Note that failure of node 2 fragments the
network into two sub-networks. According to Theorem 2, the
network dependency index of node two is lowered bounded
by 0.44, which is very close to the actual value 0.467.

B. Application to Critical Node Identification
For the tadpole network shown in Fig. 1, Table III also

compares the ranking results for critical node identification
using D(G|n), DI(G|n) and node degree. Specifically, all
these measures rank node 2 as the first, i.e. the most critical
node, and node 20 the least. For the other nodes, node degree is
unable to distinguish as it gives equal rank for them. D(G|n)
and DI(G|n) place nodes 15-18 in the same order in the
ranking, from 2nd to 5th. This ranking result is intuitive,
since from the figure, their failure results in unavailability of
some nodes, and the number of unavailable nodes becomes
smaller in the same order. However, from node 19, the ranking
becomes different. While DI(G|n) still follows the same
intuition and ranks node 19 at the 6th place since its failure
will make node 20 unavailable, D(G|n) puts node 19 in the
8th rank after several other nodes, which are nodes 1 and 3
(6th) and nodes 4 and 14 (7th) even though failure of any of
these four nodes does not cause unavailability of others.

To examine the ranking difference further, a larger network
as shown in Fig. 2 is considered. This network is a randomly
generated scale-free network, i.e. a network with power-law
degree distribution, with 500 nodes and 998 links using the
Barabasi-Albert model [10]. The five most critical nodes, iden-
tified by DI(G|n), are numbered from 1 to 5 corresponding
to their criticality level and marked in Fig. 2. For presentation
simplicity, these numbers are also used as their node numbers
in the following discussion. Visually, this ranking follows the
same intuition as discussed for the tadpole network, i.e. a node
whose failure causes the unavailability of more nodes should
be ranked higher. However, if D(G|n) were used, the ranking

Fig. 2. Scale-free network: 500 nodes, 998 links

order among the five nodes would become 1, 2, 5, 3 and 4,
even though the failure of node 5 clearly leads to unavailability
of fewer nodes compared to that of node 3 or 4.

V. CONCLUSION

In this paper, the limitation of the related existing depen-
dency measures is demonstrated and discussed. To address this
limitation, a set of new measures are proposed, which assess
structural dependencies at the path, node and network level.
In particular, they capture fragmentation effects and hence it
is possible to get, from their values, insights into the extent of
fragmentation that the failure of a node will cause. The results
also show that the proposed measures are better suitable for
critical node identification reflecting the fragmentation effect.

VI. ACKNOWLEDGMENT

The work for this paper was performed in the context of
the EU FP7 Marie Curie Actions project Grant Agreement
No. 607584 (the Cleansky project).

REFERENCES

[1] V. Latora and M. Marchiori, “A measure of centrality based on network
efficiency,” New Journal of Physics, vol. 9, no. 6, p. 188, 2007.

[2] M. Lalou et al., “The critical node detection problem in networks: A
survey,” Computer Science Review, vol. 28, pp. 92–117, 2018.

[3] T. N. Dinh et al., “On new approaches of assessing network vulner-
ability: hardness and approximation,” IEEE/ACM TON, pp. 609–619,
2012.

[4] Y. Shen et al., “On the discovery of critical links and nodes for assessing
network vulnerability,” IEEE/ACM TON, vol. 21, pp. 963–973, 2013.

[5] D. F. Rueda et al., “Robustness comparison of 15 real telecommunication
networks: Structural and centrality measurements,” Journal of Network
and Systems Management, vol. 25, pp. 269–289, 2017.

[6] A. Bavelas, “A mathematical model for group structures,” Human
organization, vol. 7, no. 3, pp. 16–30, 1948.

[7] K. Stephenson and M. Zelen, “Rethinking centrality: Methods and
examples,” Social networks, vol. 11, no. 1, pp. 1–37, 1989.

[8] D. Y. Kenett et al., “Dependency network and node influence: Ap-
plication to the study of financial markets,” International Journal of
Bifurcation and Chaos, vol. 22, no. 07, p. 1250181, 2012.

[9] V. Latora and M. Marchiori, “Efficient behavior of small-world net-
works,” Physical review letters, vol. 87, no. 19, p. 198701, 2001.

[10] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Reviews of modern physics, vol. 74, no. 1, p. 47, 2002.

Paper D

Towards Carrier-Grade Service Provisioning in
NFV
Yordanos T. Woldeyohannes, Besmir Tola and Yuming Jiang
In Proceedings of the 15th International Conference on the Design of Reliable Com-
munication Networks (DRCN), Coimbra, Portugal 2019.

In the published version of paperD, in equation (2) N-1 is used in the denominator
rather than N-2. However, since there are N -2 elements in N −n/i 6= j, for getting
the value 1 in total dependency, the denominator should be N-2. Note: the results
are obtained by using N - 2.

Towards Carrier-Grade Service Provisioning in NFV
Yordanos Tibebu Woldeyohannes, Besmir Tola, and Yuming Jiang

NTNU-Norwegian University of Science and Technology, Norway

Abstract—Network Function Virtualization (NFV) is an emerg-
ing technology that reduces cost and brings flexibility in the
provisioning of services. NFV-based networks are expected to
be able to provide carrier-grade services, which require high
availability. One of the challenges for achieving high availability
is that the commodity servers used in NFV are more error prone
than the purpose-built hardware. The “de-facto” technique for
fault tolerance is redundancy. However, unless planned carefully,
structural dependencies among network nodes could result in
correlated node unavailabilities that undermine the effect of
redundancy. In this paper, we address the challenge of devel-
oping a redundancy resource allocation scheme that takes into
account correlated unavailabilities caused by network structural
dependencies. The proposed scheme consist of two parts. In the
first part, we propose an algorithm to identify nodes that can
be highly affected by a node failure because of their network
structural dependency with this node. The algorithm analyzes
such dependencies using a recently proposed centrality measure
called dependency index. In the second part, a redundancy
resource allocation scheme that places backup network functions
on nodes considering their dependency nature and assigns the
instances to flows optimally is proposed. The results show that
not considering the network structural dependency in backup
placement may significantly affect the service availability to
flows.The results also give insights into the trade-off between
cost and performance.

I. INTRODUCTION

Middleboxes or Network Functions (NFs) are widely uti-
lized for various purposes such as improving security and
network performance. The traditional approach of having a
dedicated purpose-built hardware per NF has been shown to be
inefficient and expensive [1]. Network Function Virtualization
(NFV) alters this inflexible architecture by decoupling the
software of NFs from the hardware and run the NFs on
virtualized environment such as virtual machines (VMs) or
containers. NF instances can then be created on the fly
depending on the traffic and the network state [2]. The VMs
and containers of the NFs are usually hosted on commercial
off-the-shelf (COTS) hardware, which are comparatively less
expensive than the purpose-built hardware. A service in NFV
is typically composed of a set of NFs that are chained in some
specific order, also known as service function chaining.

Carrier-grade services such as telecommunication services
require high-level of availability reaching five-nines (99.999%)
or more [3] [4]. Achieving this level of availability in NFV
networks is challenging due to a number of reasons including:
lower dependability of COTS servers, correlated failures or
unavailabilities, and state management:

COTS availability: Legacy telecommunication networks
have achieved carrier-grade service availability by using
purpose-built hardware. In NFV, the purpose-built hardware

is replaced by COTS hardware, which is usually more error-
prone [4]. To achieve the same level of availability using
COTS, NFV needs to build the resilience into software [5].

Correlated failures / unavailabilities: Although most liter-
atures assume that failures are independent, correlated failures
or unavailabilities are often common in real systems [6],
[7]. For example, the failure of a node may result in the
unavailability of other nodes because of their structural depen-
dencies on this node [8]. The de-facto technique for boosting
availability is redundancy. However, redundancy may become
ineffective due to correlated failures or unavailabilities.

State management: A large number of NFs such as Deep
Packet Inspection (DPI) and Network Address Translator
(NAT) are stateful. Stateful NFs preserve service states, such
as, TCP connection state and the mapping between IP ad-
dresses about ongoing connections [9]. Typically, NFs need to
maintain 10-100s of state variables that are per-flow or shared
across flows [10]. Backup instances of stateful NFs need to
have updated state information to ensure successful failover
and service continuity [11], [12].

In this paper, we make a step forward towards carrier-
grade service provisioning in NFV, by proposing a novel
redundancy resource allocation scheme where two crucial
challenges are addressed. (1) One challenge is how to factor
the inherent network structural dependency among nodes into
redundancy resource allocation. (2) The other challenge is how
to efficiently place and allocate backup instances for service
chain of flows.

To tackle the first challenge, an algorithm that measures
the dependency among network nodes and identifies nodes
that have a high-level of structural correlation is proposed.
The dependency among nodes of a network is quantified by
using a centrality measure called node dependency index [13].
Here, there is an intuition, which is, a backup NF should not
be placed at a node that may also become unavailable when
the primary NF’s node fails. For the second challenge, an
optimization model that aims to efficiently place redundant
NFs and assign backup NFs to service chains of flows is
proposed. In this model, flows are assigned backup instances
following the 1 : m active-standby redundancy mode, with
which, every flow can tolerate the failure of any one of the
NF instances on the NF chain [11]. In addition, following
the intuition, redundant instances are not placed on backup
nodes that are structurally correlated with the primary nodes.
Furthermore, to efficiently utilize resources, backup NFs are
shared by flows and only the required number of instances are
created.

Most of the existing works on redundancy allocation in NFV

based networks focus on providing two-nines or three-nines
service availability [14], [15]. only a few consider carrier-grade
service availability [16], [17]. Both [16] and [17] allocate
only on-site redundancies. However, to guarantee carrier-
grade service availability it is important to also have backups
distributed geographically [4]. In addition, [17] considers only
the failure of the physical nodes while not the NF applications
and assumes that all nodes have the same availability, and [16]
focuses on the failure of VMs assuming similar availability and
failure independence between VMs.

Our proposed scheme differs from the existing works in
a number of ways. First, our scheme considers the effect of
network structural dependency. Second, it takes into account
both physical hardware failures and NF software failures with
different availability values. Third, it can be used to allocate
both on-site and off-site backups in an optimal way. Moreover,
in our proposed scheme, in addition to availability, delay
performance is also taken into consideration, such that the
delay that flows experience after failover can be kept within
the requirement of the flows.

The specific contributions in this paper include:
• An algorithm that identifies the set of nodes that have

strong structural correlation using a centrality measure
called node dependency index.

• A redundancy allocation scheme that finds the optimal
number and placement of backup nodes and NF instances
and assigns the instances to flows.

The paper is organized as follows. In Section II, the
system model is described. Section III discusses in brief
the node dependency index centrality measure. In Section
IV, the algorithm proposed for identifying the nodes that
have high-level of structural correlation is explained. The
proposed redundancy allocation scheme is presented in Section
V, followed by the results in Section VI. Finally, Section VII
presents the concluding remarks.

II. SYSTEM MODEL

The system considered is a network of nodes and links and
is represented as a graph G(N ,L), where N denotes the set
of nodes and L represents the set of links. Nodes hosting NFs
that are being utilized by the primary service chains of flows
are called primary nodes. Nodes that can be used for backup
are called backup nodes. B denotes the set of backup nodes
and P the set of primary nodes. Backup NFs are hosted on
backup nodes.

A node hosting backup instances can be a shared or ded-
icated backup node. A shared backup node is a node that is
being used both as primary and backup node. This type of
nodes reserve some resources to be used as backup while
hosting NFs that are utilized by the primary service chains.
Dedicated backup nodes are nodes that are used only to host
backup instances.

Each flow f is defined by a source and destination node
pair, which are respectively denoted as sf and df . The
service required by flow f is represented by a service chain,−→
S f = (S1

f , S
2
f . . . S

gf
f). The service chain is an ordered series

of network functions, where S1
f is the first NF, S2

f is the second
NF needed and so on. It is assumed that a flow is already
assigned a primary service chain. The variable pf,g indicates
the primary node p that is serving flow f ’s gth service. A
backup instance of an NF of type v requires kv number of
cores and can be a backup to up to Cb

v number of flows. For
each flow f , there is an availability requirement on its service−→
S f , denoted as Af . A service

−→
S f is considered available

is either the primary or one of the backup service chains is
available.

III. STRUCTURAL DEPENDENCY MEASURES

The node dependency index DI(i|n) measures the average
level of dependency node i has on node n in connecting with
the other nodes of the network [13]. DI(i|n) is calculated from
the path dependency index DI(i → j|n), which measures the
dependency the path between nodes i and j has on node n.
DI(i → j|n) is defined as:

DI(i → j|n) ≡
{
Iij − I−n

ij if A−n
ij = 1

1 if A−n
ij = 0,

(1)

where Iij is an information measure, which is equal to the
inverse of the shortest path distance hop counts, denoted as dij ,
between nodes i and j, i.e. Iij = 1/dij . I−n

ij is the information
measure between nodes i and j after the deactivation of node
n. The binary variable A−n

ij measures the availability: A−n
ij =

1 if node i can reach node j after the deactivation of node n
and zero otherwise. The node dependency index is defined as:

DI(i|n) = 1

N − 2

∑

j∈N−n/i 6=j

DI(i → j|n). (2)

DI(i|n) measures the average dependency that node i has
on node n. DI(i|n) = 1 if node i cannot connect with the
other nodes, DI(i|n) = 0 if node i does not experience
any connectivity problem and 0 < DI(i|n) < 1, if node i
experiences connectivity problem but is still able to connect
to at least one other node, all after the failure of node n.

IV. STRUCTURALLY CORRELATED NODES

While failure independence is commonly assumed when
studying availability, recent studies have demonstrated the
existence of correlated failures and the pronounced effect of
geographical adjacency [7] [18], [19]. Nevertheless, it has
also been recognized that it is difficult to discover or predict
dependencies among failures [6], [7] [18], [19]. To tackle this
challenge, in this section, a novel approach is proposed to
identify nodes that are inherently correlated due to the network
structure. This information lays a foundation for the proposed
redundancy allocation scheme that will be detailed in Section
V.

A. Algorithm

The failure of a node may result in the unavailability of
other nodes. For example, in a data-center network, the failure
of a Top-of-Rack switch will result in the unavailability of all
the servers located in the same rack. The proposed algorithm
uses the node dependency index to measure the dependency
among nodes and identify the nodes that have high structural
correlation. From the definition of the node dependency index,
if node i has high-level of dependency on node n, the failure
of node n might result in the unavailability of node i.

Definition 1: Critical nodes of node i, denoted as C(i), are
nodes that node i is highly dependent on, where node i is said
to be highly dependent on node n if DI(i|n) is above a given
threshold tDI ,

C(i) = {n|DI(i|n) > tDI , n ∈ N}. (3)

If C(i) is empty, node i is independent of the other nodes of
the network so has no critical node. For example, in a fully
mesh network, all nodes are independent of each other as the
failure of one does not affect the connectivity of the others.

To find the set of nodes that have strong structural corre-
lation with a primary node i, some intuitive observations are
used which include:

First-level dependency

• Node i has a high probability of experiencing a correlated
failure with its critical nodes in C(i) as the failure of these
nodes might lead to the unavailability of node i. Thus,
node i should not use the nodes in C(i) as a backup.

• Node i should not also use as a backup those nodes that
depend on it highly. Since the failure of node i might
also result in the unavailability of these nodes.

In brief, a primary node i and its backup nodes should not
depend on each other. This can be regarded as the first-level
dependency among nodes.

Second-level dependency

• Node i should not use as a backup nodes that depend
heavily on its critical node. This is because if the un-
availability of node i is due to the failure of its critical
node, the other nodes that depend heavily on the critical
node might also be unavailable.

The algorithm for finding a set of nodes, B̂i, which are
structurally correlated with a primary node i is shown in
Algorithm 1. The algorithm starts by finding the critical nodes
of a primary node. The critical nodes of node i, C(i), are
inserted into the set B̂i. Then, nodes that have a high-level
of dependency on node i are included to the set B̂i (line 9).
For the second-level dependency, all the nodes that are highly
dependent on the critical nodes of node i will be included
to B̂i. The threshold, tDI , should be assigned values that are
between zero and one. If it is set to a very low value that
is close to zero, the set C(i) will include a large number of
network nodes. Therefore, it should be assigned a relatively
large or medium values such as 0.5.

Algorithm 1 Heuristic for finding structurally correlated nodes

1: G(N ,L) → the network graph.
2: B̂i → set of nodes that are structurally correlated with

node i.
3: tDI → threshold for high dependency
4: for i ∈ N do
5: Find C(i) using tDI

6: Insert C(i) to B̂i

7: for j ∈ N /i do
8: if i ∈ C(j) then
9: Insert j to B̂i

10: if j ∈ C(i) then
11: for k ∈ N /i do
12: if j ∈ C(k) then
13: Insert k to B̂i

14: return B̂i

V. REDUNDANCY ALLOCATION SCHEME

Some of the features considered in the design of the
redundancy allocation scheme include:

• Correlated failures: To tolerate correlated failures caused
by network structural dependency, backup NFs of a flow
are not placed on nodes that are structurally correlated
with the primary nodes of the flow.

• State: Stateful NFs can have states that are per-flow
or shared across flows. Flows using the same primary
stateful NF instance will be assigned to the same backup
instance since they rely on a state shared among them.

• Delay vs utilization: To efficiently use network resources,
minimal number of backup instances are created. How-
ever, this can increase the end-to-end backup chain delay
of flows. To solve this problem, the scheme finds a
balance between minimizing the backup chain delay,
which is the delay flows will experience after failover,
and the resource utilization.

A. Formulation: All-One

The first model considered is the All-One model in which
all the services of a chain are assigned one backup that is a
1:1 active-standby mode. It is assumed that one backup node
will be used to backup all the NFs of a flow, later on this
assumption will be relaxed. The redundancy allocation is then
formulated as an Integer Linear Program (ILP).

The redundancy allocation has three main objectives: (I) to
minimize the number of backup instances created, (equation
(4)), (II) to minimize the number of backup nodes used,
(equation (5)), and (III) to minimize the backup chain delay,
(equation (6)).

minimize
∑

∀b∀v
zbv (4)

minimize
∑

∀b
qb (5)

minimize
∑

∀b∀f
(D(sf , b)i

b
f +D(b, df)i

b
f) (6)

The weighted sum method is used to combine the three
objective functions into one by using equal unit weights. For
positive weights, the optimal solution of the single-objective
representation is also a Pareto optimal solution of the multi-
objective problem [20]. The All-One optimization model is
given us:

All-One:

min.
∑

∀b∀v
zbv +

∑

∀b
qb +

∑

∀b∀f
(D(sf , b)i

b
f +D(b, df)i

b
f). (7)

s.t.

1− (1−
∑

∀b
ibf ∗Ab

gf∏

g=1,v=Sg
f

Av)(1−Ap
sf
) ≥ Af

,∀f : Ap
sf

< Af (8a)
∑

∀f,∀g/Sg
f=v

ybf,g ≤ Cb
v ,∀b, v (8b)

∑

∀v
zbv ∗ kv ≤ Kb ,∀b (8c)

ybf,g = 0, ,∀f, g ∈ {1..gf},∀b ∈ B̂p/p ∈ Pf (8d)

ybf,g = ybf ′,g′ ,∀f, f ′ ∈ F/pf,g = pf ′,g′ ,

Sg
f = Sg′

f ′ , T (S
g
f) = 1,∀b, g, g′ (8e)

∑

∀b
ybf,g = 1 ,∀f : Ap

sf
< Af , g ∈ {1..gf} (8f)

∑

∀b
ibf = 1 ,∀f : Ap

sf
< Af (8g)

ybf,g ≤ zbv ,∀b, f, g ∈ {1..gf}, v = Sg
f (8h)

qb = max
v∈V

zbv ,∀b (8i)

ibf = ybf,g ,∀f, b, g ∈ {1..gf} (8j)

The constraints are classified into five group, which are
availability, capacity, correlated failure, state and assignment
constraints. Constraint (8a) belongs to the availability group
and ensures that flows’ availability requirement is fulfilled
by the primary and backup NFs assigned. Constraints (8b)
and (8c) are capacity constraints for the backup NF instances
and backup nodes respectively. For each flow, constraint (8d)
prohibits the usage of backup nodes that have high structural
correlation with the primary nodes of the flow. Constraint (8e)
is a state constraint, which makes sure that flows using the
same primary instance of a stateful NF are assigned to the
same backup instance.

The other constraints belong to the assignment group. All
the services of a flow have a backup (constraint (8f)) and
only one backup node hosts all the backup NFs of a flow
(constraint (8g)). A flow is mapped to a backup instance on
a given backup node only if the node is hosting the NF type
(Constraint (8h)). Constraint (8i) identifies backup nodes that
are hosting instances. A flow is assigned to a backup node only
if it is using backup instance hosted on the node (Constraint
(8j)).

TABLE I: Symbols used in formulation

Notation Meaning

Kb the number of cores available on backup
node b.

pf,g primary node p is used by flow f ’s gth

service.

D(p, b) the delay between nodes p and b.

Ab the probability that backup node b is avail-
able.

B̂p set of backup nodes that have high structural
correlation with node p.

kv the number of cores needed to instantiate
NF type v.

T (v) binary variable to show if NF type v is
stateful (T (v) = 1) or not (T (v) = 0).

Cb
v the maximum number of flows that an in-

stance of NF type v hosted on node b can
be a backup to.

Av the probability that the application software
of a network function of type v is available.

Af the availability requirement of flow f .

sf , df source and destination nodes of flow f
respectively.

−→
S f = (S1

f , S
2
f . . . S

gf
f) service chain of flow f .

Ap
sf the availability of the primary service chain

of flow f .

Pf the set of primary nodes used by flow f .

Decision variables

ybf,g a binary decision variable, to indicate if
backup node b is used as a backup for flow
f ’s gth service.

zbv an integer decision variable to indicate the
number of backup instances of NF type v
hosted on backup node b.

ibf a binary variable that indicates if backup
node b is used by flow f or not.

qb a binary variable to indicate if backup node
b is hosting backup NF instances.

B. Formulation: All-Any

The “All-One” ILP model given above uses one backup
node to backup all the NFs of a flow. This constraint is relaxed
so that a flow can use one or more backup nodes. This model
will be referred as “All-Any” since all of the services of a
flow are backed up and a flow can use any number of backup
nodes. The objective function for minimizing the backup chain
delay needs to be modified as

All-Any:

minimize
∑

∀b∀f
(D(sf , b)y

b
f,1 +D(b, df)y

b
f,gf

+

gf−1∑

∀b′∈B,g=1

D(b, b
′
)ybf,g ∗ yb

′

f,g+1). (9)

Since a flow might use more than one backup node, the backup
chain delay will include the delay between the backup nodes.
All the constraints except three (8a, 8g and 8j) of the All-
One model will also be included in the All-Any model. The
three constraints will be replaced by constraints (10, 11 and
12) respectively.

1− (1−
∏

∀b
max(1− ibf , i

b
fA

b

gk∏

g=1

max(1− ybf,g, y
b
f,gAv)))

(1−Ap
sf
) ≥ Af ∀f : Ap

sf
< Af (10)

∑

∀b
ibf ≥ 1 ∀f : Ap

sf
< Af (11)

ibf = max
g

(ybf,g) ∀b,∀f : Ap
sf

< Af (12)

Constraint (10) guarantees that the availability requirement of
flows is satisfied by the primary and backup instances, which
might be hosted on different backup nodes. One or more
backup nodes are assigned to a flow (constraints (11)). A flow
is assigned a backup node provided that it is using atleast one
backup instance hosted on the node (constraint (12)). This
model is an Integer Non-linear Program (INLP) because of
the non linearity of equation (10). To decrease the complexity
of the model, the non-linear constraint is approximated by a
linear equation.

1) Linear approximation: The availability constraint is
approximated by a linear lower bound function.

Theorem 1. The probability that all E entities of a set E will
be available is lower bounded by 1−∑E

e=1 Ue, where every
entity e ∈ E fails independently with probability Ae and Ue

is the unavailability of entity e.

Proof: The probability that all the E entities will be
available (At) is a product of the availability of each of them.
That is

At =

E∏

e=1

Ae. (13)

By definition, the availability of entity e, Ae = 1−Ue, where
Ue is the unavailability of e. Thus,

At =

E∏

e=1

(1− Ue). (14)

By expanding the product,
E∏

e=1

(1− Ue) = 1−
E∑

e=1

Ue +
E−1∑

e=1

Ue ∗ Ue+1 + o(n), (15)

where o(n) represents the higher order terms. Usually, unavail-
ability U << 1 so the product and the higher order terms can
be ignored. We will then have

E∏

e=1

(1− Ue) ≥ 1−
E∑

i=1

Ue. (16)

As a result,

At ≥ 1−
E∑

e=1

Ue, (17)

which concludes the proof.
For example, if there are two entities with availability

A1 = 0.9 and A2 = 0.99, then At = 0.891. Using the linear
approximation, U1 = 0.1, U2 = 0.01, so At = 0.89. Thus, the

linear approximation is a lower bound to the actual availability
value. Applying this linear approximation, equation (10) can
be approximated by:

1− (1− (1−
∑

∀b
ibf (U

b +

gk∑

g=1

ybf,gUv)))(1−Ap
sf
)

≥ Af ,∀f : Ap
sf

< Af , (18)

where U b and Uv are the unavailabilities of backup node b and
backup NF v respectively. The lower bound approximation
is conservative so flows availability requirement will not be
violated. Equation (18) is not linear since it has a term that is
a product of two variables, ibf and ybf,g . Let variable rbf,g =

ibf ∗ ybf,g,

1− (1− (1−
∑

∀b
ibfU

b −
∑

∀b

gk∑

g=1

rbf,gUv))(1−Ap
sf
)

≥ Af ,∀f : Ap
sf

< Af . (19)

Equation (19) is a linear equation of the variables ibf and rbf,g .
Thus, the non-linear inequality constraint in equation (10), can
be substituted by equation (19) and the constraint rbf,g = ibf ∗
ybf,g. However, since the variables ibf and ybf,g are binary, their
product can easily be linearized by substituting it with the
following linear equations,

rbf,g <= ibf

rbf,g <= ybf,g

rbf,g >= ibf + ybf,g − 1. (20)

Thus, the equivalent ILP model of the All-Any model will have
constraints (19) and (20) instead of the non-linear availability
constraint and all the other linear constraints of the All-Any
INLP model.

C. Allocating more than one backup chain

The All-One and All-Any models assign one backup for
each of the NFs of a flow’s service chain. However, to
guarantee the high availability of carrier-grade services, it
might be necessary to allocate more than one backup chain.
The following simple example is used to show case this.
Consider a flow that has two services long chain. The primary
chain of the flow is 90% available and the flow requires to
be 99.999% available. The backup nodes and NF applications
are 99% and 99.9% available respectively. Thus, after being
allocated backup instances that are hosted on the same backup
node, the flow will only be 99.88% (2’9s) available. Thus, a
second backup chain is needed to reach the required 99.999%
(5’9s) availability.

Algorithm for assigning more than one backup chain:
Backup instances are to be allocated for a set (F) of flows.
The proposed models assign one backup chain. More than
one backup chains are allocated to a flow sequentially one
after the other. That is the first backup chain is allocated and
if the availability requirement of the flow is not satisfied then

Fig. 1: GEANT network: Example of structurally correlated nodes

the second backup chain is assigned and so on. One problem
with using the models directly for assigning backup chains
sequentially is that if the availability requirement of a flow
f ∈ F cannot be satisfied by one backup chain, the models
will be infeasible. To solve this issue, for all of the flows in
the set, it is checked whether their availability requirement can
be satisfied while being assigned to the least available backup
node. If not, the availability requirement of the flow will be
downgraded to the next availability class, e.g., from 99.999%
to 99.99% or from 99.99% to 99.9%. The original availability
requirement of the flow is saved and the flow will be marked
as a flow that might need more than one backup.

Then, the first backup chain will be allocated by using the
models. The state of the network (including the placement of
backup instances and their capacity) will then be updated. If
the availability requirement of a flow is not satisfied by the first
backup chain, then the same process will be used to allocate
the second backup chain. Two variables are introduced to
transfer the state of the network between the different rounds
of backup chain allocations. These are oZb

v , the number of
backup instances of type v already created on node b, and
oCb

v , the currently available capacity of an existing instance
of type v hosted on node b. For this algorithm, in the models
zbv will be replaced by zbv + oZb

v and Cb
v will be replaced by

Cb
v + oCb

v . This is done to be able to use instances created
previously in the current round of the backup allocation.

In case it is not possible to allocate backups due to shortage
of resources, flows will be rejected. Resource shortage can
occur at any round of the backup chains assignment. For
example, when a flow is allocated a second backup chain.
In this case, the flow has already been assigned one backup
chain. However, the availability requirement of the flow is not
yet satisfied. In cases like this, the flow will be rejected and
the resources already assigned to it will be released to be used
by other flows.

VI. RESULTS

The performance of the proposed scheme is analyzed by
conducting a number of experiments. The models are solved
by using a commercial solver, CPLEX, together with Matlab
for transferring updated network state information between
different rounds. The GEANT network, Fig. 1, which is the
pan-European research and education network, is used as a
test network topology [21].

10
-6

10
-5

10
-4

10
-3

Flows Unavailability

0

0.2

0.4

0.6

0.8

1

C
D

F

With structural correlation

Without structural correlation

Fig. 2: Effect of not considering structural correlation: CDF of the unavailability

Eight nodes of the network are chosen to be the
ingress/egress nodes. The ingress/egress nodes are a bottleneck
for achieving high availability since the failure of one of them
leads to service unavailability for customers using it. To avoid
this, these nodes are paired to provide “dual homing”, whereby
one node is a backup for the other and vice versa. Twenty-
two nodes of the network are assumed to be backup nodes
(in shared or dedicated mode). Each backup node has 4 CPU
cores to be used by the backup instances it hosts. The rest
of the nodes are dedicated primary nodes. The availability
of the nodes is assumed to be uniformly distributed between
0.99 − 0.999, whereas NF instances have an availability
between 0.999− 0.9999 and an NF instance can be a backup
for up to 10 flows.

Flows are assumed to require a service chain that is com-
posed of two NFs. NFs of a chain are randomly chosen out of
the set of five services, which are Firewall, DPI, IDS, Proxy,
NAT. Flows are assigned primary chains by using ClusPR
algorithm [2]. The availability requirement of a flow is selected
from the set {0.999, 0.9999, 0.99999}.

A. Structurally correlated nodes

Example of nodes that have high structural correlation,
which are identified by the proposed algorithm are highlighted
in Fig. 1. Nodes 2-4 have a high probability of experiencing a
correlated failure with node 5 due to their dependencies. This
is because, the failure of node 5 will lead to the unavailability
of these nodes as well.

1) Effect of not considering structural correlation: In this
section, a simple experiment is carried out to showcase the
effect of not considering the structural correlation among
nodes in the backup instance placement decision making. The
baseline algorithm from [16] is used to decide the number of
backup instances needed. It is assumed that the availability of
a node is 0.999 (3’9s). According to the baseline algorithm,
theoretically, one backup for each of the NFs is enough to
meet the 99.999% availability requirement of a single service
function chain containing two NFs. The primary and backup
NF host nodes of a chain are randomly chosen from the
network. When structural correlation is considered, the backup
nodes of a chain will not have strong correlation with the
primary nodes.

The availability of 100 flows is measured by conducting ten
million simulation runs. In each simulation run, the state of
each node, i.e., failed (0) or up (1), is randomly generated

0

20

40

60

80

100

99,90 % 99,99 % 99,999 %

N
um

be
r o

f b
ac

ku
p

in
st

an
ce

s

Availability requirement

All-Any
All-One

(a) Backup instances

0

5

10

15

20

25

99,90 % 99,99 % 99,999 %

N
um

be
r o

f b
ac

ku
p

no
de

s

Availability requirement

All-Any
All-One

(b) Backup nodes

Fig. 3: Number of backup NF instances and nodes utilized for acheiving different availability requirements

50 100 150 200
Number of flows

0

20

40

60

80

100

N
um

be
r o

f b
ac

ku
p

in
st

an
ce

s
cr

ea
te

d

0

20

40

60

80

100

N
um

be
r o

f b
ac

ku
p

no
de

s
us

edHigh-end: backup instance
Low-end: backup instance
High-end: backup node
Low-end: backup node

(a) Backup nodes and instances

0
200

2000

4000

High-end (4x)

To
ta

l c
os

t

150

6000

Number of flows

8000

High-end (3x)

Backup node type

10000

100 High-end (2x)
50 Low-end

(b) Cost for achieving 99.999% avail-
ability

0
99.999%

2000

4000

High-end (4x)

To
ta

l c
os

t

6000

Availability requirement

8000

99.99% High-end (3x)

Backup node type

10000

High-end (2x)
99.9% Low-end

(c) Cost for 200 flows

Fig. 4: “High-end” vs “Low-end”: Number of backup NF instances created and backup nodes used (a), total cost for achieving 5’9s (b), total cost for 200 flows (c).

from Bernoulli distribution using the node’s availability. The
network is then updated considering the nodes state. Finally,
the availability of the backup and primary chains is checked
by verifying the availability of the host nodes of the chain’s
NFs and the path between them. The chain is said to available
if either the primary or backup chain is available. A CDF
of the unavailability of the 100 flows is shown in Fig. 2.
When structural correlation is not considered around 10% of
the flows have low availability, 3’9s and 2’9s.

B. Resource utilization

The number of backup instances created and nodes utilized
for fulfilling the availability requirements of 200 flows for
different availability requirements are shown in Fig. 3a and
3b respectively.

When the flows have 99.9% availability requirement, 42
backup instances are created and 11 backup nodes are used
to host the instances by both All-Any and All-One models.
The availability requirement of all of the flows is able to be
fulfilled with 1:1 active-standby backup for each of the NFs
of a chain. When the availability requirement of the flows
increases to 99.99%, 49 backup instances are created by the
All-Any model and 59 by the All-One model. For some of
the flows, 1:1 active-standby was not enough to reach to the
required availability therefore, a 1:2 active-standby, where one
NF of a chain has two backup instances, is required. As a
result, more backup instances are created. When comparing
the two models, the All-One model created more instances
than the All-Any model. This is because of the All-One
model’s constraint that forces a flow to use backup instances
hosted only on the same node. For achieving 5’9s (99.999%)
availability, most of the flows need 1:2 backup protection.

C. Effect of the type of backup nodes

In this section, the effect of using highly available COTS
servers versus COTS with lower availability, referred to as
“High-end” and “Low-end” respectively is analyzed. The
“High-end” servers are assumed to be 99.9% available and
the “Low-end’ servers 99% available. The relative importance
between the cost of installation of host server hardware and
the cost of installation of the network function software license
is chosen to be 100:10 for “Low-end” servers as in [22]. For
the “High-end” servers, the cost is 200:10 if the “High-end”
servers are twice (2×) more expensive, and 300:10 if they are
3× more expensive compared to the “Low-end”.

Figure 4a and 4b show the number of backup instances
created, nodes utilized and the total cost for fulfilling 99.999%
availability requirement of different number of flows. For
the “Low-end” servers, 1:2 backup have to be applied to
reach the 5’9s requirement. Using the “High-end” servers,
the availability requirement is fulfilled with 1:1 active-standby
redundancy. Therefore, fewer backup instances are created
when using “High-end” servers. However, the “High-end”
servers are more expensive than the “Low-end” servers. The
total cost spent for fulfilling the availability requirement of
the flows depends on the relative cost of the servers. It is
more economical to use “High-end” servers if their cost is
not more than 2× the cost of the “Low-end” servers. If the
cost of installation of the “High-end” servers is 3× or more
compared to the “Low-end” servers, the total cost spent will
be more than that spent using the “Low-end” servers.

Figure 4c shows the total cost for serving 200 flows
when their availability requirement changes. The 1:1 active-
standby protection is enough for meeting the 99.9% avail-

TABLE II: Effect of including delay in the objective function

Objective Average
delay (hops)

Worst-case
delay (hops)

Backup
instances

Without delay 4.68 12 12

With delay 0.44 2 15

ability requirement. Thus, it is economical to use the “Low-
end” servers. For both 99.99% and 99.999%, if the “High-
end” servers are 2× more expensive or less, then it is more
economical to use the “High-end” servers.

D. Effect of minimizing the backup chain delay

The backup chain delay, in terms of number of hops,
observed when the objective includes minimizing the end-to-
end delay and the amount of resources used is compared with
the case when the objective is only to minimize the resources
used (i.e., instances created and nodes utilized).

Table II shows the results of the comparison for 50 flows
that have 99.9% availability requirement. When the objective
is to minimize the resource utilization, 12 instances are cre-
ated. Compared to the primary chain, the backup chain delay
is 4.68 hops longer on average. In the worst case, a flow’s
backup chain is 12 hops longer than its primary one. When
the objective function is to minimize both the total backup
chain delay and the resource utilization, the average backup
chain delay is only 0.44 hop counts longer and the worst-
case observed delay is 2 hops longer. In this case, 15 backup
instances are created.

VII. CONCLUSION

In this paper, a redundancy resource allocation scheme
that tolerates correlated failures caused by network structural
dependency is proposed. The scheme identifies the sets of
nodes that have strong structural correlation using a novel al-
gorithm that is based on the node dependency index centrality
measure. The experimental results demonstrate that not taking
into account the structural correlation among nodes in backup
instances placement decision making considerably affects the
availability of flows. The results also give insights into the
trade-off between cost and system performance.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 13–24, 2012.

[2] Y. T. Woldeyohannes, A. Mohammadkhan, K. Ramakrishnan, and
Y. Jiang, “ClusPR: Balancing multiple objectives at scale for NFV
resource allocation,” IEEE Transactions on Network and Service Man-
agement, pp. 1–1, 2018.

[3] D. Collins, Carrier grade voice over IP. McGraw-Hill New York,
2003, vol. 2.

[4] B. Han, V. Gopalakrishnan, G. Kathirvel, and A. Shaikh, “On the re-
siliency of virtual network functions,” IEEE Communications Magazine,
vol. 55, no. 7, pp. 152–157, 2017.

[5] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[6] H. Weatherspoon, T. Moscovitz, and J. Kubiatowicz, “Introspective
failure analysis: Avoiding correlated failures in peer-to-peer systems,” in
Reliable Distributed Systems, 2002. Proceedings. 21st IEEE Symposium
on. IEEE, 2002, pp. 362–367.

[7] S. Nath, H. Yu, P. B. Gibbons, and S. Seshan, “Subtleties in tolerating
correlated failures in wide-area storage systems.” in NSDI, vol. 6, 2006,
pp. 225–238.

[8] E. Zhai, R. Chen, D. I. Wolinsky, and B. Ford, “Heading off correlated
failures through independence-as-a-service.” in OSDI, 2014, pp. 317–
334.

[9] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in 15th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
18), 2018, pp. 299–312.

[10] J. Khalid, A. Alsudais, E. Keller, and F. Le, “Paving the way for NFV:
Simplifying middlebox modifications using statealyzr.” in NSDI, 2016,
pp. 239–253.

[11] N. ISG, “Network function virtualisation (NFV)-resiliency require-
ments,” ETSI GS NFV-REL, vol. 1, p. v3, 2016.

[12] P. X. Sherry, Justine Gao, S. Basu, A. Panda, A. Krishnamurthy,
C. Maciocco, M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo et al.,
“Rollback-recovery for middleboxes,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 227–240.

[13] Y. T. Woldeyohannes and Y. Jiang, “Measures for network structural
dependency analysis,” IEEE Communications Letters, 2018.

[14] J. Fan, C. Guan, Y. Zhao, and C. Qiao, “Availability-aware mapping
of service function chains,” in INFOCOM 2017-IEEE Conference on
Computer Communications, IEEE. IEEE, 2017, pp. 1–9.

[15] W. Ding, H. Yu, and S. Luo, “Enhancing the reliability of services in nfv
with the cost-efficient redundancy scheme,” in Communications (ICC),
2017 IEEE International Conference on. IEEE, 2017, pp. 1–6.

[16] J. Fan, M. Jiang, and C. Qiao, “Carrier-grade availability-aware mapping
of service function chains with on-site backups,” in Quality of Service
(IWQoS), 2017 IEEE/ACM 25th International Symposium on. IEEE,
2017, pp. 1–10.

[17] S. Herker, X. An, W. Kiess, S. Beker, and A. Kirstaedter, “Data-center
architecture impacts on virtualized network functions service chain
embedding with high availability requirements,” in Globecom Workshops
(GC Wkshps), 2015 IEEE. IEEE, 2015, pp. 1–7.

[18] A. J. Gonzalez, B. E. Helvik, J. K. Hellan, and P. Kuusela, “Analysis
of dependencies between failures in the UNINETT IP backbone net-
work,” in Dependable Computing (PRDC), 2010 IEEE 16th Pacific Rim
International Symposium on. IEEE, 2010, pp. 149–156.

[19] B. Chun and A. Vahdat, “Workload and failure characterization on a
large-scale federated testbed,” Intel Research Berkeley, Tech. Rep. IRB-
TR-03-040, 2003.

[20] R. T. Marler and J. S. Arora, “The weighted sum method for multi-
objective optimization: new insights,” Structural and multidisciplinary
optimization, vol. 41, no. 6, pp. 853–862, 2010.

[21] GEANT the pan-european research and education network,,
2018 (accessed Septemper 10, 2018). [Online]. Available:
http://www.geant.net.

[22] P. Vizarreta, M. Condoluci, C. M. Machuca, T. Mahmoodi, and
W. Kellerer, “QoS-driven function placement reducing expenditures in
nfv deployments,” in Communications (ICC), 2017 IEEE International
Conference on. IEEE, 2017, pp. 1–7.

Paper E

CoShare: An Efficient Approach to Redundan-
cy Allocation in NFV
Yordanos T. Woldeyohannes, Besmir Tola, Yuming Jiang, and K. K. Ramakrishnan
Available on arXiv at https://arxiv.org/abs/2008.13453, and to be submitted to a
journal.

This article is awaiting publication and is therefore not included.

ISBN 978-82-326-5146-7 (printed ver.)
ISBN 978-82-326-5147-4 (electronic ver.)

ISSN 2703-8084 (online)
ISSN 1503-8181 (printed ver.)

Doctoral theses at NTNU, 2020:399

Yordanos Tibebu Woldeyohannes

Efficient Allocation of Resources
in NFV-Enabled Networks

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2020:399
Yordanos Tibebu W

oldeyohannes

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
t.

of
 In

fo
rm

at
io

n
Se

cu
rit

y
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

	Blank Page

