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Summary 

 

The sensorimotor area in cerebral cortex is involved in processing visual motion 

information and the subsequent execution of visually guided hand movements. 

Electroencephalogram (EEG) recordings of 10 adult subjects were applied to examine the 

brain electrical activity accompanying a visually guided joystick movement intercepting with 

a moving target. While the velocity of the target varied, the direction of the joystick 

movement was constant and it was expected that increased stimulus` velocity would be 

accompanied with larger EEG activity. The EEG data analysis showed that a positive 

potential, evolving across the medial frontal – posterior region, immediately succeeded the 

joystick movement. The source model indicated that the activity primarily could be explained 

by two dipoles, one located medial in the sensorimotor area and another one in the visual 

areas in the occipital lobe. Further, by increasing the stimulus` velocity the EEG activity in 

the sensorimotor area also increased. The corresponding relationship between the movement–

related potentials (MRP) and the velocity of the stimulus indicate that the sensorimotor area is 

involved in controlling velocity, which can apply to both visual motion processing and the 

execution of the motor response. However, the positive potential did not evolve until the 

actual joystick movement began suggesting that the MRPs reflect neural activity participating 

in the motor response in which the differentiated EEG activity can be related to a neural 

network in the sensorimotor area responding to increased velocity by gradually increasing the 

discharge rate. 
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1. Introduction 

 

How does the brain process visual information and how is that information utilized to 

perform visually guided hand movements successfully? To be able to grasp an object in our 

surroundings visual information about position, orientation and the velocity of the target with 

respect to the observer is processed by the brain and integrated with the motor complex that 

initiates, executes and controls the hand movement. The execution of the movement is 

regulated by sensory feedback which is affected by changes that the action itself inflicts on 

the external environment. Further the motor areas executing the movement also feedback to 

the sensory structures to modulate future sensory input in this perception-action cycle (Fuster, 

2008).  

The visual field consists of the entire area that can be seen with both eyes at the same 

time, and it is further divided into the right and left hemifield. Retinal neurons in one eye 

respond to both visual fields but at the optic chiasm the axons that make up the retinofugal 

projection goes through a partial decussation in which those originating in the left nasal 

retinal regions cross over to the contralateral side of the brain whereby the left visual field is 

processed in the right hemisphere while the right visual field is processed in the left 

hemisphere (Figure 1).  

 

 

 

Figure 1.  Graphic illustration of 

the visual pathways connecting 

the retinal neurons with the 

primary visual cortex. 
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The visual pathways are connected to the latereal genicualate nuecleus (LGN) which 

relay the information to the primary visual cortex (V1) located in the occipital lobe. The 

primary visual cortex (figure 2) propagates visual information through two interconnected 

visual pathways in which the ventral stream primarily process perceptual information 

involved in object recognition to the temporal lobe, while the dorsal stream, terminating in 

sensory areas in the parietal lobe, is involved in the processing of movements (Goodale, 

Meenan, Bülthoff, Nicolle, Murphy & Racicot, 1994). Milner and Goodale (2008) make the 

distinction between vision for perception and vision for action. They suggest that the ventral 

stream is involved in constructing perceptions which they define as our conscience experience 

of seeing and the pre-conscience mental representations that could reach conscious awareness 

and influence later cognitive operations. The link between perception and action is indirect as 

the ventral stream is involved in selecting possible goal objects and deciding how they should 

be approached but is not engaged in the action itself. The dorsal stream on the other hand 

process visual information to specify, execute and control the movements that constitute the 

action in real time. The visual information that is processed by the dorsal stream does not 

form perceptual representations of the world but rather it constitutes a stream of bottom-up 

information that is propagated from the retina to execute visuomotor guidance of movements 

and because of the non-perceptual character of the dorsal stream processing, it is not 

accessible to the conscious mind (Goodale & Milner, 1992, 2004; Milner & Goodale, 1993, 

1995). 

 

 

 

Figure 2.  The visual areas 

V1, V2 and V3 of the 

occipital lobe. The ventral 

stream propagates 

information from V1, 

terminating in the inferior 

temporal lobe, while the 

dorsal stream connects V1 to 

the sensorimotor area in the 

parietal lobe. 
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Located at the temporo-parieto-occipital junction in extrastriate cortex is the middle  

temporal visual area 5 (MT/V5) which receives input from V1 and V3 and is activated during   

processing of visual motion (Zeki, 1974; Zeki, Watson, Lueck, Friston, Kennard &  

Frackowiak 1991; Watson, Myers, Frackowiak, Hajnal, Woods, Mazziotta, Shipp & Zeki,  

1993). Although it was originally assumed that the functional significance of the MT/V5  

complex was an unimodal involvement in perception of visual motion, later research  

indicated that it is also activated by tactile motion (Hagen, Franzen, McGlone, Essick, Dancer  

& Pardo, 2002;  Beauchamp, 2005). But this doesn`t necessarily imply a polymodal  

engagement of MT/V5 in motion processing including a tactile module as the activation could  

also reflect visual imagery enabling tactile discrimination of orientation  (Sathian, Zangaladze,  

Hoffman & Grafton, 1997). MT/V5 is also associated with the temporal characteristics of 

motion perception. Sack, Kohler, Linden, Goebel and Muckli (2006) showed that motion  

processing was impaired when neuronal activity in MT/V5 was disrupted by applying  

transcranial magnetic stimulation in two critical time periods, about 40-30 ms before stimulus  

onset and 130-150 ms after.  

Research on the posterior parietal cortex (PPC), located between the sensorimotor 

fields around the central sulcus in the frontal lobe and the visual areas in the occipital lobe, 

have established the areas` involvement in motion processing and reaching. Single-unit 

recording studies on macaque monkeys have shown that the different subdivisions of PPC 

hold cells that are selective for reaching movements (Johnson, Ferraina, Bianchi & Caministi, 

1996; Eskandar & Assad, 2002). In a task that required the monkey to use a joystick to guide 

a spot to a target, neurons in the medial intraparietal area (MIP) responded mainly 

directionally with respect to the hand movement. The neurons in the medial superior temporal 

area (MST) displayed directional activity to visible movements that were projected on a 

screen before the monkey but not to the hand movement it-self (Eskandar et al., 2002). In 

humans, damage to parietal cortex may result in optic ataxia, a deficit in visually guided hand 

movements (Perenin & Vighetto, 1988). Reaching towards objects in the peripheral vision 

field, often contralateral to the lesion is impaired in patients with optic ataxia while reaching 

for targets in the central vision is not affected. Further they may be able to accurately saccade 

to targets in the peripheral vision field and successfully reach for targets on their own body 

indicating that the disorder is not strictly a sensory or a motor deficit (Culham & Kanwisher, 

2001). Neuroimaging studies also show that the PPC is involved in planning and execution of 

visually guided hand movements. Chaminade and Decety (2002) demonstrated in a task 

resembling reaching that the intraparietal sulcus is involved in visuomotor coordination of 
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hand movements and target, and the activity is stronger contralateral to the movement. Further 

the intraparietal sulcus is associated with motion processing in different modalities such as 

visual, tactile and auditory and the activation is bilateral in either intraparietal cortex 

(Bremmer, Schlack, Shah, Zafiris, Kubischik, Hoffmann, Zilles & Fink, 2001). 

The functional significance of the motor cortex has been debated, relating it to direct 

control of muscles and force as well as to spatial encoding of motor output which includes 

parameters such as direction, velocity and position. Single cell recordings on rats have shown 

that certain neurons in hippocampus respond to specific directional information by increasing 

the rate of firing when the rat is moving in the direction corresponding to the place field of the 

cell and declining as the rat gradually moves in the opposite direction (O`Keefe & Dostrovsky, 

1971). Equivalent experiments performed on monkeys reveal that cells in motor cortex also 

display the same directional preferences (Georgopoulos, Kalaska, Caminiti & Massey, 1982). 

Research on posterior parietal areas conducted by Andersen, Essick & Siegel (1985) showed 

that the response pattern of certain neurons could be explained by the product of a gain factor 

in which the total response of the neuron accounts for the eye position and the response 

profile of the visual receptive field. The corresponding response pattern is also present in 

motor cortex in which the discharge activity of single neurons can be attributed to a gain 

factor that accounts for direction and velocity (Moran & Schwartz, 1999) and position and 

velocity (Paninski, Fellows, Hatsopoulos & Donoghue, 2004). Paninski et al. (2004) further 

stated that the activity of neuronal ensembles provides more precise encoding of position and 

velocity compared to the effort of the individual cell. This is in concordance with research on 

neuronal networks stating that the individual neuron makes a vectorial contribution to the 

population code that generates the motor output (Georgopoulos, Kettner & Schwartz, 1988; 

Kruse, Dannenberg, Kleiser & Hoffmann, 2002). The single cell does not discharge to 

specific movements only; on the contrary it discharges for movements in many directions but 

at different rates and therefore a large number of cells will be active in movements in any 

particular direction. In a three-dimensional reaching experiment Georgopoulos et al. (1988) 

showed that the direction of the arm movement was close to the direction of the population 

vector for the neuronal ensemble and proposed that it is the entire activity of the neuronal 

ensemble that encodes for the direction of an upcoming movement. Further, in a second study 

it was established that the attribution of the single cell in the neuronal network is not 

necessarily restricted to one kind of information only as the same cells responded to different 

parameters such as direction, velocity, position and acceleration (Ashe & Georgopoulos, 

1994). 
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In order to examine how visually guided hand movements are processed by the brain 

in healthy human subjects single cell recordings cannot be applied. An EEG recording of 

brain electrical activity on the other hand does not cause any harm to the subjects or otherwise 

obstruct the arm movement, and although the spatial resolution is limited it provides a 

detailed measure of the activity of a neuronal population in the temporal domain. An event 

such as a sensory or motor stimulus can induce both time-locked and phase-locked changes in 

a neuronal population and the subsequent EEG activity is called an event-related potential 

(ERP). It is assumed that the evoked activity has a fixed time-delay to the stimulus while the 

ongoing EEG background activity constitutes random fluctuating noise which implies a 

higher signal-noise ratio when the ERPs are averaged. Research on externally - and internally 

paced finger movement show that primary sensorimotor areas (M1-S1) in both hemispheres 

are activated in addition to the pre motor areas (PMA) and supplementary motor area (SMA) 

of the frontal lobe, suggesting that both hemispheres are involved in planning and execution 

of unilateral finger movements although the activity is stronger contralateral to the movement 

(Kim, Ashe, Georgopoulos, Merkle, Ellermann, Menon, Ogawa & Ugurbil, 1993; Urbano, 

Babiloni, Onorati & Babiloni, 1996; Gerloff, Richard, Hadley, Schulman, Honda & Hallet, 

1998). A series of cerebral potentials preceding and succeeding voluntary finger flexions and 

extensions have been identified starting with a slow negative EEG activity called the 

readiness potential (RP) which begins about 2 seconds pre movement onset before the 

gradient suddenly increases at 400 ms  (Vaughn, Costa & Ritter, 1967; Shibasaki, Barrett, 

Halliday & Halliday, 1980). The RP is followed by a negative motor potential immediately 

preceding movement onset located to the contralateral central scalp and probably caused by 

the activity of pyramidal tract neurons in the primary motor cortex (M1) (Shibsaki & Hallet , 

2006).  Shibsaki et al. (1980) further described four post-movement components, namely 

N+50 which is a negative frontal peak, followed by P+90 and N+160; both predominant over 

the contralateral parietal region. The fourth component, peaking about 300 ms after 

movement onset was a large widely distributed positive potential located in the precentral 

region contralateral to the movement. The P+300 corresponds to the P2 component of Vaughn 

et al. (1967) who described it as a “complex positive wave (P2) which accompanies and 

follows for a brief period the movement it-self”. 

In the present study high density EEG recording is applied to examine the brain 

electrical activity accompanying a visually guided joystick movement intercepting with a 

target moving in one of three different velocities. The main focus of interest is how the 

velocity of the stimulus affects the EEG activity in motor cortex. Further we investigate the 
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regions in the occipital, temporal and parietal lobe that are associated with visual motion 

processing for any brain electrical activity that display different characteristics with regards to 

the velocity of the stimulus or connecting these regions temporally to the activity in motor 

cortex and the execution of the joystick movement. Georgopioulos et al. (1988) proposed that 

the direction of an arm movement can be encoded by the neuronal population vector in which 

the discharge rate of the single cell is proportional to changes in direction relative to that 

cells` preferred direction and the sum total of all single cell contributions constitutes the 

population vector.  Further the single cell can account for both velocity and direction during 

reaching, with velocity acting as a gain factor on the cells` directional turning curve by 

affecting the firing rate of the individual cells in which increased velocity results in increased 

firing rate of the cells with preferred direction close to the direction of the actual movement 

(Moran et al., 1999). In our study the direction of the joystick movement is fixed while the 

velocity of the stimulus varies. On the basis of velocity acting as a gain factor while the 

direction of the movement remains constant, we expect higher brain electric activity 

accompanying increased velocity of the stimulus. 

 

 

2. Method 

 

2.2 Subjects 

 

10 subjects (4 females) were recruited among students and teachers at the Norwegian 

University of Science and Technology. All subjects had normal or corrected to normal vision 

and according to their self report they were all right handed but one who was ambidextrous. 

The mean age of the subjects were 27.1 ± 4.8 years (age range from 19 to 37).  They had all 

signed the written consent before the experiment began informing them that they could 

withdraw at any time. The study was approved by The Norwegian Regional Ethics Committee 

and The Norwegian Data Services for the Social Sciences. 
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2.3 Apparatus 

 

 The EEG activity was recorded with Geodesic Sensor Net (GSN 200) (Tucker, 1993) 

using Net Station software on a Macintosh computer. The GSN 200 contains an array of 256 

Ag/AgCI electrodes which are evenly distributed across the scalp, each connected to a 

corresponding amplifier channel. The sample rate of the high density EEG recording was 500 

Hz using a 100 Hz low-pass filter and 0.1 Hz high-pass filter.  

As it is advised for high-input impedance EGI amplifier systems, the electrode-scalp 

impedance were kept below 50 kΩ in order to achieve an optimal signal to noise ratio (Ferree, 

Luu, Russell & Tucker, 2001; Picton, Bentin, Berg, Donchin, Hillyard, Johnson et al., 2000). 

The joystick movements were executed with Current Designs` Fiber Optic Joystick (HH-Joy 

4) and recorded with E-prime (Psychology Software Tools, Inc) software. Tags marking 

stimulus onset/offset and successful/unsuccessful trials were transferred to the EEG data using 

E-prime and they were stored on hard disk for off-line analyses. 

In order to monitor the direction of gaze during the experiment, eye movements were 

recorded with Tobii x50 infra red camera running on Clear View software.  The subjects` 

overall behavior was monitored with 2 digital cameras. 

 

 

2.4 Stimuli 

 

The subjects visually tracked a stimulus-car (stm-car) moving horizontally from left to 

right over a wide screen on which it was mirror-reversed projected with an ASK M2 projector. 

The final approach of the car was occluded before it reappeared in a gap on the far right of the 

screen. By the means of a joystick the subjects controlled an identical car (joy-car) moving 

vertically between the starting point in the upper right corner and the touchdown area in the 

middle of the gap after the occlusion. The subjects were instructed to crash the joy-car into the 

stm-car (see figure 3).  
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Figure 3. The stimulus car drives horizontally from left to right while the joy-car follows the vertical axis to the 

open gap between the two green occlusions on which the subjected were instructed to focus their eyesight. Their 

gaze was recorded for back up purposes with the Tobii infra red eye camera and monitored on the experimenters 

screen as a blue ball. 

 

 

A crash was achieved when the centre of the stimulus car was at the centre of the gap 

between the two obstructions. The length of the stm-car and the gap were both 40 pixels (px) 

which is approximately 6.5 cm when projected on the screen while the front of the joy-car 

was 20 px wide. Further the centre of the joy-car had to reach the bottom of the chassis of the 

stm-car. Both vertically and horizontally a deviation of 30 px around the centre of the gap was 

tolerated. The distance of the whole horizontal plane was 620 px, (100 cm) and the occlusion 

began at 440 px (71 cm). The total horizontal visual angel was 64º. The vertical plane on the 

other hand was 360 px (58 cm) with a total vertical visual angel of 40º.  

The initial velocity of the horizontal moving car was 0.5 px/ms or 0.84 m/s. 

Subsequently it would decelerate in one of 3 constant ways: “fast” (10% deceleration), 

“medium” (50% deceleration) and “slow” (90% deceleration). In the “fast” condition the 

occlusion lasted for 131 ms, 194 ms for “medium” and 283 ms for “slow”.  The total length of 

any trial did not exceed 2400 ms and the inter-trial interval was 1500 ms. 
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2.5 Procedure 

 

The subjects were seated 80 cm away from the screen (108 x 69 cm) on which the 

experimental conditions were projected. The impedance of the electrodes was checked and 

corrected if necessary with the use of saline electrolyte or by repositioning them slightly to 

improve the contact with the scalp. The participants were instructed to keep the joystick in 

their lap and to use their dominant hand. In order to avoid unnecessary cortical activation due 

to head or eye movements, the subjects were further instructed to focus their eyesight on the 

gap between the two occlusions. Even though the approach of the horizontal car was 

accessible through peripheral vision only the subjects did not report this as a complicating 

matter. The subjects were then instructed to crash the joy-car into the stm-car employing one 

continuous swift downward joystick movement thereby preventing them from applying 

cognitive strategies such as moving the joy-car close to the gap first and then wait for the 

stimulus-car before executing the impact or hitting it on the upward rebound. Finally the eye 

movements in visual space were calibrated to the Tobii X50 eye camera.  

To get familiar with the joystick the subjects were allowed to run through 24 test trials 

(8 for each condition). They then carried out the experiment completing 210 trials; 70 for each 

condition in randomized order.  

 

 

2.6 Joystick data analysis 

 

The joystick data were processed off line using custom designed software to further 

edit the selection of trials. The beginning of each movement was defined by joy-car reaching 

10 % of the maximum velocity for that trial. Tags marking the beginning of the single joystick 

movement and the velocity of the stm-car (fast, medium, slow) were generated. Video 

recordings of the experiments were also examined, omitting trials in which the subjects did 

not focus their eyesight on the gap or otherwise used cognitive problem solving strategies to 

execute the crash. An event file with tags for the remaining trials was then transferred back to 

the EEG data. In all 113 trials were discarded because the subjects used different cognitive 

strategies and one subject was rejected because of repeatedly occurring eye movements. 
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2.7 EEG data analysis 

 

Only trials resulting in a successful crash were segmented and accepted for EEG-data 

analysis using the software program Brain Electrical Source Analysis (Besa) version 5.3. All 

channels that were characterized by noise because of head/body movements were rejected by 

visual inspection while artifacts due to vertical ocular movements were removed with a 

principal component analysis (PCA) method identifying the overall eye- blink pattern based 

on manually selected segments. None of the subjects included in the analysis had more than 

10 % of the channels defined as bad. The events for stimuli onset and joystick movement 

begins were the triggers of interest. Time-locked epochs were generated to stimuli onset [-200, 

2400] ms and joystick movement begins [-1200, 1200] ms. Baseline for the time-locked 

stimuli onset was [-200, 0] ms while the response-locked joystick movement begins baseline 

was [-1200, -1000] ms. It is not a straightforward matter to set the baseline for a response-

locked trigger because the activity that precedes the response sometimes is stronger than the 

activity that follows (Luck, 2005). In order to avoid pre-motor activity influencing the 

baseline for the response-locked joystick movement begins, baseline was estimated by 

calculating the difference between triggers for stimuli onset and joystick movement begins in 

a random sample of single trials. However the beginning of the joystick movement varies both 

in trials and between the subjects and it is therefore possible that the baseline is contaminated 

with either pre-motor activity or post-motor activity from previous trial as well as brain 

electric activity related to the visual stimulus. The joystick-movement generated epochs were 

therefore only used as a roadmap by which they were compared with the epochs computed at 

stimulus onset. Although the epochs grounded in the joystick triggers could be contaminated 

by noise and the effect weakened, it is likely that a response in the EEG data corresponds to 

actual brain electrical activity generated by the movement. The effect should also be 

detectable in the EEG data belonging to the stimulus onset generated triggers thereby creating 

a link between the movement and the less contaminated stimulus onset data.  

To remove slow drift in the data the low cut-off filter was set to 1.6 while the notch 

filter was set to 50 Hz and the high cut-off filter was set to 40 Hz. Since time-frequency 

analysis was not applied the 40 Hz high cut-off filter was engaged during the artifact scan but 

turned off for averaging. The difference between maximum and minimum amplitude did not 

exceed 200 µV and the gradients were lower than 75µV/sample for any channels or trials that 

were accepted for further analysis. In addition signals below 0.1   were rejected. Altogether 

1233 time-locked stimuli onset trials were analyzed and on average each subject contributed 
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with 34 (SD = 11.5) in the fast condition, 44 (SD = 13.1) in the medium condition and 45 (SD 

= 13.8) in the slow condition.  Further 1250 response-locked joystick onset trials were 

analyzed and the average individual contribution was 35 (SD = 11.6) in the fast condition, 45 

(SD = 12.4) in the medium condition and 45 (SD = 13.6) in the slow condition. 

 

 

 

 

 

Figure 4.  Identifying the MRP in the individual 

averages . The borders of the positive MRP was 

defined by y > 0 µV. Then peak amplitude, mean 

amplitude and area for the selected region were 

calculated. 

 

 

 

 

 

2.7.1 MRP analysis 

 

Individual averages were computed for fast, medium and slow in both trial onset and 

joystick-onset and they were analyzed with a 10 Hz high cut-off filter engaged. The averages 

were referenced to an artificial reference calculated from the average potentials over the scalp. 

The averages were then interpolated to 81 standard electrode positions and combined to 

generate a grand average in which the MRPs were identified. Next, the equivalent MRPs were 

identified in the individual averages and peak amplitude was calculated. The positive MRPs 

were defined by Y > 0 µV and the area (µV*ms) of the block interval and mean amplitude 

was computed (figure 4). Although the block interval was defined by Y > 0 µV a certain 

visual estimate was applied as sometimes sudden voltage fluctuations would be included in a 

selected region. Mean amplitude corrects for these voltage deviations while the area does not 

and therefore both units of measurement were used because they complement each other.  
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2.7.2 Source analysis 

 

Although the accuracy of high density EEG spatial resolution is debated because of 

the inverse problem involved in estimating source localization founded on the distribution of 

potentials at the scalp surface (Luck, 2005; Snyder, 1991) it was performed to establish a 

possible connection between the MRPs and the brain regions that could cause the activation. 

Filters for the source analysis were set to 1.6 Hz for the low cut-off, 40.0 Hz for the high cut-

off and 50 Hz for the notch filter. 

 

 

A 

 

 

 

 

 

B 

 

Figure 5.  Grand average waveforms for the fast velocity displaying brain electrical activity in channel 

C3, Cz and C4. For both figures the vertical axes mark the experimental triggers at y = 0 and provide  a 

measurement of the voltage level. In A the trigger is response-locked to the joystick movement and in B 

the trigger is time-locked to stimulus onset. There is a positive electrical charge evolving immediately 

after joystick onset and the effect is stronger in Cz compared to C3 and C4 (A). The same tendency is 

also present at about 1000 ms in the time-locked waveform (B) where the amplitude at the positive peak 

is even higher (3.04 µV compared to2.19 µV in the response locked grand average).  Further the polarity 

changes in Cz (B) starting at about 130 ms are not present in the other channels. 
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3. Results 

 

3.1. Identifying movement-related potentials. 

 

The response-locked grand average waveform display show that the beginning of the 

joystick movement was accompanied with a positive movement-related potential (MRP) in Cz 

starting at about 70 ms and ending at 600 ms (figure 5a). The activity in C3 and C4 was less 

pronounced in the same period of time peaking at 0.81 µV and 0.87 µV compared to 2.19 µV 

in Cz. Similar activity is evident in the grand average that is time-locked to stimulus onset in 

which the MRP in Cz started at 1046 ms, ended at 1522 ms and peaked at 3.04 µV compared 

to 1.07 µV in C3 and 1.44 µV in C4 (figure 5b). Furthermore both Cz waveforms are 

distinguished with a negative build up which abruptly ends when the movement begins. In 

addition the time-locked Cz is characterized with polarity changes starting at about 130 ms 

after stimulus onset which are not evident in the other channels for either waveform. 

 

 

 

 

 

 

           

                      1046 < – > 1368 ms 

Figure 6.  The 3D map on the left displays the voltage distribution at 1368 ms for the time-locked grand average 

waveform. The source model shows the location of the three main dipoles that can explain most of the voltage 

distribution in the time frame 1046 – 1368 ms post trial onset. The red dipole located in the medial frontal lobe 

accounts for 74.5 % of the variance while the blue dipole in the right occipital lobe accounts for 18.9 % of the 

variance. 4.1 % of the variance can be explained by the green dipole positioned in contralateral parietal lobe. 

The residual variance of the source model is 8.3 %.  
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Figure 7.  Grand average waveform display time-locked to stimulus 

onset for fast velocity in channel O1, Oz and O2. There is a negative 

potential peaking at at -1.46 µV after 1096 ms in channel O2 in the 

right occipital lobe. According to the source model can 83.5 % of the 

variance be explained by the red dipole in the medial pre-frontal region 

while the blue dipole in the right occipital lobe accounts for 13.7 %. 

        

                  982 <-> 1096 ms   

 

 

 

 

In order to establish a stronger connection between the MRP in Cz and specific 

brain areas a source analysis was performed for the fast condition starting the epoch at 

the onset of the positive waveform (y = 0 µV) at 1046 ms and ending at the peak of the 

waveform at 1368 ms. The 3d image (figure 6) shows the positive voltage distribution 

extending across the frontal - parietal areas and the negative facial voltage spread at the 

peak of the MRP. According to the source analysis can 93.4 % of the variance be 

explained by the red dipole (74.5 %) found in the medial frontal lobe and the blue 

dipole (18.9 %) located in the right occipital lobe.  

Associated with the activity in the right occipital lobe is a negative MRP succeeding 

immediately after the joystick movement, peaking at -1.46 µV after 1096 ms in the grand 

average (figure 7). The activity is predominantly in channel O2 and the source model 

stipulated that 97.2 % of the activity is related to a dipole (83.5 %) in the medial pre-frontal 

areas and a second dipole (13.7 %) located in the right occipital lobe. 
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Figure 8.  Grand average 

waveform display of channel Cz 

for fast, medium and slow 

velocity. Trial onset is at x = 0, 

fast velocity is colored black, 

medium is blue while slow is 

yellow. The amplitude of the 

positive potential starting at about 

1000 ms is larger for fast velocity 

than medium and slow 

respectively and, as expected, the 

earliest peak amplitude is for fast 

followed by medium and slow. 

 

 

 

 

3.2 Velocity related potentials 

 

The grand average waveform displaying velocity show little if any difference between 

the three conditions in the early activity in the timeframe 130 – 350 ms (figure 8). However, it 

is evident by visual inspection alone that the amplitude of the positive potential appearing at 

about 1000 ms after stimulus onset is larger for fast than medium and slow velocity 

respectively. 

Based on the individual files an average for peak amplitude, mean amplitude and mean 

area (µV*ms) were calculated for the MRPs in channel Cz (figure 9). Peak amplitude was 

larger for fast (4.3 µV, SD = 1.7) than medium (3.6 µV, SD = 1.2) and slow (2.9 µV, SD = 

1.2) respectively. A repeated measures ANOVA was performed on peak amplitude with 

velocity (fast, medium and slow) as within subject factor. This revealed a main effect of 

velocity, F (2, 9) = 10.336, p < .05. However a pairwise comparison adjusted for multiple 

comparisons with Bonferoni didn`t show any significant effect between fast and medium 

velocity.  
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Figure 9.  Graphic representation of average scores (including SD bars)  for fast, medium and slow 

velocity according to peak amplitude, mean amplitude and area (µV*ms) in channel Cz. The fast condition 

yields higher scores in all three measurement categories compared to medium and slow velocity respectively. 

*A repeated measures ANOVA showed a significant effect of velocity.  
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Mean amplitude for the MRP followed the same pattern and was larger for fast (2.4 

µV, SD = 0.9), then medium (1.8 µV, SD = 0.8) and slow (1.3 µV, 0.6). A repeated measures 

ANOVA showed a main effect for velocity, F (2, 9) = 39.455, p < .05. 

 In the final category area (µV * ms), fast velocity also generated the larger area 

(1123.4, SD = 440), followed by medium (939.8, SD = 408.2) and slow (779.1, SD = 363.5). 

The repeated measures ANOVA showed that the area generated by the fast velocity is 

significantly larger than medium and slow velocity respectively, F(2, 9) = 25.375, p < .05 .  

The same procedure was repeated for the MRP in channel O2 (figure 7, table 1). Fast 

velocity was associated with the larger brain electrical activity for both peak amplitude and 

mean amplitude however a repeated measures ANOVA showed that there wasn`t any main 

effect of velocity for either peak amplitude, F (2, 9) = 1,703, p > .05, mean amplitude, F (2, 9) 

= 2,807, p > .05, or area, F (2, 9) = 0,683, p > .05 

 

 

 

 Peak amplitude Mean amplitude Area 

Fast 3.5   (5.2)* 1.7   (2.6) 528,2  (743.1) 

Medium 2.8   (5.0) 1.1   (1.5) 590,4  (1051.8) 

Slow 2.2   (2.2) 1.4   (1.4) 483,3  (874.6) 

Table 1.  Averages for peak amplitude, mean amplitude and area in channel O2. 

*(SD) 

 

 

 

 

4.1 Discussion 

 

In this study high density EEG recording was used to investigate the brain electrical 

activity accompanying a visually guided joystick movement intercepting with a target 

decelerating in one of three different velocities. The task requires motor cortex to process 

visual information that is propagated from the primary visual cortex and the sensorimotor area 

in order to execute the movement. 
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4.1 Movement related potentials 

 

We identified a positive brain electric activity, spreading across the medial frontal-

posterior region, accompanying the joystick movement. The evoked potential was evident in 

all subjects and the activity was most pronounced in channel Cz in which it peaked at 3.04 µV 

in the grand average for fast velocity (figure 5b).  

The source analysis showed that 93.4 % of that brain electrical activity could be 

explained by two dipoles, in which 74.5 % was accounted for by one dipole located medial in 

the sensorimotor areas. Together, the larger frontal dipole and the MRPs in Cz connect the 

EEG activity accompanying the joystick movement to the medial sensorimotor area in the 

brain. The other dipole was positioned in the occipital lobe (18.9 %), in the brain areas 

corresponding to the right hemisphere of the primary visual cortex (figure 6). As the subjects 

in our experiment fixed their gaze on the opening between the two occlusions on the right side 

of the screen and the stimulus car arrived from the left, the subsequent activation of right 

primary visual cortex is in concordance with the generally accepted theory stating that the left 

visual field is processed in the contralateral V1.  

Numerous studies have been conducted displaying the link between voluntary 

movements and activation in M1-S1 and research on internally paced finger movements point 

out to several pre-MRPs as well as post-MRPs (Vaughn et. al., 1967; Shibasaki et al., 1980; 

Kim et al., 1993; Urbano et al., 1996). The negative build up in C3 and Cz (figure 3b) starting 

about 400 ms before the movement begins evolved in a time frame corresponding to the late 

part of the RP, however the slope of the potential was not as steep and the amplitude was 

considerable lower. The activity was also stronger in the medial areas (Cz) compared to the 

predominantly contralateral activity in M1-S1 that has been described by others (Babiloni, 

Carducci, Cincotti, Rossini, Neuper, Pfurtscheller & Babiloni, 1999; Shibasaki et al, 2006).   

We didn`t identify the readiness potential as previously reported but that is more likely 

due to the differences between the experimental designs as the movements in our study were 

externally paced to the stimulus onset and the inter-trial latency was short compared to the 

established procedure in research on internally paced movements that often use inter-

movement intervals lasting from 3 to 20 seconds (Shibasaki et al., 1980 & Urbano et al., 

1996). In addition the task in our experiment was more complex than the regular self-paced 

finger movement as a successful performance depended on the brain to integrate information 

from the visual system with the sensorimotor system, and it is plausible that the readiness 

potential was concealed in the overall evoked EEG activity.  
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Shibasaki et al. (1980) described a widely distributed positive potential across the 

sensorimotor area accompanying the finger extensions/flexions with the larger activity 

contralateral to the movement in channel C3. This activity resembles the MRPs in our study, 

spreading across the M1-S1, predominantly in channel Cz (figure 5). The distribution of the 

activation is not as widespread as Shibasaki et al. (1980) report and the activity is stronger in 

the medial M1-S1. In Shibasakis` experiment the subjects performed voluntary brisk 

extensions and flexions of the middle finger which put less strain on the nervous system 

compared to the more complex visually guided joystick movement in our study. We propose 

that the confined brain electrical activity could reflect more specific sensorimotor processes 

involved in processing the visual information and coordinating it with motor cortex in order to 

execute the movements.  

 

4.2 Velocity related potentials 

 

By comparing the MRPs in fast, medium and slow velocity, significant differences 

between all groups were observed for area, mean amplitude and peak amplitude with one 

exception, there wasn`t any significant difference between fast and medium velocity for peak 

amplitude. Peak amplitude reflects the maximum voltage build up in a selected interval but it 

neglects the preceding and succeeding activity inside the block. Both area and mean 

amplitude reflect the overall activity in a certain period of time and it is therefore possible that 

they give a more precise measurement of the brain electric activity participating in a visually 

guided movement which is not restricted to an instantaneous moment of time but on the 

contrary depends on continuous interaction between sensory-motor and visual areas in the 

brain. In addition to provide a measure for the overall voltage activity, mean amplitude also 

corrects for any sudden random fluctuations of alternating polarity.  

The fast condition is associated with the larger brain electrical activity as it yields the 

larger score for peak amplitude ((4.3 µV), mean amplitude (2.4 µV) and area (1123.4) 

followed by medium and then slow velocity (see figure 9).  The corresponding relationship 

between the MRP and the velocity of the stimulus car indicates that the medial sensorimotor 

area is involved in processing velocity, which can apply to both visual motion and the 

execution of the motor response. However, figure 5a shows that the positive potential does 

not evolve until the actual joystick movement begins, suggesting that the potential reflects 

neural activity participating in the motor response. This is supported by Hill (2009) who 

conducted an ERP experiment in which the subjects performed a joystick controlled tracking 
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pursuit. He showed that a positive ERP with a maximum in CZ was time-locked to directional 

corrections executed with the joystick but not to the mere visual input of directional changes, 

proposing that the ERP could be assigned to the planning and execution of the required 

response. The topography of the component was also strongly restricted to the central cites, 

corresponding with the results of our study as opposed to the widespread positive complex 

reported by Vaughn et al. (1967) and Shibasaki et al. (1980).  

Ashe (2005) proposes that the motor cortex is involved in spatial encoding of motor 

output and the direct specific muscle control, and he further states that the direct motor 

commands and spatial encoding are coordinated in a neural network where the gain fields of 

the neurons account for the bimodal processing. Georgopoulos et al. (1988) showed that the 

single cell would discharge to movements in many directions but at different rates and the 

direction of the arm movement was close to the direction of the neuronal population vector. 

Further, it was demonstrated that the single cell responded to different visual motion 

characteristics such as direction and velocity (Ashe et al., 1994, Moran et al. 1999), 

suggesting that the single cell could be involved in a neuronal ensemble encoding for multiple 

motion parameters. The concurrence of larger brain electrical activity with increased velocity 

can reflect the involvement of a neuronal ensemble encoding for visual motion and the 

subsequent motor output, thereby providing visuomotor control when executing the 

movement. In our study, there was with one exception a significant effect of velocity for peak 

amplitude, mean amplitude and area in channel Cz and the main part of that activity was 

according to the source model caused by one dipole located in M1-S1. The differentiated 

activity in M1-S1 can be explained by a neural network responding to increased velocity by 

gradually increasing the discharge rate, however this doesn`t necessarily imply a neuronal 

ensemble dedicated to velocity only, as the neuronal population code may account for 

multiple parameters such as velocity and direction.
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