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Abstract 

Addressing issues with sensitivity and specificity in TBI assessment this study compared the 

performance on neuropsychological tests and results from qEEG assessment between a 

heterogeneous TBI (N=20) group and a matched normal control group (N=20). The TBI 

group was performed worse on all measures. Significant differences in performance were 

found in the domains of information processing speed and executive function. Effect sizes of 

these differences were large. This was also true for the amplitude of the qEEG parameter 

P3NoGo along with P3Go latency and theta power in the temporal and frontal lobes. Binary 

logistic regression revealed higher sensitivity and specificity when combining 

neuropsychological tests and qEEG parameters, suggesting qEEG parameters in combination 

with neuropsychological tests to be good assets in TBI assessment. 
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Every year tens of thousands of persons acquire traumatic brain injury (TBI) worldwide 

causing deficits and disability in cognitive, emotional and social functioning (Maas, 

Stocchetti, & Bullock, 2008). The incidence rates of TBI reported varies between countries 

and there is no general consensus on how to count incidents (Bruns & Hauser, 2003). For the 

European Union (Tagliaferri, Compagnone, Korsic, Servade, & Kraus, 2006) reviewed 

literature and found an aggregate incidence of TBI at approximately 235 per 100 000, 

including fatalities. In Norway, (Ingebrigtsen, Mortensen, & Romner, 1998) found the 

incidence rate to be 157 / 100.000 with a male-female ratio of 1.7:1.0. The main causes were 

falls (62 %), traffic accidents (21 %) and assaults (7 %). In the Stavanger region, 2003, 

(Heskestad, Baardsen, Helseth, Romner, Waterloo, & Ingebrigtsen, 2009) found the incidence 

rate to be 157 / 100.000 with a male-female ratio of 1.7:1.0. The main causes were falls (51 

%), traffic accidents (21 %) and assaults (14 %). In Oslo between 2005 and 2006, the 

incidence rate was found to be 83.3 / 100.000 with a male-female ratio of 1.8:1.0. The main 

causes were falls (51 %) and transport accidents (29.7 %) (Andelic, Sigurdardottir, Brunborg, 

& Roe, 2008). 

TBI affects patients’ cognitive (Temkin, Corrigan, Dikmen, & Machamer, 2009) and 

social (Dikmen, Corrigan, Levin, Machamer, Stiers, & Weisskopf, 2009) capabilities making 

many dependent on a variety of coordinated health and social services. Estimation of injury 

severity, predictions of patient outcome and feasibility of different rehabilitation initiatives 

relies heavily on medical imaging (Ghajar, 2000) and neuropsychological assessment and 

observations (Patry & Mateer, 2006). Recent research by Skandsen, Finnanger, Andersson, 

Lydersen, Brunner, & Vik, (2010) have shown that impairments in cognitive functioning vary 

and often are difficult to assess because of a high rate of normal test scores within the patient 

population.  That is despite problems maintaining working status and social functioning 

(Mazaux et al., 1997). Hartikainen et al., (2010) argues that the structured testing environment 
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created to assess distinct functions may not be sensitive to the problems experienced in 

everyday situations which affect patient total functioning and quality of life. This can lead to 

mistreatment or no treatment or rehabilitation at all. A person who doesn’t show any objective 

signs of disability may be considered querimonious and rejected. It has been suggested that 

advanced medical imaging techniques like DTI and fMRI may be sensitive to the physical 

effects of TBI and correlated to behavioral measures (Kou, et al., 2010, andIngebrigtsen, Rise, 

Wester, Romner, & Kock-Jensen, 2000). This is also reported for quantitative 

electroencephalography (qEEG) measures (Reinvang, 1999, and Thornton & Carmody, 2009) 

and qEEG has been viewed as a possible supplement to neuropsychological tests in TBI 

assessment (Mazzini, 2004, and Duff, 2004). 

The aim of the study was to investigate how well neuropsychological tests and qEEG 

parameters differentiate TBI patients from normal controls, and whether the inclusion of 

qEEG in TBI assessment could increase the sensitivity and specificity of assessment. 

 

Causes and Effects 

TBI refers to the physical effects to the brain from the application of external physical 

force, including acceleration/deceleration forces. Contact forces working on the head (e.g. 

smashing the head into the pavement) may accelerate the brain within the skull causing tissue 

bruising near the bony structures of the skull on both the point of impact and on the 

contralateral side. This is often referred to as coup and counter coup lesions (Gaetz, 2004). 

Bruising in brain tissue is also apparent without any direct blows to the head, but from just 

mere acceleration or deceleration (A/D) forces (e.g. traffic accidents). The frontal and 

temporal poles are most vulnerable to these forces because their cortex rest on rough surfaces 

of the skull. With increasing force deeper structures like the basal ganglia, corpus callosum, 

and the brain stem may also be affected. The movement of the brain within the skull not only 
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produces bruising but also shearing and tearing of delicate tissues. This includes both blood 

vessels and nerve fibers creating intracranial hemorrhages and diffuse axonal injury (DAI) 

(Gaetz, 2004). DAI is often observed in the grey-white matter junction within the frontal and 

temporal lobes, in the corpus callosum and especially in its dorsal part, the splenium (Gentry, 

1994). With increasing force DAI is also observed in the dorsolateral part of the midbrain, in 

the rostral part of the pons, and in the brain stem (Parizel, et al., 1998). While contusions 

often are associated with specific and localizable changes in brain functioning, axonal injury 

contributes to a somewhat diffuse change (Scheid, Walther, Guthke, Preul, & Yves von 

Cramon, 2006).These are mainly primary injuries which are related to the forces applied to 

the brain. Another group of injuries are referred to as secondary injuries. These include 

edema, metabolic changes and altered cerebral blood flow. Edema may lead to ischemic 

damage and increased intracranial pressure which can be fatal if not treated and controlled 

(Moppett, 2007). There is also a heightened risk of infection, especially if the skull and dura is 

breached (Hannay, Howieson, Loring, Fischer, & Lezak, 2004). On the cellular level a 

cascade of neurochemical and neurometabolic events are initiated. Disruption of the cell 

membrane of the neuron and stretching of axons causes a chaotic flux of ions through the 

membrane which again cause the neuron to release large amounts of excitatory amino acids 

(Farkas, Lifshitz, & Povlishock, 2006, and Katayama, Becker, Tamura et al., 1990). With the 

resulting massive efflux of potassium the ATP driven ionic pumps increase their activity 

causing higher energy demands. High ATP consumption leads to hyperglycolysis and 

changed metabolism. Axonal events include calcium influx which may lead to axonal 

swelling and in serious cases axotomy (Maxwell, McCreath, Graham, & Gennarelli, 1995). 

To summate, a common pattern in TBI is a primary injury caused by the mere contact 

forces and inertial forces causing contusions, lacerations, diffuse axonal injury, and 

hematoma. This is often followed by a secondary injury risking further damage to brain tissue 
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by elevated intracranial pressure (ICP), edema, hypoxia, ischemia, pyrexia, infections and a 

cascade of intracellular processes. The frontal and temporal lobes are most susceptible to 

damage and with increasing force may deeper structures also be affected and the risk of DAI 

increase. 

Cognitive, Emotional and Behavioral Consequences 

The mentioned vulnerable regions, the frontal and temporal lobes, are involved in 

important perceptual, cognitive and emotional processing (Fork et al., 2005). Symptoms of 

damage to the ventral frontal cortices are behavioral disinhibition, emotional dysregulation 

and irritability while damage to the anterior cingulate cortex often results in apathy. Patients 

with damage to the inferolateral prefrontal cortex often show working memory impairments 

and impairment in executive function if the dorsolateral prefrontal cortex is affected (Silver, 

McAllister, & Arciniegas, 2009). Executive function is an umbrella term for complex 

cognition which includes control of attention, memory, language, motor planning, along with 

abstraction and judgment. Temporal lobes are important structures for memory and emotion. 

Damage to the anterior (polar) temporal cortex may result in a wide range of social and 

emotional disturbances along with a disturbance in semantic memory. Damage to the 

enthorinal and hippocampal structures and neural pathways connecting these structures to 

others commonly result in impaired declarative memory and working memory (Tate & Bigler, 

2000, and Smith, Lowenstein, Gennarelli, & McIntosh, 1994). If the amygdale is affected one 

might observe affective placidity or alternatively anxiety (Silver et al., 2009). Damage to the 

midbrain can disturb the reticular activation system responsible for conscious experience 

(Parvizi & Damasio, 2001).It may also may cause deficits in nuclei integrating visual and 

sensory information and cause movement disabilities like tremor and rigidity (Hannay et al., 

2004). Lesions in the midbrain have also been associated with verbal memory problems 

(Holli, et al., 2010). 
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General Assessment and Research 

TBI assessment is multifaceted and consists of several key elements, often repeated at 

different times during the course of illness and recovery. In the acute phase measures like 

duration of loss of consciousness (LOC), duration of an altered mental state of confusion and 

disorientation called post-traumatic amnesia (PTA),and the Glasgow Coma Scale (GCS) 

(Teasdale & Jennett, 1974) score are used to predict injury severity and outcome (Hannay et 

al., 2004). The Glasgow coma scale comprises three tests of eye, verbal, and motor responses 

and scores range from 3 to 15 and injury severity is commonly classified into categories of 

mild, moderate and severe with mild defined as GCS 13-15, PTA <1 day, LOC < 30 minutes, 

and moderate GCS 9-12, PTA 1-7 days, LOC 0.5-24 hours and finally severe GCS 3-8, PTA 

> 7 days, LOC > 24 hours (Ghajar, 2000, andHannay et al., 2004). The Scandinavian 

Neurotrauma Committee (SNC) (Ingebrigtsen et al., 2000) suggests a separation into minimal 

(GCS 15, no LOC); mild (GCS 14-15, short <5min LOC or PTA); moderate (GCS 9-13, 

>5min LOC or PTA); severe (GCS 3-8). This classification is stricter and justified by research 

showing exponentially increasing CT anomalies with decreasing GCS score (Culotta, 

Sementill, Gerold, & Watts, 1996). With the latter classification a GCS of 13 would yield a 

moderate TBI. The use of this classification is increasing, especially in the field of 

neurosurgery (Maas, Stocchetti, & Bullock, 2008). 

Imaging techniques like computer tomography (CT) and magnetic resonance imaging 

(MRI) offer important information following accidents. CT is a highly used and valuable tool 

for diagnosis. CT is sensitive to skull and facial bone fractures using a bone window and 

sensitive to hematomas and raised ICP using a soft tissue or brain window (Ingebrigtsen et al., 

2000). CT can enable the clinician to rapidly assess if the patient is in need of urgent 

neurosurgery. Patients with a GCS score of 15 rarely show any CT abnormalities and it is also 
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rare for patients with no LOC or just brief PTA to show any abnormalities on immediate CT 

scans (Ingebrigtsen et al., 2000). 

MRI has an excellent soft-tissue contrast compared to CT and is more sensitive in 

locating cortical contusions, diffuse axonal injury (DAI) and brain stem lesions (Gentry, 

Godersky, Thompson, & V.D., 1988, and Skandsen, 2010). Although MRI has become more 

accessible in the recent years it is still a costly procedure and is difficult to use on patients 

dependent on machines sensitive to magnetic fields. In addition to CT and MRI there are 

other methods of brain imaging like positron emission topography (PET) where the patient 

inhales radioactive glucose and single photon emission computer topography (SPECT) where 

a radioactive compound is injected into the blood stream. These methods are usually not 

included in regular TBI assessment (Belanger, Vanderploeg, Curtiss, & Warden, 2007). 

 Neuropsychological assessments are important in order to estimate current 

functioning, prognostication, development of treatment plans and rehabilitation (Taylor, 

Livingston, & Kreutzer, 2007). It often plays a significant role in forensic settings and with 

insurance or disability pension payouts (Bigler & Brooks, 2009). Although imaging 

techniques like MRI and CT may be sensitive to TBI, Patry & Mateer, (2006) argues that the 

frequent coexistence of focal as well as diffuse injuries to brain tissue may preclude 

inferences about deficits in certain cognitive domains. By employing a comprehensive 

neuropsychological assessment clinicians may ascertain that the majority of important mental 

functions are probed. 

The neuropsychological assessment of TBI patients is diverse and varies with regard 

to many different variables (e.g. age, severity, location, availability of tests and equipment) 

and what problems that are described by the patient or others close to the patient. Patients 

with mild TBI often report attentional deficits and complaints about poor short-term memory 

(van Zomeren & Brouwer, 1994, and Sohlberg & Mateer, 2001), even one year after injury 
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(Rickels, von Wild, & Wenzlaff, 2010). However, the symptoms are most prominent in the 

acute phase and research has shown that most patients do not have lasting problems (Hannay 

et al., 2004). Moderate TBI patients differ from mild TBI patients in that they exhibit more 

distinct cognitive, emotional, and behavioral symptoms, often related to the increased 

incidence of frontal and temporal bruising and axonal injuries (Hannay, et al., 2004). Severe 

TBI can have an enormous impact on almost all aspects of life even decades after injury. 

Patients with severe TBI have difficulties returning to work. Those who do return to work 

often only function in highly supportive settings (Skandsen, Lund, Fredriksli, & Vik, 2008). 

Family and social function may be low and patients may not be able to care for themselves. 

There is also an increased incidence of psychiatric disorders and suicide in patients with 

moderate and severe TBI (Rogers & Read, 2007). 

Based on the locations most vulnerable to injury some domains of neuropsychological 

dysfunction and tests thought to measure these are more documented and used than others. 

The most common sequelae of TBI are dysfunctions in the neuropsychological domains of 

attention and processing speed, executive function and learning and memory. In addition, 

changes on measures of intelligence, emotionality and personality are often observed (Patry & 

Mateer, 2006). 

Although having names and constructs for the reported dysfunctions, choosing tests to 

measure them is a challenge. As an example there is no fully agreed-upon definition of the 

construct attention and attention is thought to consist of several mental operations like 

selective, focused, divided attention, attention span and sustained attention, and speed of 

processing (Bate, Mathias, & Crawford, 2001). Because of the close relationship between 

attention and processing speed it may be difficult to know whether an impaired attention score 

reflects a true attentional deficit or reduced processing speed (Cossa & Fabiani, 1999). To 

date no single test might tap into all aspects of attention. As a consequence 
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neuropsychologists typically measure aspects of attention and processing speed using several 

tests. Frequently used measures that show group differences between patients and controls on 

processing speed are the Color-Word Interference Test and Trail Making Test (Skandsen, 

Finnanger, Andersson, Lydersen, Brunner, & Vik, 2010).With regard to sustained attention 

Riccio, Reynolds, Lowe, & Moore, (2002) found the Conners Continuous Performance Test 

(CPT) to be sensitive to the focal and diffuse damages in TBI. Loken, Thornton, Otto, & 

Long, (1995) found deficits in sustained attention and vigilance with the CPT in patients 

tested two months post-injury. Attention span is widely measured with the digit-symbol 

subtest of WAIS and TBI patients are found to have reduced attention span in the acute and 

sub-acute phases (Kersel, Marsh, Havill, & Sleigh, 2001).  

Cognitive functions like learning and memory are important in everyday functioning 

and are important to assess in all patient groups, including TBI patients. Memory is typically 

evaluated separately in verbal and visual modalities with a design allowing testing of 

encoding/registration, storage/rehearsal, and retrieval as described in the three-stage model of 

(Bauer, 1993, and Blachstein, 1993). Verbal memory is commonly assessed with the 

California Verbal Learning Test (CVLT). Using the verbal learning factor derived from 

patient performance on five consecutive learning trials, Gardner & Vrbancic, (1998) could 

successfully discriminate moderate/severe TBI patients from normal controls with an 84-88 

per cent accuracy rate. Regarding visual memory, one test, the continuous visual memory test 

(CVMT) has proved useful, correctly classifying up to 75% of patients (Strong & Donders, 

2008). Executive functions are difficult to assess directly because of their wide definition. As 

a consequence neuropsychologists typically use a battery of tests in order to tap this domain. 

Often used are the Wisconsin Card Sorting Task, the Verbal fluency test, the inhibition and 

switching conditions of the Trail making test, and the color word interference test. Motor 
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function may also be affected by focal and diffuse TBI. Fine motor function as measured with 

the Grooved Pegboard test shows some sensitivity to TBI (Skandsen et al., 2010).   

Although several studies presented above demonstrate high discriminative ability of 

some tests, Reitan & Wolfson, (2008) question neuropsychological tests ability to produce 

unequivocal evidence of brain damage. Recent research by Skandsen,(2010) has found 

neuropsychological tests to demonstrate low sensitivity to TBI and reported cognitive 

complaints. It was further found that speed dependent tests like TMT and CWIT showed the 

largest effect sizes and that tests of working memory like digit span backwards and letter-

number sequencing were insensitive to TBI. The same was reported for tests of visual 

memory measured with the CVMT and for attention measured with CPT-II. Skandsen also 

found that despite these seemingly normal test scores, the patients reported significant 

cognitive complaints on the extended Glasgow Outcome Scale (GOSE).From self-report 

studies on TBI patients (Draper & Ponsford, 2009) found problems with attention and 

concentration to be frequently reported as problematic. Some research (Ruff, 2009) states that 

it is in cases of damage affecting these cognitive functions neuropsychological tests have their 

biggest limitations. 

QEEG assessment and research 

While neuropsychological tests may measure differences in behavioral performance on 

different mental and motor tasks, modern quantitative EEG (qEEG) techniques have the 

potential to expand our knowledge of differences in neural processing in TBI patients by 

comparing them to normal controls (Gaetz & Bernstein, 2001). Research on qEEG parameters 

as sensitive indicators of disorders like ADHD and schizophrenia has already been published 

(Mueller, Candrian, Kropotov, & Baschera, 2010; Snyder, Quintana, Sexson, Knott, Haque, & 

Reynolds, 2008, and Galderisi, Mucc, Volpe, & Boutros, 2009) giving the clinician 
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indications for diagnosis and treatment. Brain activity as recorded by the EEG electrodes is 

important in communication between and within brain structures (Colgin, et al., 2009) 

.Plotting this data will give a good picture of the amplitudes and trends in activity like spikes 

and bursts, but it can be difficult to quantify the magnitude of different frequencies in the data 

since all frequencies are represented by one single line. By quantifying the EEG signals into a 

time-series matrix of repeated measurements of electrode potentials (qEEG), researchers may 

use statistical and data mining tools to objectively analyze and compare the electrical (brain) 

activity within and between individuals and groups of individuals.  

There is a well of possible parameters to extract from a single qEEG recording. In TBI 

research there is a wide use of event-related potentials (ERPs) and frequency spectrum 

magnitudes (spectra) .ERPs are recorded as time-series data linked to a specific event 

presented to the patient (i.e. a Go/NoGo task or the oddball paradigm). Because it is measured 

in time-series, ERPs have excellent time resolution and provides the researcher with a 

window into the neural activity associated with stimuli perception and processing. By 

averaging many trials, activity associated with processing of the event is enhanced while 

random noise is averaged out. ERPs are named after their polarity and latency from a baseline 

set at stimulus onset (e.g. N100 is the negative potential after approximately 100ms) or based 

on polarity and number of appearance (e.g. P3 is the third positive potential after stimulus 

onset). Actual latencies may vary greatly depending on testing condition and population. 

ERPs loose frequency resolution and research has established connections between the 

magnitude of different frequencies and mental operations(e.g. Laufs, et al., 2003).Applying 

frequency spectrum analysis to the qEEG data transforms the data from the time domain to 

the frequency domain. By the use of Fourier transform the waves in the EEG signal is 

converted to sums of sinusoidal waves with different frequencies where the magnitude of each 

sinusoid can be represented in a frequency power spectrum (Sanei & Chambers, 2007). The 
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spectrum consists of different frequency bands defined as delta (<4 Hz), theta (4-7 Hz), alpha 

(8-12 Hz), beta (12-30 Hz), gamma (>30 Hz) (Handy, 2005). 

For TBI patients prior studies has shown changes in EEG activity in the frontal and 

temporal lobes (Thatcher, Biver, McAlaster, & Salazar, 1998; Thornton & Carmody, 2009, 

and Duff, 2004). These changes correlate with injury severity and neuropsychological status 

(Wallace, Wagner, Wagner, & McDeavitt, 2001, and Alvarez, et al., 2003). ERP changes are 

associated with changed states in cognitive functions. Early ERPs (e.g. the P50) has been 

associated with attention and memory (Arciniegas & Topkoff, 2004). Another ERP which has 

been exhaustively studied in relation to TBI is the P300 (also known as P3) which has been 

linked to a wide range of cognitive processes like attention, working memory, and stimuli 

detection (Polish, 2007). The amplitude of the P300 has been thought to indicate utilization of 

cortical attentional resources and larger amplitudes have been found to correlate with better 

cognitive performance (Lew et al., 2005, and Lew, Thomander, Gray, & Poole, 2007). A 

common finding in the P300 ERPs is a reduction in amplitude and increase in latency 

following injury (Larson, Kaufman, & Perlstein, 2009). These changes also correlate with 

behavioral and neuropsychological measures (Potter & Barrett, 1999; Reinvang, 1999; 

Solbakk, Reinvang, & Andersson, 2002, and Solbakk, Reinvang, Svebak, Nielsen, & Sundet, 

2005). Especially one variant of the P300 ERP, namely the P3NoGo which emerges in a 

situation where the subject is exposed to ambiguous information and is forced to make a 

choice between two actions (conflict processing or top-down attentional control) has been 

proposed as sensitive to TBI. Roche, Docree, Garavan, and Robertson, (2004) showed 

complete absence of this component in TBI patients compared to normal controls. On the 

novelty P3a ERP which emerges in situations where novel stimuli are presented Potter and 

Barrett (1999) found increased latency in association with attention and memory problems. 

The increase of latency was attributed to slowed processing in frontal regions. 
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Research using frequency spectrum has shown changes in TBI patients compared to 

normal controls. Tebano, et al., (1988) found that mild TBI patients had a shift toward lower 

frequencies in peak alpha rhythm. Fenton, (1996) linked increased theta activity in frontal and 

temporal lobes to brain stem injury and cognitive symptoms and complaints. In the eyes 

closed condition (Thornton & Carmody, 2009) also reported an increase in theta activity in 

TBI patients. Various qEEG parameters like coherence, frequency and phase was used by 

Thatcher, Walker, Gerson, & Geisler, (1989) in order to make discriminant function to 

seperate qEEG patterns between patients with mild TBI and age-matched controls and 

reported an overall classification accuracy of 94,8%.  

In reviews by Gaetz & Bernstein, (2001) and Duff, (2004), are ERP and frequency 

specrum measures suggested as promising qEEG parameters to detecting the effects of TBI to 

the activity of the brain. Because of the vast consequences TBI may have for both the patient 

and his/her social network and the cost this incurs on society it is of great importance to have 

sensitive and specific assessment tools. This is important to ensure good patient treatment and 

rehabilitation. This includes knowledge of what happens on a physical and biological level as 

well as the psychological and behavioral level. Lew, Lee, Pan, & Date, (2004), and Mazzini, 

(2004) suggested inclusion of qEEG measures in the assessment of TBI patients as an 

addition to neuropsychological tests. 

The present study 

The aim of this study was to investigate which neuropsychological tests and qEEG parameters 

that could differentiate between TBI patients and normal controls. In addition, it was 

investigated whether qEEG parameters combined with neuropsychological tests could give 

higher sensitivity and specificity to TBI assessment.  
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Method 

The Regional Committee for Medical Research Ethics and the Norwegian Social 

Science Data Services (NSD) approved the study and written consent was obtained from the 

patients and from the parents of patients younger than 16 years. Data is collected trough the 

Head injury project at St.Olavs Hospital, Trondheim University Hospital. For more 

information on the Head Injury project see Skandsen (2010). 

Participants 

Twenty-two patients (8 women, 12 men, Mage = 30.5 years, age range: 14-63 years, 

Meducation= 12.5 years) admitted to the department of neurosurgery, St. Olavs Hospital, 

Trondheim University Hospital, Norway participated in the study. Neuropsychological and 

EEG assessment was conducted at 3 months post injury. Patients had no ongoing PTA or 

critical neurological or psychiatric diagnosed conditions at the time of assessment. The 

control group consisted of 22 healthy persons, matched for age, sex and education (9 women, 

13 men, Mage = 30.8 years, age range: 14-64 years, Meducation= 12.8 years). They were recruited 

via advertisements, among family and friends of patients with head injury and among 

acquaintances of researchers and staff. 

Injury and outcome variables 

The injury-related variables were; mechanism of injury (MOI), GCS score, and days 

of PTA. The patients were also questioned regarding any pre-morbid conditions. GCS was 

scored according to procedures described in Ingebrigtsen et al., (2000) with injury being mild 

if GCS ≥ 14, moderate at GCS score 9-13 and severe at GCS score ≤ 8. PTA was rated by the 

department resident. Global functioning was assessed at 6 and 12 months post injury with the 

Glasgow Outcome Scale Extended (GOSE). GOSE score ≤ 7 denotes presence of head injury-

related disability or complaints to a degree that they affect daily life (Skandsen et al., 2010). 
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Procedure for neuropsychological testing and scoring 

Assessments were performed at minimum 83 and maximum 133 days after injury M = 

98 days after injury. Testing was performed by test technicians, master level students and 

certified psychologists at St. Olavs University Hospital. Raw scores were converted to 

standard scores as provided by the manufacturers of the tests.  

Neuropsychological measures 

Patients and controls were tested with a comprehensive neuropsychological battery. 

This paper focuses on neuropsychological tests that tap functions known to be affected by 

TBI. These are: Grooved Pegboard (Bryden, Roy, & Bryden, 1998) and Trail making test 

(TMT) condition 5 from the Delis-Kaplan Executive Function System (D-KEFS) (Delis, 

Kaplan, & Kramer, 2001) for motor function, Color Word Interference Test (CWIT) 

conditions 1 (color naming) and 2 (word reading), and TMT condition 1 (visual scanning), 2 

(numbers), and 3 (letters) from the Delis-Kaplan Executive Function System (D-KEFS) 

(Delis, Kaplan, & Kramer, 2001) for information processing speed, Conners’ Continuous 

Performance Test II (CPT-II) (Conners & Staff, 2000) for attention and vigilance, Continuous 

Visual Memory Test (CVMT) (Trahan & Larrabee, 1988) for visual learning and memory, 

California Verbal Learning Test II(CVLT) (Delis, Kramer, Kaplan, & Ober, 2000) for verbal 

learning and memory, Letter-Number Sequencing  and Digit Span backwards from the 

Wechlers Memory Scale (WMS-III) (Wechsler, 1997) for working memory, and Verbal 

Fluency Test from Delis Kaplan Executive Function System (D-KEFS) (Delis, Kaplan, & 

Kramer, 2001), TMT condition 4 (category) and CWIT inhibition and inhibition/switching for 

executive functions. 
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Procedure for qEEG recording 

Testing was performed by master level students and psychologists trained in qEEG 

recording. QEEG was recorded using a Mitsar 201 PC-controlled 19-channel (Fp1, Fp2, F3, 

F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz and Pz) system. Tin electrodes 

were placed according to the international 10-20 system (Jurcak, Tsuzuki, & Dan, 2007) using 

a standardized electrode cap. The letter F refers to frontal, C to central, P to parietal, T to 

temporal, and O to occipital. Left hemisphere locations are indicated by odd numbers and 

right hemisphere locations by even numbers. Central midline locations are indicated by the 

letter z. Signals were referenced to clip electrodes placed at both ears and a ground electrode 

at Fpz. Signals between 0,5 and 50 Hz were digitized at a sampling rate of 250 Hz (sample 

interval = 4 ms). Digitized data was recorded and quantified by the WinEEG software. 

Recordings were cleaned in an average reference montage with exclusion of general high 

amplitude (>100 µV) and fast and slow high amplitude activity (>35 µV at 20-35 Hz and >50 

µV at 0-1 Hz). Eye blink artifacts were corrected by zeroing eye blink independent 

components (as done in Tereshchenko, Ponomarev, Kropotov, & Müller, 2009). All qEEG 

files were manually inspected to verify artifact removal. 

 Subjects were seated in a comfortable chair placed 1.5 meters in front of a 17 inch 

LCD screen. The behavioral task consisted of a 3 minutes eyes open and a 3 minutes eyes 

closed resting state condition. Subjects then performed the 22 minutes, 400 trials visual 

continuous performance task (vCPT) run on a slave computer by the Psytask (Mitsar Ltd.) 

software. The vCPT is a modified two-stimulus Go/NoGo test with four conditions; GO 

(animal-animal), NoGo (animal – plant), Ignore (plant – plant), and Novelty (plant – human + 

sound). Subjects are instructed to respond as fast and accurate as possible to the Go trials by 

clicking on a computer mouse. The trial conditions and stimuli examples are presented in 
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within a specified post-second stimulus latency range at a specified site (100-300ms at Fz for 

P3a (novelty trials), 200–600 ms at Cz for P3 (NoGo trials), and 200–600 ms at Pz for P3b 

(Go trials). ERP latencies were recorded as the time from second stimuli onset to the Fz, Cz, 

and Pz peaks. 

Statistical analysis 

Variables used in analyses were checked for normality by inspection of Q-Q plots and 

by the Shapiro-Wilk test (alpha set to 0.05). For normally distributed variables the central 

tendency were reported as arithmetic mean with standard deviation. The Student T-test was 

used for testing for differences between the groups with equal variance assumed unless 

Levene’s test showed significant deviation from equal variance. Unequal variance was 

controlled for by adjusting the df. Effect sizes were calculated as Cohen’s d with pooled 

variance dpooled = 
ெ௘௔௡೅ಳ಺ିெ௘௔௡಴೚೙೟ೝ೚೗ௌ஽೛೚೚೗೐೏ ). For non-normally distributed variables the central 

tendency was reported as median with inter-quartile range (IQR). The Mann-Whitney U-test 

was used to test for between group differences. Effect sizes were calculated by dividing the 

groups median difference with the pooled IQR times 0.75 (ESIQR = 
ெ௘ௗ௜௔௡೅ಳ಺ିெ௘ௗ௜௔௡಴೚೙೟ೝ೚೗ூொோ೛೚೚೗೐೏௫	଴.଻ହ ). 

Initial alpha was set to 0.05. Bonferroni correction was used to control for multiple 

comparisons within each category of neuropsychological test. For the spectral measures a p ≤ 

0.01 was considered significant to avoid losing power. 

 In order to investigate how addition of qEEG parameters to TBI assessment may affect 

sensitivity and specificity binary logistic regression was applied. Group membership was the 

dependent dummy coded binary variable with positive value indicating TBI group 

membership. The maximum numbers of covariates were limited to one fifth of the number of 

events in the smallest group making four in this study (Vittinghoff & McCulloch, 2006). 

Three analyses were run with different covariates; neuropsychological tests which showed 
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highest effect size alone, qEEG parameters showing highest effect size alone and best 

neuropsychological test and qEEG parameters combined. Classification plots, including 

measures of sensitivity, specificity, and false positive and negative rates of the models and 

leave-one-out validated models were calculated. Receiver operator curves (ROC) was 

constructed and the area under the ROC curve (AUC) calculated and used to test differences 

in the models discriminative abilities. 

 Effect sizes were calculated using Microsoft Excel (Microsoft Corp.), AUC 

comparisons were done with MedCalc 14.4 (MedCalc software bvba), while other analyses 

were run with Predictive Analytics SoftWare (PASW) version 18 (SPSS Inc). 

 

RESULTS 

The groups show similar characteristics on the demographic variables with the age 

spread marginally shifted down in the TBI group. Among intelligence variables the TBI and 

control group differ significantly (p < 0.01) on all measure Demographic and intelligence data 

for the TBI and control group is presented in table 1. 

Table 1: Demographic and intelligence variables 
  

TBI (N = 20) 
  

Control (N = 20) 

Cases (%) 
Median 
(Mean) IQR (SD) Cases (%) 

Median 
(Mean) IQR (SD) 

Sex 

    Male 12 (60) 12 (60) 

    Female 8 (40) 8 (40) 

Age (yrs) 32 18.5 – 41.75 32 19.75 – 43.75 

Education (yrs) 12 11.25 – 15 12 12 – 15 

Performance IQ (108.89)* (12.07) (118.5)* (9.34) 

Verbal IQ (110.42)* (15.35) (122.7)* (9.65) 
Total IQ (110.47)* (14.80) (122.9)* (8.39) 

Note: IQR = Inter quartile range; SD = standard deviation; * = significant different mean between groups (p < 
0.01). 
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Injury variables of the TBI group show a heterogeneous distribution of injury severity 

as described with the GCS score and duration of PTA. The most common cause of injury was 

traffic accidents (65%). 90% of the patients reported daily distress caused by their TBI at 

testing. Injury and outcome variables for are presented in table 2. 

Table2: Injury and outcome variables 
MOI Cases (%)  GCS Cases (%) PTA Cases (%)  GOSE Cases (%)

Traffic Accident 13 (65)  13–15 8 (40) <7 days 8 (40)  ≤ 7 18 (90) 

Fall 6 (30)   9–12  6 (30) < 14 days  5 (25)  ≥ 8   2 (10) 

Other 1 (5)   3–8 6 (30) > 14 days 7 (35)    

Note: MOI = mechanism of injury; GCS = Glasgow coma scale; PTA = Post-traumatic amnesia; GOSE  = 
Glasgow outcome scale extended 3 months follow-up. 

 
Neuropsychological tests 

Within the neuropsychological test battery 7 of 24 tests showed a significant 

difference between the two groups after controlling for multiple comparisons. These seven 

tests were in the information processing speed and executive function domains only. These 

were TMT1 (p < 0.001, d = 1.16), TMT2 (p < 0.001, d = 1.12), and TMT3 (p < 0.001, ES = 

1.17) and CWIT (reading) (p< 0.012, d = 0.85) for information processing speed. Verbal 

fluency (category) (p < 0.0001, d = 1.47), TMT4 (p < 0.0001, d = 1.19), and CWIT 

(inhibition/switching) (p < 0.009, d = 0.88). See table 3 for a full overview. Significant 

differences were found in reaction time (p < 0.007, d = 0.91) on the vCPT task and in the 

standard error of the reaction time (p < 0.005, d = 0.95). No significant differences were 

found in numbers of omissions and comissions. Results are presented in table 4. 
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Table 3: Neuropsychological measures 
Test; mean (SD) or median (IQR: 25%-75%) N Patients IS (<1.5 SD) N Controls IS (<1.5 SD) p-value dpooled ESIQR 
Motor function          
Grooved Pegboard; dominant hand (sec) 20 67.35 (9.96) 2 (10) 20 64.95 (9.23) 1 (5) 0.434   
Grooved Pegboard; non-dominant hand (sec) 20 79.95 (15.73) 6 (30) 20 70.55 (8.09) 1 (5) 0.024   
TMT 5; motor speed 20 23.00 (16.25-32.00) 1 (5) 19 23.00 (18-28) 1 (5) 0.910   
Information processing speed          
TMT 1; visual scanning (sec) 20 25.85 (7.16) 4 (20) 20 19.20 (3.52) 0 (0) 0.001* 1.18  
TMT 2; numbers (sec) 20 35.80 (12.88) 3 (15) 20 24.30 (5.97) 0 (0) 0.001* 1.15  
TMT 3; letters (sec) 20 34.50 (29.25-41.75) 3 (15) 20 22.00 (19.50-27.50) 0 (0) 0.001*  1.17 
CWIT; reading (sec) 20 24.5 (4.47) 2 (10) 20 21.5 (2.33) 0 (0) 0.011* 0.84  
CWIT; color naming (sec) 20 33.45 (8.29) 4 (20) 20 28.55 (4.25) 0 (0) 0.026   
Sustained attention          
CPT; hit RT (mill. sec) 18 392.25 (64.09) 2 (11.1) 20 388.23 (59.85) 1 (5) 0.843   
CPT; delectability 18 0.72 (0.48-0.91) 0 (0) 20 0.93 (0.60-1.30) 0 (0) 0.242   
CPT; hit RT by block 18 0.00 (-0.01-0.01) 1 (5.6) 20 0.00 (-0.0175-0.02) 0 (0) 0.976   
Visual Memory          
CMVT; hits 19 38.74 (1.91) 0 (0) 20 38.8 (2.30) 0 (0) 0.927   
CMVT; total correct 19 76.63 (4.47) 3 (15.8) 20 78.65 (6.47) 4 (20) 0.207   
CMVT; false 19 16.26 (4.31) 5 (26.3) 20 14.15 (5.80) 6 (30) 0.267   
CMVT; delayed 19 4.00 (3.00-6.00) 4 (21.1) 20 5.00 (4.25-6) 1 (5) 0.214   
Verbal memory          
CVLT; total recall trial 1-5 20 51.90 (10.61) 1 (5) 20 56.20 (6.83) 0 (0) 0.193   
CVLT; immediate recall 20 11.90 (2.82) 0 (0) 20 12.20 (1.94) 0 (0) 0.698   
CVLT; delayed recall 20 12.00 (3.24) 2 (10) 20 12.8 (2.19) 1 (5) 0.367   
Working memory          
Digit span backwards 20 6.9 (2.17) -- 20 7.9 (2.47) -- 0.182   
Letter-number sequencing 20 10.35 (2.52) 1 (5) 20 12.20 (2.95) 0 (0) 0.039   
Executive function          
Verbal fluency; category 20 39.15 (9.04) 2 (10) 20 54.25 (11.04) 0 (0) 0.0001* 1.50  
TMT 4; letter-number switching (sec) 20 82.30 (24.19) 1 (5) 20 57.80 (15.14) 0 (0) 0.0001* 1.21  
CWIT; inhibition (sec) 20 53.75 (12.39) 1 (5) 20 48.70 (7.08) 0 (0) 0.124   
CWIT; inhibition/switching (sec) 20 67.66 (18.92) 3 (15) 20 53.85 (10.76) 1 (5) 0.009* 0.90  
Note: IS = Impaired score; dpooled = Cohen’s d with pooled variance; ESIQR = effect size with pooled IQR.  
                 Patient and Controls columns show mean score with SD or median with IQR. Alpha levels are Bonferroni corrected within each category of tests  
                 (alpha = 0.05 / number of tests).
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EEG measures 

Two ERP measures were significantly different between the TBI and control groups 

after controlling for multiple comparisons. These were P3Go latency (p < 0.002, d = 1.02) and 

the P3NoGo amplitude (p < 0.0003, d = 1.23). Within the theta band variables significant 

differences were found after controlling for multiple comparisons at electrodes T3 (p < 0.009, 

d = 0.96) and Fp2 (p < 0.01, d = 0.66). 

Table 4: vCPT results and qEEG measures 
Test; mean (SD) or median 
(25%-75%) 

n Patients n Controls p-value dpooled ESIQR 

vCPT results        
Omissions 20 0.5 (0-1) 20 0  (0-1) 0.683   
Comissions 20 0 (0-1) 20 0 (0-1) 0.595   
Mean RT (ms) 20 415.5 (82.7) 20 355.15 (44) 0.007* 0.91  
Mean RT S.E. (ms) 20 10.65 (7.15-12.2) 20 6.85 (5.9-8.5) 0.005*  0.95 
        
ERP measures        
P3a auditive amplitude (µV) 20 6.00 (4.50) 20 6.73 (4.17) 0.683   
P3a auditive latency (ms) 20 191.7 (28.41) 20 188.80 (13.46) 0.595   
P3Go amplitude(µV) 20 7.60 (2.47) 20 10.25 (2.62) 0.019   
P3Go latency (ms) 20 339.7 (30.56) 20 317.65 (26.35) 0.002* 1.04  
P3NoGo amplitude(µV) 20 9.27 (4.21) 20 13.67 (2.59) 0.0003* 1.26  
P3NoGo latency (ms) 20 371.8 (33.35) 20 364.6 (27.26) 0.459   
 
Theta band power 

       

Fp1(µV2) 20 1.03 (0.67-2.25) 20 0.65 (0.37-1.18) 0.040   
Fp2(µV2) 20 1.18 (0.69-2.50) 20 0.76 (0.47-0.90) 0.010*  0.66 
F7(µV2) 20 1.81 (1.07-2.75) 20 1.56 (0.88-2.20) 0.068   
F3(µV2) 20 1.86 (0.94-2.33) 20 1.07 (0.92-1.39) 0.176   
F4(µV2) 20 1.52 (1.03-2.28) 20 1.18 (0.81-2.35) 0.079   
F8(µV2) 20 1.62 (1.03-2.33) 20 1.36 (0.81-2.35) 0.552   
T3(µV2) 20 1.84 (1.24-3.10) 20 1.01 (0.74-1.82) 0.009*  0.96 
C3(µV2) 20 1.13 (0.67-1.57) 20 0.66 (0.50-1.00) 0.042   
C4(µV2) 20 0.94 (0.59-1.69) 20 0.72 (0.49-1.05) 0.190   
T4(µV2) 20 1.58 (1.03-2.23) 20 0.91 (0.76-1.54) 0.040   
Note: * = p ≤ (0.05/6) = p ≤ 0.008 for ERP measures and p ≤ (0.01) for theta band power 

 

Sensitivity and specificity of measures in predicting group membership 

Three logistic regression models were created using binary logistic regression. The 

model covariates were verbal fluency category, TMT4, and TMT1 for model 1; P3NoGo 
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amplitude, P3Go latency and T3 theta power for model 2.First run revealed non-significant 

Wald statistic indicating uncertain contributions to the models. TMT4 (Wald = 0.789, p = 

0.375) and TMT1 (Wald = 1.745, p = 0.186) were removed from model 1 and P3Go latency 

(Wald = 3.130, p = 0.77) was removed from model 2. Model 3 had the covariates verbal 

fluency category, P3NoGo amplitude, and T3 theta power based on the results of models 1 

and 2. 

In these three final models omnibus test of model coefficients versus a model with intercept 

only was statistically significantχ2(1, N = 40) = 18.903, p < .001, χ2(2, N = 40) = 21.532, p < 

.001, andχ2(3, N = 40) = 33.879, p < .001 for models 1, 2, and 3 respectively. Hosmer and 

Lemeshow goodness of fit shows how well the model fits the data with p > 0.05 indicating 

good fit. Models 1, 2, and 3 did fit the data adequately with χ2(6, N = 40) = 10.545, p= .103, 

χ2(8, N = 40) = 5.564, p= .696, and χ2(8, N = 40) = 6.167, p= .629 for models 1, 2, and 3 

respectively. Nagelkerke R2 was R2 = .502, R2 = .555, and R2 = .762 for models 1, 2, and 3 

respectively. Logistic regression coefficients, Wald tests, and odds ratios for each of the three 

models are presented in table 5. Model classification, sensitivity, specificity, false positive 

rate and false negative rate in both immediate and validated models are presented in table 6. 

Table 5: Logistic regression of neuropsychological measures and qEEG parameters 
95% CI for EXP(B) 

Variables B S.E. Wald Sig. Exp(B) Lower Upper 

Model 1 

Verbal Fluency Category -.450 .138 10.645 .001 .713 .486 .835 

Model 2 

P3 NoGo Amplitude -.467 .171 7.421 .006 .627 .448 .877 

Theta power T3 1.261 .550 5.251 .022 3.530 1.200 10.382 

Model 3 

Verbal Fluency Category -.523 .203 6.618 .010 .593 .398 .883 

P3 NoGo Amplitude -.377 .175 4.638 .031 .686 .487 .967 

Theta power T3 1.513 .685 4.875 .027 4.542 1.185 17.408 

Note: B = beta; S.E. = Standard Error; Exp(B) = Odds ratio; CI = confidence interval 
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As seen from table 6 neuropsychological tests (model 1) could predict correct group 

membership in 80% of the cases for both the TBI and control group. After validation these 

results were the same. EEG measures (model 2) had similar performance before validation 

while the validated model correctly classified 76% of the controls and 79% of the TBI 

patients. Neuropsychological and qEEG measures combined (model 3) correctly classified 

95% of the controls and 90% of the TBI patients before validation and 85% of both groups 

after validation. Model 3 had the best performance both prior to and after validation. AUCs 

with confidence intervals are presented in table 7. 

 

Table 6: Classification table of logistic regressions models 

Observed 
Predicted 
Control 

Predicted 
TBI 

Percentage 
Correct 

Overall 
percentage 

False positive 
rate 

False negative 
rate 

Model 1 80 20 20 

Control 16 4 80    

TBI 4 16 80    

Model 2 80 20 20 

Control 16 4 80    

TBI 4 16 80    

Model 3 93 5 10 

Control 19 1 95    

TBI 2 18 90    

Model 1 (LOO validated) 80 20 20 

Control 16 4 80    

TBI 4 16 80    

Model 2 (LOO validated) 78 21 24 

Control 16 4 76    

TBI 5 15 79    

Model 3 (LOO validated) 85 15 15 

Control 17 3 85    

TBI 3 17 85    

Note: LOO = Leave one out. All values are percentages. 
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Table 7: Regression models AUC 
95% CI for AUC 

Model AUC. S.E. Lower Upper 

Model 1 0.864 0.0588 0.718 0.951 

Model 2 0.880 0.0551 0.738 0.961 

Model 3 0.955 0.0299 0.838 0.995 

Model 1 (LOO validated) 0.840 0.0650 0.690 0.936 

Model 2 (LOO validated) 0.827 0.0674 0.675 0.928 

Model 3 (LOO validated) 0.910 0.0496 0.776 0.977 

Note: AUC = Area under curve 

There were no significant differences in AUC within the raw models. The same holds 

for the validated models, indicating small changes in model discriminative abilities with 

changed covariates. However, there were significant differences in AUC before and after 

validation (z = 2.184, p = 0.0290; z = 2.448, p = 0.0144; z = 1.992, p = 0.0464 for model 1, 2, 

and 3 respectively) indicating significant changes in model discriminative abilities after 

validation. 

 

DISCUSSION 

The patient population consisted of a heterogeneous mix both with regard to 

mechanism of injury, and injury severity measured with the Glasgow coma scale and duration 

of PTA. Overall the TBI patients had worse scores than the control group although on fewer 

tests than expected from reviewing the literature (Dikmen et al., 2009; Hannay et al., 2004, 

and Silver et al., 2009). After controlling for multiple comparisons, significant differences in 

group raw scores were found only in the domains of information processing speed and 

executive functioning. As several regions most vulnerable to TBI are involved in these 

functions (Gentry, 1994; Hartikainen, et al., 2010, and Hannay et al., 2004), this is not 

surprising. It was among tests measuring these functions that the largest effect sizes were 

obtained. The verbal fluency test showed a very large effect size of 1.50 and the trail making 

test also showed large effect sizes ranging in between 1.15 – 1.21. The color word 
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interference test also produced large effect sizes ranging from 0.84 – 0.90. Similar findings 

have been reported by (Skandsen et al., 2010; Dikmen et al., 2009, and Patry & Mateer, 

2006). It was expected to find significant differences on measures of memory and sustained 

attention because previous research has shown at least some discrimination between TBI 

patients and controls on these measures (Strong & Donders, 2008; Gardner & Vrbancic, 1998; 

Loken et al., 1995, and Riccio et al., 2002). A possible explanation of this lack of positive 

findings could be the heterogeneity in the TBI group. Another reason might be the low sample 

size making it difficult to detect small group differences. Within the qEEG parameters 

included in this study it was expected to find lower amplitudes and longer latencies for the 

ERP components and a significant increase in theta power on the frequency specter magnitude 

variables. Significant group differences were found on the latency of the P3Go and the 

amplitude of the P3NoGo ERPs. Significant higher theta activity was observed at two 

electrodes, located in the frontal and temporal lobes. These findings are in line with previous 

research demonstrating increased latency and reduced amplitude (Roche et al., 2004; Larson 

et al., 2009; Potter & Barrett, 1999, and Lew et al., 2005) of ERPs and an increase in theta 

activity frontally and temporally (Duff, 2004; Thornton & Carmody, 2009) in response to 

TBI. The effect sizes of these group differences were large (d = > 1) for the ERPs and 

medium (ES = < 0.8) and large (ES = > 0.8) for the spectral measure in the temporal and 

frontal lobes respectively. Negative findings among the qEEG parameters also deserve some 

mention. It was expected to find a more consistent significant difference across electrodes 

with previous research demonstrating a wider distribution of increased theta activity following 

injury (Thornton & Carmody, 2009; Duff, 2004). 

Effect sizes may give some information about the distance between the population 

means on the performance scale of a test. Generally in literature and in effect studies of 

psychological interventions there is cheer for relatively low effect sizes. The implications of 
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this will be that although the two groups have significant different performance on a test, 

there may still be a large overlap between the two groups’ performances. Another important 

point is that significant differences alone will not give a good estimate of how big the 

difference actually is. With large groups even small differences will turn out significant and 

the opposite for small groups. To illustrate this; take the verbal fluency effect size of 1.5 in 

this study which is quite large. Still 30% of the groups distributions overlap, and the degree of 

overlap for the other tests are even larger.  

Another way of looking at the tests’ ability to discriminate between the two groups is 

to look at the subjects’ standardized scores with respect to norms of each test. This was not 

possible for the qEEG parameters because no database with definite healthy controls was 

readily available. A SD of 1.5 below the norm data mean for each test was used as a cut-off 

point for impaired scores which allows a 5% rate of false positives. Uplifting maybe for the 

patients, or negative with regard to the tests’ sensitivity to TBI, few patients had impaired 

scores < 1.5 SD. This indicates that the tests chosen in this study may have a low sensitivity to 

the effects of TBI. Since the testing was done only three months post injury and patients 

reported significant daily distress as a consequence of the injury (GOSE), one would expect 

the tests to indicate impaired scores in more patients. This is an important finding because in 

some cases patients not presenting with objectively measurable difficulties or deficits may be 

rejected by the health system. They may be referred to psychiatric care. While this could 

reduce some symptoms, it would not necessarily compensate for the causes. Many patients 

will be dependent on insurance payouts and social services (Dikmen et al., 2009). In order to 

be granted this money, insurance companies would rely more on objectively measures like the 

neuropsychological assessment than the patient’s subjective experience (Bigler & Brooks, 

2009). Hartikainen, et al., (2010) argue that the structured testing environment created to 

assess distinct functions may not be sensitive to the problems experienced in everyday 
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situations which affect patient total functioning and quality of life. It was on the measures 

with no significant differences most patients had impaired scores. Unfortunately this was also 

true for the normal control group and hence the non-significant results. This indicates that 

certain tests may show high sensitivity to TBI when testing patients, but in reality the test also 

has a low specificity in that healthy controls scores are also labeled as impaired. These 

findings are in line with previous research on TBI (Iverson, Brooks, & Holdnack, 2008, and 

Schretlen, Testa, Winicki, Pearlson, & Gordon, 2008) and calls for consideration of including 

other neuropsychological tests or inclusion of other measures that may contribute to a better 

“assessment-total” discrimination between patients and controls. 

QEEG parameters were included in this study as an addition to the neuropsychological 

assessment and the TBI and control groups had significant different mean scores on several 

measures. The effect sizes obtained were large, but not as large as the best neuropsychological 

test. This could be interpreted to mean that the qEEG parameters included in this study are not 

worth including because they do not discriminate any better between the groups than the 

already included neuropsychological measures. That would be a premature conclusion given 

the possibility that adding qEEG might increase the sensitivity and specificity to the 

assessment and help make correct predictions about borderline cases. Binary logistic 

regression was applied to investigate this and the logistic regression analysis showed that the 

neuropsychological test (model 1) displaying the largest effect size could correctly classify 

80% of both the TBI and control subject to their respective groups after validation. This 

demonstrates decent sensitivity and specificity. The same is observed for the qEEG 

parameters (model 2) before validation, however after validation the sensitivity to TBI drops 

by 5% to 75%. This is a lower performance than the neuropsychological test alone and may 

reflect the lower effect sizes of the qEEG measures. When combining test and qEEG 

measures (model 3) the model has a high sensitivity and specificity with correct classification 
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in 95% of the controls and 90% of the TBI patients. However, after validation these numbers 

drop respectively 10% and 5% to 85%. Still, this model has the best discriminative ability 

both before and after validation. These results supports the thought of qEEG measuring some 

important aspect of cognitive functioning which the neuropsychological test alone is not able 

to do. It seems that the neuropsychological test and the qEEG parameters correctly classify 

different individuals. They could potentially increase the non-overlap in group performance in 

the sense that borderline cases not correctly classified by only one of the measures alone may 

be correctly classified when they are combined. 

Taking a closer look at the differences in discriminative ability as measured by the 

AUCs, it is apparent that the models perform decently (AUC > 0.826 after validation). There 

were no significant differences in the AUCs between the three regression models. Still, a 5% 

drop in the false negative and false positive rates is observed when adding the qEEG 

measures. The differences in the AUCs before and after validation were significantly different 

with the latter being more pessimistic. This demonstrates the tendency to overfit the 

regression model if not validated and stresses the importance of validation in predictive 

models. 

The findings from the logistic regression analyses do not necessarily match the 

impression from the impaired scores discussed above with the results from the latter 

appearing more pessimistic. When comparing each subject’s raw score to the normative score 

on the neuropsychological tests, the result appear to depend largely on properties of the norms 

being used. For example, a 60 year old TBI patient performing in normal range on the verbal 

fluency test is actually compared to the performance of people aged 60-69 years. There is 

reason to hypothesize that this patient might not have performed in the normal range if 

compared to persons aged 60 only. This could put confounding effects on assessment and bias 

inferences. However, high resolution norms for all tests may not be realistic. As pointed out 
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by Skandsen et al., (2010), in clinical practice a person’s score must (today) be compared to 

normative data and when interpreting whether a score reflects true impairment or not this 

interpretation should be done with reference to intellectual capacity and the patient’s 

performance on other cognitive tests. However, if the norm data used in all these measures 

have low sensitivity to the condition at hand, it will not matter how many tests one include in 

the assessment. By using classification with the logistic regression analysis the regression 

equation is calibrated to separate two known groups creating a “TBI signature” to match all 

subjects to. Perhaps in some cases an assessment using raw scores put into an analysis like 

binary logistic regression or classification by support vector machine would yield more 

sensitivity and specificity to the condition in question than using more general norms. 

Limitations  

First, TBI patients had significant lower verbal, performance and total IQ than normal 

controls. The normal controls displayed generally high intellectual abilities and may not 

represent the true variation in the normal population. This could contribute to some of the 

large effect sizes observed in this study. The control group was however, composed of 

individuals matching the TBI patients on both age and years of education and there is a 

possibility that some of these differences might demonstrate the adverse effects of TBI. 

Literature does report a reduced performance on intellectual abilities following TBI (Kersel et 

al., 2001). 

The selection of control group members should be specified. All members of the 

control group were healthy individuals with no present or prior history of somatic or 

psychiatric illness. Using strict exclusion criteria one might reduce some of the normal 

variation in the population. However, if using a control group of assumed healthy individuals 

where several might have some condition affecting their test performance one can no longer 
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be certain that the effects being observed is due to the experimental group manipulation (TBI 

and not TBI).  

Analyses were carried out on the whole group of patients creating room for error in not 

controlling for the effects of sex, age and other variables when conducting the statistical 

analyses. This was done because of the low sample size where further sub-grouping would 

heighten the risk of error, extreme score influence and departure from normality. The sample 

of this study do however to some extent match the characteristic of a TBI population in that 

we have more men than women, most are patients with a high GCS score, mechanism of 

injury and duration of PTA resembles that of a larger TBI population (Bruns & Hauser, 2003). 

This also counts in terms of generalizability. It is believed that the findings in this study may 

to some extent be generalizable to other TBI populations having the same characteristics. 

In this study the binary logistic regression analyses were carried out on a small sample 

introducing several methodological challenges such as coefficient bias and difficulty 

validating the model. Classification with binary logistic regression is usually validated by 

using one part of the sample for training and the other part for testing. Because of the small 

sample size this was not possible in this study. However, leave-one-out (LOO) validation has 

been recommended by Bautista, Estanislao, Marti-Bonmati, & Paredes, (1999) and when 

applied to this sample it significantly adjusted the discriminatory abilities of the models, 

counteracting bias introduced by training and testing with the same subjects. 

It can be argued that the validity of the analysis is reduced in that it utilizes only one 

neuropsychological measure. In clinical practice several tests are administered giving the 

clinician many variables to compare. However, in this study the best neuropsychological tests 

which have been documented to be sensitive to the effects of TBI were put up against the best 

qEEG parameters allowing a head-to-head comparison. Only one neuropsychological test 
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contributed significantly to the regression model. More neuropsychological tests and qEEG 

parameters might reach significance on the Wald statistic and contribute to a regression model 

with a larger sample. 

The ERP approach may not be the most sensitive way to tap into the changes in neural 

activity after a TBI. By applying independent component analysis several subcomponents of 

the P300 complex could have been investigated. There is reason to believe that changes might 

be more evident in some components than others and therefore by using ICA one might 

achieve higher sensitivity and specificity. However, the grand average ERPs used in this study 

are well researched and specific deviances in these ERPs have been documented and 

replicated in this study. 

 

CONCLUSIONS 

As with other conditions that affect the everyday functioning of the patients and are 

potentially costly to society, assessment is important to ensure good patient treatment, 

rehabilitation and security. An important prerequisite for thorough assessments is high 

sensitivity and specificity of the assessment tools. 

In this study neuropsychological tests measuring information processing speed and 

executive function were found to be sensitive to the effects of TBI. They produced significant 

difference in raw score means and showed large effect sizes. Compared to test norms, the 

number of patients showing scores in the impaired range was lower than expected and the 

number of control persons higher than expected in some variables. Thus, when using test 

norms, the sensitivity and specificity can be described as low, or at least not satisfying. Within 

the qEEG measures the P3NoGo amplitude, P3Go latency and temporal and frontal theta 

power turned out to be significantly different between the TBI and normal group and 
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displaying medium to large effect sizes, suggesting these measures as potential candidates in 

increasing TBI assessment sensitivity and specificity. 

Application of binary logistic regression indicated an increased sensitivity and 

specificity in discriminating TBI patients from normal controls when including qEEG 

measures of P3NoGo amplitude and temporal lobe theta power. The contribution did not 

reach significance in means of AUC, but any reduction of false positive and negative rates are 

important. Although conclusions about definite increase in sensitivity and specificity of 

combined neuropsychological measures and qEEG parameters must be drawn with caution, 

this study indicates that qEEG may be a good candidate to measure something more than 

neuropsychological tests alone, and thereby increase the total assessment sensitivity and 

specificity in detecting effects of TBI.  

 

Implications for further research and clinical practice 
 

In order to further investigate the contribution of qEEG in TBI assessment more 

studies are needed, with more subjects allowing us to subgroup the sample and control for sex 

and age effects. In addition larger samples would yield higher statistical power and more 

reliable results.  

 Studies using independent component analysis of the P300 event-related potentials in 

TBI populations combined with neuropsychological measures have the potential to pinpoint 

differences in the component parts of the P300 complex and further link knowledge about 

injury effects, brain activity and cognitive performance. Studies involving repeated qEEG 

measurement and neuropsychological testing from the acute phase to some years after injury 

could give some information about progression and how qEEG measures relate to outcome. 

Also if there is some variability in the sensitivity and specificity of assessment at different 

times in the course of recovery. 
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 Several neuropsychological tests showed low discriminative abilities on raw scores 

between a TBI and control group. This along with norms not fully optimal in detecting the 

subtle changes many patients report calls for debate on which measures are to be trusted, 

since these may have wide implications for patients and society costs.  

 QEEG is a potentially valuable addition to TBI assessment. QEEG is non-invasive and 

both time and cost effective compared to other possible assessment tools. In this study qEEG 

parameters displayed larger effect sizes than several neuropsychological tests and when 

combined with the neuropsychological tests showing the largest effect sizes, logistic 

regression results tended towards an increase in sensitivity and specificity. With this, qEEG 

parameters investigated in this study may be valuable assets in future TBI assessment to 

determine presence or absence of disability. 
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