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Preface  

 

Children who, for some reason, are inferior in performance to their peers in certain 

domains of development often experience the feeling of falling short. This applies to 

children who are poor in motor skills and/or in academic skills such as spoken and 

written language. Although a relatively small group of children is affected by such 

problems, the problems may have serious implications for those concerned. Some 

children seem to be affected in the motor domain only, while others seem to 

experience problems only with relation to spoken and/or written language. Still, the 

coincidence of motor and language/writing impairments in children is considerable, 

and too large to be fortuitous. It is believed that intervention and prevention programs 

will be more effective if based upon knowledge about underlying sources of the 

observed problems. The aim of the present thesis, therefore, is to do a theoretical and 

empirical investigation of putative underlying sources of language (including both 

oral language and reading) and motor impairments in children, from a 

neuropsychological perspective. 

 To that end, Chapter 1 provides a theoretical introduction to the theme 

motor/language impairment syndromes and presents different theoretic explanations 

that has been suggested in the literature, as to why such syndromes often co-occur. 

From a social scientific point of view, these syndromes may be regarded as indirectly 

linked mediated by social constraints such as, for example, self-esteem. However, 

from a neuropsychological perspective, language and motor impairments in children 

are regarded as directly related, due to a developmental lag or a deficit in the nervous 

system. That will be the main focus of the present thesis. From this perspective, 

several underlying neurological deficits that could account for language as well as 

motor impairments have been suggested. These are related to different neurological 

sites such as, for example, the cerebellum and the corpus callosum. Cerebellar 

explanations have been invoked to account for postural problems in language 

impaired children and dyslexics as well as temporal problems in both the motor and 

language domains. Bimanual co-ordination problems and other laterality problems 

observed in dyslexics, language impaired children as well as motor impaired children 

have been attributed to callosal dysfunction. A more recent theoretical explanation is 

the magnocellular theory, related to a certain kind of fast conducting nerve cells that 
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bring information from the retina to the visual cortex. This theory was, originally, 

introduced as an explanatory factor of dyslexia, but was later suggested to play a role 

in motor impairment as well. 

 Chapter 2 reports an exploratory study using quantitative and qualitative 

methods in attempt to identify putative neurological deficiencies that may account for 

the co-occurrence of motor and cognitive (measured as psycholinguistic abilities) 

impairments in a sample (N = 15) of 6-10 years old (oral) language impaired children. 

A subgroup of n = 4 children that are week in both language and cognitive functions 

is identified. The cerebellar deficit hypothesis and the inter/intra-hemispheric deficit 

hypothesis are discussed as candidate explanations. 

 The inter- versus intra-hemispheric deficit hypothesis is further validated in  

Chapter 3.  The same subgroup of four children as that identified in Chapter 2 is 

tested on two different movement tasks designed to measure inter- and intra- 

hemispheric functions. The results are discussed in the light of Liederman’s shielding 

model. This model emphasises the role of the corpus callosum in shielding 

information between the hemispheres, which is necessary in order to allow for 

independent processing. 

 In Chapter 4 the focus shifts to motor co-ordination problems per se. A task 

that is particularly difficult for children with poor motor co-ordination, is that of 

catching a ball, a task imposed by severe spatial and temporal constraints. It is 

believed that information about where this task breaks down, at the spatial or temporal 

component, will provide clues as to what could be the underlying causes of the co-

ordination problems. In order to separate out the temporal and spatial aspects of the 

catching task, two experiments are designed, one emphasising the reaching action 

(spatial orientation), the other emphasising the grasping action (imposed by temporal 

constraints). The performance of a sample (n = 8) of 10-11 year old children with 

poor motor skills is compared to that of an equal sized control group on these tasks. 

The temporal and spatial deficits discovered are discussed with relation to the distal 

and proximal proprioceptive systems as well as the visual system. The question 

whether the underlying problem is related to a visual or proprioceptive deficit, or to a 

combination of visual and proprioceptive deficits, is further explored in Chapter 5.  

Chapter 5 is written as a Research Note in extension of Chapter 4, using the 

same subjects. The groups are compared on two tests of proprioception, designed for 

the purpose of measuring inter-/ and intra hemispheric information processing (same 

 8



tasks as those used in Chapter 3), and three different tests of visual perception, 

designed to measure magno- and parvocellular function. The results are discussed 

with relation to visual processing and maturation of the corpus callosum. 

 In Chapter 6 the visual perceptual problems suggested in Chapters 4 and 5 are 

investigated with relation to both motor and reading impairment on an extended group 

of 10-11 year old children. Three groups of n = 8 children are selected from a larger 

sample (N = 102), one group which is motor impaired only, one which is both motor 

and language impaired, as well as a normal control group. These groups are compared 

on the same visual tests (with the exclusion of one) as those used in Chapter 5. Based 

on the results from the group comparisons and a correlation analyses, magno- and 

parvocellular involvement in both motor and reading tasks, as well as in motor and 

reading impairments, is discussed. 

 Finally, Chapter 7 contains a summary and a general discussion that evaluates 

the theoretical positions presented in Chapter 1 in the light of the empirical studies 

reported in Chapters 2 – 6. Conclusions and suggestions for further studies are made. 
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Chapter 1 

 

MOTOR/LANGUAGE IMPAIRMENT SYNDROMES 

- DIRECT OR INDIRECT FOUNDATIONS? 
  

 

In most industrial countries increasing emphasis is being placed on education and 

young people are required to spend a significant part of their lives in school. The 

mastery of basic academic skills like reading and writing is considered fundamental to 

success. Nevertheless, much of their play and leisure time involves physical activity 

of one kind or another. In this context, the playground/sport field becomes important 

arenas for socialisation and the development of those social skills that are needed to 

function in a complex society. 

 Children who are below the normal rate of development in motor and language 

skills, in the following referred to as motor and language impaired,1 may not only fail 

to meet the performance related academic standards of their school environment, but 

they may also lack the necessary physical competence to be accepted as equals in play 

activities demanding motor competence. This, in turn, may have detrimental effects 

on personal development, that is, the impairment(s) become(s) a handicap (World 

Health Organisation, 1980).  

 There is little consensus of opinion about what is normal development. This 

makes it difficult to identify impairments in children - particularly at an early age - 

and to establish meaningful identification criteria and cut-off points. This has resulted 

in different studies showing a range of 5-15% of school children (5 - 12 years) as 

exhibiting motor skill problems that are well below the norm (American Psychiatric 

Association, 1994; Brenner, Gillman, Zangwill, & Farrell 1967; Gubbay, 1975; 

Henderson & Hall, 1982; Mæland, 1992; Rutter, Graham, & Yule, 1970). According 

to most of these studies the incidence is higher in boys than in girls (Gubbay, 1978; 

Henderson & Hall, 1982; Keogh, Sugden, Reynard, & Calkins, 1979; Mæland, 1992). 

Motor impairment in children has, over the years, been assigned a variety of labels of 

which the following are some examples: developmental apraxia/disturbances in motor 

                                                 
1 Impairment is a loss or abnormality of body structure or of a physiological or psychological function 
(World Health Organization, 1997). 
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planning (Orton, 1937), ataxia/unsteady or uncoordinated movement (Gubbay, 1975), 

clumsiness (Henderson, 1977), developmental dyspraxia/disorder of gesture (Dewey, 

1995), and developmental co-ordination disorders (DCD)/motor impairment in the 

absence of neurological signs (American Psychiatric Association, 1994). Many of 

these terms have also been divided into subgroups. Apraxia, for example, has been 

classified as ideational when defective performance of sequences of gestures is the 

observed deficit and as ideomotor when disturbance is confined to isolated gestures 

(Dewey, 1995). 

 It has also been estimated that some 2-10% of similar age groups (but not 

necessarily the same children) exhibit different kinds of language problems, 

manifested in speech, reading and writing2 (American Psychiatric Association, 1994; 

Gaddes, 1985; Rutter, 1978; Stein, 1994; Stevenson, 1984). Once again, boys would 

seem to be more affected than girls (Bjørgen, Undheim, Nordvik, & Romslo, 1987; 

Edwards, Ellams, & Thompson, 1976; Gjessing, Nygaard, & Solheim, 1988; Lambe, 

1999; Rutter & Yule, 1975; Silva, McGee, & Williams, 1985; Stein, 1994). Some of 

these children experience problems related to both motor and language skills. An 

overlap of  40-70% in this respect has been indicated in the literature (Nickisch, 1998; 

Paul, Cohen, & Caparulo, 1983; Rintala, Pienimäki, Ahonen, Cantell, & Kooistra, 

1998; Wolff, Melngailis, Obregon, & Bedrosian, 1995). Given that such an overlap is 

unlikely to be fortuitous, it is this group of children on which attention will be 

particularly focused in this Chapter. 

 In some cases the coexistence of motor and language problems may be related 

to the overall condition. For example, a general problem in the organisation of 

movements may also manifest itself in the fine co-ordination required for speech, 

resulting in articulation problems. Yet, other language difficulties may exist which are 

less obviously related to the motor problems per se, for example, putting thoughts into 

words or finding the right words and organising them into coherent sentences. The 

picture becomes even more complex when problems related to, for example, 

phonological dyslexia are shown to go hand-in-hand with certain kinds of motor 

problem, for example, bimanual co-ordination (Moore, Brown, Markee, Theberge, &  

                                                 
2 The language problems referred to in the literature are fairly diffuse encompassing problems in 
speech, reading and writing as well as diverse kinds of dyslexia. 
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Zvi, 1996). Where such problems occur together they may be mediated directly or 

indirectly. 

 The notion of a direct mediation implies that both problems are simply 

different manifestations of one underlying substrate, for example, a dysfunctional 

neurological system brought about by a maturational delay or damage to the CNS. 

Indirect mediation, in contrast, implies that there is one primary problem, either motor 

or language, and the secondary related problem, either language or motor, arises as a 

consequence of social constraints to which the primary problem gives rise.  

 

 

1.1 Indirect/direct mediations 

 

The play arena is important for the development of both motor and language skills. 

Children who have poor motor skills often experience difficulty in being accepted as 

participants in play with other children (Schoemaker & Kalverboer, 1994). Similar 

problems are also reported in children who are inadequate in language skills (Brinton, 

Fujiki, Spencer, & Robinson, 1997). When children are excluded from interacting 

with other children, for either reason, this may have a negative effect on the 

development of both motor and language skills. In such cases motor and language 

problems may be indirectly linked via social constraints. The result is a vicious circle 

where isolation due to motor or language incompetence leads to reduced participation 

and diminished opportunities for practising both motor and language skills. This, in 

turn, exacerbates both the motor and language problems. 

 One of the mediating factors, in this respect, may be self-esteem. The negative 

effect of motor and/or language impairments on self-esteem has been well-

documented (Henderson, May, & Umney, 1989; Kalliopuska & Karila, 1987; 

O'Dwyer, 1987; Shaw, Levine, & Belfer, 1982; Van Rossum & Vermeer, 1990). 

Again, a vicious circle may be in operation. Low self-esteem stemming from 

problems with motor and language skills, may deter such children from engaging in 

social situations because of fear of failure which, in turn, leads to further delay in the 

development of either/or both (Harter, 1978). This Chapter will not be concerned to 

pursue the issue of indirect mediation further, at the same time it is appreciated that it 

is an issue with many social consequences that are of crucial importance. 
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 Direct mediation between motor and language skills is, perhaps, easier to 

document. Although, on the surface, motor and language skills would seem to fall into 

quite distinct categories they share some basic characteristics that suggest that they be 

closely related in a number of ways. In the first place, language skill demand highly 

sophisticated movement skills, which manifest themselves in speech, reading and 

writing. For example, speech requires fine co-ordination of muscles in tongue, lips, 

jaw, larynx and respiratory organs. The complexity of this co-ordination is 

exemplified by the fact that, for a baby to say "ba," for example, it takes the co-

ordinated action of about 40 muscles (Kelso, 1995). Motor processes are also 

fundamental to reading and writing. Reading requires finely controlled movements of 

the eyes, while writing requires fine well-co-ordinated movements of both the writing 

hand and the eyes.  

 However, it has to be appreciated that the terms motor and language skills are 

very general categorisations that subsume a variety of sub-skills and, to that extent, 

are too general to be of much help in coming to an understanding of why impairments 

in the performance of these skills should arise in the first place and why they might 

occur together in some children. For this reason the sub-categorisations speech/motor 

impairment and dyslexia/motor impairment will be two sub-categories that will need 

to be separately invoked from time to time in what follows. In so doing , the 

limitations of such a division have also to be kept in mind based as it is on the 

traditional view that dyspraxia (speech impairment) and dyslexia (reading 

impairment) are distinct clinical syndromes. More recent research findings have 

demonstrated that the vast majority of children identified in pre-school as 

developmentally language (speech) impaired exhibit inordinate difficulty in learning 

to read when they reach elementary school (Plaza, 1997; Tallal, Curtiss, & Kaplan, 

1988). The speech impairment of those children who develop dyslexia is typically 

recognised as stemming from a phonological deficiency, which might be related to a 

more fundamental information-processing deficit. Thus, in many cases, younger 

children with phonological dyslexia are likely to be members of the same subgroup, 

while those speech impaired children who grow out of their problems represent yet 

another sub group. 
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1.2 Evolutionary Perspective 

 

From an evolutionary perspective the development of both motor and speech skills are 

closely interrelated. For example, Rizzolatti and Arbib (1998), drawing on the earlier 

work of Kimura (for a review, see Kimura, 1993)3, argue that speech has developed 

from a sequence of events that began with gestural communication. The gist of their 

argument is as follows: The oro-facial gestures of primates were those most likely to 

be used in communication between individuals. The open-closed alternation of the 

mandible that is typical of oro-facial communication in monkeys appears to persist in 

humans where it forms the syllable frame in speech production. If manual gestures are 

associated with oro-facial communication the sender's possibilities dramatically 

increase. These considerations suggest that, at a certain stage, a brachio-manual 

communication system evolved complementing the oro-facial one. An object or event 

described gesturally (such as, large object - large gesture of the arms) could now be 

accompanied by vocalisation. If identical sounds were constantly used to indicate 

identical elements (such as large object, large opening of the mouth - vowel 'a' and 

small object, tiny opening of the mouth - vowel 'i'), a primitive vocabulary of 

meaningful sounds could start to develop. The evolutionary pressure for more 

complex (combinatorial) sound emission, and the anatomical possibility for it, were 

the elements that moved language from its manuo-brachial origins to sound emission. 

Manual gestures progressively lost their importance whereas, by contrast, vocalisation 

acquired autonomy until the relation between gestural and vocal communication 

inverted and gesture became purely an accessory factor to sound communication. 

 Rizzolatti and Arbib (1998) invoke Liberman's motor theory of speech (1993) 

and PET scan data (Schlaug, Knorr, & Seitz, 1994) in suggesting that both manual 

gestures and speech are related to different motor fields (hand, mouth and larynx) 

represented in Broca's area of the brain. Thus, Broca's area would appear to play a 

mediating role in both motor and speech skills, and could, therefore, be involved in 

impairments in either or both of these domains. 

 Identifying invariances in motor and language skills (whether these involve 

speech or reading), as Rizzolatti and Arbib have done, is one way in which to explore  

                                                 
3 According to Corballis (1998) this idea had already been proposed by Bonnot de Condillac during the 
eighteenth century and was simply revived by Hewes in 1973. 
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their relation more deeply. Another attempt of this nature, that has been well 

documented in the literature and which has particular relevance for the sub-category 

speech/motor impairments, is the putative common aetiology underlying aphasia and 

apraxia. 

 

 

1.3 Aphasia and apraxia 

 

The link between speech and gestural abilities is reflected in the neurological 

disorders aphasia and apraxia. Disruptions in speech which are experienced by 

individuals who have suffered damage to the central nervous system are called 

aphasias, and usually result from damage to the left cerebral hemisphere (Kimura, 

1993). Another symptom of left hemisphere damage is manual apraxia, commonly 

defined as inability to carry out specified movements, despite good strength and 

mobility in the muscles or limbs which are affected. It is recognised that most apraxic 

patients are also aphasic, and the apraxia is commonly inferred from the failure to 

make the required movements to a verbal command (Kimura, 1993). Liepmann 

(1908) has suggested that aphasia and apraxia are essentially similar, and that both are 

manifestations of the loss of an ability to make certain kinds of movements. 

 The notion of a relation between gestural and language (speech) skills in 

children is supported by research findings of deficits of praxis in speech impaired 

children (Dewey & Wall, 1997). For example, Dewey and Wall (1997) studied 

gestural performance in 35 children, within the age-range 6 and 11 years, of which 15 

(11 boys, 4 girls) were identified as speech and language impaired4 and 20 children 

(11 boys, 9 girls) served as a control group. These groups were compared on gestural 

performance, such as transitive limb gestures (i.e., brush teeth with a tooth brush), 

intransitive gestures (e.g., wave goodbye), transitive orofacial gestures (e.g., drink 

from a straw) and intransitive orofacial gestures (e.g., whistle) to command. Results 

showed that the speech and language impaired group performed significantly poorer 

than the control group on limb intransitive and orofacial intransitive gestures.  

                                                 
4 A child was defined as speech and language impaired if he/she demonstrated an impairment in speech 
articulation, voice or fluency, or deviant development of comprehension, or use of spoken, written or 
other symbol system that adversely affect educational performance. Children who demonstrated 
deficits only in articulation were not included. 
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The finding that the speech and language impaired children were also significantly 

poorer than the controls on memory tests led to the proposition that children with both 

speech and language impairments may be deficient in their motor acts because they 

lack both the language and verbal memory skills needed to encode motor acts into 

memory.  

 Similar studies of gestural hand and arm movements carried out by Hill (1998; 

Hill, Bishop & Nimmo-Smith, 1998) revealed a dyspraxic deficit in children (age 

range 7-13 years) with specific language impairments (SLI) only, children with both 

SLI and motor impairments, and in children with motor impairments only 

(developmental co-ordination disorders). One could question whether the problems of 

these three subgroups of children were due to the same basic deficit related to the left 

hemisphere, as they all showed similar praxis problems, or whether, despite this 

commonality, they suffer from slightly different underlying dysfunctions? 

 

 

1.4 Fine Motor Skills  

 

Motor skills have been commonly subdivided into fine and gross. In the present 

context this is a useful subdivision as problems in the performance of fine motor 

skills, in particular, have more often been associated with language problems whether 

these be in the speech or reading domains. 

 With respect to SLI, for example, a number of studies have identified a 

diversity of fine motor skill problems in a variety of different groups of speech 

impaired children involving: speed of peg-moving (Bishop & Edmundson, 1987; 

Owen & McKinlay, 1997; Powell & Bishop, 1992), threading beads and fastening 

buttons (Owen & McKinlay, 1997); posture production using hand and arm 

movements (Hill, 1998); associated movements accompanying hand and finger 

movements, for example hand-patting, hand pronation/supination, index-thumb 

opposition, sequential finger-opposition and diadokinesis (Notherdaeme, Amorosa, 

Ploog, & Scheimann, 1988). Although some of these studies (e.g., Powell & Bishop, 

1992) provide evidence for a common aetiology, what is missing are detailed 

discussions about which neurological abnormalities might underlie such behaviours.   

 Where attempts have been made to highlight a common aetiology in motor and 

speech impairment more consistency in the findings would seem to be forthcoming 
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when the focus has been on fine motor co-ordination of hand and finger movements 

(Bradford & Dodd, 1996; Preis, Bartke, Willers, & Müller, 1995; Preis, Schittler, & 

Lenard, 1997). For example, Preis et al. (1995) found that even children with 

linguistically well defined grammatical SLI without significant articulatory deficits 

(11 children: 6-11 years) were impaired in complex fine motor skills. In a pegboard 

moving task eight of the SLI children needed significantly more total time with the 

right hand (all children were right handed) than the control group. Motor problems in 

the SLI children also increased with the complexity of the motor task. What might be 

the neurological implications of such deficits? Preis et al. (1995) concluded that the 

fine-motor skill problems might signal a sequencing and temporal order deficit, as 

SLI children not only experience temporal and sequencing problems related to motor 

tasks, but also have difficulties in processing successive stimuli presented rapidly in 

the auditory modality. They invoke the idea that both language and motor processes 

might be dependent on neuronal elements which are not specific to only one kind of 

process, but are responsible for modulation of specific components of the different 

processes. They suggested further, that the supplementary motor area might be 

involved, functional imaging studies having shown that this area is highlighted both in 

complex planning of sequenced motor processes (Deiber et al., 1991; Roland, Larsen, 

Lassen, & Skinhoj, 1980; Seitz et al., 1995) and during speech processes (Tamas, 

Schibasaki, Horikoshi, & Ohye, 1993).  

 Attempts of this nature have also been apparent in the context of 

dyslexia/motor impairments exemplified, particularly, in the so-called cerebellar 

hypothesis.  

 

Cerebellar Hypothesis 

Traditionally, the cerebellum has been considered to be a motor area (Eccles, Ito, & 

Szentagothai, 1967; Holmes, 1917, 1939; Stein & Glickstein, 1992). However, Ivry 

and colleagues (for a review, see Ivry, 1993) have suggested that it plays an important 

role, not only in motor control but also in perception of time. Cerebellar patients have 

been shown to be impaired in the performance of auditory time perception tasks as 

well as in repetitive finger tapping tasks (Ivry & Diener, 1991; Ivry & Keele, 1989; 

Keele, Ivry & Pokorny, 1987; Keele, Pokorny, Corcos, & Ivry, 1985). They put 

forward the hypothesis that the predominant role of the cerebellum in motor control is 

the control of fine timing, and that the computational capabilities of this structure are 
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not restricted to the motor domain, but are also accessible to non-motor tasks that are 

dependent on precise timing. They further proposed that there is no single timing 

mechanism in the cerebellum, but rather that this computational ability is distributed 

with different regions being involved with the particular category of temporal 

information utilised in different tasks.  

 Based on this hypothesis Fawcett and Nicolson (1995) suggested that both the 

motor and language related impairments observed in dyslexic subjects could be two 

different expressions of a single neurological deficit in the cerebellum. They found 

that groups of dyslexic children (N’s ranging between 8 and 16 subjects and differing 

in age from 8 to 17 years) were significantly slower than their matched (age and IQ) 

controls and equivalent to their reading age controls in placing pegs and articulation 

rate, while for bead threading they were significantly slower than even their reading 

age controls.  

 Referring to these findings and other studies that have shown a significant 

relation between balance deficits, motor skill deficits, and timing deficits in dyslexic 

children they suggested that children with dyslexia might suffer from a minor damage 

to the cerebellum. Fawcett and Nicolson's hypothesis of a cerebellar deficit was 

supported by a later study (Fawcett, Nicolson, & Dean, 1996) in which dyslexic 

children showed highly significant impairments on a battery of clinical tests designed 

to detect cerebellar impairment (the test battery is described in Dow & Moruzzi, 

1958). The tests included maintenance of posture (balance time and postural stability), 

hypotonia (reduced muscle tone), and complex movements (pointing to a bull's eye 

with a marker pen, finger to finger pointing, adiadokinesis, toe tap speed, placing the 

index finger and thumb of one hand onto the index finger and thumb of the other 

hand). Out of 29 dyslexic children all were impaired on arm displacement, 28 on 

postural stability, and 23 on finger/thumb opposition. 

 Despite the strong suggestive evidence of cerebellar impairment, these authors 

were well aware of the limitations of their findings, pointing to the fact that the 

evidence is only indirect and non-specific and to the possibility that research with 

different samples of children with dyslexia and control children might lead to lower 

estimates of effect size and incidence rate. 

 In an attempt to establish the generality of the results obtained in the 1996 

study, a replication was recently carried out using larger samples of dyslexic and 

control children (Fawcett & Nicolson, 1999). The subjects in this study showed 

 18



similar impaired performance. The cerebellar hypothesis was further supported by 

another recent study (Nicolson et al., 1999) in which brain activation was monitored 

by positron emission tomography in matched groups of six dyslexic adults and six 

control subjects as they carried out either a pre-learned sequence or learned a novel 

sequence of finger movements. They found that brain activation was significantly 

lower for the dyslexic adults than for the controls in the right cerebellar cortex and the 

left cingulate gyrus when executing the pre-learned sequence, and in the right 

cerebellar cortex when learning the new sequence. 

 In the case of both speech/motor impairments and dyslexia/motor impairments 

the hypothetical neural explanations put forward still beg the question as to whether 

the neurological impairments peculiar to such areas are the consequence of neural 

damage, abnormal neural development or delayed maturation (a so-called 

developmental lag). The latter two kinds of explanation also give rise to questions 

about the relevant contributions of nature and nurture. 

  

 

1.5 Developmental Lag or neurological impairment 

 

The notion of a developmental lag builds on the maturational perspective of a delay in 

the acquisition of age related skills and implies that poor performance in language and 

motor skills are simply due to a genetically determined, slow maturation of the 

nervous system. If the language/motor impairments in children were due to a 

developmental lag it would be expected that they would overcome their problems as 

they grow older, as has been observed in children with motor impairments (Barnett & 

Henderson, 1992; Losse et al., 1991). However, if the problems should persist into 

adulthood (as is usually the case with dyslexia), an abnormal neural development, 

rather than a developmental lag per se might be assumed. 

 Some authors (Hill, 1998; Powell & Bishop, 1992) have suggested that the 

coexistence of speech and movement problems may simply be the result of a 

developmental lag, the motor performance (gesture production) of motor and speech 

impaired children being qualitatively similar to that of normally developing younger 

children. This standpoint, however, was not supported by an earlier study of 
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Notherdaeme et al. (1988) who found, in a sample of 17 speech impaired children5 

(16 boys and one girl), in the age range 7-12 years, evidence for a deviant neural 

development, rather than a developmental lag per se, as associated movements in their 

speech impaired children were shown to be qualitatively different from those of  

younger control children (10 girls and 7 boys, 4-5 years). The fact that higher rates of 

left-handedness and ambidexterity are reported in children with speech impairment 

(Bishop, 1990) also strengthens the credibility of a deviant neural development 

hypothesis. At the same time, it has to be recognised that there are also many studies 

that have shown no association between handedness and speech impairment (Bishop, 

1990; Preis et al., 1997). The reasons for this incongruency are difficult to pinpoint. 

They could be due to different characteristics of the groups involved in the studies, 

differences in the methods used for measuring laterality, or different subtypes.  

 Denckla and Rudel (See Denckla, 1985) have suggested that a maturational 

lag in relation to visual and perceptual abilities may be involved in dyslexia. This 

proposition was based on results from studies of dyslexic, otherwise learning disabled 

and normal children on the task of map walking (Denckla, Rudel, & Broman, 1980). 

Dots were placed on the floor, and subjects were required to follow a path mapped out 

in ink on a hand-held piece of cardboard, the route corresponding to that on the floor. 

They found that the younger dyslexic children (below the age of 10) had the worst 

performance of the three groups whereas, surprisingly, the teenaged dyslexic group 

demonstrated superior on this test. They concluded that the most parsimonious 

explanation was a maturational lag in that part of the ‘motor analyser’ that is 

dependent on the left hemisphere and has been found to be important for timed, 

sequential, detailed movements. 

Although, as might be inferred from this study, reading disabled children may 

grow out of their motor problems (Denckla, 1985), there are reports of increasing 

differences with age between reading impaired and control subjects on tests of 

language (Wolf, 1980). Denckla’s (1985) explanation of this finding was that even 

when there is lifelong deficiency of certain left-hemisphere-subserved capabilities, 

“those that are part of the motor analyser system in the left hemisphere may improve  

                                                 
5 The children were diagnosed as specific developmental speech  and language disordered by a team of 
experienced speech/language therapists. All children, fifteen right handed and two left handed, attended 
the special school at the Max Planck Institute for Psychiatry, and had IQs within normal range, and no 
major neurological deficits. 
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sufficiently to act as means of expression for the adequate or even above average 

functioning of a presumably right hemisphere-subserved set of capabilities, such as 

athletics and perception of spatial relationships and visual design.” 

 An attempt to explain a retarded development of the left hemisphere, which 

might contribute to deviant laterality profiles, language and other learning disorders in 

children, is provided by the testosterone hypothesis of Geschwind and Galaburda 

(1985). This hypothesis holds that high testosterone levels in utero may slow down 

the development of the left hemisphere, and may also explain why language 

impairments and other learning disorders are more often observed in boys than in 

girls. 

 With respect to motor impairment Sigmundsson et al. (Sigmundsson, 

Ingvaldsen, & Whiting, 1997b) found evidence indicative of a developmental lag as 

the performance of 8-year old children with hand eye- co-ordination problems was 

similar to 5-year old controls in inter- and intra- sensory modality matching. 

However, when scores for the preferred and non-preferred hands were analysed 

separately, only the children with hand eye co-ordination problems showed significant 

performance differences, in favour of the preferred hand in both conditions where 

proprioception was involved. They suggested that the developmental lag exhibited by 

these children might have pathological overtones related to the development of the 

corpus callosum, which generally is considered to reach its final stage of maturation 

between 5 and 12 years of age. 

 In the context of dyslexia/motor impairment support for a common underlying 

neurological impairment comes from those studies that report higher rates of left-

handedness and ambidexterity in children with dyslexia (Annett, Eglinton, & Smythe, 

1996; Annett & Turner, 1974; Demarest, 1982). Deviant laterality profiles have also 

been observed in children with motor impairment, manifested by a higher incidence 

of crossed dominance, but not a higher incidence of left-handedness (Armitage & 

Larkin, 1993). As deviant laterality profiles are observed in both dyslexic and motor 

impaired children this might not only be a general characteristic of the syndrome, but 

it might also provide a useful lead into the search for answers to the question as to 

why some children experience problems related to both motor and language skills.  

 Olson et al. (1989) found that phonological coding in children with reading 

disabilities was substantially lower than in younger non-disabled children. This was 

taken as an indication of a developmental deficit in phonological coding rather than a 
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developmental lag per se. That this might be genetically determined was inferred 

from data on identical and fraternal twins, which suggested that phonological coding 

was highly heritable. What other evidence is available that might support the idea of 

neurological impairment underlying language/motor disorders whether these relate to 

speech or dyslexia? 

 

 

1.6 Inter/Intra Hemispheric Lesion/Disconnection 

 

In a number of the studies already referred to in this Chapter it has been shown that 

particular samples of motor and speech/reading impaired children experience quite 

severe problems in bimanual co-ordination (Fawcett & Nicoloson, 1995; Fawcett et 

al., 1996; Owen & McKinlay, 1997). Given that the distal finger movements of the 

right and left hand, respectively, are controlled via the contralateral hemisphere 

(Bogen, 1993) such co-ordination requires efficient transfer of information between 

the hemispheres via the corpus callosum (Jeeves, 1990; Kalat, 1995; Preilowski, 

1972, 1990; Quinn & Geffen, 1986). This has been supported in a series of studies 

carried out by Sigmundsson et al. (Sigmundsson, 1999; Sigmundsson, Ingvaldsen, & 

Whiting, 1997a,b; Sigmundsson, Whiting, & Ingvaldsen, 1999), addressed to inter 

and intra-hemispheric problems in 7-8 year-old children with motor impairment 

diagnosed as having hand-eye co-ordination problems – speech/reading disorders not 

being an issue addressed at that time. They proposed that the problems exhibited by 

these sub-groups of children with motor impairment could be behavioural 

manifestations of neurological impairment interpreted within a framework of an intra-

hemispheric lesion/disconnection affecting the transfer of information within the 

hemispheres or an interhemispheric disconnection. 

 Within the context of speech/motor impairment, Owen and McKinlay (1997) 

found that a group of 16 developmental speech and language disordered children6 

(age range 4-7 years) had significantly greater problems in bimanual tasks such as 

threading beads and fastening buttons compared to their controls (matched on age, sex 

and non-verbal intelligence). Although these researchers did not apply neurological 

                                                 
6 They made up a complete cohort for this age group of those children considered to have the most 
severe “developmental speech and language disorders” in the Salford district (3300 births per annum). 
The nature of their language problems was not further described. 
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interpretations to their data, the nature of these tasks suggests a problem in the 

interhemispheric transfer of information. Whether this reflects a callosal problem per 

se or the indirect effect of a left or right intra-hemispheric lesion is open to question. 

As the left hemisphere, traditionally, is considered to be dominant for both motor and 

speech (Kimura, 1982; Kimura & Archibald, 1974), this could be a plausible 

interpretation. It is perhaps more surprising to the reader that a putative right 

hemispheric dysfunction is also being suggested as an alternative to problems in the 

callosum per se. Although the evidence is limited, findings by Powell and Bishop 

(1992) of a balancing deficit specific to the non-preferred (left) leg in children with 

speech impairments could be indicative of an involvement of the right hemisphere. 

 That callosal dysfunction might be an underlying pathogenic factor in children 

with developmental dysphasia and dyslexia is a position put forward by Njiokiktjien, 

Valk, and Ramaekers (1988). This proposition builds on the earlier finding of Badian 

and Wolff (1977) that dyslexic males (8-26 years of age) performed significantly 

worse with their left hand than controls in tapping to a metronome when the 

requirement was to alternate hands, but performed equally well when required to tap 

with the right and left hand separately. They argued, on the basis of evidence from 

patients with surgical commissurotomies, that the motor deficiency in synchronising 

left and right hands might be due to a disturbance in interhemispheric co-operation. 

More recently Moore et al. (1996) found that dyslexia, particularly phonological 

dyslexia, is associated with deficits in interhemispheric interactions mediated by the 

corpus callosum.  

 The notion of an intra-left hemispheric disconnection gains support from a 

PET scan study of five adults with developmental dyslexia of a phonological kind and 

their controls (Paulesu et al., 1996). For the dyslexics only a subset of the brain 

regions normally involved in phonological processing was activated: Broca's area 

during the rhyming task and the temporo-parietal cortex during a short-term memory 

task. In controls both these areas were activated simultaneously. They proposed that 

the defective phonological system of the dyslexic be due to weak connectivity 

between anterior and posterior language areas (i.e., an intrahemispheric problem).  

 Denckla (1985) who investigated performance of rapid repetitive and 

alternating movements in a group of 40 pure dyslexic children provides some support 

for an intra-right hemispheric disconnection. She found a tendency towards large 

right-left differences, that is a tendency for the left side, normally somewhat slower in 
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a right-preferring population, to be even more so in this population. However, 

Denckla attributed this, and other findings of large left-right differences, to a 

deficiency in the ‘callosal system’, arguing that this need not be due to a defect in the 

fibres of the callosum, but that callosal transmission might be impaired by lesion in 

the cells of origin of the callosal fibres in the cortex or in the cortical cells on which 

the callosal fibres synapse. 

  

Dyslexia Timing Hypothesis 

An attempt to be more specific about the nature of such putative inter/intra 

hemispheric problems comes from research on temporal variables in timing precision 

and serial ordering in bimanual co-ordination. Wolff (1993; Wolff, Cohen & Drake, 

1984; Wolff, Michel & Ovrut, 1990; Wolff, Michel, Ovrut & Drake, 1990), argued 

that temporal problems underlay the apparent interhemispheric problems observed in 

many dyslexics. The gist of his argument was that it is not impaired motor co-

ordination that causes reading retardation, but that there is probably a third factor of 

impaired temporal resolution that expresses itself outwardly in both the manual motor 

and language skill performance of dyslexic individuals.  

 In an extension of an earlier study (Badian & Wolff, 1977) Wolff and 

colleagues (Wolff et al., 1984) turned their attention to aspects of timing control for 

motor speech and explored the possible links between impaired motor co-ordination 

and reading retardation. Twenty reading retarded 12-13 year old male volunteers of 

above average intelligence were compared to normal controls on synchronous finger 

tapping (single hand 92 bpm, alternating hand 184 bpm, alternating hand, 92 bpm), 

asynchronous intermanual tapping, motor speech and rapid automatised naming. They 

found that both groups could perform the manual and motor speech tasks adequately 

when movement speed was scaled to a sufficiently slow rate but that both groups 

showed a breakdown in co-ordinated movements at fast entrainment rates. While the 

bimanual tapping tasks were correlated with the reproduction of single syllables (both 

groups), reading achievement and spelling and rapid naming (reading retarded group), 

unimanual tapping proficiency was not correlated with any outcome measure. They 

argued that the greater impairment on tasks of interlimb co-ordination (asynchronous 

tapping in particular), but not in unimanual performance, is consistent with the 

hypothesis that impaired motor performance and reading retardation are both related 

to a reduced efficiency of interhemispheric communication. Given that the retarded 
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readers had difficulty preventing the momentarily inactive or non-leading hand from 

moving in unison with the active, or leading hand, they argued that the presumed 

inefficiency of interhemispheric communications may be associated with a failure to 

transmit motor inhibitory rather than motor excitatory impulses. Such a failure, they 

suggest, would have a relatively greater disruptive effect on co-ordinated bimanual 

trials than unimanual or synchronous bimanual tapping. The retarded readers also 

showed speech articulation difficulties on tasks requiring a rapid switching back and 

forth across different articulation patterns. Given that motor speech does not involve 

interlimb co-ordination and probably does not depend on efficient interhemispheric 

co-operation, it was argued that deficits in the temporal organisation of motor 

inhibitory commands might account for some of the performance deficits in both 

domains of motor function.  

 Based on this and later studies (for a review see Wolff, 1993), Wolff put 

forward three possible hierarchical explanatory models: 1) information processing 

within the left hemisphere (i.e. Growing up with grossly intact but dysfunctional 

cerebral commissures might, for example, be associated with the adequate 

transmission of degraded information, as in the case of left or right hemisphere 

anomalies); 2) reduced efficiency of interhemispheric communication (i.e., a slow rate 

of information transfer for time-distributed functions that require precise temporal 

integration between the hemispheres); or 3) selective dysfunction of the cerebellar 

hemispheres (i.e., a failure to suppress redundant or conflicting information between 

the hemispheres). The latter model is in line with other studies which have focused 

particularly on cerebellar dysfunction and to which reference has been made under the 

heading Fine Motor Skills earlier in this Chapter. 

 However, he did not regard these models as sufficient in themselves. In fact, 

he pointed to their limitation in the light of the plasticity of the neuromotor system 

which allowed individuals with localised brain lesions or abnormal patterns of 

neurological development to frequently achieve the same intended goal by alternative 

pathways when the usual flow of information is blocked or dysfunctional. He drew 

attention to a different theoretical perspective for this purpose, namely Dynamic 

Systems Theory (Kelso, Holt, Rubin, & Kugler, 1981), which focuses on how new 

patterns of behavioural co-ordination are formed during development from antecedent 

conditions that do not exhibit such novel properties. Research within this theoretical 

framework (Kelso & Tuller, 1981; Kelso et al., 1981) has demonstrated that the 
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frequency at which tasks of bimanual co-ordination are performed is a critical variable 

or control parameter in spontaneous pattern formation. Given the paradigmatic 

changes to which this approach has given rise in the fields of motor learning and 

control, its extension to the kinds of problem being addressed in this Chapter is 

awaited with much anticipation. 

 

 

1.7 Magnocellular Deficit 

 

Another interesting link to temporal insufficiency in children with dyslexia 

(Galaburda & Livingstone, 1993; Stein, 1993) is the proposition that a magnocellular 

deficit might be the neural basis of problems in processing rapidly changing signals 

by the CNS. From their studies of contrast sensitivity and visual temporal resolution 

of normal and dyslexic adults Galaburda and Livingstone (1993) have drawn the 

conclusion that dyslexics are less sensitive to low-contrast, fast visual stimulation and 

that the characteristics of the abnormalities are suggestive of a defect in the transient, 

or magnocellular, subdivision of the visual pathway. In post mortem studies they also 

found significant anatomical differences in the lateral geniculate nuclei between 

dyslexic brains and controls, the magnocellular bodies being generally smaller and 

more variable in size and shape, while the parvocellular layers appeared similar in the 

two groups. In further extrapolation of this work they suggest that a deficit in rapid 

information processing may not be limited to the visual modality, but may affect the 

ability to discriminate rapid auditory transitions as well. This proposition was based 

on the evidence from studies which have shown that language and reading impaired 

children have difficulty in distinguishing both consonant-vowel phonemes and non-

linguistic cues if they involve rapid (around 40 ms) auditory transitions (Tallal, 1980). 

Additionally, reading disabled children who show defects in rapid visual information 

processing, also do poorly on tests of phonological skills (Tallal, Stark, Kallman, & 

Mellits, 1981). To date studies on magnocellular deficits have only been performed in 

relation to dyslexia but, given the importance of visual perception in motor co-

ordination, in particular hand-eye co-ordination tasks, this could be an interesting 

hypothesis also with relation to subgroups of motor and language impairments. 
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1.8 Vestibular Hypothesis 

 

In the previous sections the main focus has been on fine motor problems, in particular 

related to bimanual co-ordination and temporal sequencing. Postural problems have 

also figured prominently in the literature (Fawcett & Nicolson, 1992; Nicolson & 

Fawcett, 1990). These need also to be explained. For example, Fawcett & Nicolson 

(1992) showed that the balance performance of 11-year old and 15-year old groups of 

dyslexic children was significantly impaired by the introduction of a secondary task 

while the balance of the control groups of children (matched for age and IQ) without 

language problems was unaffected, that is, the dyslexic children needed to invest 

more attention to maintain adequate balance. In a similar vein, Kohen-Raz (1981) has 

shown 'trainability' of static balance to be significantly associated with level of 

reading ability.  

 Given the growing body of evidence of a significant relation between poor 

balance and different kinds of language problems, such as SLI, reading ability and 

dyslexia, it is surprising that few attempts have been made to specify the nature of this 

link, i.e. to go from description to explanation, particularly with respect to underlying 

aetiology.  

 One exception was that of Levinson (1988) who concluded that both dyslexia 

and other typically associated problems, like learning disabilities, attention deficit 

disorders, poor balance and co-ordination, and speech problems are all due to a 

signal-scrambling disturbance of inner-ear (Cerebellar-Vestibular) functioning. He 

claimed to have found an inner-ear dysfunction that characterised over 96% of a large 

dyslexic sample (1973). He expressed concern that the differing patterns of cerebral 

functioning in dyslexics vs. normals observed by the use of active imaging and 

electrophysiological techniques should be misinterpreted as causal factors of dyslexia, 

rather than the result of dyslexia. He put forward the hypothesis that such 

observations might rather might be due to poor input due to a dysfunction in the 

vestibular system (inner ear). In support of a vestibular explanation is his own 

research (1991) (based on 4 case studies, drawn from a sample of 100) showing that 

motion sickness medication may relieve many of the problems experienced by 

learning disordered and dyslexic children, such as reading, drawing, handwriting, 

ball-catching, balance and co-ordination.  
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 Except for the studies mentioned above there appears to have been little 

interest in the vestibular theory in the literature. One reason may be the rather 

speculative nature of the theory and the limited evidence on which it was based. Not 

the least of the concerns is the credibility of a single explanation of a potpourri of 

learning disabilities that include dyslexia, motor impairment and attention deficit 

disorders. As different subgroups of children with impaired language have been 

shown to exhibit different patterns of performance in a range of motor tasks, it is more 

likely, as suggested by Bradford and Dodd (1994), that their different surface 

production errors reflect different underlying deficits. 

 

 

1.9 Conclusion 

 

In many instances motor and language impairments in children may be highly 

correlated. Direct or indirect explanations for this overlap have been proposed. An 

indirect explanation would invoke social constraints associated with one of these 

forms of impairment adversely affecting the other giving rise to a vicious circle of 

cause and effect. While this form of mediation is an interesting line to pursue, it begs 

the question as to what gave rise to the motor and/or language impairments in the first 

place. 

 Direct effects would attribute both forms of deficiency to a developmental lag 

or to abnormal neural development (which may or may not have genetic overtones). 

Interpretations of this kind would, however, have to be qualified when it is recognised 

that there is no easily definable group of language/motor impaired children but rather 

a number of subgroups for which the correlations observed may require different, or 

at least modified, causal interpretations. Even the sub-categories on which attention 

has been focused in this Chapter, namely, speech/motor impairment and 

dyslexia/motor impairment are probably too coarse to provide more than suggestions 

as to a common aetiology. 

The fact that many speech-impaired children, particularly those with 

phonological deficits, develop dyslexia, can probably account for the findings of 

similar motor problems in dyslexic and speech impaired groups of children. 

 Clearly, there is some way to go before the neurological implications of motor 

and language impairments, where they occur together, can be teased out. What is 
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clear, however, is that there is no shortage of putative explanations for either of the 

phenomena. It is the considered opinion of the present authors that research directed 

towards those groups of children who exhibit both motor and language impairments 

will, in the long run, lead to new methodological approaches that will clarify the 

nature of the aetiology, particularly with respect to the question of the relative 

contributions of nature and nurture. 
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Chapter 2 

 

WHY MIGHT LANGUAGE AND MOTOR IMPAIRMENTS 

OCCUR TOGETHER? 
 

 

2.1 Abstract 

 
A step-wise methodology is employed in order to identify common neurological factors underlying 

motor and language impairments where they occur together. A sample of 15 5-10-year-old children 

with predetermined language impairment was tested comprehensively using the Illinois Test of 

Psycholinguistic Ability (ITPA) and the Movement Assessment Battery for Children (Movement 

ABC). On the basis of these tests, only 4 of the sample were found to have generally poor performance 

both in psycholinguistic (particularly indexed by problems with visual closure and sound blending) and 

motor abilities (particularly indexed by manual dexterity problems - bimanual co-ordination and 

drawing - and static balance). Further detailed examination of the findings fostered a number of 

plausible hypotheses to account for this communality. The viability of these different alternatives is 

discussed.  

 

Key words: motor impairment, language impairment, corpus callosum, right hemisphere, static 

balance, bimanual skills, visuospatial skills, and sound blending. 

 

 

2.2 Introduction 

 

While a link between motor impairment and language impairment would seem to be 

well accepted, given the frequency of its citation (Tallal & Stark, 1982; Cermak et al., 

1986; Sommers, 1988: Notherdaeme et al., 1988; Bradford & Dodd, 1996; Owen & 

McKinlay, 1997; Hill, 1998; Hill, 2001), the reasons underlying the correlation are often 

obscure. Seldom has the nature of the link been teased out in order to determine which 

particular motor problems and which particular language problems occur together and, 

when they do so, what the common mediating factors are likely to be.  Some interesting 

attempts at the former have, however, been made. Language impaired children have 

been shown to experience problems in relation to: speed of peg-moving (Owen & 

McKinlay, 1997; Bishop & Edmundson, 1987; Powell & Bishop, 1992), threading beads 
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and fastening buttons (Owen & McKinlay, 1997), making gestures using hand and arm 

movements (Hill, 1998); associated movements accompanying hand and finger 

movements e.g. hand-patting, hand pronation/supination, index-thumb opposition, 

sequential finger-opposition and diadochokinesis (Notherdaeme et al, 1988); balance, 

particularly retaining balance on the non-preferred foot (Powell & Bishop, 1992); and 

non-motor tasks such as visual discrimination (Powell & Bishop, 1992). 

 Given the heterogeneity of the language impairment groups, however, it would 

be legitimate to ask whether such problems are common to all such subjects or 

whether different kinds of problem are associated with particular sub categories of 

language impairment?  Attempts to provide answers to such a question have seldom 

been pursued in any depth in the literature, primarily because of the diversity of 

dependent variables addressed, whether in the movement or language categories.  

Dodd, Leahy and Hambly (1989) in signalling this unfortunate omission point out that 

this makes it difficult to establish causal factors. Consequently, the effectiveness of 

remedial approaches based on such limited analyses will be less than optimal. In three 

language based experiments they investigated the possibility that the different surface 

language production errors made by three subgroups of phonologically language 

disordered children (delayed language, consistent deviant language and, inconsistent 

deviant language) reflected different underlying deficits. They report that the different 

patterns of performance of their groups of language impaired children, support the 

notion that subgroups of language impairment are relatively distinct and their 

different surface production errors reflect different underlying deficits. Such a 

categorisation, in principle, provides a sounder basis on which to design remedial 

procedures.  

 A different, but similarly motivated, approach was provided by Preis, Bartke, 

Willers and Müller (1995). They argue that a careful examination of motor skill 

performances in well-defined sub-groups of language impaired children may enable 

researchers to qualify more clearly the nature of the language impairment. Focusing 

on a subgroup of specific language impaired children with a grammatical type of 

impairment without severe phonological and semantic-pragmatic deficits, they found 

that even this group of children, without significant articulatory (motor) deficits, were 

impaired in the performance of complex fine motor skills. The group performed 

significantly poorer than a control group in total aiming-time (but not aiming-error), 

and speed of pegs moving (right hand). They suggested that both the motor and 
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language problems in these children might be explained by an underlying deficit in 

programming co-ordinated sequences. In a later study Preis, Schnittler & Lenard 

(1997) found a different group of language impaired children, with developmental 

language disorder (DLD) of a phonologic syntactic subtype, to have problems with 

finger tapping (both hands) and pegboard performance (both hands).  

 These studies clearly indicate the need for the nature of language impairments to 

be more clearly analysed and the resulting categorisations linked to different problems in 

motor skill performance. What is noticeable, however, is the comparable absence of 

neuropsychological hypotheses to account for these putative commonalties. 

 With this in mind, the present study was designed to make it possible to tease out 

potential relations between basic psycholinguistic and motor abilities and, if successful, 

to put forward plausible neuropsychological explanations. The departure point, in this 

respect, was to attempt to provide answers to two sets of questions: 

1) To what extent is there a relation between poor psycholinguistic abilities (as measured 

by the Illinois Test of Psycholinguistic Abilities) and motor impairment (as measured 

by the Movement Assessment Battery for Children) in language impaired children? 

2) What could be the common mediating factor(s)? 

 From the literature review presented it is predicted here that language impaired 

children will be poorer than children that are not language impaired in the 

performance of fine motor skills, like bimanual co-ordination, speed of manual 

movements, static balance, making gestures, and non-motor skills like visual 

discrimination. 

 With respect to the question of common mediating factors, a number of possible 

candidate neuropsychological explanations have been put forward in the literature and 

these will be returned to in the discussion. Sigmundsson and his colleagues 

(Sigmundsson, 1999; Sigmundsson et al., 1997a, 1997b, 1999), for example, signal 

possible interhemispheric information transfer problems while other authors have 

focused on cerebellar mediation. In the latter context, Ivry and his colleagues (Ivry & 

Diener, 1991; Ivry & Keele, 1989; Keele, Ivry & Pokorny, 1987; Keele et al., 1985) 

have suggested the possibility of a breakdown in the control of the temporal coupling 

of signals. This hypothesis is given credence by the work of Fawcett and Nicolson 

(1995, 1999; Fawcett, Nicolson, & Dean, 1996; Nicolson et al., 1999) in their work 

with phonological dyslexics, a deficit that is closely related to phonological language 

impairment (Plaza, 1997). Using clinical tests of cerebellar function, they found 
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dyslexics to be impaired on balance and a number of fine motor asks associated with 

cerebellar function. 

  

 

2.3 Methods 

 

Participants 

Two special education teachers (speech therapists) actively involved in the assessment of 

language disorders were asked to provide a sample of children with language 

impairment (LI) with whom they were working. The speech therapists defined LI as 

children with expressive oral language problems (both phonological and/or articulatory 

problems included), and they produced a list of N = 15 children (nine boys and six girls) 

between the ages of 5 and 10 years who fell into this category. Two participants were 

left-handed (preferred hand to write), and these were excluded, in order to avoid 

confounding related to handedness (i.e. potentially different cerebral organisation in 

left handers, as suggested by Waal, Sigmundsson & Whiting, 2000). A common trait 

in this group of children was the inability to produce correct language sounds. The 

children were considered normal in other aspects of development. These were the 

complete sample of the LI children being handled by these two speech therapists at that 

point in time. Many of the children had been followed up since the age of four and a few 

since the age of two because of their abnormal language development. Most of the 

participants were selected on the basis of the special teachers' knowledge and 

experience, using a combination of formal and informal testing procedures. The 

respective class teachers selected control subjects matched on age (+/- 6 months), sex, 

and socio-economic background with no known learning problems. The school aged 

children (7 years and older) in both groups were attending ordinary, i.e. non-selective, 

school classes in Norwegian primary schools, while the youngest children (those under 7 

years) were in ordinary public kinder gardens.  

 

Procedure 

 Assessment of psycholinguistic abilities.  Both groups were required to complete 

the Illinois Test of Psycholinguistic Abilities (ITPA), under the guidance of a trained test 

administrator. The ITPA (Kirk et al., 1968) is designed to measure 10 psycholinguistic 

functions in children by means of 12 sub-tests: Auditory Reception, Visual Reception, 
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Visual Sequential Memory, Auditory Association, Auditory Sequential Memory, Visual 

Association, Visual Closure, Verbal Expression, Grammatical Closure, Manual 

Expression, Auditory Closure, and Sound Blending. In addition to a global score, the test 

yields a profile of psycholinguistic abilities. ITPA is standardised in Norway (Gjessing et 

al., 1975) for children from 4-10 years of age and is traditionally used for testing 

children with dyslexia and other language problems, children with visual and/or auditory 

problems, and mentally challenged persons. The mean standard score indicates the level 

of total communicative ability, a score of 36 representing the "normal" (average) 

population in each age group. 

 Out of the remaining 13 language impaired children 8 had an average score 

below the age-related norm of 36 (according to the Norwegian standardisation) in 

psycholinguistic performance. To ensure as homogeneous a group as possible, the five 

children whose scores were not significantly different from those of normal controls, 

together with their matched controls, were removed from the sample. This left a 

language impaired group of eight children (Table 1) who had a mean ITPA score more 

than 2 standard scores below average in psycholinguistic abilities (mean score 31.98. 

Range 30.50-33.30. SD 0.963) and a matched control group of eight participants (mean 

score 38.69. Range 36.00- 42.50. SD 2.00).  

 

 
Table 1: Gender (F/M), chronological age (Age) and mean standard scores (12 sub-tests) on the ITPA 

for the language impaired (n = 8) and the control group (n = 8).  

Language impaired group   Control group 

Participant  Age ITPA  Participant Age ITPA 

A   (M) 5.07 33  I     (M) 5.10 38 

B   (F) 7.01 32  J     (F) 6.10 38 

C   (F) 7.01 33  K   (F) 7.10* 38.5 

D   (M) 9.04 32  L    (M) 8.10 42.5 

E   (M) 8.03 31  M   (M) 8.09 37 

F    (F) 7.03 32  N   (F) 7.05 39 

G   (F) 7.04 31  O   (F) 7.05 36 

H   (F) 7.04 32  P    (F) 7.10 40 

Mean 7.40 31.98  Mean 7.72 38.69 

S.D. 1.07   0.96  S.D. 1.17   2.00 

* The teacher did not manage to find a control subject that was closer in age. 

Note: Participants A, B, C, D are the same individuals in tables 1, 3 and 4. 
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 Assessment of motor skills.  For this purpose the Movement ABC (Henderson & 

Sugden, 1992) a formalised standardised test to identify children with motor impairment 

problems, was used. The test-battery provides both a quantitative and qualitative 

evaluation of children's motor competence. The test battery is divided into four age 

bands: 4-6 years, 7-8 years, 9-10 years and 11-12 years. Each age band contains eight 

sub-tests divided into three categories: three tests of manual dexterity (MD1, MD2 and 

MD3), two tests of ball skills (BS1 and BS2) and three tests of static (StB) and dynamic 

(DB1 and DB2) balance. On each sub-test the child receives a score from 0-5, 0 

representing the best performance. These scores add up to a "total impairment score", in 

which a score of 0 would be equivalent to the 96th percentile (good motor performance), 

a score of 4 would place a child within the 54th percentile (average performance), 10 

would place a child within the 15th percentile, classified as borderline motor impaired, 

while a child with a score below 13 would belong to the 5th percentile (motor impaired). 

 

Data Analysis and Statistics 

All statistical comparisons utilised the Wilcoxon Signed Ranks test for matched pairs, 

and were performed using the SPSS statistical package. One-tailed tests were used for 

those three Movement ABC sub-tests (MD1, MD2 and StB) as well as the Movement 

ABC Total score where, according to the literature review, the language impaired 

sample would be predicted to have significantly poorer performance than the normal 

sample. On the remaining five sub-tests, where no differences between the groups 

were to be expected, two-tailed tests were used. Probabilities below alpha = 0.05 were 

regarded as significant. 

 

 

2.4 Results 

 

Quantitative analysis 

The results of the total scores on the Movement ABC showed there to be a significant 

difference in overall motor performance between the two groups (Table 2).  

However, the motor problems expressed by these language impaired children would not 

appear to be general, but rather restricted, significant differences between the groups 

being found only on bimanual co-ordination (MD2) (p = 0.02, one-tailed.  Mean 

difference: 2.50; SD 2.14) and drawing (MD3) (p = 0.04, two-tailed.  Mean difference: 
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1.38; SD 1.77) - both factors of manual dexterity (reflected also here by their 

intercorrelation - rho = 0.73, p = 0.00, one-tailed) - and Static Balance (p = 0.02, one-

tailed. Mean difference: 1.56; SD 1.57).  

 There was also a significant correlation between bimanual co-ordination (MD2) 

and Static Balance (StB) (N = 16, rho = 0.50, p = 0.05, two-tailed), but not between 

drawing (MD3) and static balance (StB) (rho = 0.32, p = n.s., two-tailed). Significant 

differences between the groups, in favour of the control group, were found both in 

relation to right (p = 0.01, one-tailed. Mean difference: 1.38; SD 1.41) as well as left (p = 

0.01, one-tailed. Mean difference: 2.38; SD 1.41) foot balance. What also stands out are 

the relatively large standard deviations on all sub-tests for the language impaired group 

suggesting that the group is anything but homogeneous with respect to motor 

performance. The correlation coefficient between the total standard score of the ITPA 

(all 12 sub-tests) and the total score of the Movement ABC (all 8 sub-tests included), 

both groups taken together, was also significant (N = 16, rho = -0.47 one-tailed, p < 

0.05).  

 At a global level, these results confirm the findings of those studies that have 

shown a significant association between language and motor impairment although, the 

common variance accounted for was only 20%. This, it might be argued, is low and is 

probably due to a relation that is confined only to certain members of the sample. Thus, 

further, more detailed probing, is required before a more clear-cut distinction in this 

respect can be made.  

 

Qualitative analysis 

Sub-categorisation of language impaired group in relation to motor impairment 

In order to examine the generality of the language/motor impairment link, participants in 

the language impaired group were classified according to their percentile score on the 

Movement ABC. Two of the language impaired children were above average in motor 

performance (79th percentile), while the remaining six were below average: 32, 29, 13, 2, 

0, and 0 percentiles respectively. Only those four participants that were below the 15th 

percentile were characterised as both language and motor impaired. It is clear, therefore, 

that the relation between motor and psycholinguistic abilities is not as direct as one 

might at first have been led to believe. To probe this relation further it is necessary to 

explore in more detail the nature both of the psycholinguistic weaknesses and the motor 

problems experienced by these participants, i.e. to discover if it is possible to identify 
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common psycholinguistic and/or motor problems, or whether each child represents a 

special case?  
 

 

Table 2: Means and standard deviations (S.D.) for the language impaired group and control group, 

together with means, standard deviations, and p-values (p) for the differences between the groups on 

the 8 sub-tests of the Movement ABC: Manual Dexterity 1 (MD1), Manual Dexterity 2 (MD2), Manual 

dexterity 3 (MD3), Ball Skills 1 (BS1), Ball Skills 2 (BS2), Static Balance (StB), Dynamic Balance 1 

(DB1), Dynamic Balance 2 (DB2), and the total score (SUM). 

 Language impaired 

group (n = 8) 

Control group 

 (n = 8) 

Differences between groups 

 Mean    S.D. Mean   S.D.  Mean   S.D.   p 

MD1   1.56   1.78   0.56   1.12   1.00   1.85   n.s     * 

MD2   2.88   2.03   0.38   0.74   2.50   2.14   0.02  * 

MD3   1.50   1.77   0.13   0.35   1.38   1.77   0.04 ** 

BS1   1.38   2.00   0.81   1.42   0.56   2.32   n.s   ** 

BS2   1.75   2.05   0.38   0.52   1.38   2.14   n.s   ** 

StB   1.75   1.44   0.19   0.53   1.56   1.57   0.02  * 

DB1   0.63   1.77   0.00   0.00   0.71   1.89   n.s   ** 

DB2   1.25   2.31   0.00   0.00   1.25   2.31   n.s   ** 

SUM 12.44 10.48   2.44   2.58 10.00   9.88   0.01  * 

 *  Wilcoxon Signed Ranks test for matched pairs, one-tailed. 

** Wilcoxon Signed Ranks test for matched pairs, two-tailed. 

 

 

Search for common problems in language and motor impairment 

 Psycholinguistic profile.  It can be seen (Table 3) that on almost every sub-test 

of the ITPA one or more of the participants has difficulty, confirming the diversity of 

the psycholinguistic problems. The results of the two sub-tests Visual Closure (VC) 

and Sound Blending (SB) may be distinguished, all four participants scoring more 

than one SD below the mean on these two sub-tests. On the other hand the only sub-

test in which none of the participants deviate significantly from the control group is 

Visual Reception.  
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Table 3: Scores on the ITPA - profile - Auditory Reception (AR), Visual Reception (VR), Visual 

Memory (VM), Auditory Assosiation (AA), Auditory Memory (AM), Visual Association (VA), Visual 

Closure (VC), Verbal Expression (VE), Grammatical Closure (GC), Manual Expression (ME), 

Auditory Closure (AC), Sound Blending (SB) - of the 4 participants (A, B, C, D) that are weak in both 

motor and language performance. Scores that are one standard deviation (= 32) or more below the 

mean are marked with bold numbers. 

ITPA - sub-tests A  B C  D 

AR 39 29 27 35 

VR 33 37 38 34 

VM 32 30 33 36 

AA 29 32 35 28 

AM 35 24 24 33 

VA 27 40 36 30 

VC 30 23 31 32 

VE 33 34 30 35 

GC 33 28 31 29 

ME 40 39 48 29 

AC 33 31 28 39 

SB 30 24 28 30 

Mean 33 32 33 32 

Note: Participants A, B, C, D are the same individuals in tables 1, 3 and 4. 

 

 

 Motor Profile.  It has now been established that four language impaired 

participants share two commonalties in their linguistic profile, poor Sound Blending and 

poor Visual Closure. What also stands out is that the link to the Movement ABC is in 

relation to the sub-tests bimanual co-ordination (MD2), drawing (MD3) and static 

balance (StB). Bimanual co-ordination for the 5-year-olds involves threading wooden 

beads onto a lace, for 7-year-olds it involves threading a lace through a wooden lacing 

board and, for the 9-year-olds, threading nuts onto a bolt with the one hand while 

holding the bolt in the other. In the drawing task the child was required to track the lines 

of a flower trail (or, for the 5-year olds, a bicycle trail) on a sheet of paper with a pen. 

Static balance involves balancing on one leg with the free leg bent backward for the 5-

year olds. The 7-year olds have to balance on one leg with the sole of the other foot 

against the side of the supporting knee, while the requirement for the 9-year olds is to 

balance on one leg on top of a wooden board. All age groups have to perform the task 

with the preferred leg first and then the non-preferred leg. 
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 As the bimanual co-ordination, drawing and Static Balance tests of the 

Movement ABC were shown to discriminate between this particular group of language 

impaired children and their controls, these sub-tests were returned to. The individual 

scores on these sub-tests are shown in Table 4. For the purpose of identifying putative 

neurological problems, the Static Balance scores of the right and left leg are separated. 

 

 
Table 4: Overview of the scores (percentile equivalents in parentheses) of the four language/motor 

impaired participants on the sub-tests of the Movement ABC - Static Balance (StB) and Bimanual Co-

ordination (MD2).  

ABC-sub-tests A B C D 

MD2 5           (2) 5          (2) 3         (10) 4          (5) 

MD3 3         (10) 5          (2) 0       (100) 1        (25) 

StB combined 1.5      (25) 1.5     (25) 4           (5) 2        (15) 

StB right leg 0       (100) 1        (25) 4           (5) 1        (25) 

StB left leg 3         (10) 2        (15) 4           (5) 3        (10) 

Note: Participants A, B, C, D are the same individuals in tables 1, 3 and 4. 

A sub-test’s maximum score is 5. 

 

 

 On Static Balance both legs combined, one (D) of the participants was within the 

15th percentile, and one (C) fell within the 5th percentile. However, when each leg was 

measured separately (all four children were right leg preferrent) all of the participants 

scored within or below the 15th percentile using the left leg, while only one (C) scored 

within or below the 15th percentile using the right leg. The table also shows that all four 

participants scored below the 15th percentile on bimanual co-ordination (MD2), three 

(A, B, D) being below the 5th percentile, indicating that this is a common problem. In the 

drawing (tracking) task only two out of the four children (A and B) really experienced 

problems, one (A) corresponding to the 10th percentile while the other (B) to the 2nd. The 

third subject (C) was below normal, scoring at the 25th percentile, while the fourth 

subject (D) had a normal score at the 100th percentile. 

 Now, several features seem to be distinguished in these four participants with 

poor psycholinguistic and motor abilities, namely poor performance on: static balance 

(left leg being particularly affected) and bimanual co-ordination sub-tests of the 

movement ABC, and Visual Closure and Sound Blending sub-tests of the ITPA.  
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2.5 Discussion 

 

This study set out to explore, in a step-wise manner, potentially subtle relations 

between language and motor impairments in a sample (N = 15) of 5-10 year old 

children with predetermined language impairment. The departure point was the 

proposal that there is a significant relation between poor psycholinguistic abilities and 

poor motor abilities, and that this relation may not be fortuitous. It was expected that the 

investigation of this relation would lead to the generation of new hypotheses concerning 

putative underlying factors. 

 

Quantitative analysis 

At a global level, the finding of a significant correlation between motor impairment 

and poor psycholinguistic skills in this group of children reflects very much the 

findings of many other studies (Preis et al., 1995, 1997; Mæland & Søvik, 1995; 

Merriman et al., 1995; Robinson, 1987). More specifically, the finding that the motor 

problems of the language-impaired children were restricted to distal movements (fine 

manual movements) and static balance raises some interesting issues. In the first 

place, these particular motor abilities are generally considered to represent different 

factors of general motor ability (Fleishman 1964). Why, then, should such apparently 

disparate factors, in this sub-sample of language and motor-impaired children be 

affected? At a neuropsychological level, two candidate explanations seem worthy of 

further exploration: 

1. The cerebellar deficit hypothesis 

2. The inter-hemispheric deficit hypothesis  

 

Cerebellar deficit hypothesis 

This hypothesis arises from the work of Fawcett, Nicolson and colleagues (Fawcett & 

Nicolson 1995, 1999; Fawcett et al., 1996; Nicolson et al., 1999). The dyslexic samples 

in their studies demonstrated impairment on clinical tests of cerebellar function. Some of 

these cerebellar tests involved speed of manual movement, bimanual co-ordination and 

static balance i.e., similar categories of motor skill as appeared to be critical to language 

and motor impairment in the present study. Why should bimanual co-ordination be 

linked to cerebellar problems? According to Ivry and colleagues (Ivry & Diener, 1991; 

Ivry & Keele, 1989; Keele et al., 1987; Keele et al., 1985), bimanual movements may be 
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dependent on the temporal coupling of signals within the cerebellum. Each half of the 

cerebellum has been shown to regulate the temporal aspects of movements on the ipsi 

lateral side independently. This suggestion is based on findings from repetitive finger 

tapping tests on cerebellar patients. 

 The significant differences between the groups on the task of drawing 

(tracking) can also be accommodated in the cerebellar explanation. A study using 

positron emission tomography (PET) (Jueptner et al., 1996) showed that the 

cerebellum, and to some extent the basal ganglia, were activated during a visually 

guided tracking task, where the participants had to track a series of lines with a mouse 

pointer on the screen. Also, in a study of cerebral blood flow Grafton et al. (1992) 

found that tracking a moving target with the index finger activated the primary motor 

cortex, dorsal parietal cortex, precuneate cortex, supplementary motor area and 

ipsilateral anterior cerebellum.  

 That language/motor impaired children exhibit similar deficiencies in motor 

skills to those of dyslexic persons suggests that there might be a common mechanism 

that mediates all these deficiencies. Diamond (2000), in a more recent study, probes 

deeper into the causal network in her concept of a neuroanatomical circuit deficiency 

between the prefrontal cortex and the cerebellum. She argues that motor and cognitive 

development are much more interrelated than has been previously appreciated, 

pointing to the fact that fine motor control, bimanual co-ordination, and visuomotor 

skills, together with certain cognitive operations, are not fully developed until 

adolescence. This, she argues, may be seen in relation to the phylogenetic 

development of the neocerebellum and prefrontal cortex, which proceed in parallel. 

 

Inter/intra hemispheric deficit 

The observed problems in bimanual co-ordination replicate the earlier finding of Owen 

and McKinlay (1997) that language impaired children will experience problems in 

bimanual tasks such as threading beads and fastening buttons. As discussed above, a 

number of authors have focused on cerebellar dysfunction in this context, and interpreted 

their findings in the light of the cerebellar timing hypothesis (Ivry & Diener, 1991; Ivry 

& Keele, 1989; Keele et al., 1987; Keele et al., 1985). However, given the fact that 

temporally dependent bimanual co-ordination problems have been observed in co-

occurrence with bimanual co-ordination tasks that are independent of temporal 

constraints (Sigmundsson, 1999; Sigmundsson et al., 1997a, 1997b, 1999), the cerebellar 
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timing hypothesis would not seem to hold for all kinds of bimanual co-ordination. The 

same kind of bimanual co-ordination problems (screwing nuts onto bolts and threading 

beads) to those observed in the present study, have been found in a group of 8-year-old 

motor impaired children with particular problems in hand-eye co-ordination 

(Sigmundsson, 1999). These difficulties were complemented by problems in the transfer 

of proprioceptive information from right to left hand (when vision was excluded) in 

intra-modal matching tasks, and were attributed, tentatively, to inter-hemispheric transfer 

problems (Sigmundsson, 1999; Sigmundsson et al., 1997a, 1997b, 1999). Could a 

similar interpretation have relevance for the field of language impairment and hence for 

the communality in the language and motor impairments? A useful hypothesis for future 

experimentation might, therefore, be that children with similar language/motor 

impairment as the group in the present study have a general problem in the transference 

of information from one hemisphere to the other. 

That static balance problems may be caused by a cerebellar deficit has already 

been discussed. However, the most striking finding in the present sample was the poor 

performance on the left leg in the static balance test. This is in line with Powell and 

Bishop’s finding (Powell & Bishop, 1992), and is not likely to be an effect of the 

children being more trained on the right foot, because the standardised test used provides 

norms for the right as well as the left leg. Sigmundsson, Whiting and Ingvaldsen (1999) 

found similar left-right differences albeit on a foot-hand-matching task, in motor 

impaired children (in whom, possible language problems were not in question). They 

found that children with hand-eye co-ordination problems performed significantly poorer 

than the normal group in a condition where presumably only the right hemisphere was 

involved7 (left foot location/left hand matching), and in the conditions where information 

had to be transported across the corpus callosum (left foot location/right hand matching 

and right foot location/left hand matching). They interpreted this finding as a putative 

right hemisphere insufficiency with or without a dysfunctional corpus callosum. As 

static balance on one leg involves proprioceptive information from the foot, such 

information from the left leg being processed in the right hemisphere (Sperry, 1974), it 

                                                 
7 The issue whether distal movements are controlled only by the contra lateral hemisphere in humans 
(rather than just monkeys) remains controversial. For example an MRI functional study (Kim et al, 
1993) and a study of regional cerebral blood flow (Roland et al., 1982) have shown ipsi lateral 
involvement in distal motor control. 
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may be speculated whether the balancing problems in the present group of children 

could have a similar interpretation. 

 

Qualitative inspection 

Of the selected group of eight language impaired children only three were classified 

as motor impaired at the fifth percentile criterion level and one other borderline 

(below the 15th percentile). This indicates that only about 50 % of language impaired 

children are affected by motor impairments as well, and that such explanations as 

those suggested above may only apply to a subgroup of the sample as a whole. The 

qualitative inspection of the participants in the motor/language impaired subgroup 

revealed that it is only on two of the sub-tests that all four participants are 

considerably below the norm, i.e. perform within or below the 15th percentile. These 

are bimanual co-ordination and static balance on the left leg. In addition to the 

problems with bimanual co-ordination and left leg balancing (sub-tests of the 

Movement ABC) discussed above, this subgroup was indexed particularly by 

problems in Visual Closure and Sound Blending (sub-tests of the ITPA).  

The sub-test Visual Closure requires the subject to find how many dogs are 

hidden in a black-white drawing (Paraskevopoulus & Kirk, 1969) and depends on the 

ability to recognise the whole from parts. This ability is also necessary in the Gollin 

picture test with which patients with right hemispheric lesions are shown to 

experience problems (Warrington, 1985). This suggests the possibility of a right 

hemispheric involvement. 

 The task of Sound Blending involves sequential assignment of letters to 

sounds, followed by blending (e.g. CAT  ‘cuh-ah’tuh’ - ), and is commonly 

regarded as the ITPA sub-test most sensitive to identifying phonological dyslexia. 

Phonological dyslexia is shown to go hand-in-hand with bimanual co-ordination 

problems that, in turn, are associated with deficits in inter hemispheric interactions 

mediated by the corpus callosum (Moore et al., 1996).  
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2.6 Conclusion 

 

The conclusions that follow have to be seen in the light of the relatively small group 

of the larger sample in this study shown to exhibit both language and motor 

impairments: 

1. Coincidence of language and motor impairments is characteristic of only a limited 

sample of language impaired children. Caution should, therefore, be observed in 

making generalisations on the basis of group data, without a more careful 

investigation of individual language/motor profiles. 

2. Where motor and language impairments occur together, the motor deficiencies 

may not be general but restricted to a relatively small number of fine motor skills. 

3. Both the cerebellar deficit and inter/intra hemispheric deficit hypotheses would 

appear to provide plausible neuropsychological explanations for the co-occurrence 

of language and motor impairments. It remains for future studies to examine the 

viability of both explanations using larger and, perhaps, more diverse samples of 

children belonging to different age groups. 
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Chapter 3 

 

THE VALIDITY OF THE INTER- AND/OR INTRA- 

HEMISPHERIC DEFICIT HYPOTHESIS AS AN EXPLANATION 

OF THE CO-OCCURRENCE OF MOTOR AND LANGUAGE 

IMPAIRMENTS 
 

 

3.1 Abstract 

 
From an initial cohort of 15 children between the ages of 5 and 10 years, who had expressive oral 

language problems, 4 were shown in an earlier study to be both motor and language impaired.   Two 

explanatory hypotheses were proposed to account for this communality: a) cerebellar deficit, b) inter 

and/or intra hemispheric deficit.  In order to explore the validity of the latter explanation, the same 

group of children, together with a matched control group, were required to carry out two sensory 

matching tests designed to tap inter- and intrahemispheric information processing abilities: hand-hand 

and foot-hand.  The results, discussed in the light of Liederman’s shielding model, provided more 

support for the hypothesis of an interhemispheric information-processing problem from left to right 

rather than an intrahemispheric problem.  

 

Key words: Static balance, Bimanual skills, Visuospatial skills, Sound blending, Human. 

 

 

3.2 Introduction 

 

Support for a significant relation between language and motor skill performance has 

been provided by a number of studies (Tallal & Stark, 1982; Cermak et al., 1986; 

Sommers, 1988: Notherdaeme et al., 1988; Bradford & Dodd, 1996; Owen & McKinlay, 

1997; Hill, 1998; Hill, 2001). The nature of this relation has, however, seldom been 

pursued in depth in the literature. Is the relation causal (i.e., does poor motor 

development influence the development of language or vice versa)? Or, is the putative 

relation an artefact of "critical neurological variables" underlying both motor and 

language impairment? 

 One recent attempt to pursue this issue was that of Estil, Whiting, Sigmundsson 

and Ingvaldsen (2003) who, after an investigation of the psycholinguistic and motor 
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profiles of a cohort of fifteen children between the ages of 5 and 10 years with 

expressive oral language problems, found that four of the children demonstrated 

common problems in sound blending, visual closure, bimanual co-ordination and static 

balance i.e., they exhibited both motor and language problems, the nature of which gave 

cause for concern. The cerebellar deficit (Fawcett & Nicolson 1995, 1999; Fawcett et 

al., 1996; Nicolson et al., 1999) and inter- and/or intrahemispheric deficit 

(Sigmundsson, 1999; Sigmundsson et al., 1997a, 1997b, 1999) hypotheses were 

suggested as plausible neuropsychological explanations for the co-occurrence of these 

language and motor impairments. The study to be reported focuses on the validity of 

the inter- and/or intra hemispheric deficit hypothesis as an explanation of this 

communality. 

 The link, in this respect, is the series of studies carried out by Sigmundsson et 

al. (Sigmundsson, Ingvaldsen and Whiting, 1997a,b; Sigmundsson, Whiting and 

Ingvaldsen, 1999; Sigmundsson, 1999) on inter- and intra-hemispheric problems in 

children diagnosed as having hand-eye co-ordination problems - language disorders, 

at that time, not being an issue addressed. They proposed that the problems 

experienced by groups of 8 year old motor-impaired children diagnosed as having 

particular hand-eye co-ordination problems could be behavioural manifestations of 

putative neurological disorders interpreted within a framework of intra-hemispheric 

lesion and/or disconnection or inter-hemispheric disconnection. In order to examine 

the validity of Sigmundsson et al.'s hypothesis in the wider context of language and 

motor impairments, their tests were applied to the four children from the earlier study 

(Estil et al., 2003) who had been shown to exhibit both motor and language 

impairments.  

 

 

3.3 Method 

 

Subjects 

Subjects for this study were four children from an original cohort of 15 children between 

the ages of 5 and 10 years, with expressive oral language problems, shown by Estil et al 

(2003) to be both motor and language impaired, together with four matched controls.   
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Procedure 

The children were tested using two protocols: 

i) interhemispheric matching (hand/hand test and foot/hand test) 

ii) intrahemispheric matching (foot/hand test) 

For the hand-hand test a tabletop apparatus (Sigmundsson et al., 1997a,b) was used, 

which required the subject to match the position of the index finger of the one hand 

with that of the other (interhemispheric matching).  The foot-hand test utilised a small 

Perspex table-top (Sigmundsson et al., 1999) to match the position of the big toe 

(foot/hand test) on the one foot with the hand on the same side (intrahemispheric 

matching) or the opposite side (interhemispheric matching) of the body. In both the 

hand/hand test and the foot/hand test four trials were required for every condition.   

See Results section for more detailed procedural protocols for the testing. 

 

Interhemispheric Matching (hand-hand test). This test comprised six different 

conditions, indexed by the perceptual system(s) used to locate (with one hand) the 

target on top of the apparatus table: Proprioception left hand (PL), Proprioception 

right hand (PR), Vision and proprioception left hand (VPL), Vision and 

proprioception right hand (VPR), Vision left hand (VL), Vision right hand (VR). 

Attempts to match the position of the located target (on the underside) with the other 

hand were all carried out without visual feedback. 

 

Intrahemispheric matching (foot-hand test). Four different conditions were 

used in the experiment, defined by the perceptual system(s) used to locate (with the 

big toe) the target on the underside of the apparatus table: (Right foot location and left 

hand matching (RfLh), Left foot location and left hand matching (LfLh), Left foot 

location and right hand matching (LfRh), Right foot location and right hand matching 

(RfRh)). Attempts to match the position of the located target (on top of the apparatus 

table) with the hand were all carried out without visual feedback. 

 

 

3.4 Results 

Interhemispheric matching (hand-hand test) 

Individual scores of the four language and motor impaired children. The 5 

year-old (A), and 9 year-old (D) subjects were compared to the norms provided by 
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Sigmundsson et al. (1997), while the two 7-year old subjects (B and C) were 

compared to a group of 4 7-year old normal subjects. The results (Table 1) indicate 

that 3 (A, B and C) out of the 4 subjects performed more than 1SD below the norm in 

the PL condition. Notably, these 3 subjects were also the most severely motor 

impaired, scoring lower than the 5th percentile on motor performance as measured by 

the Movement assessment battery for children (ABC; Henderson & Sugden, 1992) 

while the fourth subject (D) was at the 13th percentile. While all 4 subjects showed 

problems in one or more of the conditions where proprioception (VPR, VPL, PR, PL) 

was involved, only one subject (A) showed problems in a "vision only" condition. 

 

 
Table 1: Matching scores (distance in mm of pin from target) more than 1SD above the mean for each 

of the four language-/motor impaired subjects in each of the 6 conditions - Proprioception Left hand 

(PL), Proprioception Right hand (PR), Vision and Proprioception Left hand (VPL), Vision and 

Proprioception Right hand (VPR), Vision Left hand (VL), Vision Right hand (VR). 

 A (5 years) B (7 years) C (7 years) D (9 years)

VR 21.25* 17.25 10.75 9.50 

VL 19.75 20.5 14.75 15.00 

VPR 15.75 30.25* 13.25 12.75 

VPL 20.50 33.00* 14.50 26.25*   

PR 31.00 43.00* 28.25 28.00 

PL 59.00* 33.25* 41.75*   25.25 

* Individual scores that are more than 1SD above the mean. 

 

It is also interesting to note that one of the subjects (B) performed poorly on all 

conditions in which proprioception was involved.   

  

Group differences.  The two groups were equally distributed with respect to 

gender (two boys and two girls in each group) and age (language and motor impaired: 

mean age 7.27 years; SD 1.55 vs. normal group: mean age: 7.35 years; SD 1.30).  The 

mean scores of the four trials at each condition were computed for each subject. The 

mean scores of the language and motor impaired group (n = 4) were compared to 

those of the normal group (n = 4) using the Mann Whitney U test, one-tailed.  

Significant differences (p < 0.05) between the groups were found for the PL condition 

only, the language and motor impaired group having both a larger mean (39.81) and 

larger standard deviation (14.46) than the normal group (mean 23.25; SD 2.15) on this 
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variable. For the other two conditions that required matching with the left hand (VL 

and VPL) the differences between the groups just failed to reach the p=.05 criterion (p 

= 0.057). In the VL condition the language and motor impaired group had a mean of 

17.50 (SD 3.05) while the normal group had a mean of 13.81 (SD 1.92). The means 

and standard deviations for both groups were higher in the VPL condition: language 

and motor impaired (mean 23.56; SD 7.91) versus normal group (mean 16.06; SD 

3.07). 

 

Intrahemispheric matching (foot-hand test) 

Individual scores of each of the four language and motor impaired subjects. 

The 5 year-old (A) and 9 year-old (D) subjects were compared to the norms (in 

randomly selected groups of children) provided by Sigmundsson, Whiting and 

Loftesnes (2000) as well as their respective controls, while the two 7-year old subjects 

(B and C) were compared to the norms provided by Sigmundsson, Ingvaldsen and 

Whiting (1999) as well as their respective controls. In Table 2 the individual scores 

that are 1SD or more above the mean are presented. 

 

 
Table 2: Mean matching scores (distance in mm of pin from target) for each of the four language-

/motor-weak subjects in each of the 4 conditions: Right foot location and left hand matching (RfLh); 

Left foot location and left hand matching (LfLh); Left foot location and Right hand matching (LfRh); 

Right foot location and right hand matching (RfRh).  

 A (5years) B (7years) C (7years) D (9 years)

RfLh 40.25  46.75* 80.00* 34.75 

LfLh 34.75 29.50 89.75* 57.25* 

LfRh 43.50 46.25 69.00* 13.25 

RfRh 45.75 42.00 81.00* 18.50 

* Individual scores that are more than 1SD above the mean.   

 

 

Table 2 shows that one of the subjects (C) experienced problems in all conditions 

while two of the subjects (A and D) did not show any signs of inferior performance, 

although the performance of subject D in the LfLh condition was almost 1SD above 

that of the control subject (mean: 45.25; SD 13.60). Subject B showed inferior 

performance in the RfLh condition only. 
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 Difference between groups.  The same statistical procedures were used as for 

the hand/hand matching. The language and motor-impaired group as a whole was 

shown to be inferior to the normal group in all conditions, however none of the 

differences between the groups reached significance.  

 

 

3.5 Discussion 

 

The results from the present group of language and motor impaired children differed 

from the motor impaired children in the study by Sigmundsson et al. (1999) on the 

task that required intra-hemispheric processing. While both groups in the study by 

Sigmundsson et al (1999) performed better in the intra- rather than the 

interhemispheric condition, no such pattern could be found in any of the groups in the 

present study. Instead, the language and motor-impaired group showed a different 

pattern from that of the control group, although both groups had their worst 

performance in the condition requiring intra-right hemispheric processing (LfLh). 

Further, Sigmundson et al.’s (1999) finding of a left foot-left hand matching problem 

was not characteristic of the children in the present study, as no significant differences 

were found on this variable (except in one of the subjects). Thus, the hypothesis that 

their language and motor problems may be due to an intra-right or intra-left 

hemispheric deficit could not be confirmed. 

However, the present language and motor impaired subgroup exhibited similar 

right left differences as the samples with hand-eye co-ordination problems in the 

studies by Sigmundsson et al. (1997a, 1997b), supporting the hypothesis that 

interhemispheric transfer of proprioceptive information from left to right is more 

problematic than from right to left.  

 An attempt to explain such asymmetry was provided by Liederman (1986). 

According to Liederman’s shielding model, the corpus callosum may (in these 

children) fail to actively shield, or minimise, interhemispheric interactions between 

the two hemispheres when the children are required to carry out simultaneous, but 

independent processing, for example when the child is required to do a different 

movement with the opposite hand or foot (localising with one limb and matching with 

the other). Because the inhibitory neurons of the corpus callosum fail, there is 

interference between the hemispheres and the non-dominant hemisphere fails when 
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required to perform a different task than the dominant hemisphere. This may also 

explain why samples of language impaired children are shown to have more 

associated movements in an attempt to perform gestures with one hand (Notherdaeme 

et al, 1988) and why very young children, who still have an immature corpus 

callosum, run into difficulties in their attempts to perform different movements with 

their right and left hand respectively. A failure of the inhibitory neurones of the 

corpus callosum may cause phonological as well as visual problems when auditory or 

visual stimuli from the right and left auditory or visual field are competing.  

Thus, the indices of a possible right hemispheric dysfunction (left foot 

balancing problems and the Visual Closure) in the present study may be explained in 

a similar vein. As no significant differences on the task requiring intra-right 

hemispheric information processing (LfLh) was found the shielding theory would 

seem more likely than an intra-right hemispheric explanation. 

 

 

3.6 References  

 

Bradford, A. & Dodd, B. (1996). Do all speech-disordered children have motor deficits?  

Clinical Linguistics and Phonetics, 10, 77-101. 

Cermak, S.A., Ward, E.A., & Ward, L.M. (1986). The relationship between articulation  

 disorders and motor co-ordination in children. American Journal of  

Occupational Theraphy, 40, 546-550. 

Estil, L.B., Whiting, H.T.A., Sigmundsson, H., & Ingvaldsen, R.P. (2003). Why might  

language and motor impairments occur together. Infant and Child Development.  

Accepted. 

Fawcett, A.J. & Nicolson, R.I. (1995). Persistent deficits in motor skill of children with  

dyslexia. Journal of Motor Behavior, 27, 235-240. 

Fawcett, A.J. & Nicolson, R.I. (1999). Performance of dyslexic children on cerebellar  

and cognitive tests. Journal of Motor Behavior, 31, 68-78. 

Fawcett, A.J., Nicolson, R.I., & Dean, P. (1996). Impaired performance of children with  

dyslexia on a range of cerebellar tasks. Annals of Dyslexia, 46, 259-283. 

Henderson, S., & Sugden, D. (1992). The movement assessment battery for children.  

Kent: The Psychological Corporation. 

Hill, E.L. (1998). A dyspraxic deficit in specific language impairment and  

 64



developmental co-ordination disorder? Evidence from hand and arm  

movements. Developmental Medicine and Child Neurology, 40, 388-395. 

Hill, E.L. (2001). Non-specific nature of specific language impairment: a review of  

the literature with regard to concomitant motor impairments. International  

Journal of Language and Communication Disorders, 36, 149-171. 

Liederman, J. (1986). Subtraction in addition to addition: Dual task performances  

 improves when tasks are presented to separate hemispheres. Journal of Clininical  

 and Experimental Neuropsychology, 8, 486-502. 

Nicolson, R.I., Fawcett, A.J., Berry, E.L., Jenkins, I.H., Dean, P., & Brooks, D.J. (1999).  

 Association of abnormal cerebellar activation with motor learning difficulties in  

 dyslexic adults. Lancet, 353, 1662-1667. 

Notherdaeme, M., Amorosa, H., Ploog, M., & Scheimann, G. (1988). Quantitative  

and qualitative aspects of associated movements in children with specific  

developmental speech and language disorders and in normal pre-school  

children. Journal of Human Movement Studies, 15, 151-169. 

Owen, S.E. & McKinlay, I.A. (1997). Motor difficulties in children with  

developmental disorders of speech and language. Child: Care, Health and  

Development, 23, 315-125. 

Sigmundsson, H. (1999). Inter-modal matching and bi-manual co-ordination in  

 children with hand-eye co-ordination problems. Nordisk Fysioterapi, 3, 55-64. 

Sigmundsson, H., Ingvaldsen, R.P., & Whiting, H.T.A. (1997a). Inter- and intra- 

sensory modality matching in children with hand-eye-co-ordination problems.  

Experimental Brain Research, 114, 492-499. 

Sigmundsson, H., Ingvaldsen, R.P., & Whiting, H.T.A. (1997b). Inter- and intra- 

sensory modality matching in children with hand-eye-co-ordination problems:  

exploring the developmental lag hypothesis. Developmental Medicine and  

Child Neurology, 12, 790-796. 

Sigmundsson, H., Whiting, H.T.A., & Ingvaldsen, R.P. (1999). 'Putting your foot in  

it'! A window into clumsy behaviour. Behavioural Brain Research, 102, 129- 

136. 

Sigmundsson, H., Whiting, H.T.A., & Loftesnes, J.M. (2000). Development of  

proprioceptive sensitivity. Experimental Brain Research, 135, 348-352. 

Sommers, R.K. (1988). Prediction of fine motor skills of children having language and  

 speech disorders. Perceptual and Motor Skills, 67, 63-72. 

 65



Tallal, P., & Stark, R.E. (1982). Perceptual/motor profiles of reading impaired children  

with or without concomitant oral language deficits. Annals-of-Dyslexia, 32, 163- 

176. 

 66



Chapter 4 

 

SPATIAL AND TEMPORAL CONSTRAINTS ON 

PERFORMANCE IN CHILDREN WITH MOVEMENT CO-

ORDINATION PROBLEMS 
 

 
4.1 Abstract 
Eight, 10-year old children manifesting movement co-ordination problems (MCP), as assessed by the 

Movement Assessment Battery for Children (MABC), and a matched control group of eight children of 

a similar age without such problems, were required to carry out a laboratory ball-catching task. The 

task was constrained in such a way as to allow separate kinematic analyses of reaching (Experiment1) 

and grasping (Experiment 2) subactions. Significant differences between the groups, in favour of the 

control group, were found with respect to both spatial and temporal performance in intercepting the 

moving ball. The MCP children were shown to have longer response times to moving targets and to 

initiate movement of the fingers earlier in time than the controls. MCP children also made more spatial 

errors. These findings are discussed in the context of the distinction made in the neuropsychological 

literature between proximal and distal motor control systems and the visual perceptual system. 

 

Key Words:  Hand-eye co-ordination; development; reaching; grasping; neural systems  

 

 

4.2 Introduction 

 

What characterises the movement behaviour of children classified as clumsy, is a 

failure to establish adequate movement co-ordination patterns with the rider that no 

evidence of CNS disorder is apparent (Gubbay 1975; Henderson & Hall 1982; Wall 

1982; Mæland 1992). This is a syndrome that the American Psychiatric Association 

(1987) has labelled Developmental Co-ordination Disorder (DCD). To adopt this 

rider, however, is to take a very conservative standpoint - a standpoint that may need 

to be revised as knowledge in the field of neuroscience continues to become 

elaborated. For example, in a series of studies on children with hand-eye co-

ordination problems (Sigmundsson, Ingvaldsen & Whiting 1997a,b; Sigmundsson, 

Whiting & Ingvaldsen 1999a,b) putative neurological disorders (inter- and/or intra-

hemispheric processing problems) were invoked to account for the co-ordination 
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problems demonstrated. It is at this neural/behavioural interface that progress is likely 

to be made in going from description to explanation of movement disorders of this 

kind. 

 From a behavioural perspective, a variety of ways of assessing motor co-

ordination problems have been devised - their limitations being pointed out by Sugden 

and Sugden (1990). The essential problem is that while one is able to signal the broad 

area(s) of motor behaviour in which such children demonstrate levels well below the 

norm it is not possible to pinpoint, with any degree of precision, the nature of the 

deficiency. 

 By way of illustration, consider the rather obvious ability of eye-hand co-

ordination – an ability that is assessed in most general tests of motor performance. 

This ability alone embraces a wide range of possible movement behaviours dependent 

upon what is moving - the person, the target or both. Each of these categories of 

action can, in turn, be resolved into qualitatively different movement subactions. The 

act of catching a ball, for example, involves reaching to the position where the 

approaching ball will arrive and to perform a grasping action at the right time. In 

principle, when a catch is unsuccessful, the problem could reside in either, or both, of 

these component actions, as well as in the integration of the components into an 

efficient overall action. 

 With these constraints in mind, the research to be reported here focuses on just 

one action category, namely, eye-hand co-ordination when an object is moving and 

the person interacting is stationary (sitting). The task chosen is that of catching a ball, 

a task with severe temporal and spatial constraints and one with which all children are 

confronted at an early age.  Alderson, Sully and Sully (1974) have signalled the 

severity of the constraints.  Their analyses of the act of catching a tennis ball 

travelling with a speed of 10 ms-1, albeit with adult subjects, showed the spatial 

constraints to be reflected in both gross and fine orientation. A gross spatial 

orientation of the catching hand took place some 200 ms prior to the catch, followed 

by a fine orientation some 50 ms later.  The temporal adjustment, which involves the 

grasp and hold subactions, begins some 32-50 ms before the completion of the 

catching action and is constrained by a time window of +/-35 ms. 

 This kind of analysis can, of course, be pursued in more depth by asking, for 

example, what is it that leads to poor spatial and temporal conformity in a task like 

catching?  This shifts the emphasis away from the outcome (spatial or temporal 
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conformity) to the kinematics of the movements initiated and carried out in the 

performance of the catching action. With respect to reaching and grasping, the 

transport and grasp subactions have to be finely attuned if performance is to be 

optimal.  In the neurological literature, it has been proposed that these two subactions 

depend upon output information from different cortical regions - the posterior parietal 

and the inferior temporal, respectively (Jeannerod 1981, 1984; Jeannerod, Arbib, 

Rizzolatti & Sakata 1995). Jeannerod's (1994) contention is that reaching and 

grasping correspond to two different visuomotor channels. One deals with extrinsic 

properties of objects (their location in space with respect to the body, their velocity of 

motion, etc.) its function being to transport the hand to a desired location within 

extrapersonal action space. The other channel deals with intrinsic properties (like 

shape or size) its function being to shape the hand with the purpose of manipulating, 

identifying or transforming objects. Goodale and Milner (1992), on the other hand, 

claim that the ventral stream (projections from the primary visual cortex to the 

inferotemporal cortex) that is involved in identifying the approaching object 

(perception) operate independent from the dorsal stream (projections from the primary 

visual cortex to posterior parietal cortex) that control hand shaping (action). Thus, the 

degree to which the reaching and grasping actions are operated by independent 

visuomotor channels remain unclear. However, whether the channels are truly 

separated or linked, the subactions must be co-ordinated in time and space. 

 In summary, what is being presented here is a framework within which to 

explore one sub-category of the field of movement co-ordination, namely, eye-hand 

co-ordination using ball catching as a paradigm example.  What makes this task 

particularly interesting is that, in everyday catching behaviour, spatial and temporal 

control are inextricably confounded. The hand has to be in the right place at the right 

time!  In order to reduce the level of confounding and make it possible to tease out the 

locus of the problem, the methodology developed below has been designed in such a 

way as to minimise either the temporal or spatial constraints. The spatial constraints 

are emphasised by focusing on the reach to catch without the requirement to actually 

grasp the ball - proximal control (Experiment 1). The temporal constraints are 

emphasised by having the ball move on an invariant trajectory (Experiment 2) prior to 

it being caught by the hand (distal control), the forearm being constrained in order to 

reduce considerably the need for proximal control. 
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 On the basis of empirical work on catching with ‘normal’ subjects 

(Savelsbergh, Whiting & Bootsma 1991; Savelsbergh, Whiting, Burden & Bartlett 

1992; Savelsbergh, Whiting, Pijpers & Santvoord 1993) and on spatial interception in 

children with perceptuo-motor dysfunction (Bairstow & Laszlo 1989) and in the light 

of Alderson et al.’s (1974) analyses, the following hypothesis are made. In line with 

the results from the Bairstow and Laszlo study (1989) children with motor co-

ordination problems will have longer response times to moving targets i.e. a delay in 

initiating both their proximal actions to intercept and their distal actions to open the 

hand and, subsequently, to grasp the ball. This, it is proposed, is because of planning 

uncertainty. Due to spatial uncertainty and limited proximal control (Jeannerod, 1986) 

they will be less accurate in spatially intercepting the target (ball). Their inability to 

match the severe temporal constraints (Alderson, Sully & Sully 1974) will cause high 

variability in the grasping action. Finally, they will show more preparatory 

movements (i.e. not strictly required for carrying out the task) in both the reaching 

and grasping phase due to spatial uncertainty about the position of the target and its 

time of arrival. 

 

4.3 Experiment 1: Spatial uncertainty in the interception of a moving object 

 

4.4 Methods 

 

Subjects 

All the 10- to 11- year old children from a city school in Norway (N=54) were tested 

on the Movement Assessment Battery for children (MABC) (Henderson & Sugden, 

1992). Eight of the children, four males and four females, recorded scores below the 

5th percentile (mean percentile 2.13; S.D. = 1.64) and were consequently categorised 

as having motor co-ordination problems (MCP). They constituted the experimental 

group. A sex- matched control group, without motor problems, of eight children who 

scored at or above the 65th percentile was also selected (mean percentile 89.38; S.D. = 

8.37). To ensure that no motor problems were present in the control group, the 8 

children with the best scores on the MABC were selected. The mean age of the MCP 

group was 10.97 years (S.D. = 0.32) while that of the control group was 10.86 years 

(S.D. = 0.38). All the 16 children selected were right handed. 
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Apparatus 

A 'Plexiglas' screen measuring 1.21m long by 0.83m high was attached to the front 

edge of a table, behind which subjects sat in order to locate an approaching ball.  The 

subject held a round disc, 5 cm in diameter in his or her hand (equivalent in diameter 

to that of the ball).  In the middle of the disc a reflective marker was placed. The 

subject sat on a chair which could be adjusted in height, for both seat and foot rest 

position, leaving an angle of 90 degrees at both knee and elbow when the underarm 

was resting on the surface of the table. A cross within a circle marked the centre of the 

screen. This was at a right angle in front of the subject’s head, about at the height of 

the nose. The cross marked the starting point for the subject's movements.  Outside 

this, an area within which the subject could easily reach (the workspace), was marked.  

This was the area into which the ball to be located could be tossed by the 

experimenter. 

 A reflex taped rubber ball, 5 cm in diameter, was tossed overarm at the screen 

from a distance of 2.5m by an experimenter wearing dark sunglasses in order to 

prevent eyecontact that could provide visual cues to the subject. The mean horizontal 

velocity of the ball in flight was 4.21 m/s with a standard deviation of 0.21 m/s. There 

were no considerable differences in ball speed between the groups. The mean 

horizontal velocity of the balls (n = 48) thrown to the children in the MCP group was 

4.21 m/s (S.D. = 0.24m/s) compared to 4.19m/s (S.D. = 0.20) for the balls (n = 48) 

thrown to those in the control group. The difference between the groups was not 

significant (T-test for independent samples, two tailed). The balls were thrown so as 

to hit the screen with an equal spatial distribution over the workspace (upper-right, 

upper-centre, upper-left, lower right, lower centre and lower-left) in a random order.  

To ensure conformity, the mean distance between the centre of the screen and the 

collision point for the sequence of throws was computed. For the 48 analysed trials (6 

trials per person) of each group the mean movement distance (from the centre of the 

screen to the point where the ball hit the screen) was 317 millimetres (S.D. = 80.01) 

for the MCP group and 319.9 millimetres (S.D. = 76.18) for the control group. A two 

tailed t-test for independent samples revealed there to be no significant differences 

between the means of these distances for the two groups of subjects, i.e. the total 

movement distance required (the sum of the distances between the starting position of 
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the disc and the point at which the ball hit the screen) was approximately the same for 

the two groups.  

 Also, there was no significant difference in ball flight times (means and S.D.) 

between the groups. The mean ball flight time for the MCP group (n = 48 trials) was 

462.80 ms (S.D. = 30.72) and that of the control group (n = 48 trials) was 458.10 ms 

(S.D. = 22.76).  

  

Testing procedure 

The subject, seated on the chair (adjusted to give the most comfortable position within 

the constraint requirements) behind the screen was informed that a ball was going to 

be tossed towards the screen.  He or she was instructed as to how to hold the disc, 

how to move it in a ballistic action while maintaining contact with the surface starting 

the movement from the central, baseline, position. The subject was told to intercept 

the ball as it hit the screen and then to stop the movement. 

 All the children were instructed, both verbally and visually, by manually 

guiding them through the movements before the first trial. Each child performed 10 

trials in succession. This limit was used in order to avoid too much influence of a 

potential learning effect. The first three trials were used as practice trials. During the 

practice trials instructions and corrections were made. This was necessary to make 

sure that the children understood the procedures. Trials 4-9 were to be used for 

statistical analyses. To ensure enough data, in case one of the trials 4-9 failed, the 10th 

trial was performed. However, it became necessary to include the 10th trial in the 

statistical analyses only in one occasion, because one of the reflexive markers fell off. 

The entire testing procedure lasted about 15 min for each child.  

 

Data analyses and statistics 

The three dimensional position (x, y, and z) of the markers were recorded by five 

ProReflex cameras (model MCU 240) using a sampling frequency of 200 Hz. The 

cameras were positioned at a height of 2 m above the floor and connected to a host 

computer (Gateway 2000) with Qtrac software for sampling of kinematic data. Prior 

to each sampling session the cameras were calibrated using the calibration procedure 

supplied by the manufacturer. The accuracy of the velocity measures was +- 0.015 

m/s and for the position measures +-0.14 mm. 
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All statistics were performed using the SPSS statistical package. The means 

and standard deviations for the dependent variables were computed for each subject. 

All comparisons between the groups utilised the T-Test for independent samples  

 

Dependent variables 

Two sets of dependent variable measures were used - one based on temporal 

measures, in ms relative to ball-screen contact (Figure 1) and the other based on 

distance, in millimetres, between the disc and the ball-screen collision point.  

 Time of Movement Initiation (TMI): The time at which the first movement of 

the disc away from the starting position occurred after the ball was tossed. This was 

defined as the point in time at which the acceleration in the x and/or y dimension 

started to increase above 2 standard deviations of mean (0) baseline value and 

remained positive more than 100 ms (Figure 2). The variable TMI was measured in 

ms prior to the time of ball-screen contact (obtained from the Pro-reflex recordings) 

as well as in ms after the time of ballrelease. 

 Time of Stopping (TS): The time at which the children stopped the movement 

of the disc as the ball hit the screen. TS was identified as the first point in time when 

the acceleration returned to baseline (0) and stayed within 2 standard deviations of the 

mean baseline for more than 100 ms (Figure 2). 

Both the Distance of disc from ball-screen collision point at the moment of 

Collision (DC) and the Distance of disc from ball-screen collision point at time of 

Stopping the movement (DS) were measured. The distance between the disc and the 

collision point (the point at which the tossed ball hit the screen) was computed using 

the x and y co-ordinates for the position of the disc and the x and y co-ordinates of the 

ball-screen collision point, respectively, from the Pro-reflex recordings. At time of 

collision the x and y values of the disc were subtracted from those of the ball. The 

distance (d), in millimetres, was computed using the Pythagorean rule: d2 = (xdisc – 

xball)2 + (ydisc - yball)2. Distance was measured in millimetres.  
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Figure 1: Velocity plots of the x (sideways) and y (upwards) dimensions of the disc 

movement as well as the z dimension (from thrower to screen) of the ball movement. 

Time of ball-screen contact as well as the variables Time of Movement Initiation 

(TMI) and Time of Stopping (TS) are marked. The time scale is in milliseconds 

relative to ball-screen contact  (= 0). 
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Figure 2: The figure shows how the variables TMI and TS were obtained from the 

acceleration curve of the disc movement. Note that the acceleration curve is a 

derivative of the velocity curve (Disc x) in Figure 1. 
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4.5 Results 

 

The results are displayed in Table 1. 

 

Timing of the disc movements 

The MCP children initiated their movements (TMI) on average 387.6 ms before the 

ball hit the Plexiglas screen (the moment of collision), 24 ms later than the controls 

(411.6 ms). The difference in TMI was not significant. However, there was a 

significant difference in standard deviation between the two groups, the MCP group 

being more variable (S.D. = 113 ms) than the control group (S.D. = 54 ms) (p = 0.028, 

one-tailed, equal variances assumed).  

The MCP children stopped their movements (TS) 241.4 ms (S.D. = 219 ms) 

after ball-screen contact, on average 96.8 ms later (S.D. = 90 ms) than the controls. 

The differences in mean TS and standard deviations of TS (193 for the MCP group vs. 

113 for the control group) were not significant.  

The total movement time (TMI + TS) was 629 ms (S.D. 155.8 ms) for the 

MCP group and 556.2 ms (S.D. 104.7 ms) for the control group, but the difference in 

means was not significant. However, there was a significant difference in standard 

deviations (p = 0.037, one-tailed, equal variances assumed), the MCP children being 

more variable than the controls.  

 

Distances between the disc and the ball  

There was a significant difference between the groups in the distance between the disc 

and the point at which the ball hit the screen at the moment of ball-screen collision 

(DC) (p = 0.024, one-tailed, equal variances not assumed), the MCP children being 

further away from their target (M = 166.96 mm) than their controls (M = 97.34 mm). 

In this respect there was also a significant difference between the groups in standard 

deviations (p = 0.025, one-tailed, equal variances assumed).  

The mean distance between the disc and the point at which the ball hit the 

screen at the time the subject stopped the disc movement (DS) was 112.44 mm (S.D. 

= 62.40 mm) for the MCP group and 61.58 mm (S.D. = 31.44 mm) for the controls, 

respectively, the difference between the groups being significant (p = 0.014, one-

tailed, equal variances not assumed). There was also a significant difference between 

the groups in standard deviations on this variable (p = 0.007, one-tailed, equal 
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variances assumed), the MCP group being more variable in their performance than the 

control group.  

 

 
Table 1: The table shows means and standard deviations (S.D.) for the MCP-group and the Control 

group on the temporal and spatial measures of the reaching action: Time of Movement Initiation 

(TMI), Time of Stopping the disc movement (TS), Distance between the disc and the ball at the 

moment of ball-screen Collision (DC), and Distance between the disc and the ball-screen collision 

point at time of Stopping the disc movement (DS). The temporal measures, TMI and TS, are given in 

milliseconds prior to (-) and after (+) ball-screen contact respectively. TMI is also given in 

milliseconds after ball-release (in parenthesis).  The spatial measures (DC and DS) are given in 

millimetres. 

 MCP group  Control group p * 

 Mean S.D. Mean S.D.  

TMI -  388 (75) 100 (100)  - 412 (45)   39 (36) n.s.  (n.s.) 

S.D. of  TMI    113 (111)   74 (80)      54 (49)   30 (33) 0.04  (0.03) 

TS + 241  219 + 144   90 n.s. 

S.D. of TS    193 210    113 125 n.s. 

DC    167   81      97   19 0.02 

S.D. of DC      78   30      50   22 0.03 

DS    112   52      62   14 0.01 

S.D. of DS      62   27      31   15 0.01 

* T-test for independent samples (1-tailed). 

 
  

4.6 Discussion experiment 1 

 

Temporal efficiency 

Although the difference between the groups on the dependent variable TMI was not 

significant, it was in the expected direction, and consistent with Bairstow and Laszlo's 

(1989) finding that children with eye-hand co-ordination problems have longer 
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response initiation times to moving targets than normal children. This later movement 

initiation is likely to be a visuo-spatial anticipation problem, more time being needed 

to appreciate where the ball is heading.  

The significantly larger standard deviations in time of movement initiation in 

the MCP children confirm their lack of consistency which, in turn, may signal poor 

visual perception abilities, a problem that has been repeatedly signalled in the 

literature (Schoemaker et al., 2001; Wilson & Maruff, 1999; Wilson & McKenzie, 

1998). The visual perceptual problem would be related to interpreting spatio-temporal 

information, such as the speed and spatial direction of the ball in flight. However, 

another possibility is that the problem is not related to visual perception per se, but to 

the coupling of perception and action, i.e. to react properly to the visual stimuli. 

 The differences between the groups with regard to how quickly they stopped 

the disc movement after the ball hit the screen (TS) was in the expected direction, 

although not significant, and in accordance with earlier findings that children with 

MCP have a longer reaction time than normal controls (Henderson, Rose & 

Henderson, 1992).  

 

The distance between the disc and the target  

The finding that the MCP children made significant larger spatial errors and were 

more variable in their performance (larger S.D.’s) than the control group both at the 

time of ball-screen contact (DC) and at the time they stopped their movement (DS) 

supports Bairstow and Laszlo's (1989) contention that children with perceptuo-motor 

dysfunction are likely to be less accurate in spatial adjustments. Under the constraints 

of the present experiment where the task was to reach out to the correct spatial 

position, a task effected by the proximal joints of the arm, this could be a sign of poor 

proximal control. The fact that the difference in spatial error (both DC and DS) 

between the performance of the MCP group and the control group was larger at ball-

screen collision time (DC) than at the time they stopped their movement (at the exact 

point where they thought the ball had been hitting the screen) (DS) indicate that the 

MCP children performed better when they were given more time. This indicates that 

they do not only suffer from a spatial problem, but also from a temporal problem. 

According to Lee (1976) the perception of the spatial and temporal aspects of a ball in 

flight are closely interrelated, the retinal image of the optical flow fields around the 
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ball providing direct information about speed, direction, distance, orientation and size 

relative to the observer.  

 Not only in movement initiation time, but also in spatial error the MCP 

children appeared to be more variable in performance than those without motor 

impairments. What would such instability indicate? Apart from visual perceptual 

problems already mentioned, it could be an indication of inexperience with similar 

kinds of task. In that respect, instability of performance could be a sign of uncertainty, 

or that the subject is trying out different movement strategies. Instability could also be 

a sign of poor motor control (i.e. as a result of slow firing rate at the neurological 

level).  

 

 

4.7 Experiment 2: Temporal uncertainty in interception  

 

It is perhaps not surprising that no significant temporal problems were found in either 

group in experiment 1, the experiment having been designed so as to minimise 

temporal constraints. However, a temporal problem in the MCP children that might be 

revealed under other constraints cannot be ruled out. Potential temporal problems can 

best be studied in a situation in which they are more constrained. The grasping action 

is a good case in that it requires fine temporal adjustments of the fingers in relation to 

the approaching ball if a catch is to be successful. Experiment 2 was designed to 

enable identification of differences between the two groups with respect to the 

temporal occurrence of the different phases of the grasp: movement initiation, 

maximal aperture and initiation of the grasp (hand closing). 

 

4.8 Methods 

 

Subjects 

The same subjects as in experiment 1 were used.  

 

Apparatus 

A pendulum system was constructed comprising a rod of length 20-cm attached, at 

either end, to the ceiling by strings. A ball diameter 5-cm was fastened to the end of 

the rod. The pendulum, when raised from its resting position, assumed the shape of a 
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parallelogram and could be held in its new position by an electromagnet. The 

horizontal distance between the ball, held by the magnet, and the hand was 270 cm. 

The movement time of the pendulum was 1035 milliseconds and the mean horizontal 

velocity was 2.39 m/s. 

 The subject sat on the same chair as in Experiment 1, with the right arm 

secured to a black metal armrest, thereby restricting the catching movement to distal 

control only. The armrest could be adjusted to the length of the lower arm of the 

subject and was fixed to a table 70 cm broad, 40 cm wide and 68 cm high. The 

experiment was carried out in the same room as Experiment 1, the same five 

ProReflex cameras and recording system being used as in the first experiment. 

Reflexive markers were placed on the nail of the thumb, the nail of the middle finger 

and on the pendulum (11 cm behind the ball). The three dimensional position (x, y, 

and z) of the markers were recorded by five ProReflex cameras (model MCU 240) as 

described under Experiment 1. 

  

Testing procedure 

The subject was seated behind the desk with the hand placed in the armrest and was 

told to make a clean catch of the ball. It was stressed that it was important to catch the 

ball before it made contact with the back of the hand and that the hand should be 

closed (i.e., the thumb and the middle finger together) between trials. If this did not 

occur, the experimenter reminded the subjects of the requirement to close the hand 

before the ball was released. If the subject did not manage to grasp the ball before it 

hit the back of the hand the trial was not repeated, in order to avoid that an increased 

number of trials would cause a learning effect. The subjects were given three practice 

trials before actual testing began and then a further seven trials were completed, with 

10- to 15- sec. intervals between trials. Instructions and advice were given during the 

three practice trials. The whole testing procedure lasted for about 10 minutes. The 

first six trials, after the three practice trials, were selected for statistical analyses. The 

seventh trial (after the three practice trials) was performed in order to ensure enough 

data, in case one of the trials 4-9 failed (i.e. due to technical problems). In seven cases 

(four MCP children and three controls) one of the six trials intended for analyses had 

to be replaced by the seventh trial due to fall out of reflexive markers. 

 79



Analyses 

Video analyses were obtained using the same setup as in Experiment 1. For each 

frame of the ProReflex recordings, from the release of the ball until the ball was in the 

hand, the x, y and z positions (three dimensions) of the thumb, the middle finger and 

the ball were obtained. From these data the aperture of the hand was calculated and 

plotted against the time of contact between the ball and the hand. 

 

Dependent variables 

The grasping action was divided up into different phases identified by the dependent 

variables illustrated in Figure 3a and b.  

Time of Initiation of Ballistic Opening Movement (I): Time prior to ball hand 

contact that the first ballistic opening movement of the fingers was initiated. This was 

indexed by an increase in acceleration above 2 standard deviations of mean baseline 

value (0) and where the velocity remained positive more than 100 ms. 

 Time of Maximal Aperture (MA): The point in time, between the Initiation of 

the Ballistic Opening Movement (I) and Ball-Hand Contact (C) at which the distance 

between thumb and middle finger was the greatest, computed by subtracting the y-

values of the thumb from those of the middle finger. 

 Time of Grasping the Ball (G): Time, prior to ball hand contact, at which the 

ballistic grasping action was initiated. Some children tended to open up early and 

make two or more closing movements before contact with the ball. Time of grasping 

(G) was, thus, defined as the last ballistic closing movement before ball-hand contact. 

This variable was identified as the point in time before ball-hand contact when the 

velocity (of the distance between thumb and middle finger) changed from positive to 

negative (i.e. passed 0). 
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b) Typical example of plots of the ball catching action for a MCP child.

90

100

a) Typical example of plots of the ball catching action for a normal child.

Initiation of
opening
movement (I)

Maximal Aperture (MA)
               and
initiation of the Grasp (G)

Ball-hand
Contact
(C)

Initiation of the Grasp (G)

Ball-hand
Contact (C)

Initiation of
opening
movement (I)

Figure 3:  Data plots of the hand aperture (distance in mm between thumb and middle finger), showing 
how the different variables were identified: time of Initiation of ballistic opening movement (I), time of 
Maximal Aperture (MA), time of initiation of Grasping movement (G), and time of ball-hand Contact 
(C). Time is measured in seconds prior to ball-hand contact (C) (=0) . 

 81



Time of Ball-Hand Contact (C): The point in time at which the released ball 

came into contact with the hand of the subject. This point was identified as the point  

in time at which the horizontal acceleration of the ball started to increase above 2 

standard deviations of mean baseline value. 

 Smoothness of the Grasping Movement (SGM): A smooth grasping movement 

includes one opening and one closing phase accompanied by relatively few changes in 

acceleration. However, a less smooth grasping movement may contain several 

opening and closing subcomponents and correspondingly more acceleration changes. 

SGM was measured by the number of zerocrossings on the acceleration profile 

obtained from the distance measures between the middle finger and thumb.

 Smoothness of the Grasping Movement pr. unit of Time (SGM/t): Some 

children may have more jerky movements than others, meaning that they have more 

acceleration changes per unit of time. This was measured by dividing the number of 

zero-crossings by the duration of the whole grasping movement (from movement 

initiation to ball-hand contact). 

  

 

4.9 Results 

 

Analyses 

The results were analysed using the same model as for Experiment 1 i.e., a 

comparison between the first six observations for each individual across groups, the 

T-test for independent samples, being employed for all comparisons. 

 

Timing of the catching action 

The standardisation procedure was to set the time for ball-hand contact (C) at 0 so that 

the different temporal measures would indicate time in milliseconds (ms) prior to ball-

hand contact.  

Table 2 shows that the children in the MCP group initiated their ballistic 

opening movements (I) earlier (M = -665.9 ms: S.D. = 212.6 ms) than the controls (M 

= -374.3 ms; S.D. = 119.8 ms), on average a mean difference of 291.6 ms, the 

difference was significant (p = 0.002, one-tailed, equal variances assumed). The S.D. 

for the MCP group was slightly larger (M = 227 ms) than that of the control group (M 

= 224 ms), but the differences were not significant.  
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Table 2: The table shows mean and standard deviations for the MCP-group and the Control group on 

the temporal measures of the grasping action: Time of initiation of ballistic opening movement (I), 

Time of maximal aperture between thumb and long finger (MA) and Time of the grasping action (G). 

The temporal measures are all given in milliseconds (ms) prior to ball-hand contact. Smoothness of the 

grasping movement (SGM) and Smoothness of the movement pr. unit of time (SGM/t), as indicated by 

the number of zero crossings (SGM/t = number of zero crossings pr. second) in acceleration, is also 

shown (few zero crossings indicate smoothness). 

 MCP group  Control group p * 

 Mean S.D. Mean S.D.  

Initiation (I) - 666 213 - 374 120 0.00 

S.D. of  I   227 127    224 116 n.s. 

MA - 115 139 -    29   26 0.05 

SD of MA   121 140      29   31 0.03  

Grasp (G) -   33   24 -    18   14 n.s.  

S.D. of G     23   11      15   12 n.s.  

SGM     33     9      23     9 0.03 

S.D. of SGM     10     4        7     3 0.02 

SGM/t     33     9      23     9 0.03 

S.D. of SGM/t     10     4        7     3 0.02 

* T-test for independent samples (1-tailed). 

 

 

The MCP-group reached maximal aperture (MA) earlier (M = -115.1 ms; S.D. 

= 138.8 ms) than the controls (M = -29.32 ms; S.D. = 25.75 ms. In the MCP group 

maximal aperture (MA) occurred 550.8 ms after the initiation of the ballistic opening 

action compared to only 344.98 ms in the control group. The difference was 

significant (p = 0.05, one-tailed, equal variances assumed). The S.D. was considerably 

larger for the MCP-group (M = 121.10 ms) compared to the control group (M = 28.59 

ms), and the difference was significant (p = 0.05, one-tailed, equal variances not 

assumed). 
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There was little difference between the groups with respect to timing of the 

grasp (G). The grasping action was initiated earlier by the MCP children (M = -32.95 

ms) than by their controls (M = -18.46 ms), but the difference was not significant. 

Neither was there any significant difference in standard deviation for this measure, the 

S.D. being 22.55 ms for the MCP-group and 15.05 ms for the control group.  

The smoothness of the grasping movement (SGM) was significantly less (p = 

0.028, one-tailed, equal variances assumed), i.e. more zero-crossings in the 

acceleration profile, for the MCP group (M = 32.79; S.D. = 8.89) than for the control 

group (M = 23.39; S.D. = 9.07). The children in the MCP group were also more 

variable than the control group in this respect, as indicated by significantly (p = 0.024, 

one-tailed, equal variances assumed) larger within subject standard deviations (M = 

10.22; S.D. = 3.72 vs. M = 6.52; S.D. = 3.02). The MCP children had significantly (p 

= 0.028, one-tailed, equal variances assumed) more zero crossings pr. time unit 

(SGM/t) than the control children (M = 32.79; S.D. = 8.88 vs. M = 23.38; S.D. = 

9.07). Also on this variable there was significantly (p = 0.024, one-tailed, equal 

variances assumed) more within subject variability (as indicated by the larger S.D.’s) 

in the MCP group (M = 10.22; S.D. = 3.72) than in the control group (M = 6.52; S.D. 

= 3.02).  

 

 

4.10 Discussion experiment 2 

 

The finding that the MCP children started to open their hand earlier in time in the 

pendulum test is in line with the predictions made in the Introduction. One 

interpretation is that the MCP children, being aware of their eye-hand co-ordination 

problems, adopted a strategy that would allow them more time for decision making. 

The lower variability in these actions, as indicated by the low within subject standard 

deviations, suggests a consistent strategy on their part. Such a strategy could not be 

adopted in Experiment 1 because the difficulty in predicting where and when the ball 

would hit the screen would serve as an additional constraint.  

 The MCP children reached all phases of the grasping action (movement 

initiation, maximal aperture and initiation of the grasp) earlier than their controls, 

although the difference between the groups in grasp initiation was not significant. 

That, however, might be due to the fact that the short distance between thumb and 
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long finger provides a time frame for the ballistic action, which would be too small 

for significant variances to occur. 

 The finding that the MCP-children were significantly earlier in maximal 

aperture than the control group cannot be seen as an artefact of the earlier movement 

initiation, as the time between movement initiation and maximal aperture was larger 

in the MCP-children than the control group. This may be explained by the fact that 

MCP children tended to make more opening and closing movements during the whole 

grasping action, which was shown by the high number of acceleration changes 

(SGM). The early occurring movement initiation (I) and maximal aperture (MA) 

together with the high number of acceleration changes may be a strategy to 

compensate for temporal uncertainty. It is likely that a child who is not able to 

precisely estimate the time to contact would choose the strategy of opening up earlier 

rather than running the risk of opening up too late and not being able to catch the ball. 

In that case it would signal a problem in visual information processing. Another 

possibility why the MCP children chose this strategy might be that they have 

problems in tuning their finger movement to the size of the ball as a result of poor 

proprioception. The jerky movements (SGM/t) shown by the MCP children could be 

related to a proprioceptive problem as well as to an underlying timing deficit. Jerky 

movements, as those observed here, are typically associated with cerebellar deficits, 

as patients with cerebellar lesions usually have problems in performing smooth 

directed movements. 

 

  

4.11 General discussion 

 

The purpose of the two experiments reported was to discover to what extent MCP 

children experience problems when their behaviour is constrained spatially or 

temporally in interaction with a dynamic environment.  The results confirmed that the 

MCP children differed from normal controls in a number of respects. 

 Although there was a tendency for the MCP children to initiate their 

movements later in the reaching task (TMI), the opposite tendency was found for 

movement in the initial phase of the grasping task (Experiment 2) - the MCP children 

initiating their opening movement (I) earlier. One may speculate whether these late 

and early movement initiations in the two different tasks reflect a coping strategy to 
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compensate for weaknesses of which the MCP children have become aware. This 

explanation would be consistent with research by Henderson, Rose and Henderson 

(1992) who suggest those children with visual-perceptual problems may try to 

overcome their deficit by changing the initiation time of their movements. Under the 

constraints imposed by Experiment 1, an efficient way, in this respect, would be to 

wait and see where the ball is going to land, before initiating a movement in that 

direction.  Correspondingly, an efficient way to overcome the temporal constraints in 

the grasping task in Experiment 2 would be to initiate movement early to allow a 

greater tolerance band for hand opening.  For this reason, the early movement 

initiation in grasping would seem to reflect more or less the same problem as the late 

movement initiation in reaching, namely, a problem with the pick-up of visual 

information from a moving display (Henderson & Hall, 1982). A suggestion for 

further studies would be to include a “normal” catching task that comprises of both 

components (i.e., reach and grasp). This could confirm the hypothesis that the late 

movement initiation time (TMI) for the DCD group is compensated for by early hand 

opening movements. 

 However, this does not mean that a proprioceptive problem can be discarded. 

The jerky finger opening movements may well be related to poor proprioception. In 

addition Sigmundsson et al. (1997a,b) have demonstrated that younger groups of 

children with poor eye-hand co-ordination experience problems on pure 

proprioceptive tests (where vision is not involved), and that these problems are more 

pronounced in the non-dominant hand. Applying the same kind of proprioceptive tests 

as those used by Sigmundsson et al., as well as tests of visual functioning to the 

present group of children would help to explain whether the observed motor problems 

are related to an underlying problem in the visual or proprioceptive modality.  

It might well be that one underlying neural disorder, such as for example a 

temporal problem, could give rise to proprioceptive as well as visual problems. The 

jerky movements may be a manifestation of such a problem. Considering that jerky 

movements are typical signs of cerebellar deficits, this could be a plausible 

hypothesis. 

 One intriguing possibility that the methodology used in these two experiments 

provides is that of distinguishing between deficiencies which manifest themselves in 

proximal control (Experiment 1) and those that manifest themselves in distal control 

(Experiment 2).  Sigmundsson, Whiting and Ingvaldsen (1999b) have previously used 
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this kind of paradigm in an experiment with MCP children.  The novelty of this 

approach is that it allows some statements to be made about the brain/behaviour 

interface. This issue was raised in the Introduction in reference to Jeannerod’s (1994) 

contention that reaching and grasping correspond to two different visuomotor 

channels.  

As, in these experiments, the MCP children appeared to demonstrate 

difficulties in reaching as well as in grasping, their problem may lie in the control of 

the large proximal muscle groups as well as the fine distal manipulative movements.   

 Based upon the data provided by these two experiments three candidate 

explanations are suggested:  

1. MCP children, like the sample of this study, show fundamental and specific 

neurological problems.  

2. MCP children have a lack of training and experience in tasks of this nature 

(interacting with a moving display), as suggested by Bairstow and Laszlo 

(1989), their obvious co-ordination difficulties leading them to avoid situations 

of this kind in everyday life. 

3. The MCP children adopt a conscious strategy in order to compensate for some 

fundamental spatial and/or temporal inadequacies, of which they may be 

aware. 

Distinguishing between these three explanations must, necessarily, await further 

empirical work. However, the explanations are not incompatible. If these children have a 

neural deficit (1) that causes problems in tasks like ball catching, they will avoid ball-

catching activities in every day life. This will lead to a lack of experience in tasks of this 

kind (2). When exposed to such tasks they will adopt a certain strategy (3), as indicated 

in the present study, to compensate for their inadequacies. 

The present study shows clearly that motor impaired children are poor in 

spatial skills under temporal constraints. It is very likely that some underlying neural 

deficit may explain these problems observed at the level of behaviour. Further studies 

are necessary to assess what kind of biological deficit could account for such 

problems as those observed here. Follow-up studies aiming at answering this question 

are recently being conducted at our laboratory. 

In conclusion, the discriminative findings of these two experiments suggest 

that the kind of paradigm put forward may lead to new insights into the aetiology of 

co-ordination disorders as exhibited by the MCP children who served as subjects.  

 87



This optimism is based upon the fact that in making the proximal/distal distinction 

and relating it to spatial and temporal deficits a window is opened into more precise 

explanations of the locus of hand-eye co-ordination problems in children with poor 

movement co-ordination. 
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Chapter 5 

 

VISUAL VERSUS PROPRIOCEPTIVE EXPLANATIONS OF 

POOR MOVEMENT CO-ORDINATION IN CHILDREN 
 

 

5.1 Abstract 

 
In an earlier study the performance of eight 10-11 year old children with movement co-ordination 

problems (MCP) was shown to be significantly worse than a matched group of controls on spatial and 

temporal parameters. Three putative deficiencies were put forward to explain these differences: in the 

visual system, in the proprioceptive system or in the matching of visual to proprioceptive (or vice-

versa) information. In order to determine the viability of one or more of these explanations the same 

groups of children were tested on three different visual tasks (stemming from the magnocelluar deficit 

theory) and two sensory matching tasks - proprioceptive and visual/proprioceptive - stemming from the 

inter/intrahemispheric deficit hypothesis. The results showed the MCP group to be significantly poorer 

than the control group on all three visual test conditions as well as the condition where visual location 

of a target had to be matched proprioceptively with the right hand. No significant differences between 

the groups were found in those conditions where the subjects had to depend on proprioceptive 

information only. 

 

 

5.2 Introduction 

 

The incidence of Developmental Co-ordination Disorders (DCD) in school-aged 

children, has been reported to be in the region of 5-6% (DSM-IV, APA, 1994). With 

an eye on prevention and intervention, many recent research endeavours have been 

directed towards identifying putative underlying dysfunctions at various levels of 

neuropsychological analysis. For example, in a recent study Estil, Ingvaldsen and 

Whiting (2002) focused on the reaching and grasping subactions of one-handed ball 

catching in a group (n=8) of 10 and 11 year-old children with movement co-

ordination problems (MCP).  They were shown to initiate their reaching movements 

later and to make larger spatial errors than their age-matched controls (n = 8).  They 

were also shown to start to open up the fingers of their catching hand earlier in time 
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before ball-hand contact and to reach maximal aperture earlier.  Variability in the time 

of appearance of maximal aperture in this group of MCP children was also greater.  

In an attempt to identify the nature of the deficits that lead to these 

inconsistencies, Estil et al. (2002) were led to speculate that they were the 

consequence of: visual deficits in the perception of the trajectory of the ball, 

proprioceptive deficits in the control of their hand movements or, a problem in 

matching visual and proprioceptive information.  

Support for the visual deficit hypothesis is provided in a recent study by 

Lefebvre and Reid (1998) which showed that a group of 5-7 year-old motor impaired 

children (n=40) were significantly worse in predicting ball flight trajectories (at most 

viewing times) than a normal control group (n=46). Questions about the underlying 

neuropsychological deficits that might have given rise to this problem were left open.  

 In searching for possible explanations, one is attracted to the magnocellular  

deficit theory of Stein and Walsh (1997), albeit conceived in the context of dyslexia8. 

The visual system may be subdivided into magnocellular and parvocellular 

functioning. Magnocellular functioning is mediated by large nerve cells 

(magnocellular) that form a pathway from the retina, via the lateral geniculate 

nucleus, to the visual cortex. Their thick myelin sheet enables them to carry electrical 

impulses faster than other nerve cells leading them to play a crucial role in informing 

the visual cortex about rapid changes in events or movements in the environment. The 

magnocellular system is also concerned with the control of eye movements and the 

stabilisation of binocular function. A plausible hypothesis, therefore, is that the 

movement problems of some poorly co-ordinated children, particularly with reference 

to moving objects in the environment, are a consequence of magnocellular processing 

inadequacies. Their problem in shaping their hands relative to the size of the ball 

could, in turn, be attributed to deficiencies in the functioning of the parvocellular 

visual system which consists of smaller cells that play a major role in the processing 

of information about pattern, shape and colour of stimulus objects. 

                                                 
8 The magnocellular theory of dyslexia mainly has its origin in a post mortem study of five dyslexic 
brains, by Galaburda and colleagues (Livingstone et al., 1991), which showed that the magnocellular 
layers of the lateral geniculate nucleus were disordered, and that the magnocellular cells were 20% 
smaller than in normal brains. Also, psychophysical studies have shown that dyslexics have reduced 
sensitivity at low spatial frequencies and luminance levels favoured by the magnocellular system, 
whereas they have normal sensitivity in higher spatial frequencies served by the parvocellular system 
(Lovegrove et al, 1980).  
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Even if this interpretation should prove to have explanatory power it does not, 

necessarily, mean that proprioceptive problems might not also be present and 

contributing to, for example, poor motor co-ordination in children on tasks involving 

a major movement component. That such a statement might be justified is confirmed 

by Sigmundsson, Ingvaldsen & Whiting's (1997a,b; Sigmundsson, Whiting & 

Ingvaldsen, 1999) demonstration that younger groups (age range 7-8 years) of motor 

impaired children often experience problems on pure proprioceptive tasks (where 

vision is not involved).  

 Wilson and McKenzie (1998), in a meta-analysis of information processing 

deficits associated with developmental co-ordination disorders also showed that while 

the greatest deficiency was found in visual-spatial processing, deficiencies in the 

small-to-moderate range were also found for kinaesthetic  (perception of limb 

movement and limb position) and cross-modal processing (the transfer of information 

between sensory modalities).  

With these possible explanations and theoretical interpretations as 

background, the present study was designed to assess the viability of the three deficit 

explanations – visual and proprioceptive processing - in the group of children used as 

subjects in the ball-catching study of Estil et al. (2002). 

 

 

5.3 Method 

 

Subjects  

The same 10-11 year old (range 10 years, 5 months to 11 years, 4months) subjects as in 

the Estil et al study (2002) took part in the testing programme, with the exception of 

three children who moved to a different part of the country before the data collection 

was completed. Thus, a MCP group of n=8 and a control group of n=7 completed the 

visual task, while a MCP group of n=6 and a control group of n=7 completed the hand-

hand and foot-hand matching tasks.  
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Procedure 

Tests of magno and parvo cellular functioning (visual perception) 

The child was seated in front of a computer screen and was required to determine on 

which side of the screen (right or left) a particular pattern of white dots against a black 

background occurred (for details, see Hansen, Stein, Orde, Winter and  Talcott, 2001). 

The task was made increasingly more difficult over trials. Three conditions were 

used: 

Form 1: The children had to identify a circular figure within a pattern of dots, 

which could be at different locations (requiring visual search). This task requires both 

magno-and parvocellular functioning: pattern identification being dependent on 

parvocellular functioning and the visual search component on magnocellular 

functioning. 

Form 2: As in Form 1, the children had to identify a circular pattern, but this 

time the pattern was always in the same position. As this procedure removed the need 

for visual search, the task would be mainly dependent on parvocellular functioning.  

Motion: On this task moving dots appeared on the screen. The requirement 

was to determine on which side of the screen (right or left) the dots moved back and  

forth and not in a random order. Performance on this task depends, in the main, on 

magnocellular functioning. 

 

Hand-hand matching (cross-modal perception) 

A table top apparatus (see Sigmundsson et al., 1997a,b for details) was used, which 

required the subject to match the position of the index finger of the one hand with that 

of the other. Six different conditions were used:  

- Vision Proprioception Right hand matching (VPR): 

The subject is required, under visual guidance of the movement, to locate the 

target pin with the left hand on top of the tabletop and match its position,  with 

the right hand,  on the underside of the tabletop. 

- Vision Proprioception Left hand matching (VPL): 

The same procedure as for VPR, the right hand now being used for location 

and the left hand for matching. 

- Vision Right hand matching (VR): 

Visual (without proprioceptive) location of the target, and right hand 

matching. 
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- Vision Left hand matching (VL): 

The same procedure as for VR but, now, with left hand matching. 

- Proprioception Right hand matching (PR): 

Proprioceptive location of the target (without visual feedback) with the left 

hand, and matching with the right hand. 

- Proprioception Right hand matching (PL): 

The same as for PR but, now, with right hand location and left hand matching. 

 

Foot-hand matching (proprioception) 

 The foot-hand-matching task utilised a small Plexiglas tabletop (for details, see 

Sigmundsson et al., 1999). A target pin (a marker pin with a radius of 2.5mm) was 

attached to the underside of the table and the centre of the subject's big toe could be 

made to coincide with this position.  The subject was required to match the position of 

the big toe with the hand (on top of the table) on the same or opposite side of the body 

without the use of visual feedback. Four conditions were used: 

Right foot location/Right hand matching (RfRh) 

Right foot location/ Left hand matching (RfLh) 

Left foot location/ Left hand matching (LfLh) 

Left foot location/Right hand matching (LfRh) 

 

In both the hand/hand test and the foot/hand test four trials were required for every 

condition, and mean error and standard deviation across the four trials for each subject 

were computed. 

 

 

5.4 Results 

 

Vision 

The MCP group was shown to be poorer in performance than the normal group on all 

three visual test conditions (form 1, form 2 and motion), all differences being 

significant at the 5% level (Table 1). 
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Table 1: Mean scores and SDs for each of the three visual tests (Form 1, Form 2, and Motion) for the 

differences between the two groups. 

 Motor impaired  

(n = 8) 

Normal group 

(n = 7) 

 

 Mean SD Mean SD P* 

Form 1  31.53 3.96 23.00 2.75 0.00 

Form 2  23.38 5.19 18.42 2.94 0.03 

Motion  11.68 2.15 9.56 3.16 0.05 

* Mann Whitney U test (one-tailed) 

 

 

Hand-Hand Matching 

Significant differences between the groups were found only for the “Vision Right 

hand matching” (VR) condition (p = 0.02, Mann Whitney U, one-tailed), the MCP 

group being poorer in performance than the control group (mean 16.75 vs. 10.25 mm; 

SD 6.35 vs. 3.31). The performance of the MCP group and the control group 

respectively on the remaining conditions were as follows: “Vision Proprioception 

Right hand matching” (VPR) (mean 18.46 vs. 14.29 mm; SD 9.73 vs. 4.93), “Vision 

Proprioception Left hand matching” (VPL) (mean 15.04 vs. 15.25 mm; SD 5.85 vs. 

4.41), “Vision Right hand matching” (VR) (mean 16.75 vs. 10.25 mm; SD 6.35 vs. 

3.31), “Vision Left hand matching“ VL (mean 12.89 vs. 14.32 mm; SD 5.83 vs. 5.59), 

Proprioception Right hand matching” (PR) (mean 32.08 vs. 22.43 mm; SD 12.97 vs. 

9.62), and “Proprioception Left hand matching” (PL) (mean 29.71 vs. 25.96 mm; SD 

12.07 vs. 7.95) (Figure 1).  
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Figure 1: Boxplot showing mean error values (mm) for the MCP group and the normal group on the 

different conditions (see methods section) of the hand-hand-matching task. 

 

 

Foot-Hand Matching 

There were no significant differences between the groups on the Foot-Hand matching 

task. The performance of the MCP group and the control group respectively were as 

follows: “Right foot location Right hand matching” (RfRh) (33.29 vs. 30.32 mm; SD 

12.72 vs. 12.76), “Left foot location Right hand matching” (LfRh) (41.71 vs. 34.71 

mm; SD 5.36 vs. 4.26), “Right foot location Left hand matching” (RfLh) (37.00 vs. 

37.26 mm; SD 12.36 vs. 17.80) and “Left foot location Left hand matching” (LfLh) 

(28.96 vs. 38.36 mm; SD 3.46 vs. 5.92).  
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Figure 2: Boxplot showing mean error values (mm) for the MCP group and the normal group on the 

different conditions (see methods section) of the foot-hand-matching task. 

 

 

5.5 Discussion 

 

The results confirmed the Wilson and McKenzie (1998) finding that the major 

deficiency in MCP children, identified as for this and the earlier study (Estil, 

Ingvaldsen & Whiting, 2002), is in visual processing. It is striking that the present 

group of MCP children performed poorly on all three visual conditions when 

compared to the control group children. Moreover, it would appear that MCP children 

have more severe visual information processing problems even than dyslexics, who 

have been shown to experience problems only on the motion task (Hansen et al., 

2001). It has, however, to be remembered that the present group of MCP children 

were not screened for reading deficits leaving the possibility that these could have 

biased some of the results.  

 As for the two matching tasks, the finding of a significant difference between 

the groups on the condition visual localisation and Right hand matching (VR) only 

provides support for the idea of a visual-to-proprioceptive matching problem, i.e. 
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combining visual input information with proprioceptive output. For some reason the 

right hand (which in the main is controlled by the left hemisphere) seems to have 

problems in getting tuned to the visual information. This could either be due to a 

visual and/or proprioceptive deficit. However, as the MCP group was not impaired in 

any of the pure proprioceptive conditions (i.e. without visual information), but was 

significantly inferior in all conditions of the visual tests it is possible that the Vision-

Right hand matching (VR) problem is associated with a visual information processing 

deficit within the left hemisphere, rather than a right hand proprioceptive deficit per 

se. The natural question which then arises is: “Does this task require a kind of visual 

processing that is normally associated with left hemispheric processing?” Remember 

that the task (VR) was to visually localise one particular dot (local information) 

within a circle (global information). An interesting link is to be found in a study by 

Sergent (1982) where the left hemisphere was found to be better at representing local 

information (i.e. identifying small letters within larger letters) while the right 

hemisphere was better with global information (identifying the larger letters rather 

than the many small letters they were composed of). Further, Robertson and 

colleagues (1988) have found that problems with visual object recognition are 

associated with damage that encompasses the temporal and parietal lobes. This 

rhymes well with the poor performance on the visual parvocellular test, as visual 

information from the parvocellular cells, that are specialised at object recognition, in 

the main is projected to the temporal lobe. 

 Considering the Sigmundsson et al’s studies (Sigmundsson, 1999; 

Sigmundsson et al., 1999), in which eight-year old children with hand-eye co-

ordination problems were found to have problems in transferring proprioceptive 

information from right to left hand (when vision was excluded) in an intra-modal 

matching task, and for three conditions (RfLh, LfRh and LfLh) in an inter-modal 

matching task, it is surprising that no such proprioceptive problems were observed in 

the present group of MCP children. 

 An important clue here might be the age of the children. Whereas the children 

in the Sigmundsson et al studies (Sigmundsson, 1999; Sigmundsson et al., 1997a, 

1997b, 1999) were in the age range 5-8 years, the children participating in the present 

study were around the age of 11 years. One of the interpretations of the Sigmundsson 

et al. findings was a developmental lag in proprioceptive perception due to delayed 

maturation of the corpus callosum (Sigmundsson, 1999; Sigmundsson et al., 1997a, 
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1997b, 1999).  If this should prove to be the case, one of the interpretations of the 

findings of the present study would be that, by the age of eleven years, the lag was no 

longer present. This would be along the lines of the observation of Trevarthen (1974) 

that the corpus callosum is one of the last brain structures to reach maturity, and 

matures gradually over the first 5 to 10 years of human life.  

 In conclusion, all the results taken together suggest that the fundamental 

problem in the present group of children be related to visual perception. The deficit 

could be related to the magno- and parvocellular cells per se, or to higher level 

processing. Further research is necessary in order to make more clear statements 

about the nature of the visual perceptual problems in MCP children and to investigate 

the hypothesis of a developmental lag as related to the corpus callosum. Longitudinal 

studies would be required for further investigation of the developmental lag 

hypothesis. 
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Chapter 6 

 

Are motor and reading impairments in children related to the same, 

or different, visual deficits? 
 

 
6.1 Abstract 

 
This study was designed to determine whether motor and reading impairments in children are related to 

the same or different visual deficits. Eighty children  between the ages of 10 and 11 years were 

required to complete the Movement Assessment Battery for Children (MABC) as well as a 

standardised reading test.   This enabled the separating out of three groups of 8 children: a normal 

group, average or above on both reading and motor skills; a motor-impaired group with poor motor 

skills but normal reading skills, and a motor/reading impaired group which was poor on both motor and 

reading skills. The selected children were required to complete two visual tests: a test of  magnocellular 

functioning and a test of  parvocellular functioning. The results showed the motor/language impaired 

children to be inferior to the normal children in both magnocellular and parvocellular functioning, 

while those who were motor-impaired only performed inferior to the normal group on the parvocellular 

but not on the magnocellular test. A comparison of the two motor-impaired groups showed that the 

motor impaired children with reading impairment were inferior to those without reading impairment 

only on the magnocellular test. The results indicate that reading and motor impairments are related to 

deficits in two different visual functions, a magnocellular deficit related to reading impairment, and a 

parvocellular deficit related to motor impairment. When motor and reading impairments co-occur more 

extensive visual problems are likely to be encountered.  
 

 

6.2 Introduction 

 

Children with a marked impairment in motor co-ordination, not due to a general 

medical condition or mental retardation which significantly interferes with academic 

achievement or activities of daily living, have been classified as Developmental Co-

ordination Disordered (DCD). The prevalence of DCD is about 6 %, and, amongst 

other correlates, it has been associated with phonological (frequently observed in 

dyslexics) and language disorders (APA, 1994). A number of studies have shown that 

motor-impairments often co-occur with reading problems (Fawcett & Nicolson, 1992, 
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1995; Fawcett, Nicolson & Dean 1996; Moore, Brown, Markee, Theberge & Zvi, 

1995; Wolff, Melngailis, Obregon & Bedrosian, 1995). In trying to understand the 

nature of motor and reading impairments, where they occur together, it is important to 

ask what is the neural correlate of this constellation of problems? 

 A few attempts have been made to answer this question. For example, Fawcett 

and Nicolson (1992, 1995; Fawcett, Nicolson & Dean 1996) have shown that 

dyslexics tend to perform poorly on fine motor tasks that involve rapid movements 

and static balance. These are tasks that traditionally have been associated with 

cerebellar dysfunction. 

 Another possible answer to this question is to be found in the magnocellular 

deficit hypothesis of Stein and Walsh (1997). This hypothesis proposes that dyslexics 

suffer from a deficit in the transient, magnocellular, component of the visual 

processing system. The visual system may be divided into two: the transient, 

magnocellular, and the sustained, parvocellular sub-systems. Each of these cell types 

carry different information that is conveyed to different layers of the geniculate 

nucleus of the thalamus and then to the visual cortex. In perception, the magnocellular 

sub-system mainly responds to large contour, low contrast and moving targets, and is 

predominant in peripheral vision. The parvocellular system consists of small cells that 

are sensitive to form/pattern, structure and colour, and is predominant in central 

vision. 

 Considering the functional division of the magnocellular and parvocellular 

system it is to be expected that both magnocellular as well as parvocellular function is 

necessary not only for reading skills, but for the mastery of a number of motor skills 

as well. For example, it is anticipated that the transient, magnocellular, system is 

important for all motor tasks that are dependent on fast visual processing, as for 

example in ball games and in eye-hand co-ordination tasks where quick manual 

movements are involved. As in reading, the fine motor task of drawing and writing, 

also require visual tracking, which is dependent on the magnocellular systems 

activation by the saccadic eye movements. On the other hand, the sustained, 

Parvocellular, system is believed to be of importance in most motor tasks that are 

dependent on visual fixation (central vision) as, for example, in aiming, grasping and 

balancing tasks. 

  A recent study by Hansen, Stein, Orde, Winter and Talcott (2001) showed that 

phonetic dyslexics performed significantly poorer than controls on a motion detection 
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test designed to measure magnocellular function, while they did not perform different 

from controls on a test of pattern recognition, designed to measure parvocellular 

function. 

 Given the fact that visual problems have frequently also been reported in 

children with developmental co-ordination disorders (DCD)(Dewey & Kaplan, 1994), 

and that DCD is associated with phonological and language impairments, this 

suggests that the observed visual problems in these children could be due to the same 

kind of deficit, which could, thus, also account for the co-occurrence of motor and 

reading impairments in children. The study reported in Chapter 5 showed that a group 

of motor impaired children was inferior to a normal control group, not only on the test 

of magnocellular functioning, but also on that of parvocellular functioning. Based on 

these results it might seem that motor impaired children are suffering from an even 

larger deficit in the visual system than dyslexic children, a deficit that does not only 

encompass the magnocellular but also the parvocellular system. 

In the light of the above discussion, there is a possibility that the results from 

Chapter 5 were confounded by the inclusion of some motor-impaired children who 

were also reading impaired. To tease out this potential source of confounding it would 

be necessary to test subgroups of motor and reading impaired children on the same 

tests. If those children with both motor and reading impairments were to be separated 

out from those with only motor-impairment, it would be predicted, on the basis of the 

above discussion, that the former group of children would perform poorly on the 

parvocellular test only, while the latter group would perform poorly on both the tests 

of parvo- and magnocellular functioning.   The study that follows is designed to test 

that hypothesis.  

 

 

6.3 Method 

 

Subject selection  

N = 102 children, aged 10 years and 4 months to 11 years  and 4 months (mean 10.99, 

SD 0.28), from a city school in Norway were tested on the Movement Assessment 

Battery for Children (MABC). Of these, 80 children were tested on a standardised 

reading test (the remaining 20% were absent from school on the actual day when the 

reading test was given), “Kartlegging av leseferdighet for 5.klasse” (“Mapping of 
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reading skills for the 5th grade”) (Nasjonalt Læremiddelsenter, 1997). Based on the 

percentile scores on the MABC and the Reading test the children were assigned to one 

of three different groups, according to the following procedure: 27 children scored at 

or below the 15th percentile on the MABC. These were categorised, on the normally 

accepted criteria,  as motor impaired. Those motor impaired children who scored at or 

below the 20th percentile in reading (n = 8) were assigned to the motor/reading 

impairment group, while those who scored at or above the 50th percentile in reading (n 

= 8) were assigned to the motor impaired only group. The remainder of the motor 

impaired children, scoring between the 15th and the 50th percentile on the reading test 

were not pursued further.  A control group of n = 8 children was randomly selected 

from among those children who scored above the 50th percentile on the MABC as 

well as on the reading test (n = 19). An overview of the three selected groups is 

presented in Table 1. 

 

 
Table 1: Overview of the three groups (Motor/reading impaired, Motor impaired only and Normal 

control group) with respect to gender, (L)eft or (R)ight hand preference, age, percentile score on the 

MABC (MABC) as well as on the reading test (READ).  

Groups 

(n = 8) 

Gender 

 

Hand pref. 

  

Age 

Mean (SD) 

MABC 

Mean (SD) 

READ  

Mean (SD) 

Motor/reading impaired 6 males 

2 females 

R  

R 

10.83 

(0.33) 

4.63 

(5.10) 

10.24 

(7.81) 

Motor impaired only 3 males 

5 females 

2R, 1L 

R 

11.03 

(0.26) 

4.88 

(4.70) 

68.98  

(15.20) 

Control 5 males 

3 females 

4R, 1L 

R 

10.78 

(0.30) 

85.75  

(10.81) 

70.93  

(16.53) 

 

 

Instruments 

Movement Assessment Battery for Children (MABC)  

The MABC (Henderson & Sugden, 1992) is a formalised standardised test battery to 

identify children with motor co-ordination problems. The test-battery is divided into 4 

age bands (4-6 years, 7-8 years, 9-10 years and 11-12 years), each age band 

containing 8 sub-tests divided into three categories: 3 tests of manual dexterity, 2 tests 
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of ball skills and 3 tests of static and dynamic balance. The eight sub tests for the age 

band 9-10 years (as was given to the present group of children) are as follows: 

1) Shifting pegs: in front of the child is a wooden pegboard with three rows of 

pegs and an empty row at the bottom. The child is required to move the pegs 

as fast as possible, one at a time, one row down, first with the preferred hand, 

and then with the non-preferred hand. The time used to complete the task is 

recorded. 

2) Threading nuts: The child is required to thread three nuts on a bolt. As fast as 

possible. The time used to complete the task is recorded. 

3) Flower trail: The child receives a white sheet of paper with a tulip drawn by 

double black lines. The child is required to draw a line with a red pen between 

the two lines in the tulip pattern. Numbers of errors  (when the child draws 

outside the double line) are recorded. 

4) Two-hand catch: The child is supposed to throw a tennis-ball at the wall and 

catch the ball, before it hits the ground, as it returns. Number of correct 

catches out of ten trials is recorded. 

5) Throwing beanbag: This task involves throwing a beanbag into a target box 

from a distance of two metres. Number of «goals» out of ten trials is recorded. 

6) One-board balance: The child is required to balance on one leg at a time on 

top of a wooden board. The time of retaining balance on each leg is recorded. 

7) Hopping in squares: Five squares (45cm2) are taped on the floor. The task is to 

jump on one leg, from one square to the next and to stop in the last square. 

Number of successful jumps is recorded. 

8) Ball balance: The child holds a wooden plate, with a tennis ball on top of it, in 

one hand. The task is to walk through a trail while balancing the tennis ball on 

top of the wooden plate.  Number of times the ball falls down are recorded. 

On each sub-test the child receives a score from 0-5, 0 representing the best 

performance. These scores add up to a "total impairment score" (with 0 as the best 

score) that is interpreted relative to percentile norms provided in the test manual, 

where those scoring at or below the 15th percentile (those with the 15 percent poorest 

performance) is defined as the at risk group. 
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Kartlegging av leseferdighet (Mapping of reading skills) 

The test is designed for the purpose of identifying children who have problems with 

reading, and to provide a general information about the reading capability of children. 

The at-risk group is defined as the 20% poorest readers in the test manual. However, 

it is specified in the manual, that further diagnostic procedures are necessary in order 

to determine causal factors and the precise nature of the reading disability. Reading 

speed, reading comprehension and functional reading are emphasised. The test battery 

contains seven sub-tests that are to be completed within a certain time constraint. 

Number of correct answers on each sub test is recorded. The sub-tests are as follows: 

1) Ordavkoding – fra ord til bilde (Word decoding – from word to picture): This 

is as word reading task where the children on each line read one word, which 

is to be matched with the correct picture. Two minutes are given to complete 

this task. 

2) Ordavkoding – fra bilde til ord (Word decoding – from picture to word): Same 

as above, but the other way around. On each line there is a picture which has 

to be matched with the correct word. Time constraint: 2 minutes. 

3) Edderkopper (Spiders): This is a text with a lot of information of the kind that 

is often found in schoolbooks. The children are supposed to, first, read the text 

and, then, answer some text-related questions (multiple choice). Time 

constraint: 4 minutes. 

4) Forståelse av ord i setninger (Comprehension of words in sentences): This task 

aims at investigating children’s comprehension of words in sentences. The 

children are supposed to write a cross on  “yes” or “no“ to different statements 

like, for example, “Can we sing a song”? Time constraint: 3 minutes. 

5) Da bokfinken fikk farger (When the chaffinch got its colours): Here, the 

children are supposed to read a text before they answer 10 questions. The 

questions are partly connected to direct information in the text, and partly 

inference questions. In order to answer the questions the children have to be 

able to draw conclusions on background of the information in the text. Time 

constraint: 4 minutes 

6) Solsystemet (The solar system): In this task the teacher reads the text loud for 

the children. At the same time as the children are listening, they have to follow 

the text. Afterwards they have to read the questions themselves and find the 
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right answer on background of the information in the text. Time constraint: 2 

½ minutes. 

7) Værmeldingen (The weather forecast): This is a short text with a weather 

chart. The information necessary to answer the questions is found in the text as 

well as on the weather chart. Time constraints: 2 ½ minutes. 

 

Tests of magno and parvo cellular functioning  

The child was seated, at a distance of 57 cm, in front of a computer screen and was 

required to determine on which side of the screen (right or left) a particular pattern of 

white dots against a black background occurred (for details, see Hansen, Stein, Orde, 

Winter and Talcott, 2001)9. The task was made increasingly more difficult over trials. 

Two conditions were used: 

1) Form: The children had to identify, on a computer screen, a circular figure within 

a pattern of dots. This task is designed to assess the level of parvocellular 

functioning.  

2) Motion: On this task moving dots appeared on the screen. The requirement was to  

determine on which side of the screen (right or left) the dots moved back and  

forth rather than in a random order. Performance on this task depends, in the main, 

on magnocellular functioning. 

 

Data Analysis and Statistics 

Given that neither the MABC nor the Reading test were normally distributed (as both 

tests have a ceiling effect) non-parametric statistics were used. Spearmans rho was 

utilised for correlation analysis. All statistical comparisons utilised the Mann Whitney 

U test, and were performed using the SPSS (version 8.0) statistical package for 

Windows.  

  

 

                                                 
9 These tests were devised by Peter Hansen in co-operation with John Stein at the University 
Laboratory of Physiology, Oxford University, UK. 
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6.4 Results 

 

There were no significant differences in age, handedness or gender distribution 

between the groups (Mann Whitney U, two-tailed). There were no significant 

correlations (Spearmans rho, two tailed) between age, gender or hand preference on 

any of the dependent variables (magno and parvo), with correlations ranging from 

0.008 to 0.08.   

 

Group comparisons     

The group comparisons (Table 2) showed that the motor/reading impaired children 

were significantly poorer than the normal children in both magnocellular (Mean 

14.51, SD 4.19 vs. Mean 9.13, SD 2.52; p = 0.005) as well as parvocellular (Mean 

19.93, SD 3.75 vs. Mean 27.14, SD 6.57; p = 0.014) functioning, while those who 

were motor impaired only were significantly (p = 0.005) poorer than the normal group  

on the parvocellular (Mean 25.08, SD 2.97 vs. Mean 19.93, SD 3.75) test only. A 

comparison of the two motor impaired groups showed that those who were reading 

impaired were inferior to those without reading impairment on the magnocellular test 

only (Mean 14.51, SD 4.19 vs. Mean 9.13, SD 2.52; p = 0.005).  

 

 
Table 2: Mean scores and SDs for each of the two visual tests, magnocellular function (Magno) and 

parvocellular fuction (Parvo), for each of the two motor impaired groups (with and without reading 

impairment) and the control group (no motor or reading impairment) together with the p-values for the 

differences between the motor impairment groups compared to the control group (*) as well as with 

each other (**). 

 Control 

(n = 8) 

Motor impaired only 

(n = 8) 

Motor/reading impaired 

(n = 8) 

Test  Mean (SD) Mean (SD) p* Mean (SD) p* p** 

 

Magno 

 

9.13 (2.52) 9.73 (2.44) n.s. 14.51 (4.19) 0.005 0.005 

Parvo 

 

19.93 (3.75) 25.08 (2.97) 0.005 27.14 (6.57) 0.014 n.s. 

* and ** Mann Whitney U test (one-tailed) 
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Correlations 

Correlations (Spearmans rho, one-tailed) between the dependent variables magno- and 

parvocellular function, the total scores as well as the subtests of the MABC and the 

Reading test revealed stronger relations to levels of parvocellular function than to 

magnocellular function, both in relation to the total score on the MABC (rho 0.401, p = 

0.002 vs. 0.366, p = 0.005) as well as that of the Reading test (rho 0.325, p = 0.015 vs. 

rho 0.285, p = 0.035). It is interesting to note that both tests of visual functioning are 

stronger related to general motor performance than to reading, the relation to motor 

performance being stronger for the parvocellular test than for the magnocellular test. 

When looking at the individual sub tests (see Table 3) of the MABC, both magno and 

parvocellular function correlates significantly (one-tailed) with Shifting pegs (rho 0.566, 

p = 0.002 and rho 0.347, p = 0.041), Throwing bean bag (0.362, p = 0.035 and rho 0.398, 

p = 0.022) and One-board balance (rho 0.386, p = 0.026 and rho 0.490, p =  0.005). Only 

magnocellular function correlates significantly with Flower trail (rho 0.374, p = 0.030), 

while only parvocellular function correlates significantly with Two hand catch (rho 

0.364, p = 0.034), Hopping in squares (rho 0.462, p = 0.009), and Ball balance (rho 

0.420, p = 0.016).  

With respect to the Reading sub tests, both magno and parvocellular function 

correlates significantly with “The chaffinch” (rho 0.251, p = 0.027 vs. rho 0.226, p = 

0.043) and ”The solar system” (rho 0.386, p = 0.002 vs. 0.263, p = 0.044). Only 

magnocellular (and not parvocellular) function correlates with the sub test 

“Comprehension of words” (rho 0.228, p = 0.041, one-tailed), while only 

parvocellular function correlates with the sub tests “From word to picture” (rho 0.400, 

p = 0.001, one-tailed) and “From picture to word ” (rho 0.262, p = 0.023, one-tailed). 
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Table 3: Correlations (Pearson’ rho, one tailed), together with level of significance (p), and number of 

cases (N), between the dependent variables, magno- and parvocellular function, and the total scores as 

well as the individual sub tests of the MABC and the Reading test.  

 Magnocellular function Parvocellular function 

MABC/Reading sub test Spearmans rho p N Spearmans rho p N 

Shifting pegs (MABC) 0.566  0.002 26      0.347   0.008   26 

Threading nuts (MABC) – 0.028  n.s 26   – 0.067   n.s 26 

Flower trail (MABC) 0.374  0.003 26      0.241    n.s 26 

Two-hand catch (MABC) 0.152  n.s 26      0.364   0.034   26 

Throwing bean bag (MABC) 0.362  0.035 26      0.398   0.022   26 

One-board balance (MABC) 0.386  0.026 26      0.490   0.005   26 

Hopping in squares (MABC) 0.044  n.s. 26      0.462   0.008   26 

Ball balance (MABC) 0.321  n.s 26      0.420   0.016   26 

Total score (MABC) 0.366  0.003 57      0.401   0.001   57 

Fra ord til bilde (Reading) 0.107  n.s. 55      0.400   0.001   55 

Fra bilde til ord (Reading) 0.186  n.s. 59      0.262   0.023   59 

Edderkopper (Reading) 0.152  n.s. 59      0.184    n.s 59 

Forståelse av ord (Reading) 0.228  0.041 59      0.146    n.s 59 

Bokfinken (Reading)  0.251  0.028 59      0.226   0.043    59 

Solsystemet (Reading) 0.386  0.002 59      0.263   0.022   59 

Værmeldingen (Reading) 0.003 n.s. 59      0.077    n.s 59 

Total score (Reading) 0.285 0.018 55      0.325 0.008 55 

Note: The correlations were performed using the total sample of subjects that participated in the 

screening and that had been participating in all the tests, also those who were not selected for group 

comparisons. Two classes were tested on the MABC and reading. The scores on the individual sub 

tests of the MABC were available only for one of the classes; thus N for the MABC correlations is 26 

while N for the Reading correlations is 59. The smaller N on one of the reading sub tests as well as the 

reading total score is due to missing values (i.e. some subjects had skipped one sub test and, thus, total 

score could not be obtained). 

 

 

6.5 Discussion 

 

This study set out to determine whether motor and reading impairments in children 

were related to the same or different visual deficits.  The results obtained from the 

tests of visual functioning lead to the conclusion that the children who were motor 

impaired but not reading impaired were inferior to the control group only on 

parvocellular functioning. Those children who were poor in both motor and reading 
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skills were inferior in both magnocellular as well as parvocellular function compared 

to the normal children. However, when compared to those children who were motor 

impaired but not reading impaired, they were inferior only in magnocellular 

functioning. In as far as the tests used are valid tests of magno and parvocellular 

functioning, the hypothesis that magnocellular function is linked to reading 

impairment, while parvocellular function is linked to motor impairment and that the 

co-occurrence of motor and reading impairment is associated with more general 

visual dysfunction, is supported.  

Considering the results from the present study as well as from earlier studies 

that have shown dyslexics to perform just as well or even better than controls on tasks 

thought to measure sustained (parvocellular) system (Lovegrove et al, 1986), the high 

correlation between reading skill and the parvo-test may seem somewhat surprising. 

However, it has to be remembered that correlations do not imply causality. The most 

obvious interpretation, therefore, is that although level of parvocellular function is 

associated with reading skill, the group comparisons suggest that reading difficulties 

do not seem to be associated with deficits in parvocellular function. 

Although the present analyses suggest that motor impairment is associated 

with a parvocellular deficit, this does not mean that magnocellular function does not 

play a role in motor tasks. Because the magnocelluar system is sensitive to movement, 

it is likely that a magnocellular deficit would lead to problems in all situations where 

the subject has to act in relation to a moving environment, as for example in ball 

games. Reading, as well as other visual tracking tasks, is dependent on saccadic eye 

movements. These movements activate the transient, magnocellular, channels which 

are sensitive to stimulus movement (Lovegrove, 1994). Therefore, magnocellular 

systems sensitivity to speed of movement and its activation by the saccadic eye-

movements may explain the significant correlation between the visual magnocellular 

test and the motor sub tests Shifting Pegs and Flower Trail (as saccadic eye 

movements would seem to be central in both these tasks). 

There are indications in the literature that the transient system is not only related 

to visual perception, but also to phonological skills and higher perceptual processes. 

For example, Lovegrove and colleagues (1988) showed that phonological recoding 

loaded on the same factor as the measures of transient processing. As an explanation 

of this relation Lovegrove (1994) has suggested that both magnocellular dysfunction 

and poor phonological skills might be due to an underlying timing deficit that affect 
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both the visual (magnocellular) as well as the auditory modality (i.e. problems with 

temporal processing of auditory stimuli). Therefore, it is also possible that an 

underlying problem with temporal processing could explain the significant 

correlations between the visual magnocellular test and the reading sub tests “The solar 

system”, “The chaffinch” and “Comprehension of words”, tasks that depend on 

phonological skills in reading and listening and on higher cognitive functions such as 

drawing inferences and understanding the meaning of words.  An underlying timing 

deficit, like a problem in processing rapidly presented stimuli in all modalities, it is 

suggested (Lovegrove, 1994; Stein & Walsh, 1997), is likely to contribute to motor 

deficits as well and may, thus, explain why reading and motor impairment tend to co-

occur.  

 The parvocellular system, on the other hand, is specialised at recognising shapes, 

which plays a role in orthographic reading. Thus, the significant correlation between the 

visual parvocellular test and the reading sub test, “Fra ord til bilde,” may be explained by 

a parvocellular influence in recognition of single words. This fits well with earlier 

findings that dyslexics have problems reading a whole line (more dependent on 

magnocellular processing) but not with the reading of single words (parvocellular 

processing), and it supports the notion that parvocellular dysfunction is not related to 

reading impairment.  

With respect to motor skills, the high and significant correlations between the 

parvocellular test and all three balancing tasks (One board balance, Hopping in squares, 

Ball balance) are striking. Considering that the sustained (parvocellular) system plays a 

major role in central vision and, hence, the ability to focus (Lovegrove, 1994), it is not 

unlikely that parvocellular function may have an effect on postural skills. For example, it 

is easier to balance on one leg when the eyes are focused. Considering that postural skills 

are very central in most motor tasks, this might be part of the explanation why the poor 

motor skills group performed so poorly on the parvocellular test. 

 Provided that motor and reading impairments in subgroups of children can be 

related to magno- and/or parvocellular deficits this may have some implications for 

practice. Training may either be directed to the underlying causes, i.e. training on 

tasks that require magno and/or parvocellular function, or towards compensatory 

strategies. For example, a compensatory strategy in learning to read, for a child with a 

magnocellular deficit, might be to practice orthographic reading (which is thought to 

depend mainly on the parvocellular system). On the other hand, a child with a 
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parvocellular deficit might benefit more from using phonologic strategies (that are 

thought to depend on the magnocellular system) in reading. A compensatory strategy 

in the teaching of motor skills, as for example in ball catching, could be to help the 

learner focus on those visual cues that his visual system is capable of detecting. That 

such a strategy might be effective was shown in a study, albeit with normal subjects, 

where learners who were forced to seek additional information sources under 

restricted viewing conditions demonstrated greater effect than a control group on 

acquiring a catching skill (Bennett, Button, Kingsbury & Davids, 1999). By forcing 

the learners to seek additional sources of information during the restricted viewing 

conditions they learnt a “visual strategy” that was effective also under normal visual 

conditions. In the same manner it should be possible to teach visual strategies to 

children with different kinds of visual deficits. For example, in the task of catching a 

ball, if a child has a problem with picking up peripheral visual information (which 

might be due to poor magnocellular function) it is likely that this child would benefit 

from focusing on the ball (central vision) rather than relying too much on the 

peripheral information.  

 The present study supports the idea that different visual deficits are associated 

with motor and reading impairments in children, a parvocellular deficit linked to 

motor impairment and a magnocellular deficit linked to reading impairment. Further, 

the co-occurrence of motor and reading impairments seem to be linked to a more 

general visual deficit that encompasses both magnocellular and parvocellular 

dysfunctions.  

 It is possible that the visual deficits are linked to underlying variables that 

affect other sensory systems as well. More research needs to be done in order to 

investigate the relative contribution of the magno- and parvocellular systems in the 

reading process and their relation to motor skills. Also, the relation between the 

magnocellular theory and other suggested explanations to the co-occurrence of motor 

and reading impairments in children needs to be further investigated.  With a view to 

intervention, research should be directed at evaluating possibilities of “repairing” the 

underlying deficits and of teaching compensatory strategies.  
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Chapter 7 

 

GENERAL DISCUSSION AND CONCLUSIONS 

 

 
7.1 Summary 

The aim of the present thesis was to shed light on the relation between motor and 

language (vocal language as well as reading) impairments in children. As outlined in 

the theoretical overview in Chapter 1, the co-occurrence of language and motor 

impairments in children may be indirectly related, mediated by social constraints, or 

directly related as a result of a common underlying disorder such as, for example, a 

neural deficit. The present thesis is based on the latter assumption. The contention 

was that behavioral observations would provide clues as to what could be the 

underlying neural deficit. Being well aware of the fact that conclusions about neural 

dysfunctions best can be made on the basis of direct measures, indirect measures that 

provide knowledge about the relation between brain and behavior are also important 

in order to understand and test the validity of neuropsychological theories and, 

thereby, also tease out how they can be important in understanding both normal and 

abnormal development and learning in children. Behavioral studies can also provide 

ideas that in the next round can be tested using direct physiological measures.  

 To that end, the empirical data in the present thesis are based upon measures 

of functional behavior such as motor skills, vocalization and reading as output 

variables, while the input variables are of a proprioceptive, visual and/or auditory 

nature. These data are interpreted in the light of neuropsychological theories focusing, 

in the main, on neural structures such as the corpus callosum (as a contributing factor 

in observed bilateral co-ordination problems), the lateral hemispheres (may be 

involved in the explanation why motor problems in some cases are restricted to one 

side of the body), the cerebellum (which is known to be central in motor control and 

timing of movements), and on the magno- and parvocellular cells in the visual system 

(that are likely to play a role in explaining the observed visual problems). A schematic 

illustration of the empirical data and theoretical assumptions upon which the present 

thesis is based is shown in Figure 1. 
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Figure 1: The figure is a schematic illustration of the empirical data (input and output variables) upon 

which the present thesis is based and the indirectly derived neuropsychological theoretical 

interpretations. 

 

More specifically, chapter one provided a theoretical overview of direct and 

indirect relations between language/reading and motor impairments with emphasis on 

the direct relations and the different putative theoretical explanations suggested in the 

literature. It was concluded that a common underlying variable that gave rise to both 

language and motor deficit could be attributed to a developmental lag or to abnormal 

neural development.  

 Chapter two was addressed to a group of predefined language impaired 

children aged from 4 to 10 years old. The psycholinguistic abilities of these children 

were assessed by means of the Illinois Test of Psycholinguistic Abilities (ITPA) and 

their motor skills were assessed using the Movement Assessment Battery for Children 

(MABC). The quantitative analyses confirmed earlier studies in showing there to be a 

significant difference between the groups in overall motor performance. However, the 

motor problems in the language impaired group did not appear to be general but to be 

restricted to bimanual co-ordination, drawing and static balance. Further, qualitative 
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analyses revealed that the significant group differences in motor performance were 

attributable to only half of the language impaired children, as only 4 out of the 8 

selected language impaired children could be categorized as motor impaired. These 

four subjects shared four communalities in their motor and language profile, namely 

poor performance on the MABC-subtests static balance and bimanual co-ordination, 

and on the ITPA subtests Visual Closure and Sound Blending. It was concluded that 

both the cerebellar and the inter/intra hemispheric hypotheses could provide plausible 

neuropsychological explanations for the co-occurrence of language and motor 

impairments in the selected sample. 

 The validity of the inter/intra hemispheric deficit hypothesis was investigated 

in Chapter three. The same group of language/motor impaired children as those in 

Chapter two together with a control group matched for age and gender carried out two 

sensory matching tests designed to tap inter and intra information processing abilities: 

hand-hand and foot-hand. The results were in support of the inter-hemispheric deficit 

hypothesis, suggesting that there was a problem in inter-hemispheric transfer of 

information from left to right. But little support was found for the intra-hemispheric 

deficit hypothesis. Liederman’s shielding model was suggested as a plausible 

explanation to the problems observed in this group of children. This model is built 

upon the assumption that the corpus callosum fails to actively shield, or minimize, 

inter-hemispheric interactions between the two hemispheres when the requirement is 

to carry out simultaneous but independent processing. 

In Chapter four the focus was on motor coordination problems per se. A group 

of 10-11 year old children with motor co-ordination problems and a control group 

matched on gender and age were selected on basis of the Movement Assessment 

Battery for Children. Spatial and temporal adjustments in eye-hand co-ordination 

were studied more thoroughly in these groups by means of a reaching (mainly 

imposed by spatial constraints) and a grasping task (mainly imposed by temporal 

constraints). The reaching task mainly activated the proximal proprioceptive system, 

while the distal proprioceptive system was activated in the grasping task. The motor 

impaired group was less accurate both in spatial and temporal adjustments. It was 

suggested that this could be due to an underlying visual and/or proprioceptive 

problem. Children with movement co-ordination problems may experience difficulties 

in catching a ball either because they are not able to interpret the visual stimuli 
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(spatial and temporal orientation of the ball) or because they are not able to move 

their hand to the desired position at the right time, due to proprioceptive insufficiency. 

The validity of the visual/proprioceptive hypotheses as an explanation of the 

poor eye-hand co-ordination skills observed in this group of children was investigated 

in Chapter five. The same groups of children as those participating in the reaching and 

grasping experiments were compared on proprioceptive and visual tasks. Two 

different matching tasks, hand-hand and foot-hand, were utilized in order to measure 

proprioception. Visual processing was measured by means of three different 

computer-based psychophysical tests, designed to measure magno- and parvocellular 

functions. The results showed there to be no significant differences in proprioceptive 

skills between the two groups. However, the large and significant differences on all 

three visual tests, both the magnocellular as well as the parvocellular tests, were quite 

striking. It was concluded that this group of motor impaired children was suffering 

from visual processing problems, and that these problems were even more extensive 

than those previously observed in dyslexics. As these children were not screened for 

reading deficits, the results, with respect to motor impairments could have been biased 

by the inclusion of reading impaired children in the motor impaired group.  

 Chapter six was designed to determine whether the two types of visual 

processing deficit (magnocellular and parvocellular) were differently attributed to 

reading and motor impairments. Therefore, a larger group of similar aged children 

was screened for motor and reading skills by means of the Movement Assessment 

Battery for Children and a reading test respectively. Based on this screening three 

groups were selected: a motor impaired group without reading impairments, a group 

which was both motor and reading impaired and a control group with normal motor 

and reading skills. These three groups were compared on two visual tests, the one 

designed to measure magnocellular function and the one to measure parvocellular 

function. The results supported the hypothesis that reading and motor impairments per 

se are related to different visual processing problems, and that in those cases where 

motor and reading impairments co-occur, the visual problems are more extensive. 

 A flow diagram with an overview of the empirical studies and the tasks used 

in each paper is presented in Table 1. 
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Table 1: Flow diagram of the empirical studies. The diagram shows age-group, type of screening-test 

(motor or language/reading) and experimental tasks used in the respective papers. Note that the same 

motor screening test (MABC) has been used for all groups. Language impairment, as specified by the 

ITPA, has been studied with relation to the youngest age group (up to 10 years), while the focus has 

been on reading impairments, as identified by means of a Reading test, in the older age group (above 

10 years). 

Screening Experimental task Paper Subjects: 
Age group  Motor 

screening 
Language/Reading 
Screening     

Hand-Eye  
coordination 

Proprio-
ception 

Visual 
perception 

2 5-10 years MABC ITPA    
3 5-9 years  MABC ITPA  HH, FH  
4 10-11 

years 
MABC  Reach and 

grasp 
  

5 10-11 
years 

MABC   HH, FH Magno/Parvo 

6 10-11 
years 

MABC Reading test   Magno/Parvo 

Abbreviations: Movement Assessment Battery for Children (MABC), Illinois Test of Psycholinguistic 

Abilities (ITPA), Hand-Hand matching (HH), Foot-Hand matching (FH), Magnocellular visual test 

(Magno), Parvocellular visual test (Parvo). 

 

 

7.2 Discussion 

The aim of this thesis was to explore the hypothesis that underlying 

neuropsychological causes may explain motor co-ordination problems in children as 

well as certain language/reading problems. As these activities are all based on a 

perception-action coupling (e.g. see a ball in flight and grasp it or read a word and 

pronounce it), especially the question of whether there are common or unique factors 

behind problems in these areas is of great interest.  Also the question of development 

and maturation is central in these problems. 

 So, in what sense may this thesis have contributed to the understanding of 

these questions?  Even though some of the following is more properly regarded as 

speculatory I will try to outline some possible implications of the thesis with the 

expressed purpose to trigger discussion about the topics and hopefully motivate 

follow up studies. 

 

Maturation 

It has been a common, but also controversial statement related to children with motor 

and language problems that – they would grow out of it! Parents are by teachers and 
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therapists, recommended not to worry about motor problems demonstrated by their 

young children, as the problems, it is assumed, will disappear with time.  

 This is a statement that may be understood in the light of this thesis. The clue 

is to be found in the different results for the younger children in Chapter 3 and the 

older children in Chapter 5. The difference being that the motor and language 

problems in the younger children are correlated significantly to proprioceptive 

measures, while no such links are found for the older children. One possible 

explanation for this is that the group of motor impaired children simply has changed 

after the age of 10-11, as a function of the maturation of the corpus callosum. With a 

fully matured corpus callosum, only the children with other kinds of problems are left 

as motor impaired children.  

 If this is a valid hypothesis, it is one with great implication for therapy. One  

should not rely on the belief that the children “automatically” will grow out of their 

motor or language problems unless one is certain that the problem at hand is subject 

to maturational change. This obviously does not seem to be the case if the problems 

are perceptual and not linked to maturational stage of the corpus callosum. 

 Another possible explanation is that the group of language/motor impaired 

children studied in Chapters 2 and 3 belong to a different subgroup from that of the 

reading and motor-impaired group in Chapter 6. Still, the indications that in some 

cases language and reading impairments belong to the same subgroup has to be kept 

in mind, as there is a tendency for children with phonological language impairment to 

develop dyslexia when they get old enough to learn how to read and write (Plaza, 

1997). 

 

Differentiation of causal explanations 

At the outset, it was unclear what could be common or unique causes of motor and 

language problems in children without obvious brain damage. As outlined in Chapter 

1, many options seemed reasonable. Through the findings in this thesis it might be 

possible to argue for a more narrow approach.  

 The findings suggest that subgroups may be divided across the borders of 

language and motor impairments, i.e. that certain kinds of language and motor 

impairments belong to the same subgroup. For example, in Chapter 2, a language and 

motor impaired subgroup with common problems in phonology, visual closure, static 

balance and bimanual co-ordination was separated from a group which was language 
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impaired only. Taking into consideration the relations between language/reading 

impairments and motor impairments, this means that in certain subgroups of children 

language, reading and motor impairments might be different sides of the same coin, 

originating from a common underlying neural disorder.  

  

Magno- and parvocellular functions as related to reading and motor skills 

Chapter 6 showed that motor impaired children may be divided into two subgroups 

depending upon whether they have related reading problems or not, and these two 

subgroups were shown to suffer from different kinds of visual deficits. The group, 

which was motor impaired but not reading impaired appeared to be deficient in 

parvocellular function only, while the group which was both motor and reading 

impaired showed deficiencies in both magno and parvocellular functions. Previous 

studies on dyslexic samples, where motor skills have not been assessed, have shown 

reading problems to be related to magnocellular dysfunctions.  

 The correlation table in Chapter 6 showed that magno- and parvocellular 

functions are related to different subcategories of motor and reading skills. The 

significant correlations between parvocellular function and static balance were quite 

striking, and are probably due to the role of the parvocellular cells in visual fixation. 

For example, balancing on one leg is easier when the gaze is fixated on a certain point 

than if it is drifting around, a technique also used by experts in balance, like line 

dancers and gymnasts.  

 Visual fixation also plays a role in reading. Another speciality of the 

parvocellular system is the ability to recognise shapes, which is important in 

orthographical reading. The ability to recognise shapes would also be of importance 

in grasping, when the hand has to be shaped relative to the shape of the object to be 

grasped. So this is an obvious possible common factor that may explain problems in 

both areas. 

 The main function of the magnocellular cells is their sensitivity to movement 

and their role in peripheral vision. The relation between poor magnocellular function 

and reading disability may be explained by the fact that the magnocellular cells play 

an important role in compensating for the movement created by the saccadic eye 

movements. If the magnocellular system is not activated by the saccadic eye 

movements the text would appear to “dance around”, a problem frequently reported 

by many dyslexics. In motor skills the magnocellular sensitivity to movement, and its 
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crucial role in peripheral vision, would cause problems in all situations where the 

subject has to act in relation to a moving environment. That may explain why many 

dyslexics report that they have problems in participating in ball games. Magnocellular 

function, therefore, may be expected to be a strong common factor in many 

perceptual-action problems. 

  

Cerebellar hypothesis 

In Chapter 4 it was suggested that the jerky movements demonstrated by the motor 

impaired children might be a sign of an underlying timing problem due to a cerebellar 

deficit. The same group of children also showed evidence of poor visual 

magnocellular function (Chapter 5). It is possible, therefore, that both the jerky 

movements as well as the poor performance on the visual test of magnocellular 

function could be related to a cerebellar deficit. 

 A common trait for all the tasks, reading as well as motor subtests, that 

correlated significantly with magnocellular function was the dependency upon fast 

signal processing. Lovegrove and colleagues (1988) have suggested that the deficit 

need not be in the magnocellular system per se, but in an underlying timing deficit 

that affects both the visual (magnocellular) as well as the auditory modality (i.e. fast 

temporal processing of auditory signals). Anatomically, visual input to the 

cerebrocerebellum originates from the cortical targets of the magnocellular stream of 

the central visual pathway (Purves et al., 1997).  

 

Implications for intervention 

Based on the assumption that intervention is most effective when directed towards the 

source, rather than the symptoms, of a problem, the aim of the present thesis was to 

identify putative underlying deficiencies in motor and language impairments. When 

such variables are identified, intervention may be directed towards “repairing” the 

underlying deficits and/or towards the teaching of compensatory strategies. For 

example, the present thesis has shown that both motor and reading impairments are 

associated with visual deficits, and some suggestions are made as to how visual 

deficits related to the magno and parvocellular systems may contribute to different 

kinds of motor and reading impairments. It is believed that a specifically designed 

training program, or other kinds of medical treatment, directed towards one such 

deficient system, might contribute to reduce the underlying deficit and resulting 
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sympthoms. Further, it is likely that this would improve the motor and reading 

capabilities that are dependent on this visual function. This, however, presupposes a 

flexibility and adaptability in the system, that normally is associated with a young 

system i.e., it suggests that the earlier the training/intervention takes place, the better. 

 Alternatively, one could teach children strategies that would compensate for 

their visual deficits. For example, in the task of ball catching, the child could learn to 

focus on visual cues that his visual system is capable of detecting, a strategy which 

previously has been shown to be effective (Bennett et al., 1999). If the problem is 

related to a magnocellular deficit (and not parvocellular) the child could be taught to 

focus on the ball, rather than relying too much on peripheral information (which 

depends on magnocellular cells). Similarly, in the task of reading, it might be useful 

to follow the text with the index finger, which would place more emphasis on the 

parvocellular system.  More research remains to be done, both when it comes to the 

diagnosis of such “underlying” deficits and in designing and evaluating treatment 

programmes. However, the childrens own ability to find ways of coping with their 

weaknesses should also not be underestimated. Such compensatory coping strategies 

were demonstrated in Chapter 4 where the late reaching and early hand opening 

movements apparently reflected strategies to compensate for their problems in visual 

perception and timing.  

 

Validity of indirect measures of magno- and parvocellular functions 

From measures on single cell responses in monkeys the functions of magno- and 

parvocellular cells have become known. Based on the knowledge that the 

magnocellular cells are specialised at recognising movement while the parvocellular 

cells are specialised at recognising shapes, psychophysical computer based visual 

tests have been designed. Therefore, the magnocellular task was to identify moving 

dots on the screen, while the parvocellular task was to recognise a pattern. However, 

as the measures are only indirect, one cannot be completely sure that the observed 

deficiencies are due to poor functioning of the magno- or parvocellular cells per se. 

 There is also a possibility that the deficit is on a higher processing level. One 

way to test the validity of the psychophysical magnocellular task would be to see how 

well it correlates with the ability to dark adaptation, which is entirely dependent upon 

the magnocellular cells. A way to test the validity of the parvocellular task could be to 

look at correlations with tasks containing coloured stimuli (a speciality of the 
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parvocellular system). Further validation could be done by comparing the magno- and 

parvocellular tests used with recordings of visual evoked potentials (more direct 

measures of cell responses in the visual cortex) to stimuli evoking magno- and 

parvocellular responses. 

 

Suggestions for further research 

This thesis has shown that focusing on the co-occurrence (and not co-occurence) of 

language and motor impairments may be a fruitful approach for providing new insight 

into the etiology of language and motor impairments. However, further research is 

necessary before firm statements may be made. Therefore, important questions to guide 

future research should be: “Why do motor and language impairments co-occur in some 

children and not in others, are there certain kinds of language/motor impairments that 

tend to co-occur, and why do these particular impairments tend to co-occur?” These 

questions may best be answered by focusing on different subgroups of language and 

motor impaired children, i.e. children who are only language or motor impaired 

compared to those who are both language and motor impaired. A combination of 

quantitative and qualitative methods would seem beneficial for this purpose.  

Further studies are necessary in order to pinpoint the underlying nature of the 

observed visual problems as related to language and motor impairments in children. 

The question whether these problems are due to magno- and/or parvocellular function 

per se or to some other underlying neural dysfunction needs to be answered. Also, the 

developmental lag hypothesis as related to the maturation of the corpus callosum 

should be further investigated.  Longitudinal studies would seem beneficial for this 

purpose. With a view on intervention research should be directed at evaluating 

possibilities of how specific training introduced at an early stage can be used as 

prevention or as a tool for “repairing” the underlying deficits and of how children 

could benefit from learning compensatory coping strategies. 

 

In conclusion I hope that this thesis can be a small step further into the understanding 

of motor and language problems. In general the findings lend more support to a visual 

perceptual and cerebellar understanding of the problems than a proprioceptive 

approach (focusing on corpus callosum and inter and intra hemispheric functions) for 

the older children (above 10 years), while the latter factor seems to have more 

explanatory power in the understanding of motor and language problems before full 
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maturation of the corpus callosum. Further research is needed before firm statements 

about these topics may be made. 
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