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ABSTRACT Multivariate time series classification (MTSC) is a fundamental and essential research
problem in the domain of time series data mining. Recently deep neural networks emerged as an end-
to-end solution for MTSC and achieve state-of-the-art results on several public datasets. It is favored by its
hierarchical feature extraction ability and most of the researches focus on designing a network architecture to
ensure its performance on MTSC. Despite this, there are seldom investigations on the attention mechanism
in MTSC, which has been demonstrated as an effective module to extract features in other domains. In this
paper, we propose a residual channel and temporal attention (CT_CAM) module, which aims to refine the
feature extracted from the convolutional neural network and thus improve the classification performance.
Extensive experiments on 15 public MTSC datasets show that the proposed CT_CAM module achieves
competitive performance compared with nine baseline methods and three other attention modules.

INDEX TERMS Multivariate time series classification, convolutional neural network, channel attention,
temporal attention.

I. INTRODUCTION

W ITH the advance of sensor technologies, extensive
data sequentially ordered by time are received and

recorded in our daily life. These time series data are typically
recorded by different types of sensors simultaneously over
time and form the so-called multivariate time series. Extract-
ing knowledge from multivariate time series has attracted
an increasing amount of attention in recent decades. Multi-
variate time series classification (MTSC) is one of the most
significant tasks. MTSC aims to predict classification labels
for a certain multivariate time series data, which has many
application scenarios in the real world such as clinical time
series data analysis [1], human activity recognition [2], [3],
sea state estimation [4], [5], and fault diagnosis in machinery
system [6], [7].

For MTSC, a plethora of research focuses on feature-based
methods that extract a set of features that can represent the

time-series patterns. Then a classifier can be trained using
these features. These approaches need heavy crafting on fea-
ture engineering and there might be different feature extrac-
tion schemes for different applications. Moreover, the gener-
ated huge feature space usually makes the feature selection
step difficult and thus results in low accuracy [8]. Recently,
deep neural networks have been utilized to provide an end-
to-end solution for time series classification problems and
achieve state-of-the-art results on several public datasets [9],
[10]. The advantage is that it combines hierarchical feature
extraction and classification and therefore it can learn the
representation from data directly.

Designing deep neural network architecture is a diffi-
cult engineering task but essential because well-designed
networks ensure remarkable performance improvement in
various applications [11]. Most of the researches in MTSC
focus on designing a network architecture by stacking con-
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volutional neural network (CNN) block [12], combining long
short-term memory (LSTM) with CNN [10] or adding skip-
connection [9]. However, an aspect that lacks investigation in
MTSC is the attention mechanism, which has been addressed
extensively in natural language processing [13] and com-
puter vision domain [11]. Attention tells where to focus and
therefore improves the representation of interests. Attention
mechanisms designed for CNN and applied to other domains
can play a certain role in time series data, but time series data
has its own unique characteristics, which might need a special
treatment for the attention mechanisms. The most notable
feature of time series is its temporal correlation, while in
image processing and other computer vision applications,
researchers pay more attention to the spatial correlation be-
tween pixels [5]. Intuitively, different sensor modalities come
from different domains and they have different importance in
different tasks. For example, in human activity recognition,
the accelerometer features may be more significant in dis-
tinguishing the “walking” and “biking” activities while the
gyroscope features may be more significant in distinguishing
the “turning-left” and “turning-right” activities [14]. Besides,
not all timesteps contribute equally to the task. For instance,
the features on some timesteps may show a more salient
pattern than the others in distinguishing the “fault” and
“normal” status in the problem of fault diagnosis.

In this paper, we propose a novel attention module for
MTSC. It consists of two parts: channel calibration attention
module (CCAM) and temporal calibration attention module
(TCAM), which aims to address importance along chan-
nel and time axis, respectively. Therefore the representation
power of the network can be enhanced. The proposed atten-
tion block can be implemented in state-of-the-art network
architecture by simply adding it behind the CNN block. To
summarize, our work has the following main contributions:
1) a novel attention module called CT_CAM (channel and
temporal calibration attention module), which effectively
integrates channel and temporal attention in CNN features,
is proposed for MTSC. This module is generic and therefore
can be applied to any layer in any CNN architecture such
as fully convolutional network (FCN) and Deep residual
network (ResNet). By integrating attention layers with both
CCAM and TCAM, the proposed attention module can cap-
ture spatial and temporal dependencies of the time series
data, which amplifies the more important and informative
modalities and timesteps during classification. 2) Extensive
experiments are performed on 15 public MTSC datasets. All
the results of the combination of the proposed CT_CAM
and CNN, CT_CAM and FCN, CT_CAM and DenseNet
outperform that of baselines. Compared with other attention
mechanisms, the proposed CT_CAM achieves state-of-the-
art whether it is combined with CNN, FCN and DenseNet.
The ablation study demonstrates the importance of the pro-
posed attention module.

The structure of this paper is as follows: Section II gives
an introduction to MTSC and attention mechanism. Section
III describes the architecture of the proposed approach. The

experiment is discussed in Section IV, and the paper is
summarized in Section V.

II. RELATED WORK
A. MULTIVARIATE TIME SERIES CLASSIFICATION
Most of the work for MTSC can be grouped into three
categories: similarity-based methods, feature-based methods
and deep-learning methods. Similarity-based methods, as
the name suggests, are to identify time series by calcu-
lating the similarity (Euclidean distance or other distance
metrics) between two time series. Dynamic Time Warp-
ing (DTW) has been reported to be the best competitive
methods. There are two widely used version of DTW for
MTSC, dependent DTW (DTWD) and independent DTW
(DTWI). DTWD measures the squared Euclidean cumulated
distance of all dimensions, but DTWI is to consider the
cumulative distance over the multiple dimensions. Feature-
based methods transform the original time series into a
low latent space that is easier to classify. There are two
techniques that widely used for the transformation of time
series: Shapelets models and Bag-of-Words (BOW). The
bag-of-features framework (TSBF) [15] extracts the local
and global features for each time series and feeds them to
a random forest classifier. Bag-of-SFA-Symbols (BOSS) [8]
introduces a combination of a distance-based classifier and
histograms with symbolic Fourier approximation. Ensemble
algorithms that use multiple feature-based algorithms such
as the elastic ensemble (PROP) [16] and the flat collective
of transform-based ensembles (COTE) [17] also achieve
promising results. Recently effort has been made to exploit
the deep learning approaches to overcome the limitation of
feature-based methods. A hybrid model combines FCN and
LSTM is proposed by [10] with the aims of better feature
extraction. A novel model, integrating with random group
permutation method, LSTM and multi-layer convolutional
networks for MTSC is proposed [18]. The above researches
target designing a network architecture by stacking CNN and
LSTM for better performance. We focus on the attention
mechanism for MTSC which is less addressed by most of
the existing works.

B. ATTENTION MECHANISM
Attention has been recognized as an important role in human
perception [19]. Attention mechanisms have been demon-
strated in sequence learning [20] and image understanding
[21] for its ability to focus on the informative salient parts of
a signal. Attention mechanisms have been proven as an effec-
tive way to enhance CNN. Now the developments of attention
mechanism can be roughly categorized into two directions:
enhancement of feature aggregation and combination of
channel and spatial attention. A compact attention module
called Squeeze-and-Excitation (SE) is proposed to exploit the
inter-channel relationship [22]. SE is the first attempt to learn
channel attention and achieves promising performance. A
Convolutional Block Attention Module (CBAM), which can
integrate into any CNN architectures seamlessly, is proposed
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FIGURE 1. Illustration of FCN with CT_CAM.

[11]. CBAM can infer the attention map along the channel
and spatial dimension, and then the input feature map can
be refined based on the element-wise multiplication of input
feature map and attention map. A second-order attention
module is proposed for effective feature aggregation by
learning more discriminative representations [23]. Another
attention module named gather-excite (GE) is introduced to
aggregate spatial features in CNN [24]. A non-local (NL)
attention module is presented to utilize the local relation-
ship for capturing long-range dependencies in the task of
computer vision [25]. On the basis of the NL module, a
GCNet is developed to model long-range dependency [26].
Inspired by the promising results achieved in the domain of
image processing, CNN has been gradually used in many
MTSC tasks. The impact of attention mechanism on CNN
has not been exploited extensively in MTSC. The SE module
is first integrated into a CNN model and applied to MTSC
[10]. The experimental results show that with the help of
the SE module, the accuracy of the model has been greatly
improved. Obviously, all of the above methods are dedicated
to the development of sophisticated attention modules by
learning more discriminative features. Different from them,
our proposed attention module aims at learning effective
channel attention as well as temporal attention simultane-
ously.

III. CHANNEL AND TEMPORAL CALIBRATION
ATTENTION MODULE

As mentioned above, CNN has become a common frame-
work for TSC tasks. This paper mainly studies the use of
attention mechanism to improve the classification ability of
CNN. In other words, the proposed attention module can be
applied to all kinds of variants of CNN, such as FCN, ResNet,
and DenseNet. As illustrated in FIGURE 1, the original
multi-layer feature maps of FCN would be enhanced through
CT_CAM module, which consists of CCAM and TCAM.

The extracted features would be processed by CT_CAM
sequentially. Given an intermediate feature map at k-th layer
Fk ∈ RT×C , T stands for the timesteps andC is the channels
of features. The CT_CAM modulates Fk using the attention
weights in a recurrent and multi-layer fashion as:

X

Global Average Pooling

Global Max Pooling

Channel 

features

Feature scaled by 

attention weights

Re-weighted

features

X

FIGURE 2. Illustration of CCAM.

Fk = CNN(Fk−1),

α = Φ(Fk),

Fk+1 = f(Fk, α).

(1)

where Fk is the feature map output from previous CNN layer
which consists of a convolutional layer, a normalization layer,
and a RELU layer. Fk+1 and Φ are the modulated feature and
the CT_CAM function, respectively, which will be detailed in
Section III-A and Section III-B. f(·) is a weighting function
that modulates CNN features and attention weights.

A. CCAM
The whole process of CCAM is depicted in FIGURE 2.
Assuming the shape of the raw multivariate time series data
is RT×N , T and N are the timesteps and dimension of time
series data, respectively. Usually, 1D CNN would be utilized
to extract feature from the raw time series data. The filter
of 1D CNN is performed as the pattern detector, which can
transform the raw time series data RT×N to the features
RT×C . C is the number of filters in 1D CNN, and also is
the channel of feature. It is easy to know that each channel
of feature represents the response activation of convolutional
filter. In this paper, a channel attention module is proposed
to overcome the conventional CNN treat feature channel
equally. That is, employing an attention module in a channel
manner can be regarded as “channel selection". In the domain
of image processing, it is also called as semantic attribute
selection [27].

For the raw convolutional feature X = [x1, x2, ..., xC ],
where X ∈ RT×C , xk ∈ RT×1 represents the k-th channel
of feature map X . Then the global average pooling and
global max pooling are applied to each channel to obtain
the average channel feature Xac ∈ RC×1 and max channel
feature Xmc ∈ RC×1.

To calculate the attention weights, the average channel
feature Xac and max channel feature Xmc are forwarded to
two multilayer perceptron (MLP) with shared weights. After
the MLP, the features is transformed by sigmoid. Finally, the
raw features can be calibrated by the attention map.

α = σ(W2(W1(Xac)) + W2(W1(Xmc))),

Xatt = α⊗X,
(2)
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FIGURE 3. Illustration of TACM.

where X is the original input, α is the weights of attention
module, Xatt is the weighted features,⊗means the element-
wise multiply. W1 ∈ RC/r×C and W2 ∈ RC×C/r represent
the weights of the first and second MLP, respectively. σ
denotes the sigmoid transformation.

Inspired by the success of residual blocks [9], the channel
attention is integrated with residual connection, which is
called residual channel attention. From FIGURE 2, we have
X̃ = X + Xatt, where X̃ is the weighted features, X is
the original input, Xatt is the feature scaled by attention
weights.

B. TACM
The channel attention is focusing on the informative features
in different channels, but the information in time axis also
should be emphasized. To achieve this goal, TACM is pro-
posed. To compute the temporal attention efficiently, Gate
Recurrent Unit (GRU) is utilized, as illustrated in FIGURE
3.

Suppose the feature processed by channel attention is
X ∈ RT×N . The features will first be mapped to X̃ ∈
RT×K . As shown in FIGURE 3, the raw feature would be
transformed using bidirectional Gate Recurrent Unit (Bi-
GRU) to better capture the temporal memory information:
Xgru = BiGRU(X̃)).

To calibrate the temporal information, the idea of channel
attention and residual connection is adopted. The X̃ is first
forwarded to average pooling and max pooling, as similar
with channel attention. And then these two pooling features
would be repeated along the time-axis. Finally, the attention
weights can be computed as follows:

α = σ(Shared_MLP (Fat) + Shared_MLP (Fmt)) + X̃,

= σ(W2(W1(Fat)) + W2(W1(Fmt))) + X̃
(3)

where Fat and Fmt are the features after average pooling
and max pooling, respectively. W1 ∈ RC/r×C and W2 ∈
RC×C/r represent the weights of the first and second shared
MLP, respectively.

The refined feature can be computed as follows:

Xatt = α⊗Xgru (4)

where ⊗ means the element-wise multiply.
The final output XT of temporal attention module can be

computed based on the residual connection, as shown in the
left branch of FIGURE 3:

XT = X + MLP (Xatt) (5)

where MLP is used for the shape mapping from RT×K to
RT×N .

TABLE 1. Description of 15 MTSC Datasets.

Dataset #Train #Test #Variables Length #Classes
Articulary

WordRecognition 275 300 9 144 25

AtrialFibrillation 15 15 2 640 3
BasicMotions 40 40 6 100 4

Character
Trajectories 1422 1436 3 182 20

FaceDetection 5890 3524 144 62 2
HandMovement

Direction 160 74 10 400 4

Heartbeat 204 205 61 405 2
MotorImagery 278 100 64 3000 2

NATOPS 180 180 24 51 6
PenDigits 7494 3498 2 8 10
PEMS-SF 267 173 963 144 7
Phoneme 3315 3353 11 217 39

SelfRegulationSCP2 200 180 7 1152 2
SpokenArabicDigits 6599 2199 13 93 10

StandWalkJump 12 15 4 2500 3

C. ARRANGEMENT OF ATTENTION MODULES
According to the different implementation order of CCAM
and TACM, there are two types of models, which incorpo-
rates both two attention mechanisms. These two types are
described as follows:
Channel-Temporal (CT). The first type, denoted as
Channel-Temporal (CT), applies CCAM before TACM. The
flow chart of CT is represented in FIGURE 1. For the initial
convolutional feature map Xr, the residual channel-wise
attention Ψc is adopt to obtain the weights α for raw feature
map. Then the weighted feature map can be obtained through
the combination of Xr and α. After the channel attention,
the weighted feature map is fed to the temporal attention
Ψt and the temporal attention weights β is obtained in the
same way with channel attention. The whole process can be
summarized as follows:

α = Ψc(Xr),

β = Ψt(fc(Xr, α)),

Xw = f(Xr, α, β, dp)

(6)

where fc(·) is the multiplication of feature map channels and
corresponding weights. Xw is the modulated feature map,
f represents the modulate function. dp is the dropout rate
between the two attention modules, and dp is set to 0.3 in
this paper.
Temporal-Channel (TC). The second type is called as
Temporal-Channel (TC), which implements the TACM first.
For this type, given the raw feature map Xr, the TACM Ψt

is first utilized to calculate the temporal attention weights β.
The CCAM Ψc would employ the weighted channel feature
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TABLE 2. Accuracy Comparison in UEA Multivariate Time Series Dataset.

Dataset DenseNet
-CT_CAM

FCN
-CT_CAM

SLCNN
-CT_CAM TapNet MLSTM

-FCN
WEASEL
+MUSE

ED
-1NN

DTW-
1NN-I

DTW-
1NN-D

ED-1NN
(norm)

DTW-1NN
-I(norm)

DTW-1NN
-D(norm)

Articulary
WordRecognition 0.9867 0.9867 0.9867 0.987 0.973 0.99 0.97 0.98 0.987 0.97 0.98 0.987

Atrial
Fibrillation 0.4667 0.4667 0.4667 0.333 0.267 0.333 0.267 0.267 0.2 0.267 0.267 0.22

BasicMotions 1 1 1 1 0.95 1 0.675 1 0.975 0.676 1 0.975
Character

Trajectories 0.9937 0.991 0.8196 0.997 0.985 0.99 0.964 0.969 0.99 0.964 0.969 0.989

FaceDetection 0.5692 0.559 0.5692 0.556 0.545 0.545 0.519 0.513 0.529 0.519 0.5 0.529
HandMovement

Direction 0.473 0.4865 0.4459 0.378 0.365 0.365 0.279 0.306 0.231 0.278 0.306 0.231

Heartbeat 0.8195 0.8098 0.7756 0.751 0.663 0.727 0.62 0.659 0.717 0.619 0.658 0.717
MotorImagery 0.66 0.57 0.64 0.59 0.51 0.5 0.51 0.39 0.5 0.51 N/A 0.5

NATOPS 0.9833 0.9889 0.8833 0.939 0.889 0.87 0.86 0.85 0.883 0.85 0.85 0.883
PEMS-SF 0.7977 0.7746 0.7746 0.751 0.699 N/A 0.705 0.734 0.711 0.705 0.734 0.711
PenDigits 0.9877 0.9886 0.936 0.98 0.978 0.948 0.973 0.939 0.977 0.973 0.939 0.977
Phoneme 0.2088 0.1616 0.1816 0.175 0.11 0.19 0.104 0.151 0.151 0.104 0.151 0.151

SelfRegulation
SCP2 0.5944 0.5944 0.5889 0.55 0.472 0.46 0.483 0.533 0.539 0.483 0.533 0.539

SpokenArabic
Digits 0.9843 0.9923 0.9841 0.983 0.99 0.982 0.967 0.96 0.963 0.967 0.959 0.963

StandWalkJump 0.6667 0.6 0.6 0.4 0.067 0.333 0.2 0.333 0.2 0.2 0.333 0.2
Avg. Value 0.746 0.7313 0.7101 0.691 0.631 0.66 0.606 0.639 0.637 0.606 0.656 0.638
Wins&Ties 9 7 3 2 0 2 0 1 0 0 1 0
Avg. Rank 2.067 2.7 4.367 3.633 7.533 5.893 9.5 8.5 7.333 9.7 8.5 7.7

map as the input, and the channel attention weight α can be
calculated. The whole processes are summarized as follows:

β = Ψt(Xr),

α = Ψc(ft(Xr, β)),

Xw = f(Xr, α, β, dp)

(7)

where ft(·) is a element-wise multiplication for feature map
time-steps and corresponding attention weights. f denotes
the modulate function, and dp is the dropout rate between the
two attention modules. Xw represents the weighted feature
map through the two attention modules.

IV. EXPERIMENT
A. EXPERIMENTAL SETUP
Datasets. We use 15 datasets from the latest MTSC
archive [28]. This archive consists of real-world multivariate
time series data with a wide range of cases, dimensions,
and series lengths, as presented in TABLE 1. Its application
mainly includes human activity recognition, motion classi-
fication, ECG/EEG signal classification, and audio spectra
classification. The number of the class ranges from 2 such
as face detection to 39 in audio phoneme. The length of the
time series ranges from 8 to 3,000 while the dimension ranges
from 2 to 963. The size of datasets also has a range from
27 to 9,414. For each dataset, the classification accuracy is
calculated as the evaluation metric. The average accuracy
value, the number of Wins/Ties and the average rank are
computed to compare different methods.
Implementation Details. All the experiments are imple-
mented on a server, which is equipped with Intel processors
(64GB) and TITAN V (12GB). Pytorch is used for the im-
plementation of the models [29]. During the whole training

process, the learning rate is set to 1e-4; Adam is utilized as
an optimizer [30]; For a fair comparison, the training epochs
are set 3000, which is the same as [18].

B. BENCHMARK COMPARISON
We plug the CT_CAM module into the FCN [9], single layer
CNN (SLCNN), and the latest proposed DenseNet [4] and
then compared this DenseNet_CT_CAM, FCN_CT_CAM,
and SLCNN_CT_CAM with nine different baseline ap-
proaches, including common distance-based classifiers, bag-
of-patterns feature-based methods, and deep learning frame-
work. The details of the baselines we use are provided as
follows. ED-1NN, ED-1NN(norm), DTW-1NN-I, DTW-
1NN-I (norm), DTW-1NN-D and DTW-1NN-D (norm):
One nearest neighbor classifier (1NN) with two different dis-
tance measurements, Euclidean distance (ED) and dynamic
time warping (DTW). I and D denote that the DTW is com-
puted by treating every dimension individually or together
respectively. Data normalization is applied with annotation
(norm) [31]. WEASEL-MUSE [8]: This framework builds
a large feature space using multiple window lengths. Then
Chi-squared test is used to identify the most relevant features
and feed them to logistic regression. MLSTM-FCN [10]:
This deep learning model consists of an LSTM layer and an
FCN layer along with a SE module. TapNet [18]: This model
is also a combination of an LSTM layer and stacked CNN
layers. The random permutation was used before stacked
CNN layers to reorganize the time series dimensions into
different groups.

For a fair comparison, we duplicate the table shown in
[18], and add the experimental results of our model, as
listed in TABLE 2. The default settings are adopted for
the DenseNet_CT_CAM, the number of filters for SLCNN
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FIGURE 4. Critical difference diagram of the average ranks with the Nemenyi test (p = 0.05).

and FCN are 128 and {128, 256, 128}. In the three cases,
the number of hidden units for BiGRU is 8. However, for
some large datasets, such as MotorImagery, Phoneme, the
hyperparameter will be adjusted accordingly. The best ac-
curacy for each dataset is denoted with boldface. In terms
of average accuracy, our three models outperform all the
baseline methods. The DenseNet_CT_CAM gets the best
average accuracy of 0.746, which achieves a significant im-
provement compared with the existing state-of-the-art ap-
proach TapNet with the average accuracy of 0.691. In terms
of the number of wins/ties, our model achieves 9 wins/ties
which is the best among nine methods, while both TapNet
and WEASEL+MUSE achieve 2 wins/ties. It can be ob-
served that our model can achieve better performance in most
datasets, especially in the datasets with small amounts of
data such as Heartbeat and HandMovementDirection, which
contains only hundreds of training samples.

FIGURE 4 shows a critical difference diagram [32] over
the average ranks of the different MTSC methods. Classifiers
with the lowest (best) ranks are to the right. The group of
classifiers that are not significantly different in their rankings
are connected by the solid horizontal lines. The critical differ-
ence (CD) length at the top represents statistically significant
differences.

C. COMPARISON WITH OTHER ATTENTION
MECHANISMS

To illustrate the superiority of the proposed CT_CAM mod-
ule for MTSC, three different attention modules are used
for comparison in the benchmark datasets. Three different
backbones, SLCNN, FCN and DenseNet, are used for these
modules. SLCNN contains only one CNN block with the
number of filter 128 while FCN consists of three CNN blocks
with the number of filter {128, 256, 128}. The setting of
DenseNet is the same with [4]. The attention module is
stacked after each CNN block. The details of the attention
modules we used are presented as follows. CBAM [11]:
Convolutional block attention module (CBAM) consists of
a channel and spatial attention block, where both the global
average and max pooling are used to generate statistics.
GC [26]: Global context (GC) adopted 1x1 convolution for

TABLE 3. Accuracy Comparison of Different Attention Modules with SLCNN
as backbone.

Datasets SLCNN
N/A CBAM GC SE CT_CAM

ArticularyWordRecognition 0.6967 0.9767 0.6667 0.55 0.9867
AtrialFibrillation 0.4467 0.3333 0.5333 0.4667 0.4667

BasicMotions 1 0.975 1 1 1
CharacterTrajectories 0.5857 0.8078 0.5919 0.555 0.8196

FaceDetection 0.569 0.561 0.5661 0.5661 0.5692
HandMovementDirection 0.4324 0.473 0.5 0.5135 0.4459

Heartbeat 0.7707 0.7659 0.7805 0.7659 0.7756
MotorImagery 0.61 0.57 0.54 0.61 0.64

NATOPS 0.7278 0.9611 0.9722 0.95 0.8833
PEMS-SF 0.7688 0.7803 0.7341 0.7341 0.7746
PenDigits 0.8602 0.9357 0.9731 0.8542 0.936
Phoneme 0.0734 0.176 0.1253 0.0641 0.1816

SelfRegulationSCP2 0.5944 0.6 0.5778 0.5778 0.5889
SpokenArabicDigits 0.8386 0.9791 0.9795 0.8859 0.9841

StandWalkJump 0.5333 0.4 0.6 0.5333 0.6
Average value 0.6338 0.6863 0.676 0.6418 0.7101

Wins&Ties 1 2 6 2 6
Avg. Rank 3.5 3.167 2.633 3.733 1.967

both attention pooling and bottleneck transform. SE [22]:
Squeeze-and-Excitation (SE) used global average pooling to
generate channel-wise statistics and used bottleneck MLP
for transform. Moreover, N/A means no attention modules
are used. The comparison results are presented in TABLE 3,
TABLE 4, and TABLE 5.

From TABLE 3, TABLE 4, and TABLE 5, it is easy to
see that the proposed CT_CAM outperforms other atten-
tion modules in terms of average accuracy, wins&ties and
average rank in the three backbones. More specifically, the
proposed CT_CAM in SLCNN shows 10.64%, 5.04%, and
3.47% improvement compared to the SE, GC, and CBAM,
respectively, as depicted in Table Table 3. There are 6.05%,
2.25%, and 1.18% improvement compared to CBAM, GC,
and SE when the CT_CAM is applied to FCN presented in
Table 4. From Table 5, we can know that the improvements
of CT_CAM to CBAM, GC, and SE are 5.54%, 5.42%,
and 2.49%, respectively. For SLCNN, the average accuracy
can be improved dramatically by including attention module,
especially for CBAM and CT_CAM, which consider both
channel and temporal attention. However, when it comes
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TABLE 4. Accuracy Comparison of Different Attention Modules with FCN as
backbone.

Datasets FCN
N/A CBAM GC SE CT_CAM

ArticularyWordRecognition 0.9867 0.8867 0.9733 0.9867 0.9867
AtrialFibrillation 0.4 0.4 0.4 0.4 0.4667

BasicMotions 1 1 1 1 1
CharacterTrajectories 0.9916 0.9784 0.9951 0.9923 0.991

FaceDetection 0.569 0.5006 0.5636 0.559 0.559
HandMovementDirection 0.4459 0.3378 0.4459 0.473 0.4865

Heartbeat 0.8098 0.7854 0.7707 0.8 0.8098
MotorImagery 0.59 0.62 0.62 0.59 0.57

NATOPS 0.9833 0.9667 0.9444 0.9722 0.9889
PEMS-SF 0.7803 0.763 0.7746 0.7572 0.7746
PenDigits 0.9889 0.984 0.988 0.99 0.9886
Phoneme 0.0871 0.1843 0.1599 0.1482 0.1616

SelfRegulationSCP2 0.5778 0.5899 0.5778 0.5889 0.5944
SpokenArabicDigits 0.9768 0.9463 0.9814 0.985 0.9923

StandWalkJump 0.6667 0.4 0.5333 0.6 0.6
Avg. Value 0.7236 0.6896 0.7152 0.7228 0.73134
Wins&Ties 6 3 3 3 8
Avg. Rank 2.7 3.867 3.3 2.867 2.267

TABLE 5. Accuracy Comparison of Different Attention Modules with
DenseNet as backbone.

Datasets DenseNet
N/A CBAM GC SE CT_CAM

ArticularyWordRecognition 0.99 0.9167 0.9133 0.9833 0.99
AtrialFibrillation 0.4 0.4667 0.4667 0.4 0.4667

BasicMotions 1 1 1 1 1
CharacterTrajectories 0.9854 0.9513 0.9645 0.993 0.9965

FaceDetection 0.5638 0.5599 0.5587 0.5673 0.5624
HandMovementDirection 0.4459 0.4189 0.4459 0.4459 0.4595

Heartbeat 0.8 0.7512 0.7561 0.7805 0.7902
MotorImagery 0.57 0.66 0.66 0.57 0.63

NATOPS 0.9833 0.9389 0.9556 0.9722 0.9889
PEMS-SF 0.8671 0.7399 0.7746 0.7746 0.8035
PenDigits 0.9826 0.9751 0.9771 0.9848 0.9897
Phoneme 0.2094 0.1342 0.0486 0.1321 0.215

SelfRegulationSCP2 0.5611 0.5944 0.6 0.5722 0.5833
SpokenArabicDigits 0.9823 0.9718 0.9659 0.9491 0.9841

StandWalkJump 0.6 0.4 0.4 0.6667 0.6
Average value 0.729 0.6986 0.6994 0.7194 0.7373

Wins&Ties 4 4 3 9 8
Avg. Rank 2.667 3.8 3.567 3.1 1.867

to FCN and DenseNet, including CBAM, GC, SE provides
even worse results than vanilla FCN. This suggests that the
attention module can significantly enhance the performance
of a simple network with relatively week representation
power. The representation power of a deeper network might
be suppressed due to the limit of data and the increase in
complexity. Our CT_CAM module uses residual connection
inside which allows the information flow explicitly into the
next block and therefore the network’s ability is not likely to
be suppressed.

D. ABLATION STUDY
To validate the importance of the proposed attention module,
four variants are compared. 1) C: It is a pure model of
CCAM. In this case, the TCAM is removed. 2) T: It is a

TABLE 6. Ablation Study with SLCNN as backbone.

Datasets SLCNN
N/A C T CT TC

ArticularyWordRecognition 0.6967 0.9033 0.9633 0.9867 0.9633
AtrialFibrillation 0.4467 0.4 0.4667 0.4667 0.3333

BasicMotions 1 1 1 1 1
CharacterTrajectories 0.5857 0.6327 0.9039 0.8196 0.7695

FaceDetection 0.569 0.567 0.5678 0.5692 0.5664
HandMovementDirection 0.4324 0.4865 0.4324 0.4459 0.4865

Heartbeat 0.7707 0.7659 0.7707 0.7756 0.7756
MotorImagery 0.61 0.66 0.55 0.64 0.68

NATOPS 0.7278 0.7944 0.8389 0.9833 0.9833
PEMS-SF 0.7688 0.7399 0.7919 0.7746 0.8092
PenDigits 0.8602 0.8448 0.9423 0.936 0.9414
Phoneme 0.0734 0.1345 0.1766 0.1816 0.1789

SelfRegulationSCP2 0.5944 0.6 0.5889 0.5889 0.5944
SpokenArabicDigits 0.8386 0.9632 0.98 0.9841 0.9759

StandWalkJump 0.5333 0.4667 0.4667 0.6 0.6
Avg. Value 0.6338 0.6339 0.696 0.7101 0.7105
Wins&Ties 1 3 4 9 7
Avg. Rank 3.9 3.667 2.933 2.133 2.367

1.01.52.02.53.03.54.04.55.0

CD

CT_CAM

N/AGC

SE

CBAM

FIGURE 5. Critical difference diagram of the average ranks with the Nemenyi
test (p = 0.05).

pure model of TCAM. In this case, the CCAM is removed. 3)
CT: This is the proposed CT_CAM module. Detailed infor-
mation is described in Section III-C. 4) TC: We exchanged
the position of TCAM and CCAM. Detailed information is
described in Section III-C. N/A means no attention modules
are used. To fully illustrate the performance, SLCNN, FCN,
and DenseNet are used as the backbone for these four variants
in the 15 benchmark datasets. The results are presented in
TABLE 6, TABLE 7, and TABLE 8.

As illustrated in TABLE 6, the best average accuracy
happens when the TC model is added. The CT model shows
a slight lower accuracy than TC but with more numbers of
Wins&Ties and better average rank than TC. Compared the
N/A module in SLCNN, the performance of TC and CT has
relatively improved 12.10% and 12.03%, respectively. From
TABLE 7, we also can know that the CT module shows
a higher average accuracy than other modules. However,
the C and T achieve higher Wins&Ties and average rank,
respectively. TABLE 8 shows similar results with TABLE 7
where the FCN is used as the backbone. It is easy to know
that the CT achieves highest average accuracy and average
rank.

It is shown in TABLE 6, TABLE 7, and TABLE 8 that
adding C exhibits a small decrease in average accuracy
while adding T alone displays a small average accuracy
increase. But sequentially adding the CCAM and TCAM
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FIGURE 6. Visualizing high attention area with CAM in dataset ’NATOPS’.
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FIGURE 7. Visualizing high attention area with CAM in dataset ’BasicMotions’.

TABLE 7. Ablation Study with FCN as backbone.

Datasets FCN
N/A C T CT TC

ArticularyWordRecognition 0.9867 0.99 0.9833 0.9867 0.9833
AtrialFibrillation 0.4 0.4 0.4 0.4667 0.4667

BasicMotions 1 1 1 1 1
CharacterTrajectories 0.9916 0.9951 0.993 0.991 0.9944

FaceDetection 0.569 0.5638 0.5721 0.559 0.5633
HandMovementDirection 0.4459 0.4595 0.4459 0.4865 0.4459

Heartbeat 0.8098 0.8146 0.8049 0.8098 0.7854
MotorImagery 0.59 0.63 0.61 0.57 0.61

NATOPS 0.9833 0.9833 0.9833 0.9889 0.9889
PEMS-SF 0.7803 0.7688 0.7977 0.7746 0.7919
PenDigits 0.9889 0.99 0.9909 0.9886 0.9903
Phoneme 0.0871 0.1077 0.1387 0.1616 0.1789

SelfRegulationSCP2 0.5778 0.55 0.5889 0.5944 0.55
SpokenArabicDigits 0.9768 0.9973 0.9955 0.9923 0.9891

StandWalkJump 0.6667 0.5333 0.6 0.6 0.5333
Avg. Value 0.7236 0.7189 0.7269 0.7313 0.7248
Wins&Ties 2 6 4 5 4
Avg. Rank 3.4 2.8 2.767 2.967 3.067

shows relatively large improvement. The reason might be that
temporal attention can compensate for the channel features.
This phenomenon is much obvious in the shallow CNN
architecture but we empirically show that the CT_CAM

TABLE 8. Ablation Study with DenseNet as backbone.

Datasets DenseNet
N/A C T CT TC

ArticularyWordRecognition 0.99 0.9567 0.94 0.9867 0.99
AtrialFibrillation 0.4 0.4 0.4 0.4667 0.4667

BasicMotions 1 1 1 1 1
CharacterTrajectories 0.9854 0.9916 0.9805 0.9937 0.9965

FaceDetection 0.5638 0.5656 0.5721 0.5692 0.5624
HandMovementDirection 0.4459 0.4054 0.4865 0.473 0.4595

Heartbeat 0.8 0.8049 0.8049 0.8195 0.7902
MotorImagery 0.57 0.62 0.67 0.66 0.63

NATOPS 0.9833 0.9833 0.9722 0.9833 0.9889
PEMS-SF 0.8671 0.763 0.8092 0.7977 0.8035
PenDigits 0.9826 0.9877 0.9871 0.9877 0.9897
Phoneme 0.2094 0.1891 0.1933 0.2088 0.215

SelfRegulationSCP2 0.5611 0.5778 0.5778 0.5944 0.5833
SpokenArabicDigits 0.9823 0.9877 0.9871 0.9843 0.9841

StandWalkJump 0.6 0.5333 0.6 0.6667 0.6
Avg. Value 0.729 0.718 0.732 0.746 0.7373
Wins&Ties 3 2 4 5 7
Avg. Rank 3.567 3.567 3.067 2.267 2.533

block can enhance the performance of shallow and deep
network architecture. TABLE 6, TABLE 7, and TABLE 8
also summarize the experimental results on different atten-
tion arrangement. From the results, it can be found that the
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channel-first order performs slightly better than the temporal-
first order but they can be considered as almost equal. All
the arranging methods outperform using only the channel or
temporal attention independently, showing that utilizing both
attention is crucial.

E. VISUALIZATION
We visualize the attention maps using CAM [33]. FIGURE
6, FIGURE 7, FIGURE 8, and FIGURE 9 show the attention
map for N/A, CBAM, and CT_CAM in dataset ’NATOPS’,
’BasicMotions’, ’AtrialFibrillation’, and ’StandWalkJump’,
respectively. SLCNN is used as the backend in this section.
Only two samples of two classes in each dataset are randomly
selected for visualization.

It is shown in FIGURE 6 that these three models highlights
a similar region. These models highlight the plateau are
for "I have a command" while focus on the transition area
for "Spread wings". The N/A model clearly have a more
wide spread attention region than CBAM and CT_CAM. The
CBAM and CT_CAM modules help the network to focus on
the informative area and related region.

From FIGURE 7, it is also can know CT_CAM, CBAM,
and N/A model are focusing on the transition in both classes.
However, the CT_CAM and CBAM have a more wide at-
tention area. FIGURE 8 and FIGURE 9 present the sim-
ilar scenarios where the changes of signal only occurs in
a small area, and the signal remains stable in other areas.
From these two figures, the proposed CT_CAM can not only
obtain useful information in the sharply changing area of the
signal, but also identify subtle changes of these signals. The
performance of CBAM is even worse than N/A model in the
two cases as CBAM cannot obtain such wider informative
area as well as cannot observe the signal’s subtle changes.

V. CONCLUSION
In this paper, the CT_CAM module is presented to improve
the representation power of CNN networks for MTSC prob-
lem. This module consists of a channel and a temporal block,
which focus on refining the feature from the two dimension,
i.e. spatial and temporal, in multivariate time series. The
experimental results in the public UEA archive demonstrate
that the recent proposed DenseNet, FCN, and SLCNN com-
bined with the proposed CT_CAM module achieve the state-
of-the-art results compared to nine baseline methods. Com-
pared with other attention modules, the proposed CT_CAM
provides a better performance whether it is combined with
SLCNN or FCN. The sensitivity analysis studies the impact
of the number of hidden unit in GRU. From the experimental
results, the proposed CT_CAM can enhance the performance
of various CNN networks and CT_CAM can be an important
component of CNN networks.

The focus of this work is to improve the performance
of feature extraction ability of CNN by utilizing attention
mechanism. According to the characteristics of time series
data and drawing on the design ideas of attention mechanism
in the direction of computer vision, we propose a sequential

attention structure, which can learn temporal and spatial
information simultaneously. This novel attention module can
improve the accuracy of the model, but it will inevitably
lead to the model being too cumbersome and not lightweight
enough.
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