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Abstract 

Most applied time series are non-stationary, or exhibit some kind of non-stationarity for at least parts of the time series. For time series 
analyses or mathematical modeling purposes, the non-stationarities can be difficult to handle. Therefore, identification of stationary and 
non-stationary behavior is of great practical interest in time series analysis. In this study a robust and computationally efficient method to 
identify steady state parts of time series data is presented. The method is based on the class of deterministic trend models using a sliding 
window, and is focused towards being easy to implement, efficient and practical in use and to preserve data completeness. To demonstrate the 
performance of the steady state identifier, the method is applied on different sets of time series data from two ships equipped with systems 
for in-service monitoring. The method is shown to be reliable and practical for identifying steady state parts of time series data, and can 
serve as a practical preprocessing tool for time series data analysis. 
© 2020 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Inference of time series data often introduces the ques-
ion of data stationarity. Whether the data is stationary or
ot defines how the data should be interpreted, and guides
he selection of proper modeling tools and methods for doing
he intended type of data analysis. Under the assumption of
tationarity one can make inference based on a single realiza-
ion. This is not the case if non-stationarities are present. For

ost practical applications, ensuring stationarity in time series
rocesses is not achievable. This concerns particularly during
ong time span or in cases of environmental factors affecting
he time series data [2] , as well as intermittent situations of
uman interference with the underlying process generating the
ime series data. The non-stationarities might occur in differ-
nt ways; as time varying means, time varying variance or as
 combination of these properties. In situations where some
∗ Corresponding author. 
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on-stationary behavior in the data is present, estimation of
tatistical parameters using a single realization while assum-
ng stationarity of the process can lead to biased or inaccurate
arameter estimates. If e.g. used to model physical behavior
f a system at equilibrium, the non-stationary data violates
ne of the fundamental assumptions of the model. From this
easoning it follows that connecting the data modeling or an-
lyzing procedures to the question of stationarity is necessary
or unbiased interpretation of the data or model. In general,
on-stationarity can be managed by either constructing mod-
ls that consider the time-dependent transient behavior, or by
imply splitting the time series data into stationary intervals or
indows from which the model parameters can be estimated.
s models considering non-stationary behavior can become
uite complex, identifying time intervals or windows suitable
or stationary models is considered an important application
n the field of data analysis. 

Although many time series are non-stationary, parts of
he time series can behave very similarly, e.g. in terms of
ariance or frequency content. The time series parts might
 is an open access article under the CC BY-NC-ND license. 
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however still differ in the local mean levels. [3 , p. 85] refer
to this kind of non-stationary behavior as homogeneous non-
stationarity. A stationary part of a time series can, in many
practical applications, be sufficient for data modeling using
stationary models, provided that the duration of the station-
ary part is sufficiently long. In order to identify changes in
mean and variance of a time series, a first step is simply to
visualize the time series plot. This is however most appropri-
ate in case of a very limited amount of data. As the amount
of data grows, it becomes unquestionably more desirable to
employ computationally efficient techniques for identification
of stationary time intervals. 

The International Organization for Standardization (ISO)
gives a recommended practice for evaluating ten-minutes
blocks of data used to measure changes in hull and propeller
performance of ships. The recommended practice is given in
terms of threshold values for the standard error of the mean
of rpm, speed through water, speed over ground and rudder
angle [4] . The evaluated block of data is disregarded if one of
the respective standard errors exceeds its limit, as a means to
reveal unsteady behavior in the data. Experience with analysis
of operational data from ships however shows that this steady
state evaluation is somewhat too strict, particularly for ships
experiencing large motions when sailing in waves. A fixed
limit of the standard error of the mean of the ship speed is
not optimal in case of analyzing ship behavior in waves, as
large ship motions may cause significant variations in speed.
The same argument holds for propeller rpm and for the rud-
der angle, particularly when sailing in oblique waves. The
method for steady data extraction is not very flexible, and
has no distinction in the method that allows for adaption to
the specific use of the steady data. There is a potential for
improved data completeness as well as better control on the
steady state identification that the recently developed method
provides. 

In statistics, the strongest form of stationarity is referred
to as strong, strict or complete stationarity, for which the n th
order distribution function is time invariant for any value of
n . A weaker form of a stationary process is referred to as
n th order weakly stationary, for which all of its joint mo-
ments up to order n exist and are time invariant [3 , p. 8].
That is, a second order weakly stationary process has con-
stant mean and variance. Time series analysis often consider
second order weakly stationarity, as the two first moments
are relatively simple to check. For many practical applica-
tions though, the requirements for a time series process to be
stationary is even less strict, and for which the condition of
steady state is rather used. If the measured data is viewed as
representing the true process value including noise and distur-
bances, the steady state condition means that the true process
value stays unchanged [5] . For the purpose of deterministic
process modeling, the steady state condition does not require
the associated noise and disturbances to be stationary. If how-
ever further considerations regarding the stationarity of noise
and disturbances are required, a steady state identification can
perform weighted combined steady state identification of the
true process value, the noise and the disturbances individu-
lly rather than directly incorporating second order weakly
tationarity. The same holds for practical applications where
he state of a system is to be identified based on multiple
rocess signals. 

The problem of discovering incidents at which properties
f time series data change is referred to as change-point de-
ection. Various techniques have been developed for change-
oint detection, attracting a lot of attention particularly in the
ata mining community [6] . Among the studies facing this
roblem, a typical statistical formulation is to compare prob-
bility distributions over two consecutive time intervals gener-
ting the time series data, in search for a time point where the
istributions become significantly different. Within this statis-
ical framework, several approaches have been investigated.
his includes techniques using generalized likelihood ratio
stimation (GLR) and the cumulative sum control scheme
CUSUM), both which have been extensively explored in the
ata mining community. [2] developed a frequency domain
est against non-stationarity in time series by comparing the
oodness of fit in log-periodogram regression. The approach
as built on a semi-parametric class of models, performing

airly good in detecting various non-stationary structures. For
imply identifying intervals in a time series suitable for ap-
lication of stationary models, the test is however somewhat
omplex to implement, as a proper basis function ψ k ( · ) that
atisfies 

∫ π
0 ψ 

2 
k dω < ∞ must be selected prior to applying the

odel. The cumulative sum control chart (CUSUM) is an-
ther widely used approach for change-point detection. The
raditional approach is using a pre-specified mean shift to
dentify change-points, for which a satisfactory performance
as been demonstrated. As the assumption of knowing the
rue mean shift prior to the application of the control chart can
ot always be met, [7] developed an adaptive CUSUM con-
rol chart to detect a range of future expected and unknown
ean shifts. [7] documented the performance of the one-sided

ontrol scheme only, and the authors remarked that the num-
er of parameters to be specified increases from two to four
hen adapting to the two-sided control scheme. For most
ractical purposes, a two-sided control scheme is necessary
or constructing a robust change-point detector. Implement-
ng this approach for change-point detection hence requires
nowledge and experience in proper parameter selection,
hich can be found challenging for a number of potential
sers. 

[6] proposed a non-parametric method for sequential
hange-point detection by estimation of probability den-
ity ratios rather than the probability densities itself. As
he parametric models rely on a strong model assumption,
hey tend to be less flexible in detecting change-points in
eal world data sets, which motivated the formulation of
 direct density-ratio estimator. [6] confirmed that the pro-
osed method could be an alternative to existing approaches
or practical change-point detection. However, despite that
he method avoids direct probability density estimation, six
uning parameters must be set, in addition to a predeter-

ined fixed threshold value for the final decision of a
hange-point. 
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In parallel to the evaluation of probability distributions for
hange-point detection, a number of techniques using hypoth-
sis testing have been developed to identify steady state of
ime series. [8] summarized previous work on steady state
etection as either doing linear regression over a data win-
ow with a subsequent t-test on the regression slope, using a
-test to compare two recently computed means, or performing
n F-test on two recently computed standard deviations either
rom two adjacent windows or from the same window but us-
ng two different filtered means. A method for online steady
tate identification using the F-test on the ratio of variances
as developed by [5] , using two filtering factors to arrive at
ifferent estimates of the variance. Results agreed with vi-
ual recognition of the system state, but the filtering nature
f the identifier introduced a delay to the identification of
teady state dependent on the filtering parameters and further
onflicting with the amount of success of the identifier. [9] de-
eloped a steady state detection algorithm using the t-test to
etermine if the difference between the process signal value
inus its mean was above or below the standard deviation

imes its statistical critical value. The method assumed that
he underlying system evolved with a non-zero slope multi-
lied by its relative time within the window, i.e. a determin-
stic drift component. The main contribution of [9] was to
orrect for the drift component when calculating the mean
nd standard deviation, leading to an unbiased probability es-
imate of the stationarity of the process inside the window.
here are however some shortcomings in using this method.

f the length of the window is too short the process will not
ave time to stabilize, and the probability of stationarity will
e low. If the length of the window is too long, multiple inter-
als of non-stationary behavior may in total form a stationary
nterval when in fact it is not. This is known as low/high
requency aliasing and under/over-sampling [9] . False indica-
ions of stationarity may also take place in situations where
he window is centered over a local peak of an oscillating
rocess, giving a mean slope of the drift component equal to
ero. 

The interest in various time series data mining applications
re continuously increasing, and so does the amount of real
orld generated sensor data [1] . With a greater amount of data
ecoming accessible for researchers comes an accompany- 
ng need for systematic and effective methods to extract only
he most relevant data for a particular type of data analysis.
dentification of steady state is highly relevant for most ap-
lications of time series data, and tools specifically designed
or this purpose might therefore contribute to more efficient
mplementations of time series data analyses. To overcome
he shortcomings and complexity in state of the art meth-
ds for stationarity detection, the present work demonstrates
 practical and efficient technique to detect time intervals for
hich a continuous process exhibits stationary behavior in the
ean, hereby referred to as steady state. Existing approaches

equire some user expertise to either define filters, parame-
ers for probability estimation or tuning parameters. The new
pproach is therefore focused towards easy and practical im-
lementation, being robust and computationally efficient as
ell as preserving data completeness by minimizing detec-
ion of false negatives. The approach is based on hypothesis
esting of the slope estimated from the time series data. Tra-
itionally, detection of steady state is applied in time blocks,
hich is suited for offline steady state detection. The present

echnique is implemented in a time shifted approach using a
liding window, which is mostly seen in real-time implemen-
ations. A sliding window requires several more calculations
ompared to using blocks with no overlap. For most steady
tate detection problems however, the computational burden
s not expected to be of any practical significance, and the
otential increase in computational burden is balanced by the
mproved performance in terms of preserving data complete-
ess compared to using a traditional block evaluation. 

. Method 

In this study, a time series model is applied to perform
ffline steady state detection on time series data gathered
rom the in-service monitoring systems installed on a gen-
ral cargo/multipurpose vessel (MPV) and a platform supply
essel (PSV). The MPV is mainly carrying cargo along the
orwegian coast, while the PSV is mainly serving offshore
latforms in the North Sea. The two monitoring systems col-
ect data from sensors installed on a wide range of equipment
nboard the ships, sampled at a frequency of 1Hz. In this
tudy, a selection of sensor variables is chosen based on dif-
erent interpretations of steady state behavior, which will be
resented and discussed. The method is developed for offline
teady state detection. However, due to the nature of the used
echniques, the method can be used for online steady state
etection as well. 

.1. Mathematical approach 

For any of the process signals, the fundamental assumption
bout the behavior of the underlying system is that it can be
odeled by a deterministic linear trend model regardless of

he window selection. The model is expressed as 

 t = b 0 + b 1 t + a t (1)

ith a t being a zero mean white noise process with constant
ariance σ 2 

a , b 0 being the intercept of the linear model and b 1 t
he linear deterministic drift component formed by the slope
 1 and the relative time t within the window. Subscript t is a
ime index noting the time instant that the sample represents
nside a window, starting from t = 0 for all windows. The
odel in (1) is the simplest type of a process modeling non-

tationary behavior in the mean. 
The linear slope b 1 is estimated by ordinary least squares

stimation as 

ˆ 
 1 = 

∑ 

tz t − 1 
n 

∑ 

t 
∑ 

z t ∑ 

t 2 − 1 
n ( 

∑ 

t ) 2 
(2) 

ith n being the number of sampled values of z t in the
indow. The process is non-stationary in the mean if there
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Fig. 1. Illustration of time series data samples (circular markers) and the sliding window t -values (cross markers), where the light grey color encircles the 
front of the sliding window and the dark grey color encircles the rear of the sliding window. The two sets of t -values forms the steady and unsteady change 
point detector. 
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is detectable accumulation in the signal, modelled by the
slope b 1 . 

An estimate of the intercept b 0 is found by subtracting the
estimated linear drift component ˆ b 1 t from z t : 

ˆ b 0 = 

1 

n 

( 

n ∑ 

t=1 

z t − ˆ b 1 

n ∑ 

t=1 

t 

) 

(3)

By having an estimate of the drift slope and the intercept,
the white noise standard deviation can be estimated from: 

ˆ σa = 

√ √ √ √ 

1 

n − 2 

n ∑ 

t=1 

(z t − ˆ b 1 t − ˆ b 0 ) 2 (4)

and hence the standard deviation ( ̂  σb 1 ) of the estimated slope:

ˆ σb 1 = 

√ ∑ n 
t=1 (z t − ˆ z t ) 2 

n − 2 

∑ n 
t=1 (t − t ) 2 

= 

ˆ σa √ ∑ n 
t=1 (t − t ) 2 

(5)

 1 = 

ˆ b 1 

ˆ σb 1 

(6)

Under the assumption of independent normal innovations
a t , the null-hypothesis that the process signal is stationary
about the window sample intercept ( b 0 ) can be tested. A two-
tailed t-test on 

ˆ b 1 , using the t -value from (6) , is applied to
test whether the slope is significantly different from zero, indi-
cating non-stationary behavior. The null-hypothesis is rejected
for | t 1 | > t α/ 2,n−2 (the critical t -value) where t α/ 2,n−2 follows a
Student’s t -distribution that depends on the significance level
α and the degrees of freedom n − 2. The value of t α/ 2,n−2 for
a specified α and n can be found using tabulated values of
the Student’s t -distribution or by using built in functions such
as the Matlab function tinv(p, nu) , where p = 1 − α/ 2 and
nu = n − 2. Interpreting what is significant needs however to
e discussed for the particular application of the steady state
etector. Rejecting the null-hypothesis means that the state of
he window is flagged as unsteady ( s t = 0), while a support
f the null-hypothesis is flagged as steady state ( s t = 1 ). 

The probability of the process being stationary over the
indow must be computed based on the test statistics. Be-

ause the windows are overlapping, N + 1 − n number of sig-
ificance tests are performed, with N being the total number
f samples in the series and n the number of samples in the
oving window. For simplicity the windows have maximum

verlap, i.e. the propagation of the window is a single unit of
he time index t . Except for at the process signal ends (start
nd stop) there are k significance tests of the estimated sig-
al slope in the window that represents each sample, with k
eing equal to the window size n . Towards the process signal
nds, k are truncated with unity for each sample, and k = 1
or t = 1 and t = N . 

The simplest form of the steady state probability estimate
s the arithmetic average of the test statistics output ( s t ) over
he k number of test results for each sample of the time se-
ies. The arithmetic average of s t forms the amount of the
indows, containing the particular data sample point, that is

dentified as steady state. For final evaluation of the state of
he sample point, a threshold value at which the sample is
onsidered to be at steady state is needed. All windows con-
aining the particular sample have equal contribution to the
teady state indicator, however, a weighting of the windows
an also be added. 

A more delicate steady state identifier is developed to fully
tilize the features of the sliding window. The identifier is
uilt on the principle of a change point detector, that search
or time points at which the properties of the estimated slope
est statistics change. For each window, the test statistics t 1 
s written to a matrix that is structured according to Fig. 1 .
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he cross markers in the figure illustrates the positions in
he matrix to which t 1 is written for each window. All other
elds remain empty. The shaded areas in light and dark grey
arks the position of the front and rear samples of the sliding
indow, respectively, which are used as the change point indi-

ators. A change point is detected each time the test statistics
xceeds or gets below the critical t -value, determined by the
ignificance level α and the window size n . The front samples
eacts on the change of state from steady to unsteady, while
he rear samples reacts on the change in state from unsteady
o steady. 

The time series data is processed with a moving win-
ow using overlap, which more or less enables a straight-
orward adaption to real-time applications. A new calcula-
ion of steady state is run as each new sample arrives. A
hange in the state from steady to unsteady can be detected
n real-time, however, a change in the state from unsteady to
teady will have a time delay equal to the size of the sliding
indow. 

.2. Setting the parameters 

The steady state detector has two parameters that must be
et; significance level α and window length n . The signif-
cance level α represents the probability of a type I error,
r the probability of rejecting a zero slope ( b 1 = 0) when
 zero slope in fact is true. The window length n is mea-
ured in number of samples, rather than in units of time,
nd must therefore be seen in relation to the sampling fre-
uency. When adjusting the two parameters, the application
f the steady state time series data must be considered. Using
 filter analogy, the purpose of the steady state detector is to
lter out undesirable effects from the time series data. The
lter should however not only remove parts of the frequency
ontent, as is for a high-, low- or bandpass filter, but rather
etect intervals of the time series data that can be flagged
s steady state according to the application of the data. The
hoice of window length n must therefore be related to the
ffects we want to remove from the data. Using a long win-
ow, unsteady behavior with short duration is hard to detect.
n the other hand, a long window is well suited for detecting
 typical sensor drift causing the sensor value to accumulate
ith time. A short window is more likely to let such a sensor
rift pass the steady state detection, but will on the other hand
e well suited for detecting unsteady behavior with short du-
ation. In general, the window length must be longer than the
utocorrelation persistence of known system dynamics that
re acceptable even for a condition of steady state, but short
nough to detect undesirable changes in the process value that
as short duration. 

The significance level α controls the accepted slope in the
teady state data. As a stand-alone parameter, it is related to
he importance of a process value being at steady state when
oing data analysis or mathematical modeling founded on the
teady state assumption. If steady state in a process value is
ritical for the application of the time series data, the steady
tate detection must ensure a low probability of a type II error,
r the probability of accepting a zero slope ( b 1 = 0) when a
on-zero slope in fact is true. This is equivalent with allowing
or a high probability of a type I error, which is accomplished
y using a higher α. This will increase the reliability in the
teady state data, but on the other hand reject large parts
f the data set, which is unfavorable for data completeness.
imilarly, the less critical variables should accept a higher
lope in the data window, which means accepting a higher
robability of a type II error. Accepting higher probability of
 type II error means using a lower α. 

Another consideration regarding the choice of parameters
elates to using the window length to adjust the disposition
o accept partly unsteady data in the steady state time series
ata. As a result of the sliding window, a longer window
eans that the state of the process in a longer run before and

fter the sample at study contributes to the overall probability
f the local steady state. The result can be that it will take
ome time for the state to be flagged as steady, causing the
verall amount of false rejections of the null hypothesis to
ncrease. The resulting steady state data set will on the other
and consist of data that has reached a steady state condition
or a period of time both prior to and after the detected steady
tate interval. 

.3. Interpreting steady state in ship data 

When considering steady state operation of a ship, it is
ssential to interpret what steady behavior of a process means
n terms of its physical system as well as the aim of the
ata analysis. We can refer to this as identifying the critical
ariables for what we aim to study using steady state models.

A first consideration is to identify data sampled under a
onstant command of the ship. That is, time intervals at which
ontrol variables such as the propeller rotational speed (rpm),
ngine power or ship heading are kept constant. Constant
ommand is mostly required for all kinds of steady state
odels. In other situations one might also require constant

nvironmental conditions, in terms of a constant sea state, av-
rage wind speed and direction, or a constant ocean current.
hen doing a performance analysis of a ship, it is important

o ensure that data sampled under acceleration or decelera-
ion of the ship speed is excluded, as well as time intervals
hen the ship performs a maneuver or is simply changing

ts course. The critical variables are hence the propeller rpm,
ngine power or propeller shaft power as well as the ship
eading. If the interest is in the relation between waves and
hip motions or if the data is used for shipboard sea state
stimation, the ship speed in addition to the ship heading
re the critical variables. Additionally comes the variables
efining the wave environment itself, which should be fairly
onstant. 

Interpretation of steady state for a ship deals with the ques-
ion of how to separate ship commands from external impact
f wind and waves - to filter natural dynamics from ordered
hanges. This relates to both the choice of critical variables
s well as how large variations that can be accepted before
he time series is marked unsteady. 



338 Ø.Ø. Dalheim and S. Steen / Journal of Ocean Engineering and Science 5 (2020) 333–345 

Fig. 2. Time series of propeller rpm data used as test case for steady state identification. 
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3. Results 

To demonstrate the steady state detector, a selection of time
series data from two ships is used. First, a demonstration of
steady state identification on a standalone variable is shown.
The selection of signal follows the interpretation of steady
state for a ship, as discussed in Section 2.3 . The first applica-
tion of monitored ship data relates to a performance analysis,
and hence one of the critical variables for detection of steady
state is the propulsion control signal. For the particular ship
used for this demonstration, the propulsion control signal is
identified from the propeller rotational speed (rpm), measured
on the propeller shaft. Fig. 2 shows a time series of 5 hours
propeller rpm data used as a case for the steady state identi-
fication. The time series case includes different levels of the
propeller rpm, some short but rather abrupt changes as well
as some small adjustments, all which are interesting to test
on a steady state detector. First, results of steady state detec-
tion using a state of art implementation with fixed window is
shown, followed by a basic implementation of a sliding win-
dow using the arithmetic average of the test statistics. Then,
the performance of the new steady state detection approach
using the front and rear values of the sliding window test
statistics is presented and evaluated against the two first ap-
proaches. The new approach is further evaluated using time
series data from other signals. In the end follows a discus-
sion on how to perform steady state detection when the data
analysis depends on multiple critical variables. 

3.1. State of art, stepping window 

A steady state detection is applied on the propeller rpm
data using the approach of [9] . The method is a stepped win-
dow algorithm that runs an individual t-test on each sample
in a window to check if the sample is inside a chosen con-
fidence interval around the mean of the time series window.
The confidence interval is a function of the window length
n , the significance level α and the unbiased estimate of the
standard deviation of the process noice. In this example, a
window with length n = 300 (5 minutes) is used for the rpm
data, and the significance level is set to α = 5% . The window
length is set to enable detection of changes having short dura-
ion, since the rpm in this case closely resembles the control
ignal for the propulsion. The value of α = 5% is set because
teady state in the propeller rpm is not extremely critical for
his particular case, so a 5% probability of incorrectly reject-
ng steady state is accepted. A performance analysis usually
verage the data over some minutes, so small adjustments of
he propeller rpm can be accepted. 

The third parameter that must be set is the threshold value
or a window to be steady when all the samples inside the
indow are evaluated according to the test statistics. The pa-

ameter is a measure of the fraction of samples inside the
indow that is flagged as steady, or a measure of how steady

he window in total is. In this case it is set to 90%, which
eans that 90 out of 100 samples in the window must fulfill

he requirement for being steady in order to flag the window
s steady. 

Results are shown in Fig. 3 , with the colour indicating the
tate for each sample, red for unsteady and green for steady
tate. In Fig. 3 a the first window runs from the first sample
n the time series data. In Fig. 3 b the starting point of the
rst window is shifted 30 samples relative to the first sample

n the time series data. In both cases, several of the identified
teady state regions agree with visual identification. However,
epending on the starting point of the first window, the ap-
roach also detects parts of the times series data at steady
tate even though this is clearly not the case (false positives).
he first example of this is the major drop in propeller rpm
hen approaching 30 minutes into the time series. When the
rst window is shifted 30 samples relative to the first sam-
le in the time series, the approach identifies this drop as a
egion of steady state. The reason for this is that one of the
indows becomes centered over the rpm drop, giving an es-

imated slope in the window not significantly different from
ero. Two similar situations occur around 180 minutes and
30 minutes into the time series where the propeller rpm has
wo clear drops. However, in these two situations the drops
re identified as steady state for both of the two window
tarting points. Increasing the threshold for the steady state
raction from 90% to 95% gives a considerable lower amount
f steady state, however has no influence on the problem of
bvious false positives. Such behavior must be expected using
his approach, and care should be taken when interpreting the
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Fig. 3. Time series of propeller rpm data showing local steady state using a fixed window of size n = 300 (5 minutes) with two different starting points for 
the first window. The significance level is α = 5% . The criteria for the data inside the window to be steady is that more than 90% of the samples within the 
window is identified as samples at steady state. 
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esults. In Fig. 4 , a detailed view from the part of the time
eries around time [min] = 30 that is incorrectly detected as
teady state is shown to the left. To the right in the figure, the
ame part of time series data is shown in a performance plot
performance being measured as the consumed shaft power
s ship speed). In this example, the deviation between the
ow performance and the high performance for the same ship
peed is almost 40 percentage points, or in other words, the
ig. 4. Detailed view from part of propeller rpm time series that is incorrectly det
he time series data, where dark grey color with triangular marker facing down ind
riangular marker facing up indicates part of time series where the rpm is increase
f time series data in a performance plot, with identical markers and colors. If t
he ship (measured as the consumed shaft power vs ship speed) could be off by a
ow performance is off by almost five times the high per-
ormance value. Including this part in the steady state data
ould mean a considerable influence on the overall perfor-
ance evaluation of the vessel. So, even though the method

erforms well in detecting regions of steady state behavior
here this really is true, the method will often fail to reject
arts of the time series as steady state that certainly not is the
ase. The presented example of steady state detection shows
ected as a steady state interval using stepped window. Plot to the left shows 
icates part of time series where the rpm is decreased. Light grey color with 
d or approaching a steady value. The plot to the right shows the same part 

his part of the time series was detected as steady state, the performance of 
lmost five times the true value. 
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Fig. 5. Time series of propeller rpm data showing local probability of steady state by taking the arithmetic average of the calculated state ( s t ) based on the 
t−test statistics ( α = 5% ). Model with sliding window. 

Fig. 6. Time series of propeller rpm data showing local steady state identified using the new approach with a sliding window of size n = 300 (5 minutes). 
Two different significance levels are used for the t -test of the estimated slope. 
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how the method is sensitive to the starting point of the first
window, and how the resulting steady state parts of the time
series, and by that the performance evaluation of the ship,
depends on this. 

3.2. Sliding window, arithmetic average of test statistics 

In Fig. 5 , results from steady state detection on the pro-
peller rpm data using a t-test on the slope is shown. A sliding
window with n = 300 (5 minutes) is used, and the method
evaluates the arithmetic average of the calculated state ( s t )
based on the test statistics. The color indicates the local
teady state probability estimate for each sample, going from
ed as the most unsteady to green as the most steady . The
pm data in each window is tested for a nonzero slope us-
ng the same significance level as for testing the individual
amples in the stepping window approach ( α = 5% ). The ap-
roach identifies regions where the propeller rpm probably is
t steady state. Such a region is seen towards the end of the
ime series, which also agrees with a visual identification of
teady state behavior. The approach also correctly rejects the
ost evident unsteady parts, by assigning a very low proba-

ility of steady state ( P < 0.1). Because the window is slid-
ng with maximum overlap, the rejection is also found to be
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Fig. 7. Time series of propeller rpm data showing local steady state identified using the new approach with a sliding window of size n = 60 (1 minute). Two 
different significance levels are used for the t -test of the estimated slope. 
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ndependent of the starting point of the first window. How-
ver, a clear drawback is that further evaluation of the steady
tate time intervals depends on a threshold value set for the
ocal probability, which for practical purposes can be difficult
o determine. This is similar as for the method with stepping
indow presented in Section 3.1 , where the required fraction
f steady state samples in a window had to be set. Without a
hreshold, the steady state detector only gives the most prob-
ble steady state samples rather than the actual time intervals
f steady state data. 

.3. Sliding window, new approach 

In Fig. 6 , results from steady state detection on the pro-
eller rpm data using the new approach with a sliding win-
ow ( n = 300) is shown, with two different significance lev-
ls α = 5% and α = 1% . The color indicates the local state
dentification, evaluated using the front and rear collection of
 -values as change point indicators. The approach identifies
egions where the propeller rpm probably is at steady state,
hown with green color in Fig. 6 , and with respect to the
etected states there are only minor differences between the
wo significance levels. A region of steady state is partic-
larly seen towards the end of the time series, which also
grees with a visual identification of steady state behavior,
nd the result from the application of the two previous meth-
ds. The method successfully rejects parts of the time series
hat clearly not is at steady state, for instance the drop in
ropeller rpm at 15, 25, 160, 180 and 330 minutes, and the
hange in mean propeller rpm seen at 70, 125, 140, 205,
35, 245 and 255 minutes into the time series. All of these
ropeller rpm changes are detected for both of the chosen
ignificance levels. Due to the sliding window the rejection
s also independent of the starting point of the first window,
hich was identified as one of the critical drawbacks using

he state of the art method with stepping window. However,
he method also rejects parts of the time series that one by
isual identification could expect to be at steady state, for
xample the part around 120 minutes into the time series.
his may be due to the size of the window, or it could be
ue to the time series part in fact being unsteady. By us-
ng a smaller window size, the detector is allowed to mark
maller parts of the time series as steady. The drawback is
owever that drift in the signal is more likely to be accepted.
n Fig. 7 , steady state detection is shown using a 1 minute
 n = 60) sliding window. Decreasing the length of the win-
ow gives a steady state detection that preserves more of the
ata as steady state, while the clear unsteady behavior of the
pm data where the level of the propeller rpm is changed still
s flagged as unsteady. This is also the case if the starting
oint of the first window is shifted, because the method is
ot sensitive to where in the time series data the steady state
etection starts. If we compare Fig. 6 a and 6 b, it is shown
ow a lower α preserves more of the time series as steady.
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Fig. 8. Time series of propeller pitch [%] data showing local steady state identified using the new approach with a sliding window of size n = 30 (30 seconds). 
Two different significance levels are used for the t -test of the estimated slope. 

Fig. 9. Time series of propeller pitch [%] data showing local steady state identified using the new approach with a sliding window of size n = 30 (30 seconds). 
Two different significance levels are used for the t -test of the estimated slope. 
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Fig. 10. Time series of ship heading data showing local steady state identified using the new approach with a sliding window of size n = 1200 (20 minutes). 
Two different significance levels are used for the t -test of the estimated slope. 
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he detector accepts a higher estimated slope inside the win-
ow, while the clear regions of changing propeller rpm level
till are flagged as unsteady. 

If the ship is equipped with a controllable pitch propeller,
dentification of steady propeller pitch is of similar importance
s of propeller rpm with regard to a performance analysis of
he ship. Both the propeller rpm and pitch are adjusted when
ontrolling the forward speed. However, the rate at which the
ropeller rpm and pitch angle are adjusted relative to each
ther, depends on the configuration of the propulsion control
ystem. Time varying propeller pitch relates to unsteady op-
ration of the ship, for which transient effects may affect the
erformance analysis. In Figs. 8 and 9 , two time series ex-
mples of steady state identification on propeller pitch data
rom the multipurpose cargo ship is shown. Both examples
how steady state identification using two significance levels
5% and 1%). The first example ( Fig. 8 ) shows part of a time
eries where the propeller pitch is stepwise increased towards
00%. Each step is flagged as unsteady by the new method
o identify steady state, regardless of the two significance lev-
ls, which only has minor influence on the final result. The
econd example ( Fig. 9 ) shows part of a time series where
he propeller pitch has more frequent and abrupt changes. Ev-
ry large drop and rebuild is flagged as unsteady, regardless
f the two significance levels. Both of the two examples of
teady state identification on the propeller pitch time series
ata appears reasonable according to a visual identification,
nd the new steady state identification method demonstrates
 reliable performance for a variety of unsteady behavior. 

So far, steady state identification on variables critical for
 ship performance analysis has been evaluated. There are
owever vast objectives for analyzing ship in-service moni-
oring data. To further demonstrate the use and performance
f the new method, steady state identification on ship data
hat may be used for other applications is also presented. The
xamples use time series data of measured ship heading and
hip speed over ground (SOG) from a PSV to check for time
ntervals when the heading and when the ship speed is steady.
teady ship heading and speed data is by instance necessary
or a wave - ship motions analysis, or to shipboard sea state
stimation. The steady state identification is performed indi-
idually for each of the time series, and the results are shown
n Figs. 10 and 11 for ship heading data and ship speed data,
espectively. In a traditional wave - ship motion analysis or
or shipboard sea state estimation, a window size of 20 min-
tes is typically recommended in order to obtain statistical
ndependence from the particular realization of the wave en-
ironment. Hence, a sliding window of size n = 1200 (20
inutes) is used. 
The identification of steady state in the ship heading data,

hown in Fig. 10 , has good agreement with visual identifi-
ation. The effects of decreasing the significance value from
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Fig. 11. Time series of ship speed over ground (SOG) data showing local steady state identified using the new approach with a sliding window of size 
n = 1200 (20 minutes). Two different significance levels are used for the t -test of the estimated slope. 
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α = 5% to α = 1% are small, and the only change of any par-
ticular importance is the increased length of the steady state
time interval between time = 120 and time = 165 [minutes].
Short intervals of apparently steady state data have been re-
jected due to non-sufficient length compared to the window
size. The method also successfully rejects small but distinct
changes in heading as steady state, as by example shown at
time = 30 [minutes]. 

3.4. Combined steady state identification 

The new approach for steady state identification has shown
good performance on standalone critical variables. For other
time series data analysis purposes, steady state can be required
for multiple variables at the same time. The procedure to
combine steady state identification when having more than
one single critical variable is to perform standalone steady
state identification on all critical variables, and combining the
steady state time intervals to form a final set of time intervals
where all critical variables meet their steady state criteria. 

In other cases, a more strict sense of stationarity can be re-
quired, as for example second order weak stationarity where
the process should fulfill both constant mean and variance.
Going from steady state to a higher order of stationarity more
or less follows the same way of combining steady state time
intervals. However, the various moments of the critical vari-
ble up to the preferred order of stationarity must be calcu-
ated prior to the steady state identification. If second order
eak stationarity of a critical variable is preferred, the steady

tate time intervals of the mean and the steady state time
ntervals of the variance are combined to a final set of sec-
nd order weak stationary time series intervals. Similar is for
igher order weak stationarity. 

. Conclusion 

The new method for steady state identification of time se-
ies data is based on using a sliding window and its corre-
ponding t -value of the local slope as a change point indica-
or. Through a number of demonstrations the new method is
hown to perform well on a diverse selection of measurement
ariables collected onboard two different case vessels. The
ain advantage of the new approach relative to state of art
ethods is that it is very robust against false identifications of

ocal steady state. That is, it ensures that the identified state is
ompletely independent of the starting point of the first win-
ow used for evaluating the state. Secondly, the new method
nly requires two parameters to be set by the user. These pa-
ameters have clear physical meaning, which means that the
ser can interpret and specify the parameters relatively easily.

The main drawback of the new method is that it involves
everal more calculations compared to state of art methods.
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et, for most practical purposes it is found to be computation-
lly efficient, as long as the steady state identification does
ot have to consider a large number of variables at the same
ime. Secondly, the new method does not consider a strict
ense of stationarity, which means that it should only be used
ith the objective of detecting a weak sense of stationarity

n terms of mean and/or variance. 
Compared to a simple arithmetic average of the evaluated

tate of each sample, the new method is practical in both
mplementation and interpretation. This is much due to the
act that it is not depending on a threshold value for the local
teady state probability. The new method is shown to manage
ariations in the signal variance, variations in the duration of
he changes in the process value as well as the length of the
ypical steady state parts. The conclusion is therefore that the
ew method for steady state identification is a practical, robust
nd easy-to-implement preprocessing tool for time series data
nalysis. 
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