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Abstract

Procedural content generation (PCG) is the process of generating video game
content through algorithms and has been used in the game industry for a long
time. Content refers to elements in a game such as levels, terrain, or game rules.
PCG has several benefits for the industry since computer-generated content can
inspire human designers, and be used to create games with endless content. Re-
search interest in the PCG field has grown over the last couple of decades, where
PCG problems are often formulated as search problems. Evolutionary algorithms
have frequently been applied as the search mechanism, with an objective defined
by a desired content quality. The optimal quality in entertainment games can be
formulated as the question will a player enjoy this content? This quality has been
quantified by heuristics within different game genres, with success. A promising
approach is based on evaluating content while it is played in a game, referred to
as simulation-based evaluation.

Constraint novelty search is an evolutionary algorithm that has emerged and
shown promise in the field of PCG. The commonly used objective given by a
fitness function is replaced by the objective of novelty alone.

This thesis is a first attempt at using constraint novelty search, with constraints
based on simulation-based evaluation, to generate character mechanics in a fight-
ing game. Character mechanics refer to the technical design of characters, i.e.,
how they may behave in a game. Aesthetics like graphics and sound are not
considered. A simple two-player fighting game will be used for this research,
developed by the thesis authors. The game is based on design patterns seen in
commercial fighting games.

User studies are conducted to evaluate the generated character mechanics, based
on the enjoyment of test subjects. The results show that the applied generation
method can produce multiple characters that are perceived as more interesting
than human-designed characters. However, characters of high quality are not
generated consistently. The amount of test subjects is limited, such that further
research is needed to verify our results.

The proposed generation method can be applied to other fighting games on the
conceptual level. However, the implemented system is dependent on technical
aspects and heuristics of the game used for this thesis.
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Sammendrag

Prosesuell generering (Procedural Content Generation, PCG p̊a engelsk) er en
metode brukt i spillutvikling for å generere spillinnhold ved bruk av algoritmer
fremfor menneskelig arbeid. Spillinnhold er elementer som for eksempel baner
eller terreng. PCG er nyttig siden det kan inspirere til nytt design, spare arbeid-
stimer, og produsere spill med ubegrenset innhold. Som forskningsfelt har inter-
essen for PCG økt de siste ti̊arene, hvor PCG problemer ofte blir formulert som
søkeproblemer. Evolusjonære algoritmer er en av de mest brukte algoritmene
i PCG, hvor algoritmens m̊al (objective) er spillinnhold av høy kvalitet fra et
menneskeperspektiv. Tidligere forskning p̊a PCG har lyktes med å kvantifisere
kvaliteten p̊a spillinnhold ved å bruke heuristikker basert p̊a kunsitg intelligente
algoritmer som spiller gjennom innholdet. Denne kvantifiseringsteknikken kalles
simuleringsbasert evaluering.

Denne oppgaven er et forsøk p̊a å benytte evolusjonære algoritmer i PCG-feltet
for å generere fyiskken til spillkarakterer i “fighting game”-sjangeren. Vi bruker
en variant av evolusjonære algoritmer kalt ”Constrained novelty search”, som
fokuserer p̊a å genere unike karakterer som oppfyller visse kvalitetskriterier under
en simuleringsbasert evaluering. Med fysikken til en spillkarakter, refererer vi
til karakteresn fysiske egenskaper, som f. eks farten, styrken og størrelsen til
karakteren. Spillkarakterenes grafiske elementer og lydelementer er ikke vurdert
i denne oppgaven.

Vi konstruerte et system som genererer spillkarakterer for et enkelt 2D-spill i
fighting game-sjangeren. Vi utførte brukertester for å vurdere systemet ved å
trekke ut et sett med karakterer for testing. Resultatene viser at karakterene
generert av systemet v̊art i flertallet av tilfellene var mer interessante enn de
andre, menneskekonstruerte karakterene, sett fra brukernes perspektiv. Enkelte
av de genererte karakterene var dog lite interessante, s̊a systemet v̊art var ikke
helt konsistent. I tillegg var antallet brukertestere lavt, s̊a mer forskning behøves
for å trekke klarere konklusjoner. Systemet for karaktergenerering kan brukes til
spill i fighting game-sjangeren generelt, men mye av systemet er implementert
med hensyn p̊a spillet som er brukt i denne oppgaven.
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Chapter 1

Introduction

This chapter introduces our thesis. We present the context and motivation for
our research in section 1.1. The goal of the research and research questions are
stated in section 1.2. We provide a definitions of key terms in section 1.3. A
disclaimer of the research is given in section 1.4.

1.1 Context

Artificial intelligence (AI) has seen a lot of progress lately through improving
methods such as reinforcement learning, artificial neural networks, tree search,
and evolutionary algorithms. Games have been used to utilize and experiment
with AI, both in academia and the industry. The most common application of AI
in the realm of games is agent playing behavior. AI playing classic games such
as Chess and Go have had breakthroughs with the use of reinforcement learning
and Monte Carlo tree search, and video games such as Star Craft1 and DOTA2

have also seen great advances when it comes to optimizing player behavior.

Besides playing games, however, there are many other applications within games
and other simulated environments where AI can be applied. Computational gen-
eration of game content is one such field, a field known as Procedural Content
Generation (PCG). PCG has been around since the 1980s, with early applications
seen in the game Elite3 (by Acornsoft) in the year 1984, among others. Recent

1https://starcraft.com/en-us/
2https://www.dota2.com/play/
3Elite: https://en.wikipedia.org/wiki/Elite_(video_game)

1

https://starcraft.com/en-us/
https://www.dota2.com/play/
https://en.wikipedia.org/wiki/Elite_(video_game)
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titles such as No Man’s Sky4 (by Hello Games) have made PCG a selling point.
PCG attracts players because of the excitement of experiencing novel maps and
creatures, giving games plenty of replay value.

Generating content is a central part of video games. It is time-consuming, labor
heavy, and requires creativity. Humans are only able to create a fixed set of
content to ship with a game, while computers can in principle create infinite
content, even while the game is being played. This opens the possibility for
infinite replay values of games.

PCG can be used to inspire and extend the creativity of a human. Tools have
been made, such as Sentient Sketchbook [26] and Restricted Play [16]. These tools
complement a human designer by proposing alternatives and possibly improved
content as the designer progresses with manual design.

Research shows that generating complex content5 in the field of PCG shows
most promise by search-based methods (search-based PCG). Content generation
is formulated as a search problem, and an objective is defined based on the desired
content quality. The literature shows that evolutionary algorithms are the most
widely applied search algorithms for this purpose. Novelty search is a variant of
evolutionary algorithms that shows promise in search-based PCG, as shown by
Liapis et al. [25].

Search-based PCG can be used to evaluate content by letting computer players,
based on game-playing AI techniques, take the role of a human player. This
technique is called simulation-based evaluation and is necessary if the generated
content can not be evaluated outside the context of a game. The optimal content
quality of entertaining games can be seen as the enjoyment of a player that plays
with the given content. Evaluating player enjoyment computationally is a hard
task. Heuristics on specific game genres have priorly been used to estimate player
experience, through simulation-based evaluation.

The research within the field of PCG has seen a noticeable growth over the
last decade. The General Video Game AI (GVGAI) competition has promoted
research within both game-playing AI and AI methods for PCG, with individual
competitions for generating game levels and game rules. The games examined in
the GVGAI competition are limited to simple action games.

Research on AI in the context of fighting games has also seen growth over the
last decade. The Fighting game AI (FTGAI) competition has been held yearly
since 2013. This competition promotes research on game-playing AI in fighting
games. Fighting games are complex real-time games, compared to the games used

4No Man’s Sky: https://en.wikipedia.org/wiki/No_Man%27s_Sky
5Complex content is game content that is integral to a game and hard to evaluate.

https://en.wikipedia.org/wiki/No_Man%27s_Sky
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for the GVGAI competition. However, there has not been any research towards
generating content in the FTGAI competition.

In the field of AI and games set out in this section, this research will first con-
tribute to the use of PCG in the context of fighting games, to generate interesting
character mechanics. Secondly, to evaluate player experience through simulation-
based evaluation in a fighting game. To our knowledge, these two areas have not
been covered by previous research.

1.2 Research goal

This thesis presents a system to procedurally generate content for a fighting game,
created by the authors. It is an attempt to combine methods from the PCG
field, with player experience estimated through simulation-based evaluation in
the fighting game domain. Fighting games propose several different characters
that can be chosen by a player. Thus, the technical design of the characters is a
large part of the mechanics in a fighting game. The technical design refers to how
a character may behave in a given game, and is referred to as the mechanics of a
character. This thesis will focus on generating interesting character mechanics.
The goal of this research is summarized as follows:

Research goal: Explore generation of character mechanics in fighting games
through the use of evolutionary algorithms.

The concept of interestingness in the context of fighting game characters are
based on theories of what makes games fun and creative. Interestingness in the
context of this work is defined as: novel, fun and balanced. Novelty is the property
of a character being dissimilar to other characters. Fun is determined by how a
player experiences a character. Balance relates to characters where no character
is superior to another.

Character mechanics are generated for a two-player fighting game developed by
the authors. It is a simplified version of a typical fighting game and shares many of
the design principles commonly found in fighting games. The rules of characters
are given by the game itself, and parameterized representations of the mechanics
of characters are evolved.

Our system is based on a search method known as constrained novelty search,
which is a type of evolutionary algorithm that uses novelty as the main objec-
tive. Constraints are defined based on the concept of fun and balance through
simulation-based evaluation. A simulation is performed with a computer-controlled
player that plays a generated character, while the character is evaluated. The
character is evaluated according to a set of criteria that evaluates the player
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experience with regards to fun and balance.

Three research questions were defined for meeting the research goal:

RQ1 How can constrained novelty search be utilized to evolve interesting char-
acter mechanics?

RQ2 Can we measure fun and balance of character mechanics in a simulated
game?

RQ3 Can constrained novelty search yield character mechanics that humans find
interesting?

As mentioned in section 1.1, the most common application of AI in games is game
playing behavior and decision making. In this thesis, the research is focused on
optimizing the game rather than the player. To illustrate what this means we
present a research metaphor.

Imagine the act of driving your car to work. In this case, you are the agent
performing actions. There are several actions you, as the agent driving the car,
can perform to optimize your commute to work. External entities, such as your
car, the road, traffic lights, etc. are part of your environment. They will affect
your experience of driving to work. Instead of searching for the optimal strategy
for the agent, we aim to optimize parts of the environment that the agent op-
erates in. In this thesis, an analogy to character mechanics is the car. We seek
interesting character mechanics in a video game. Similarly, a car manufacturer
seeks a diverse set and interesting cars for any driver to enjoy. The metaphor is
visualized in figure 1.1.

Game playing AI refers to the behavior of an agent operating in an envi-
ronment. Wide known examples of game-playing AI are the Deep blue chess
computer, and the AlphaGo computer playing Go.

AI for content generation refers to using AI methods for generating content
artifacts. The word “Content” has a broad meaning, and generally refers to any
non-player elements within a game, such as game levels, maps, obstacles or game
rules.

The main focus of this research is AI for content generation.
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Figure 1.1: A metaphor for our research. An analogy to the game is the activity
of driving a car on the road. The car can be viewed as content within the game.
We explore the use of AI for generating content, as opposed to game playing AI.

1.3 Definitions of terms

There are some terms used frequently in this thesis that can be confusing. As
such, this section provides definitions for these terms and their meaning in this
thesis.

Character mechanics

Character mechanics can be seen as the “technical” design of a character. It
refers to how a character may behave in a game. Aesthetics like graphics and
audio are not considered mechanics. Our representation of character mechanics
is given by properties that affect the mechanics. Typical examples of character
mechanics are movement speed, jump height, and attack strength. A “character
configuration” refers to a given character in the described representation. A
“character” refers to character mechanics in the context of generating characters.
In the context of a game, a “character” refers to an actual character that can be
played and experienced by a player.
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Computer player

Computer-controlled player, or just computer player, refers to a computer algo-
rithm controlling a character in a game. The term computer player could be
seen as a substitute name of “AI player”. We prefer the term “Computer player”
since “AI player” indicates methods considered as artificial intelligence methods,
whereas Computer player allows for both simple and complex methods.

Interestingness

Although not a commonly used word, interestingness is the word we use to de-
scribe the quality of a character with regards to how it is experienced by a player.
Interesting characters are characters that are novel, fun, and balanced.

1.4 Disclaimer

This thesis is a continuation of the specialization project conducted in the fall
of 2019 by the thesis authors (Skjærseth and Vinje). The resulting report based
on the project is titled “Automatic generation of character mechanics in fighting
games”, and contains a literature review, as well as a proposed framework for
generating character mechanics in fighting games.

Large parts of chapter 2 and chapter 3 are based on the specialization project
report. Some sections in these chapters contain similar paragraphs that are mod-
ified to a varying degree. We will mark these paragraphs with footnotes through-
out this thesis, to clearly state that they are not original work.



Chapter 2

Background

In this chapter, we present an overview of the concepts and research areas related
to our goal of procedurally generating fighting game character mechanics.

We introduce the research area of procedural content generation (PCG) in sec-
tion 2.1. Evolutionary algorithms is a search algorithm often applied in PCG
problems, and will be presented in section 2.2. This thesis focus on PCG in the
fighting game domain that is presented in section 2.3. To evaluate fighting game
characters according to interestingness, we need to know how this term can be
interpreted in the context of video games and for characters in a fighting game.
This is discussed in section 2.4. PCG problems need a method to evaluate the
generated content. In this work, characters will be evaluated according to inter-
estingness, i.e., how a human player would experience a character. This can be
done through simulation-based evaluation that is covered in section 2.5.

2.1 Procedural content generation

Procedural content generation (PCG) is the process of generating game content
through the use of algorithms and computational methods, rather than manually
through human labor. In PCG, game content typically refers to artifacts such
as game levels, maps, terrains, items, enemies, rules, or game parameters. Non-
player character (NPC) AI is typically not viewed as content in PCG [48].

The appropriate methods for generating content will vary greatly based on the
nature and complexity of the content. We will therefore make some distinctions
on the methods used in PCG.

7
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Constructive methods vs generate-and-test

The first way we will distinguish PCG methods is between constructive methods,
and methods described as generate-and-test. Constructive methods are methods
in which content is generated once, and then either used or discarded. There may
be constraints on the generated content during the generation process to steer
the content toward a desirable solution, but once a solution is produced, the
constructive method is finished. Typical examples of content created using con-
structive methods are backgrounds or landscapes in a video game. Constructive
methods are more suitable for less complex content with fewer constraints.

On the other end are the methods we describe as generate-and-test. These meth-
ods are divided into two parts, a generator and an evaluator (or tester). The
generator produces solutions for the evaluator to test given some criteria. If the
test fails, the solution, or a part of the solution, is discarded and the genera-
tion process restarts. This continues until a desirable solution is produced. The
generate-and-test approach is suitable for more essential and complex content
of a video game, such as game levels in a platform game, or game enemies. In
these situations, the search space may be large, but the desirable solution space
is typically a very small subset of the search space. The quality of the content
will also greatly impact the gaming experience, so we need strict criteria for the
solutions.

Autonomous vs mixed-initiative

Another way to distinguish PCG methods is by the degree of human involvement
in the generation process. We separate here between autonomous and mixed-
initaitve methods. Content generation can be viewed on a continuum between
fully autonomous methods on one end, and entirely human-designed on the other
end. In a fully autonomous system, the computer system drives all the creative
processes of the generation of content. Mixed-initiative methods lie somewhere in
the middle of the continuum of fully autonomous methods and entirely human-
based content creation. Yannakis et. al defined mixed-initiative PCG as a “pro-
cess that considers both the human and the computer proactively making the
content contributions to the game design task although the two initiatives do not
need to contribute to the same degree” [47].

2.1.1 Search-based procedural content generation

The search-based approach is the approach often investigated in academic re-
search of PCG [44]. It is a variant of the generate-and-test procedure discussed
previously. The idea behind search based PCG is that content design in video
games can be viewed as a search problem. The search is performed in the domain
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of artifacts (a piece of generated content) with an objective, given by a desired
content quality. The objective is defined by a fitness function that assesses an
artifact and outputs a fitness score. Content quality can be given by a set of
constraints defined by a designer. An example is a search for game levels that
can be completed by a human within a reasonable time frame.

Common for all search-based PCG methods are three major components:

• A search algorithm

• A way to represent the content

• A fitness function to evaluate any given solution (or partial solution). A
solution in this context refers to an artifact.

We cover these three components briefly here.

The search algorithm is what drives the exploration of new and better content.
The most common search algorithms seen in complex PCG problems are evo-
lutionary algorithms. Evolutionary algorithms are further presented in section
2.2.

The content can be represented in various ways, but a useful distinction between
representations is how closely the content is tied to the representation of the con-
tent. In the case of evolutionary algorithms, an artifact in its representational
form is the genotype, while the artifact as it is presented in the game is the phe-
notype. An example of a direct representation of a game level is one where the
genotype represents a grid of the game world, with each grid cell either being
empty or containing an object in the game world. An example of a more indi-
rect representation of the game level is one in which the genotype only specifies
some desired properties of the level, and it is up to the genotype to phenotype
mapping function to define a useful transformation from the genotype to the
phenotype. Indirect representations tend to be less fine-grained and have smaller
search spaces, which can be beneficial in certain cases. However, they also tend
to have less correlation between adjacent points in the phenotype and genotype
spaces. This is undesired as small changes to the genotype can yield a large dif-
ference in the phenotype. The genotype to phenotype mapping is usually more
complex as well.

The final major component of search-based methods is the fitness function. We
distinguish here between direct fitness evaluations and simulation based evalua-
tion. Direct evaluations use explicit functions or formulas to evaluate the fitness
of the phenotype. Direct evaluations may use statistics or data of what consti-
tutes desirable solutions to define the evaluation function. In other situations,
there might be no reliable way to evaluate content without putting it in a game.
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Figure 2.1: The constructive, generate-and-test and search-based approach to
PCG. Figure by Togelius et al. (2011) [45]

This might be due to the fitness being time-varying or involve randomness and
requires a simulation-based evaluation. In simulation-based evaluation, a com-
puter player plays through the game with the artifact to be evaluated. The played
game is referred to as a simulation. To evaluate the artifact, data is extracted
from the simulation and used to determine the fitness. This approach introduces
several new challenges. We need an environment that can spawn game simula-
tion instances with the artifact we wish to evaluate. We also need to define the
content quality we wish to evaluate such that it can be quantitatively measured
through the simulation. Simulation-based testing is further covered in section
2.5.

The reader is encouraged to read chapter 4 of the 2018 academic book “Artificial
Intelligence and Games” by Georgios N. Yannakis and Julian Togelius [48] if they
wish to get a more detailed and thorough picture of PCG than we provide in this
chapter.

2.2 Evolutionary algorithms

Evolutionary algorithms are a class of search algorithms that are widely used
in optimization problems and is one of the most commonly used algorithms in
search-based PCG. As such, this section provides an introduction to evolutionary
algorithms. The reader is recommended to read Introduction to evolutionary
computing book by Eiben and Smith for a more thorough introduction [11].

Evolutionary algorithms are stochastic global optimization algorithms that draw
inspiration from the principles of biological evolution through natural selection,



2.2. EVOLUTIONARY ALGORITHMS 11

reproduction, and mutation. Evolutionary algorithms are classified as stochastic
since they use randomness during the search, and global since they are intended
to determine optimal solutions within the entire search space. Evolutionary al-
gorithms can be used for a variety of problems, but are especially useful for
problems where a large portion of the search space needs to be explored for so-
lutions, and where there is little prior knowledge to where in the search space
desirable solutions may be.

In an evolutionary algorithm, we refer to a proposed solution as an individual
and a set of individuals as a population. An individual has two different mani-
festations; a genotype and a phenotype. The genotype is the representation used
in the search algorithm, where evolutionary operators (reproduction and muta-
tion) can be applied. The individual components of a genotype are referred to as
genes. The phenotype refers to all the observable characteristics of the individ-
ual in a practical setting. In the case of generating video game characters, the
phenotype is the character as it appears when playing the game. Evolutionary
algorithms give no constraints on the genotype of an individual, so it is up to the
programmer to decide a useful representation. A trivial genotype representation
often used is simply an array of numbers, where each number corresponds to an
attribute of the individual.

The algorithm itself starts by generating an initial population of individuals ei-
ther randomly or based on some heuristic. The initial population should contain
individuals that are widely distributed in the search space. Otherwise, the al-
gorithm could easily conform to local search within a small subset of the search
space.

Each individual in the population is evaluated using a fitness function which
assigns individuals a fitness value. Individuals are selected as parents for repro-
duction of new individuals based on their fitness. This process is referred to as
parent selection (or just selection) and is an integral part of the performance of
an evolutionary algorithm. The selection scheme is independent of the search
domain, thus general purpose schemes have been investigated and presented, by
for example Blickle and Thiele [3]. Selection schemes have varying dependence
on the fitness of a population. This is referred to as the selection pressure and is
described in detail by researchers like Back [2]. A selection that highly prioritizes
individuals with high fitness applies high selection pressure.

The reproduction process is referred to as a crossover. A crossover combines
two parents to produce one or more (typically two) offspring individuals. The
crossover operator is highly dependent on the domain and the genotype represen-
tation of a solution. The crossover operation promotes exploration of the search
space, along with a mutation operator. A mutation is a process that alters some
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Figure 2.2: Crossover and mutation of an evolutionary algorithm. Individuals
are represented as an array of three numbers in this case.

of the genes of an individual’s genotype. Genes can be replaced or swapped
internally. The mutation operator promotes local search, as mutations on the
genotype should yield new individuals where the phenotype is adjacent, or close
in the search space. A visualization of crossover and mutation can be seen in
figure 2.21. There is often randomness involved when selecting, crossing, or mu-
tating individuals. For example, a mutation policy could be that attribute a of
individual i has a probability p of being changed during mutation.

The last step of one iteration of an evolutionary algorithm is to decide which
individuals to keep among the current population and its offspring, and which to
discard. The individuals that are kept constitute a new population of a new gen-
eration. The algorithm proceeds with evaluation of the new generation. These
steps are repeated to produce multiple new generations until a termination con-
dition is met. A termination condition could be based on whether a solution
discovered is good enough. In many cases of evolutionary algorithms, the goal is
to find a solution as optimal as possible. It is therefore more common to define
a termination condition based on a set amount of time, computational resources,
number of generations, or other resource constraints. Pseudocode of a general

1This fugre was taken from “Automatic generation of character mechanics in fighting games”
project report by Skjærseth and Vinje (2019)
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evolutionary algorithm is shown followingly.

Algorithm 1: Pseudocode of a general evolutionary algorithm

Result: Population
Population=generateInitPopulation;
EvaluatedPopulation=evaluatePopulation(Population);
while not terminationCondition do

Selection=selectIndividuals(EvaluatedPopulation);
Offspring=crossover(Selection);
mutate(Offspring);
Popualation=newGeneration(Selection, Offspring);
EvaluatedPopulation=evaluatePopulation(Population);

end

2.2.1 Exploration vs exploitation

The concept of exploration and exploitation are important within evolutionary
algorithms. Exploration refers to exploring a large part of a search space, while
exploitation refers to exploiting good solutions, and searching for slightly better
ones nearby in the search space.

Local search methods, such as hill climbing, have no mechanism to ensure a wide
exploration of the search space. They may arrive at a local maxima even though
it might not be a global maxima. Several other points in the search can represent
better solutions, far away from the discovered local maxima. This problem can
also occur in global search methods, such as evolutionary algorithms. An early
convergence toward a local maxima may discourage the search to explore other
areas of the global search space. Important factors of an evolutionary algorithm
that support exploration are how the initial population is created, how parents
are selected, and the crossover scheme that is used. The initial population should
be distributed across the search space, and parent selection should not strictly
be based on the individuals with the highest fitness.

The opposite aspect of exploration in the context of evolutionary algorithms is
the exploitation aspect. When selecting parents based on a population’s fitness,
we are exploiting the best solutions found to form even better solutions. This is
important as the search space might be large, so exploiting seemingly fit land-
scapes of the search space for further evolution will lead to faster convergence.

Evolutionary algorithms need an appropriate balance between exploration and
exploitation. Too much exploitation will promote fast convergence at the cost of
missing globally better solutions. On the other hand, too much exploration can
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lead to no or very little convergence. The right balance between exploration and
exploitation is highly dependent on the search domain, the evolutionary operators
used, parent selection scheme, and computational budget.

In many domains where evolutionary algorithms are used, a single optimal so-
lution is desired. However, in other problems, a set of good solutions might be
the goal of the search process. Other goals may be to discover a diverse set of
desirable solutions. A set of solutions where each solution is similar to one an-
other might not yield much value. In this case, exploration becomes even more
important.

Because the search space might be sparse (meaning that local and global maximas
are far apart) and the need for multiple dissimilar solutions, boosting exploration
might be desired. Several techniques for encouraging population diversity have
emerged and been widely studied in academic literature.

De Jong introduced the concept of niching in 1975 [9]. Common for niching
techniques is maintainance of several diverse subpopulations to be explored in
parallel and can be used to converge to multiple fit and divergent solutions.
Different niching techniques discussed and tested in academic research include
deterministic crowding [31], fitness sharing [13], and clustering [49], among others.
The crowding approach encourages exploration by having a bias toward divergent
individuals during the selection phase of an evaluated population. Fitness sharing
cuts off the fitness of individuals in densely populated regions and share the value
with less populated regions. In the clustering approach, the k fittest individuals
are split into disjoint species, and the remaining individuals are clustered into
one of the species. Individuals can only mate with individuals within the same
species.

Another approach, called Novelty search was introduced by Lehman and Stanley
[22]. It takes diversity to the extreme by replacing the objective of maximizing
fitness by the objective of novelty. Novelty search is further presented in section
3.2.

2.3 Fighting games

In this section, we present the fighting game genre. We present what a fighting
game is, the common design patterns of games from the genre, and artificial
intelligence research within the domain.

The fighting game genre has been around for decades and is a popular genre
to this date. The two fighting games Super Smash Bros: Ultimate and Super
Smash Bros: For Wii U are seen on the top 20 list of most popular fighting
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games in 2020, published by Gaming Gorilla2. Both these games are from the
Super Smash Bros franchise by Nintendo. Other popular fighting game franchises
include Street Fighter by Capcom, Tekken by Bandai Namco Entertainment, and
Mortal Kombat by Midway Games, among others.

Fighting games are multiplayer games where two or more players control one
character each. Fighting games usually take place in a two-dimensional stage
seen from the side. A snapshot of a game of Super Smash Bros: Ultimate can
be seen in figure 2.3 and Street Fighter 2 in figure 2.4. The goal is to eliminate
the opponent’s character by moving and using a set of attacks while defending
yourself with defensive abilities. Each character has a fixed number of so-called
hit points, or a health bar, that depletes when hit by an enemy attack. Characters
are eliminated when their hit points reach zero. The Super Smash Bros. franchise
differs from this traditional system. Instead of having a number of hit points,
each character has a damage value that goes up every time the character gets
hit. When getting hit, the character gets knocked backward with a force relative
to the accumulated damage taken. If a character gets knocked off the stage, it is
eliminated.

A fighting game contains a set of characters that the player can choose from,
where each character is equipped with a unique set of offensive and defensive
abilities. The attacks are mainly divided into two groups; melee and projectile
attacks. Melee attacks are short-ranged and persistent with the reach of the
character, like punches, and kicks. Projectile attacks are attacks emitted from a
character and may travel for a longer distance, for example shooting a fireball.
The differences between characters yield different playing strategies and styles.

2.3.1 Technical characteristics of fighting games

In this section3, we look deeper into the design patterns and mechanics that
fighting games are built around. These aspects will be central to how we represent
a character, later seen in section 4.2.

When an attack is performed, it hits the opponent if the hitbox that corresponds
to the attack intersects with the opponent’s corresponding hurtbox. Hitboxes
and hurtboxes are geometrical areas which correspond to attacks and characters,
respectively, and are used to calculate intersection. The hitbox of an attack by

2Gaming Gorilla has made a ranking of the most popular video games in 2020: https:

//gaminggorilla.com/most-popular-video-games-now. The list is based on human voting
from other internet sources.

3This subsection contains figures and paragraphs that are slightly modified versions of para-
graphs taken from “Automatic generation of fighting game characters” by Skjærseth and Vinje
(fall 2019), section 2.1.1.

https://gaminggorilla.com/most-popular-video-games-now
https://gaminggorilla.com/most-popular-video-games-now
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Figure 2.3: Two characters can be seen on a stage in the game Super Smash Bros:
Ultimate. The accumulated damage taken is presented at the bottom, next to
the characters icons.

Figure 2.4: Two characters in combat in Street fighter 2. The character on the
right performs an attack that hits with the character on the left. The hit points
of each character can be seen at the top as a yellow bar with a red background
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the character Ryu in Street Fighter 24 is displayed in figure 2.5. Although their
names imply that they are boxes, hitboxes and hurtboxes can in principle have
any geometrical shape.

A common attack pattern in fighting games is the concept of combinations or
combos. A combo is a string of attacks performed sequentially. Hitting the
opponent often opens up an opportunity for more hits, but typically requires
skills and precision to effectively master.

Figure 2.5: The hitbox of a kick attack performed by the character Ryu in Street
Fighter 2. The character’s hurtbox is also displayed.

As we are concerned with fighting game character mechanics in this thesis, we
will emphasize how we define a character in the context of fighting games for the
purposes of this thesis. A character is an entity that is controlled by a player and
interacts with the game environment. Aesthetic factors like visuals and audio are
left out, such that there will be a focus on the game rules and mechanics.

A character and its interactions in an environment can be modeled as a finite state
machine5 (FSM). Common states include standing still (idle), moving, jumping,
and attacking, as seen in figure 2.6. The transitions between these states may
be caused by player input, timed events, or external environmental factors like
getting hit by an opponent’s attack. Given this perspective, the character me-
chanics are defined by the states and transitions of a character along with its
hurtbox. Their mechanics also encompass the mechanics of their combat actions,
which will now be presented.

4https://en.wikipedia.org/wiki/Street_Fighter_II:_The_World_Warrior
5For an overview of finite state machines, visit https://en.wikipedia.org/wiki/

Finite-state_machine

https://en.wikipedia.org/wiki/Street_Fighter_II:_The_World_Warrior
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
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Figure 2.6: Fighting game character modeled as a FSM. This is an example of a
subset of states and transitions commonly present in a character. The circles are
the states, and the arrows represent transitions.

According to Yu and Sturtevant, there are three main design elements in fighting
games [52], namely timing, spacing and effectiveness. Timing refers to the timing
of combat actions, hereby referred to as just actions in this section. An action
is split into four states: Input time, lead time, execution time, and lag time. We
can expand the attack state of a character, seen in figure 2.6, to visualize the
flow of an attack, see figure 2.7. In some fighting games, some actions require a
sequence of button inputs, while others may only require a single button input.
In the first case, the input time will be longer, whereas in the latter case, the
input can be turned into an action immediately. Lead time is the time from when
an input has been registered until the execution of the action. In this state, the
character is uncontrollable and is usually accompanied by an animation where
the character, for example, starts to lift his foot to perform a kick. During the
execution time, the effect of an action is active. That is, a melee attack may hit
an opponent, a projectile attack is emitted or a defensive action may block an
attack. The lag time is similar to the lead time, where the characters settle back
to an idle state. The timings are usually short, where the whole duration of one
action may generally last for 0.2 seconds to 1 second, but can last longer. The
timings differ between actions and are often aligned with the strength or quality
of an action.

Spacing refers to the relative distance between the two characters given the range
of their attacks. If the hitbox of an attack overlaps with the hurtbox of an oppo-
nent character, the opponent will be hit. Thus, spacing is the relative distance
between a character’s hurtbox and the hitboxes of an opponent’s attacks.
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Figure 2.7: The common flow of a fighting game attack represented as a FSM,
based on Yu and Sturtevant [52]. The circles represent states while arrows rep-
resent transitions. This may be seen as an expansion of the attack state seen in
figure 2.6

Effectiveness of an action is the gain of performing the action when it achieves
the desired effect. For an attack, it is usually the amount of damage applied
to the enemy, while for a defensive action, it could be the time gained where a
retaliation attack may be performed. The effectiveness of an action is limited
by the counteractions the enemy may perform. An attack might not be effective
against a defensive action, while there may exist specific attacks that counter a
defensive action.

Yu and Sturtevant also describe a rock-paper-scissors pattern often present in
fighting games. Combat actions are constructed in a way where they are divided
into three types. Each action type is effective against one other type and weak
against another type, forming mechanics comparable to the game of rock-paper-
scissors.

2.3.2 Fighting games and AI

Fighting games are real-time6 continuous7 multiplayer games. The number of
actions that can be performed in a given game state, called the action space, is
typically large and includes movement and combat actions. The total amount
of actions available are in the range of 30 and above, where certain actions can
only be performed in certain states. Fighting games usually run at 60 frames
per second (FPS), which means that inputs are registered and the game state

is updated every 1
60

th
second. A single battle in fighting games typically lasts

6Real-time is the property of a game that seemingly progresses in time like the real world,
as opposed to turn-based games. At a computational level, real-time is commonly discretized

to game-state updates every 1
60

th
of a second

7A continuous game is not bounded by positions inside a predefined grid as opposed to
typical board games like chess
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between 5 and 10 minutes. This leaves a lot of possible states and state-action
pairs to be explored. These characteristics arise challenges in the context of
AI, especially for AI agents adapted to play games, known as game-playing AI.
Fighting games and other real-time video games have seen less research focus
than classical board games like chess and Go. These technical challenges might
be a part of the reason.

Fighting games have received a considerable amount of interest in the AI research
community. The game industry has created AI-based computer players for their
fighting games and academia has seen a growth of interest over the last several
years. AI used for playing fighting games in the human player role has clearly been
the most contested topic. Dynamic difficulty adjustment has also seen research,
mainly focusing on adjusting computer-controlled opponents to the skill level of a
player as in the work of Danzi et al. [8] and Ortiz et al. [32]. Player modeling with
regards to player type and player skill has been also been seen, such as in the work
of Konecný [21]. A player model is to computationally capture characteristics of
a player and can be for example be used in the aforementioned task of dynamic
difficulty adjustment. Mimicking human players is another research area applied
to fighting games, for example by Saini [37].

In the game industry, it is common to ship fighting games with the ability to play
against a computer-controlled player. This lets a player play by themselves and
practice. Computer agents produced by the game industry are historically based
on human-designed rules, denoted rule-based agents. These rules are based on
a handcrafted function of the game state to produce an action. The tendencies
of a rule-based agent are that it is predictable. This might be a benefit for a
developer as it gives full control of how a game is played, but the predictability
might be boring for a human player. 8

The fighting game AI (FTGAI) competition 9 was introduced in 2013 as a plat-
form promote research on game-playing AI in fighting games [28]. Agents are
compared on performance, such that the goal is to design an agent to beat other
designed agents. The competition has been held yearly since 2013 and has lead
to a great advance in fighting game-playing AI.

Early entries to the FTGAI competition were rule-based, similar to the common
approach in the industry. This is a type of a reflex agent, with rules that act as
state-action functions. Opponent prediction was introduced to counter the rule-
based agents [46]. This technique is used to predict the opponent’s attack actions

8This paragraph and the following are slightly modified versions of paragraphs taken from
“Automatic generation of fighting game characters” by Skjærseth and Vinje (fall 2019), section
2.6.1.

9The fighting game AI competition’s official website: http://www.ice.ci.ritsumei.ac.jp/

~ftgaic/

http://www.ice.ci.ritsumei.ac.jp/~ftgaic/
http://www.ice.ci.ritsumei.ac.jp/~ftgaic/
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and/or movement and taking countermeasures based on the prediction. Other
attempts include dynamic scripting, where a set of predefined rules are adopted
dynamically by reinforcement learning, as seen in the work of Sato et al. [38] and
Majchrzak et al. [29]. The latter method won the 2015 FTGAI competition.

Monte Carlo Tree Search (MCTS) has been a dominant method among the best
entries in the FTGAI competition since 2016 when it was introduced by Yoshida
et al. [51]. MCTS has been used in many variations, including combinations with
predefined rules [15], reinforcement learning [35] and evolutionary algorithms [19].
Some attempts at using Q-learning have been seen [50], but has not performed
well.

Reinforcement learning (RL) has seen use outside the context of scripts and
MCTS as well. Deep Q-learning (DQL) was explored by Takano et al. [41],
and Yoon and Kim explored the possibility of DQN directly on the visual pixel
values of a game state [50]. These approaches have not yet proven competitive
among the other methods used in the FTGAI competition. A hybrid reward
function with RL has also been explored, where different value functions are
learned separately, by Takano et al. [42].

Apart from the FTGAI competition, research on game-playing AI has been con-
ducted on other fighting games, including Super Smash Bros Melee (SSBM).
where DQL has been applied by Firoiu et al. [12]. The results of Firoiu et al.
were promising as their method was able to beat some of the best professional
SSBM players in the world.

We have not seen attempts at procedural content generation (PCG) in fight-
ing games. PCG may draw parallels with dynamic difficulty adjustment, as
computer-controlled players are adjusted, though game-playing AI is typically
not thought of as content within PCG. Player modeling can be used as a basis
for tuning game parameters, as pointed out by Konecný [21]. His work focus on
modeling player types in a multiplayer game, a game could be tuned to allow an
equal challenge to all players based on their characterized player type.

2.4 Interestingness in video games

Our method of generating characters should promote interesting characters. But
what makes games interesting? Theories on what makes games fun and compu-
tational creativity will be briefly presented in this section. This gives the reader
a theoretical background on the concept of interestingness and how it can relate
to fighting game characters.
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Fun in video games

Malone published a paper on what makes video games fun back in 1980 [30]. He
presented three characterizing aspects of enjoyable video games: Challenge, fan-
tasy and curiosity. Challenge is described as having clear goals, and uncertainty
of the outcome of a game. There should be an appropriate difficulty level, where
success is possible, but by no means guaranteed. Fantasy refers to the level of
fantasy in the game environment. Curiosity means having a certain amount of
information hidden so the player stays curious and wants to keep exploring the
game. A more recent example of research on what constitutes fun in video games
is the paper on GameFlow, by Sweetser and Wyeth [40]. GameFlow describes
eight elements that characterize a flow state when playing a game. The concept
of flow was earlier introduced by Csikszentmihalyi [7] and adopted in the domain
of games by Sweetser and Wyeth. The flow state is identified by being intensely
engaged in a task, feeling a sense of control, and losing the sense of time and the
real world. There are four of the eight elements presented by Sweetser and Wyeth
we find especially relevant since they are tightly connected to the mechanics of
a game, namely Challenge, player skills, control and clear goals. Challenge and
player skills are closely related, where the challenge must adapt to the skill of a
player. Control indicates that a player should feel a sense of control over his or
her actions in a game. Clear goals consider the presence of goals, and that they
are easily understood by a player.10

Computational Game Creativity

Computational creativity is a computational field concerned with creativity in
a computational context and mainly relates to visual art, narrative, and audio.
Liapis et al. [24] presents how computational creativity can be seen in the context
of generating content in a game11. Liapis et al. base their work on three essential
properties of creativity: Novelty, quality and typicality, presented by Ritchie [36].
The three properties are stated as follows:

• Novelty: “To what extent is the produced item dissimilar to existing exam-
ples of its genre?”

• Quality: “To what extent is the produced item a high-quality example of
its genre?”

10This subsection is a modified version of the subsection “What is fun?” found in section 2.2,
page 12 of “Automatic generation of character mechanics in fighting games”.

11This subsection is a modified version of the subsection “Computational Game Creativity”
found in section 2.2, page 13 of “Automatic generation of character mechanics in fighting
games”.
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• Typicality: “To what extent is the produced item an example of the artifact
class in question?”

We will further elaborate on these three aspects in the domain of fighting game
characters. In this domain, the item would be a character and the genre would
correspond to other fighting game characters.

2.4.1 Interestingness of fighting game characters

Novelty is the property of a character that corresponds to being different from
other characters. The other characters are characters already defined in a given
game or basic character design seen in the fighting game genre as a whole. Novelty
also corresponds with the curiosity aspect presented by Malone [30].

Quality in the domain of games is tightly related to what makes games fun, as
presented previously. For a generated fighting game character, it should promote
the right amount of challenge. This relates to how hard a character is to play. It
also relates to the concept of balance in multiplayer games. Characters should
have a similar level of strength, such that players have a fairly even chance of
winning. A character should also promote a flow state of the player. The theories
of fun presented previously will work as a basis for what we consider quality.

Typicality refers to characters being familiar to each other and the genre, i.e,
the fighting game genre. It is partially achieved through the game environment
specified for a given game and should contain rules and mechanics that promote
typicality toward fighting games. Typicality between different characters is also
important. If a player has learned how to play a game with a single character, the
player should be able to adapt to another character with parts of the obtained
knowledge. Typicality will promote the flow state of a player for new characters
as well.

The concepts presented in this section form our definition of interestingness in
the perspective of fighting game characters: Novel, balanced, and fun.

2.5 Simulation based evaluation

Simulation-based evaluation is the process of evaluating a generated artifact by
loading it into a game and let computer players play the game with the given
artifact. Measurements of the played game are calculated and used for the eval-
uation of the artifact. The process of playing a game with the generated artifact
will be referred to as a simulation. This approach might be used for evaluating
the quality of content in search-based PCG (see section 2.1). Simulation-based
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evaluation is used instead of direct or interactive evaluations, as they might not
be suitable, as discussed in 2.1.

Simulation-based evaluation consists of three components:

• A game that can load a generated artifact.

• Computer players that give inputs to the game. The computer players
take the role that human players would normally have in a game.

• Criteria that evaluate some aspect of a game through measurements with
respect to the desired quality of a generated artifact.

It should be noted that these principles also apply to other simulation domains,
apart from games.

The desired quality of the content from a designer’s perspective will decide suit-
able criteria for the evaluation. The desired quality is dependent on the game
domain and the purpose of the content that is generated. An example is to eval-
uate if a player can reach a goal in a game with a generated level. A computer
player may be designed to move along the shortest path to the end of the level,
and a single criterion may be used that is based on whether or not the end was
reached.

Human-perceived enjoyment of an artifact is a more complex quality criterion.
This can be seen as the “ultimate” criteria for entertainment games, as the overall
goal is to enjoy the game. Defining criteria to capture a human’s experience of a
game is, however, not a straight forward task. Relevant theory for understanding
a player’s experience related to enjoyment through fun and balance was presented
in section 2.4. The concepts presented are not quantifiable. A computational
model to capture the player experience is therefore needed. We call this player
experience modeling, which refers to a model based on a set of criteria. This will
be further discussed in 2.5.1.

How to design the computer player is also dependent on the desired quality of
generated content. In the case where the desired quality is the player experience,
the controller should play similarly to a human player. We will further look at
how such a computer player can be designed in section 2.5.2.

2.5.1 Player experience modeling

When evaluating game artifacts by simulation, we need a way to assess the quality
of the artifact. The quality, as discussed earlier, depends on the goal of the
generation process and the type of content. We will here focus on the quality
given by the player experience. That is the human experience of the content.
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Note that the quality is based on simulation-based evaluation, where a computer
player is applied instead of a human player.

When generating content with the goal of satisfying human players, it would be
optimal to have a computational model of human player satisfaction based on
the outcome of a computer player. This is a rather hard model to construct, as
it ideally should model the brain of a human and track its emotions. Since this
is not practical, we use simpler heuristics of player experience for this task.

Previous work on quantifying player experience has been based on theories re-
garding what makes games fun and enjoyable, as presented in section 2.4. These
theories are hard to quantify, and there is no general computational model to
capture player experience. Previous work has defined criteria as heuristics for
player experience, but are heavily dependant on certain game genres, where do-
main knowledge is applied. Applications of simulation-based evaluation will be
further presented in section 3.3.

The type of content evaluated will impact how the player experience can be
modeled. Generated content may be essential or optional as seen in section 2.1.
The generated content can greatly impact how a game is played. It can even
be a complete set of game rules, as seen in the work of Brown and Maire [4],
where puzzle game rules were generated in a domain specific syntax. The more
impact the generated content has on a game, the harder it is to constructing
player experience heuristics.

Criteria for measuring player experience were grouped into three categories by
Brown and Maire, where two categories were related to simulation-based evalu-
ation and proved the most significant [4]. The two categories are quality criteria
and viability criteria. Quality criteria aim at evaluating player experience based
on how a computer player interacts in a game. The optimal quality criteria would
be a human player that reason about a game and the human could evaluate their
experience. That is however not possible with a computer player. An approxi-
mation can be made by assessing the actions of the player. Viability criteria are
based on the outcome of several played games. Viability criteria are usually easy
to compute, as the outcome of a game is trivial to record. It may correspond
to which player won and the length of the game, as seen in the work of Brown
and Maire. Quality criteria, on the other hand, are harder to construct as they
estimate the player experience during a game. These categories can be seen in
figure 2.8.
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Figure 2.8: Categories of criteria in simulation based evaluation. The criteria are
divided into two categories that are based on measurements through simulation
based evaluation. Quality criteria considers the behaviour of a player and viability
criteria considers the outcome of simulated games. Based on the work of Brown
and Maire [4]
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2.5.2 Computer controlled players

Simulation-based evaluation uses a computer-controlled player, or computer player,
that replaces the role of a human player. The computer player allows content to
be evaluated through play, without the need for human player interaction. This
is desired in the phase of game development before there exist players to play a
given game.

The computer player can essentially be based on any game-playing AI technique.
We have seen examples of game-playing AI in the context of fighting games in
section 2.3.2. The algorithm used depends on the content that is evaluated and
the defined content quality that constitutes the objective for the evaluation.

We focus on simulation-based evaluation to evaluate the quality of player expe-
rience. In this case, considerations should be given based human qualities of the
computer player adopted. The first aspect to consider is whether the computer
player can play at the same level as humans. Real-time video games feature
reaction time and input accuracy as mechanical aspects of the game. This is
especially true for fighting games, which often are fast-paced. Computers are
typically good at fast and accurate computation, compared to the human brain.
Thus a computer player could abuse its computational speed to act much faster
than a human. That would not seem human-like. This has been handled within
research on game-playing AI for fighting game by introducing state perception
delay. That is, delaying the perception that the computer player has on the
game by a fixed amount, d. Even though computer players may react immedi-
ately, with this delay, the player would react immediately to what happened in
the past. The delay, d, is usually defined based on an estimation of human delay
time. The game FightingICE, used in the fighting game AI competition, issues
a static perception delay with d =0.25s [28]. With a delay like this, a computer
player is noticeably weaker, as presented by Asayama et al. [1] for the Fighting-
ICE game. Asayama et al. also presented a method for predicting the opponent
to partially cope with this delay. Experiments have also been conducted to model
noise in human input [43].

Creating human-like computer players have also been conducted in the context
of other video games. For example the work of Schrum et al. [39], Bryant [6] and
Phuc et al. [34].
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Chapter 3

Related work

This chapter contains summaries of research closely related to our research goal
and research questions. Relevant research within search-based procedural content
generation (search-based PCG) is first presented in section 3.1. The class of
evolutionary algorithms has seen a lot of use in Search-based PCG, and one such
algorithm, novelty search, is further presented in section 3.2. In section 3.3,
applications of simulation-based evaluation in games are presented. There will
be a focus on the evaluation of player experience.

3.1 Research on search-based PCG

This section evaluates research using similar methods to ours, such as search-
based PCG, and how it can be utilized in different game domains.

Research on PCG, and search-based PCG (presented in section 2.1) in particu-
lar, has seen a sharp increase in academic interest over the last two decades [45].
By reviewing the literature, we found several examples from recent years where
evolutionary search was implemented for generating content. As recently as in
January 2020, Zafar et al. published a study on generating general game levels
using search-based PCG [53]. The aim of the study was to generate challenging
and aesthetically appealing game levels in a more general way than in previous
studies, where there often has been only one game used for experimentation.
Their conclusion was that “The results indicated that the levels are aesthetically
more appealing and challenging”. To evaluate levels, Zafar et al. used a direct
fitness evaluation of the levels instead of using simulation-based testing. This
approach is suitable when the content is appropriate to evaluate purely based on
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its properties, as discussed in section 2.1. An example of research on search-based
PCG using simulation-based evaluation is the work of Liu et al. [27]. Their study
evaluated evolutionary search to generate levels of the Tower Defense genre1. To
evaluate the levels, Liu et al. implemented an AI agent based on reinforcement
learning to play through the generated levels for evaluation. Their experimenta-
tion yielded three generated game levels, later tested by humans and considered
to be enjoyable.

An example of research more closely related to generating character mechanics
is the research of Hastings et al. [14]. Neuroevolution was applied to generate
weapons for the game Galactic arms race. In Galactic arms race, the player
controls a spaceship and engages in firefights with other players online. The
generated weapons were put online for players to use, and the fitness of the
weapons was calculated based on how frequently they were used by the players.

A similar approach was taken by Pantaleev [33]. Pantaleev searched for new
abilities for characters in a small text-based role-playing game2 he had developed.
Each player could choose a number of abilities from a given set of abilities for
their character. The evolved content was put online for players to test, and the
fitness of an ability was directly evaluated based on the number of times it was
chosen by players. The content Hastings et al. and Pantaleev generated is more
similar to ours, since the weapons and abilities available for the player could be
viewed as a subset of the character mechanics. The most significant difference
between these last two examples and the method proposed in this work is in the
evaluation of the generated content. The applied fitness functions in the work
of Hastings et al. and Pantaleev can be described as direct interactive fitness
functions. They required human interaction and can thus be classified as a form
of mixed-initiative PCG. In contrast, this work aims to utilize simulation-based
evaluation, and thus remove all need for human involvement during the generation
process.

Novelty search is a variant of evolutionary algorithms that have also been used in
the context of search-based PCG. The following section will present the algorithm.

3.2 Novelty Search

Novelty search is an evolutionary algorithm that heavily focuses on exploration,
and presented by Lehman and Stanley [22]. Novelty search promotes diversity of
individuals through generations, such that solutions represented by the individu-

1https://en.wikipedia.org/wiki/Tower_defense
2For info about the role-playing game genre, visit: https://en.wikipedia.org/wiki/

Role-playing_game

https://en.wikipedia.org/wiki/Tower_defense
https://en.wikipedia.org/wiki/Role-playing_game
https://en.wikipedia.org/wiki/Role-playing_game
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als are novel, relative to each other. Novelty search has been successfully applied
as a method of PCG, as seen in the work of Liapis et al. [25]. As such, we will
cover the Novelty search algorithm, and how it was applied by Liapis et al.

There is a trade-off to be made between exploitation and exploration for evolu-
tionary algorithm, as discussed in section 2.2. Finding the right balance between
exploitation and exploration depends on the problem at hand.

The techniques briefly discussed in section 2.2 include deterministic crowding,
sharing, and crowding. These techniques have proven useful to avoid the problem
of premature convergence in many applications of evolutionary search by boosting
exploration.

When great diversity of solutions is desired, exploration can be taken to the ex-
treme. This is the case for Novelty search. Novelty search abandons an objective
entirely and focuses merely on exploring the search space by encouraging novel
individuals to be generated. The higher distance between an individual an the
other explored individuals, the more likely this individual is to be explored fur-
ther. Abandoning the objective and the fitness function may seem very counter-
intuitive, but Lehman and Stanley argued that objective functions themselves
can actively direct searches to dead ends. To evaluate the hypothesis of novelty
being more suitable for certain domains, a comparison between NeuroEvolution
of Augmenting Topologies (NEAT)3 with fitness-based search and NEAT with
novelty search was performed on a two-dimensional maze navigation task. The
two different maps are depicted in figure 3.1. The fitness function was defined
as f = bf − dg, where bf is a bias constant and dg is the distance to the goal
from the maze-navigating robot. The results of the experimentation showed that
using novelty was three times faster, as well as a much more reliable way to reach
the goal than using fitness.

Lehman and Stanley also experimented on an unenclosed maze, as seen in figure
3.2. In this case, fitness-based NEAT and NEAT with novelty were both ineffi-
cient in solving the maze, and one method did not significantly outperform the
other. NEAT with novelty search solved the maze five out of 100 runs, whereas
fitness-based NEAT solved the maze in two out of 100 runs.

The research of Lehman and Stanley has taught us that novelty can be a more
suitable mechanism for driving the search than fitness in certain domains. The
extent to which we value exploration is highly dependent on the domain of the
problem. The question we need to answer is whether our domain of searching for
character mechanics is more similar to the domain of the mazes in figure 3.1, the

3NEAT is beyond the scope of this thesis, but a detailed explanation can be found here:
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf

http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
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Figure 3.1: The two mazes used by Lehman and Stanley for comparison between
objective based fitness and novelty search. The small circles represent the goal,
and the large circles represent the starting point.

Figure 3.2: An unenclosed maze used as a search domain
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unenclosed maze in figure 3.2, or a different domain, where greedily approaching
the objective is the best path.

The paper “Constrained Novelty Search: A Study on Game Content Genera-
tion” published by Liapis et al. [25] explored the use of Novelty search for gen-
erating game content. The aim of their study was to generate a diverse set
of 2D video game levels. In their study, Liapis et al. tested two different im-
plementations of novelty search for game levels that included the constraint of
being a solvable level. The two algorithms implemented by Liapis et al. were
called Feasible-infeasible novelty search (FINS) and feasible-infeasible dual nov-
elty search (FI2NS). In both algorithms, they divided the search space between
feasible and infeasible individuals. A feasible individual is an individual that
satisfies the given constraints, whereas infeasible individuals do not satisfy the
given constraints. Feasible parents may generate new infeasible offspring and vice
versa. The goal of novelty search is to produce a set of unique and diverse so-
lutions within a given search space. To avoid generating similar solutions across
different generations, the novelty search algorithm keeps track of previous novel
solutions in the novel archive. The experimentation compared FINS and FI2NS,
and was performed on a set of small, medium, and large game levels. In conclu-
sion, Liapis et al. stated that “both FINS and FI2NS seem particularly useful for
the procedural generation of game content, which requires its generated artifacts
to be diverse yet playable”.4

The difference between FINS and FIN2S is depicted in figure 3.3. This research
is relevant to generating interesting characters because it focuses on generating
a diverse set of content solutions. As seen in section 2.4, novelty is an important
factor. In our context, interesting could be seen as a constraint, whereas diverse
could be seen as the novelty of generated characters. A significant difference
between this research and our own is that interestingness is a much more complex
constraint than the constraint put on each game level in the game used by Liapis
et al. Whereas we need to decide on an appropriate balance between fitness
and novelty of our solutions, novelty was the main focus of the FINS and FIN2S
algorithms, as long as the levels were solvable.

4This paragraph is a slightly modified version of a paragraph taken from “Automatic gen-
eration of fighting game characters” by Skjærseth and Vinje (fall 2019), page 25, section 2.4.
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Figure 3.3: The two constrained novelty search algorithms, FINS and FIN2S,
implemented by Liapis et al. [23]. In FINS, the infeasible population evolves to
minimize the distance to feasibility. In FIN2S, both the feasible and infeasible
population evolve toward novelty using a novel archive.

3.3 Applications of simulation based evaluation

In this section5, we will present related work on simulation-based evaluation
with the goal of evaluating player experience. We have not found related work
on simulation-based evaluation in fighting games, so other game domains will
be explored. Based on the background of simulation based evaluation presented
in section 2.5, we will focus on criteria on simulated games that are heuristics
on player experience. The computer player applied for simulation will also be
mentioned.

A paper on generating board game rules was presented by Browne and Maire [4].
They present a framework, called Ludi, for generating two-player puzzle games
rules, presented on a fixed grid board. The games produced by Ludi were similar
to board games like Tic-tac-toe, Checkers, and Go. The goal of the Ludi system
was to generate games that were novel, interesting, and publishable, meaning
that they can be directly published without human interaction. The Ludi system
is divided into modules. The module named the criticism module is responsible
for evaluating the quality of a given game. This module tries to evaluate how
interesting a game is to a human player, similar to our notion of player experience,
as seen in section 2.5.

5This section contains paragraphs that are slightly modified versions of paragraphs taken
from “Automatic generation of fighting game characters” by Skjærseth and Vinje (fall 2019),
section 2.5.1.
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Brown and Maire use simulation-based evaluation with human-designed criteria
that capture different aspects of a simulated game with regards to the player
experience. 57 metrics that are presented by Browne [5] were initially considered.
Experiments were conducted with human playtesters to evaluate the correlation
between the 57 metrics and the perceived human playing experience of 79 already
existing games. The 16 most important metrics where then chosen to be used for
fitness evaluation in an evolutionary search for better games. Browne and Maire
presented three categories of criteria, as discussed in 2.5.1. Quality and viability
criteria were presented, while intrinsic criteria is the third category. Intrinsic
criteria are based directly on the representation of the generated puzzle rules in
the work of Brown and Marie. Intrinsic criteria are not used for the method
presented in our work but are included here to give a broader picture. Of the
16 criteria that were extracted by Browne and Marie, 4 were in the intrinsic,
10 in quality, and 2 in viability category. The significance of the criteria was
examined by the error in correlation with human preferences when each criterion
was removed. The intrinsic criteria were the least significant of the 16 presented,
while the two most significant were the quality criteria uncertainty and lead
change.

A state evaluation function is central in multiple of the criteria and is a func-
tion that yields a score to each player based on their current state in the game.
Following, we present 6 quality metrics and 3 viability criteria from the work of
Browne and Maire:

Quality criteria:

• Uncertainty: Evaluates the uncertainty of a simulated game by looking at
the state evaluations of the winning player, and its advantage during a
game. The advantage should not be strictly growing over the whole game.
If it does, the game could easily be perceived as boring, with a player falling
behind early is ensured to lose.

• Lead change: The tendency for the lead to change between the two players,
given by the state evaluation function.

• Killer moves: The tendency of killer moves, that is, moves that drastically
change the state evaluation for a player.

• Drama: Evaluates the drama given by the amount of time the winning
player is in an unfavorable state, given the state evaluation function.

• Momentum: The steady increase in state evaluation over n consecutive
moves. Browne and Maire considered n = 1, 2, 3 as separate criteria. The
version with n = 1 was the most significant.
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• Board coverage: The number of board positions that have been visited by
any game piece over a game.

Viability criteria:

• Duration: Duration is based on the length of simulated games. It is given
by the deviation of the game length deviation from a preferred game length
set by the designer.

• Balance: This criterion considers the outcome of a set of games with respect
to the players winning equally often.

• Depth: Dumb computer players (that represent human beginners) playing
against each other and smart computer players (representing experienced
human players) playing against each other should both be balanced, be-
ginners playing against experienced players should not be balanced. This
proves that players have the possibility to play better as they learn the
game.

The quality criteria board coverage and the viability criteria balance and depth
are not present in Brown and Marie’s 16 most significant criteria. Their criteria
were evaluated in the domain of board games but might find a correlation with
player experience in other domains, e.g., fighting games.

The simulation-based evaluation uses a computer player and is based on self-play.
That is, the same AI algorithm is used for both players. The player uses minimax
tree search with alpha-beta pruning. The state evaluation function used for the
criteria is also used for the player for non-terminal states. It consists of a set of
20 hand-made evaluations of a game state that Browne and Marie call advisors.
The advisors are weighted, and the weights are learned over multiple play troughs
of a game that is evaluated. This is similar to dynamic scripting, presented in
the context of fighting games in section 2.3.2.

The General Video Game AI (GVGAI) competition6 lately opened two new tracks
in their competition introduced by Khalifa et al. The level generation track was
introduced in 2016 [18], and the rule generation track in 2017 [17]. In both
papers, they introduce three example generation techniques, where one from
each paper featured a search-based approach with simulation-based evaluation. It
should be mentioned that the games presented in the GVGAI competition’s level
and rule generation tracks feature single-player games. In both simulation-based
approaches, the simulation-based evaluation used a learnability criterion. They
look at the difference in score outcome of one dumb and one smart computer
player. Both generation techniques also based their fitness on the number of

6More on the GVGAI competition can be found at http://www.gvgai.net/

http://www.gvgai.net/


3.3. APPLICATIONS OF SIMULATION BASED EVALUATION 37

unique interaction events that happened during a simulation. The technique for
level generation further defined a set of feasibility criteria, with solution length
being one of them. This criterion is based on a minimal length of playtime by
every computer player. Solution length corresponds to a viability criterion.

Drageset et al. further present a set of criteria, calling them factors, that are
proposed for evaluation in the GVGAI level generation track [10]. The hypothesis
was that the presented criteria should provide a stronger evaluation compared to
the criteria for the search based generator given by Khalifa et al. [18]. Khalifa
et al. also used three computer players of different level in their evaluation,
where one of the players were designed to do nothing. The relevant criteria will
be presented, and we divide them into quality criteria and viability criteria as
follows.

Quality criteria:

• Danger factor: Considers how close the character is to death averaged over
a game. This is measured by random rollouts of length n, that is, simulating
the game n frames forward and seeing how many rollouts lead to death. n
is a hyperparameter.

• Danger rate factor: Similar to the danger factor, but measures the amount
of time the character is close to death. That is, at least one rollout leads
to death.

• Interaction factor: How many interactions take place between the player-
character and its attacks, and the other characters and environmental ob-
jects.

• Unique interaction factor: Similar to interaction factor, but only counts
unique interactions.

Viability criteria:

• Win factor: Considers how much better the best computer player performs
than the two other players with regard to win percentage.

• Score factor: Considers how much better the best computer player performs
compared to the other two players with regard to the game score.
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Chapter 4

Methodology

Our goal is to generate interesting fighting game character mechanics. Interesting
is defined to mean novel, fun and balanced, as discussed in section 2.4. This
chapter presents a system for generating such characters in the fighting game Sol,
a fighting game developed by the authors. The system will be used to conduct
experiments to examine research question RQ1, RQ2, and RQ3 from section 1.2.
There are several parameters and variants of the suggested system, and these will
be presented in this chapter. Chapter 5 will cover experiments to determine the
value of those parameters and to compare the different variants.

The system we developed is based on the related work presented in chapter 3.
The approach is within the category of search-based procedural content gener-
ation (see section 2.1). A feasible-infeasible 2 population constrained novelty
Search (F-I 2pop novelty search) algorithm, as seen in section 3.2, will be used
as the search method. Novelty search is a form of evolutionary algorithm that
highly prioritizes exploration, where the objective is the novelty of the evolved
characters. Constraints are given on characters by criteria, evaluated through
simulation-based evaluation, inspired by methods presented in section 3.3. The
constraints aim to capture fun and balance that a player would experience. Char-
acters that fulfill the constraints are referred to as feasible and those that violate
the constraints are infeasible. Two variants of F-I 2pop novelty search are imple-
mented in the system and will be discussed later.

A desired quality of generated content must be defined, as seen in section 2.1,
and an evolutionary algorithm must be designed with respect to that quality. We
define the quality of generated characters as novel, balance, and fun. Through
F-I 2pop novelty search, this quality can be focused. Novelty is the objective of
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Figure 4.1: The generation system architecture: The green box on the left repre-
sents the evolutionary algorithm performing the search for character mechanics.
The evolution is split into several components with different responsibilities. The
blue box on right represents the simulation-based feasibility evaluation module.
This service is responsible for spawning game instances, controlling the charac-
ters’ behavior during games, and measure the outcomes of games.

novelty search, such that characters are optimized for this aspect. Constraints
on balance and fun ensure that a minimum level of these aspects is present for
all generated characters. Our approach to computationally quantify these three
aspects will be presented later.

A modular overview of our system is shown in figure 4.1. It is divided into two
main modules, Evolution and Simulation based feasibility evaluation. Evolution
is based on constrained novelty search. An initial population of characters is
first generated. Each character is then evaluated according to constraints and
the novelty objective in the evaluator. First, constraints are handled through the
simulation-based feasibility evaluator. Each character is assessed individually and
determined either feasible or infeasible. This is done by starting a game, where
the character to be evaluated is loaded with one of four existing characters, pri-
orly designed for the game. Both characters are played by a computer player, and
measurements are taken of the game, with regards to the character that is eval-
uated. These measurements are used by a set of criteria that are either fulfilled
or violated. The character is classified as feasible if all the criteria are fulfilled in
the feasibility evaluator. The characters are then inserted into the feasible or in-
feasible population. A novelty score is given to each individual of the feasible and
infeasible population in the novelty evaluator. Parent selection is performed, and
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crossover is applied to produce offspring that are mutated. The new population
with the offspring are then carried over to the new generation. The output of
the system is the final population of characters. The source code for the system
is available at https://github.com/sol-ai-master/solai_project.

The Sol game is presented in section 4.1. We use a parameterized representation
for the characters, discussed in section 4.2. The two variants of the F-I 2pop
novelty search that are used in our system are presented along with the initial
population, parent selection method, and evolutionary operators in section 4.3.
The simulation-based feasibility evaluation is discussed in section 4.4.

4.1 The Sol fighting game

The Sol game was originally developed in 2017 by the thesis authors, Eirik
Skjærseth and Harald Vinje. Sol is a simple, multiplayer fighting game that
can be played with two players in the 1 vs 1 mode and four players in the 2
vs 2 mode. We will only consider the 1 vs 1 mode for this work. A single
game lasts for about 1 to 2 minutes. There are four main elements in the game;
player-controlled characters, hitboxes, holes, and walls, as seen in figure 4.2. The
figure presents two characters that have both used a projectile attack, such that
a projectile hitbox is emitted. The characters have a corresponding hurtbox and
offensive abilities have a corresponding hitbox, as described in section 2.3.1. The
stage area is bounded by holes and walls. The walls are impassable objects for
the characters, and holes are objects where a character is eliminated upon collid-
ing. A player interacts with a character by four movement keys (up, down, left,
right), that gives a total of 8 possible movement directions. Three ability inputs
are available, used to perform attacks, and each character is aimed toward the
mouse cursor of the player.

The goal of the game is similar to that of the Super Smash Bros fighting game
franchise seen in section 2.3. When an attack hits an enemy character, the enemy
takes damage that is accumulated for every hit. An attack also applies a knock-
back force to the enemy given by a function based on the enemy’s accumulated
damage. Each character has three stocks (lives). When colliding with one of the
holes in the map, the character loses one of its stocks. The first to eliminate all
of the opponent’s stocks is the winner of the game.

The game was created with a roster of four available characters: Frank, Schmath-
ias, Brail and Magnet. A character has a unique set of three combat actions, that
we refer to as abilities, that are either of the type melee or projectile. These attack
types are common for fighting games and were presented in section 2.3. Charac-
ter specifics will be further discussed in section 4.2. The four existing characters

https://github.com/sol-ai-master/solai_project
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Figure 4.2: Elements in the Sol fighting game. Impassable walls are outlined in
blue, and holes are outlined in red. The holes are areas where a character dies
(loses a stock) upon collision. Two characters are displayed, outlined in different
shades of orange, both performing a projectile ability.

were manually designed and tuned to be diverse, fun, and balanced. They were
created by the thesis authors.

The game was altered for the purpose of this work. The game was made able to
load characters in a given representation, further discussed in section 4.2. The
original graphics seen in figure 4.2 were simplified, where objects are represented
by a single color. As this work doesn’t focus on the visual aspect of generated
characters, a simple visual representation was implemented. The simple interface
is later shown in the context of user studies in chapter 5. The game was also made
able to run without graphics for the purpose of simulation-based evaluations.

The game has many similarities to existing fighting games seen in section 2.3,
but with simplified mechanics. The game is in a top-down perspective. The
height dimension usually seen is removed, such that jumping is not possible. This
removes some complexity compared to other fighting games. Defensive abilities
are omitted, such that offensive attacks are the only possible combat actions.
Combat is thus simplified, but the rock-paper-scissor effect presented in section
2.3.1 is still present as the offensive attacks have different timing, spacing and
effectiveness.
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4.1.1 Technical aspects of Sol

When Sol is played by humans, they perform actions with the keyboard and com-
puter mouse and get feedback on the game state through a graphical computer
display. This is impractical for computer players, and when measuring the game.
Thus the game implements a programmatic interface for both perceptions of the
game state and game inputs. The game state is given by objects in the game,
with positions, size, and other properties related to the characters and their abil-
ities. The inputs are given by nine values. Four boolean movement inputs: mvl
(move left), mvr (move right), mvu (move up), mvd (move down), three boolean
ability inputs: ab1, ab2, ab3, and two aim inputs that are floats corresponding to
the aim position coordinates: aimx and aimy. The inputs correspond to inputs
available to a human player through the keyboard and the mouse.

The game normally runs in 60 frames per second (FPS), i.e., state updates happen

every 1
60

th
second. That is common for video games and is enough for players

to believe the game is continuous in time. The computational time used for one

such state update is much lower than 1
60

th
second, such that the game can run

faster if human perception and reaction time is not a concern. That is the case
when using computer players to play the game.

Speed tests of Sol were conducted to assess the speed of which the game could be
run. The test were performed on an Intel(R) Core(TM) i5-8300H cpu, a relatively
new laptop processor. 1000 games were played by two computer players. The
results are as follows:

Timing Average (ms) Min (ms) Max (ms)
Game update 0.0161 0.0078 33.0235

Players update 0.0038 0.0020 15.4066
Total update 0.0252 0.0130 33.0371

Table 4.1: Speed test of Sol with two computer players on an Intel(R) Core(TM)
i5-8300H cpu. Computational time of a single game update, computer players
update and the total update time are given. The average time over each state
update from 1000 games are given in milliseconds, as well as the minimum and
maximum update time.

The average game length was 7649 updates, which corresponds to 128 seconds
of human playtime, with a maximum of 15825 updates and a minimum of 2381.
This means that a game that takes 2 minutes for a human, would take about 116
ms on average when running as fast as possible. With the computer players, it
would be an average of 143 ms.
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4.2 Character representation

In order to search and generate new characters, we need a way to represent a
character, as discussed in section 2.1. The representation will be the genotype
in the context of an evolutionary algorithm, where considerations must be given.
The search space is also defined based on the representation.

Fighting game character mechanics are usually defined by similar rules, where the
character distinction lies in numerical properties. These properties will be used
for our representation of a character, and are given as key-value pairs. Character
mechanics can be seen as the rules that determine how a character can behave
alongside the properties of those rules. The character rules are defined in the
game, but changing their properties greatly alters how they behave, thus, their
mechanics.

The complete set of properties of one of the existing characters in Sol, namely
Frank, can be seen in listing 1. The representation of all four existing characters
(seen in section 4.1) are given in Appendix A. The “name” properties of the
character and the abilities are meta-attributes and not significant to the repre-
sentation. The remaining properties solely correspond to the mechanics of the
character, where aesthetics such as graphical and audio are left out.

All characters in the Sol game are represented as circles, which fairly well captures
the physical shape of a character seen from the top. The “radius” and “moveVel-
ocity” properties describe the size and moving speed of a character, respectively,
and are inherent to all characters. They are referred to as the character body
properties, and can be seen in figure 4.3. In the figure, these properties belong to
the red character body object.
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1 {

2 "name": "Frank",

3 "radius": 32,

4 "moveVelocity": 500,

5 "abilities": [

6 {

7 "name": "rapid shot",

8 "type": "PROJECTILE",

9 "radius": 8,

10 "distanceFromChar": 32,

11 "speed": 1200,

12 "activeTime": 30,

13 "startupTime": 2,

14 "executionTime": 0,

15 "endlagTime": 2,

16 "rechargeTime": 30,

17 "damage": 100,

18 "baseKnockback": 200,

19 "knockbackRatio": 0.5,

20 "knockbackPoint": -128,

21 "knockbackTowardPoint": false

22 },

23 {

24 "name": "hyper beam",

25 "type": "PROJECTILE",

26 "radius": 20,

27 "distanceFromChar": 32,

28 "speed": 1500,

29 "startupTime": 15,

30 "activeTime": 120,

31 "executionTime": 1,

32 "endlagTime": 10,

33 "rechargeTime": 120,

34 "damage": 300,

35 "baseKnockback": 400,

36 "knockbackRatio": 0.8,

37 "knockbackPoint": -256,

38 "knockbackTowardPoint": false

39 },

40 {

41 "name": "puffer",

42 "type": "MELEE",

43 "radius": 98,

44 "distanceFromChar": 0,

45 "speed": 0,

46 "activeTime": 2,

47 "startupTime": 8,

48 "executionTime": 2,

49 "endlagTime": 8,

50 "rechargeTime": 180,

51 "damage": 20,

52 "baseKnockback": 1300,

53 "knockbackRatio": 0.1,

54 "knockbackPoint": 0,

55 "knockbackTowardPoint": false

56 }

57 ]

58 }

Listing 1: An example character configuration from the Sol game for the existing
player “Frank”. These properties constitute the search domain.
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Figure 4.3: Physical properties of the Sol character representation. The red
pointy circle corresponds to a character object, while the green pointy circle
corresponds to the hitbox of an ability. Physical properties given in the character
representation are shown. “speed” and “moveVelocity” influence, respectively,
how fast a projectile hitbox and character can move

All characters also have a set of three abilities, which have their own set of
properties. The “type” attribute of an ability has two possible values, namely
MELEE and PROJECTILE. The properties “radius”, “distanceFromChar”, and
“speed” determine physical attributes of an ability, and are shown in figure 4.3.
They correspond to the green hitbox object. All ability hitboxes are represented
by a circular physical shape. Recall the common fighting game design patterns,
spacing, timing and effectiveness presented in section 2.3.1. The three physical
properties are related to spacing. The properties “startupTime”, “activeTime”,
“executionTime”, “endlagTime” and “rechargeTime” are related to timing. The
reminding properties; “damage”, “baseKnockback”, “knockbackRatio”, “knock-
backPoint” and “knockbackTowardsPoint” are related to effectiveness. The effec-
tiveness properties determine how much damage an ability applies to an opponent
and how knockback is applied.
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Figure 4.4: The genotype representation of the existing character Frank, seen as
a list of numbers and booleans.

The representation can be thought of as a list of numbers and booleans, as seen
in figure 4.4. This might be a more familiar representation in the context of evo-
lutionary algorithms. However, the evolutionary operators defined in our method
are based on metadata given by the representation structure and properties. Es-
pecially the distinction between the character body properties and the properties
given for the three different abilities.

This representation can be loaded as a character in the Sol game fairly eas-
ily. Some value ranges of the individual properties are however not valid in the
game. We have defined constraints on the search space based on what is consid-
ered valid properties in the game. Further, the properties can take unreasonable
values even though they are allowed in the game. Property bounds were de-
fined for all properties, where abilities of the MELEE type have different bounds
than PROJECTILE. The property bounds were defined based on knowledge of
the manifestation of each property in the game. This knowledge was obtained
through playing experience. Although these values can be chosen more method-
ologically, it is not the scope of this study. The property bound constraints can
be seen in Appendix B. These constraints are handled by our crossover and muta-
tion operators, such that no character violating these constraints can be present
in a population. Thus, these constraints are not used as explicit constraints in
the search. With these constraints, the character properties are guaranteed to be
valid when loaded into the game.

The objective of novelty search, as mentioned earlier, is diversity. The diversity
is based on a measure of the distance between characters, as we will see later in
section 4.3. The distance will be based directly on the character representation.
Thus, this representation can be seen as direct, with the genotype-to-phenotype
mapping being the identity function. For the the simulation-based feasibility
evaluation, the phenotype of a character is the character object residing in the
game. It is given by game defined rules and the properties given by our rep-
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resentation. A genotype-to-phenotype conversion is handled by the game itself
through how it loads the given representation.

The relation between the genotype and the phenotype, as a character in the Sol
game, is not completely certain. There is an adjacency relationship, as small
changes to a genotype property will yield a small change to the mechanic prop-
erties in the game. However, a small change in a property may be essential and
can make or break a character. Take for example the radius property of a melee
attack. If the radius is large, such that this attack can reach further than all op-
ponent’s attacks, it is a great advantage. Making the radius a little shorter, such
that the opponent’s attacks have a longer range can yield a great disadvantage.
Thus the adjacency relationship between the genotype and phenotype might not
be linear, and the exact relationship is unknown. Nevertheless, we argue that the
representation is good enough for this work, but can be assessed further.

4.3 Evolution

As seen in chapter 2 and 3, evolutionary algorithms have been used in most
previous successful examples of PCG of complex content. We have chosen a
method to generate character mechanics with an evolutionary algorithm at its
core, based on feasible-infeasible 2 population constrained novelty search (F-I
2pop novelty search).

4.3.1 Constrained novelty search variants: FINS and FI2NS

The Feasible-infeasible Novelty search (FINS) algorithm and the Feasible-infeasible
dual Novelty search (FI2NS) algorithm were implemented by Liapis et al. [25] and
are discussed in section 3.2. Because of the promising results to discover a di-
verse set of feasible individuals in the domain of game level generation, we tested
these methods on our problem of generating characters, and will therefore ex-
pand on the methods in this subsection. FINS and FI2NS are two-population
novelty search methods inspired by the FI-2pop genetic algorithm presented by
Kimbrough et al. [20] in 2008.

Both FINS and FI2NS keep two separate populations that use different objectives
for evolution. FINS and FI2NS split the population into a feasible population,
and a infeasible population. The feasible population might produce infeasible
offspring and vice versa. In both FINS and FI2NS, the objective of the feasible
population is to evolve toward novelty alone. Novel individuals have a higher
probability of being selected and reproduced.

To evaluate novelty globally, FINS and FI2NS keep track of previously discov-
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ered individuals during evolution by using a novel archive, an archive in which
previously selected individuals are stored. The m most novel individuals from
each generation are put into the novel archive. The novelty of an individual is
evaluated based on the average distance to the k closest individuals in the novel
archive and the current population. This distance function between two charac-
ters is further discussed in section 4.3.2. For our experiments, we use m = 5 and
k = 15. Liapis et al. used m = 5 and k = 20 in their work [25]. We use a smaller
value of k, as the population size that was used in our experiments was smaller,
seen later in chapter 5.

The difference between FINS and FI2NS is in the objective function of the infea-
sible population. In FINS, the objective of the infeasible population is to evolve
toward feasibility. This is done by using a function to calculate the distance
to feasibility. In FI2NS, both the feasible and the infeasible population evolve
toward novelty by using their own independent novel archive. Thus in FI2NS,
there is no objective in the search to ensure feasibility. The potential upside of
FI2NS, is that as the infeasible population expands, it can produce feasible novel
individuals that would be discouraged to be explored in FINS. In the rest of this
section, we present how we calculate novelty and feasibility in our implemen-
tation of FINS and FI2NS. In addition, we present how we produce the initial
population, and what selection mechanisms and evolutionary operators we use.

4.3.2 Novelty evaluation

Novelty in the context of novelty search is the property of an individual to be
different from other seen individuals. It is based on the distance between pairs
of individuals, where a domain-specific distance function must be provided. In
our method for generating character mechanics, an individual is a character in
the representation seen in section 4.2.

The distance between two characters is given by a function that takes two char-
acters as input and yields a distance as a number. The distance between two
characters is given by:

d(c1, c2)→ dist (4.1)

We defined the distance function directly on the character representation seen
in 4.2. The meta properties name for the character itself and the abilities are
ignored. The character body properties, namely radius and moveVelocity are
treated separately from the abilities.

The distance between two characters body properties are calculated by first nor-
malizing the properties within their prior set bounds. The property bounds were
discussed in section 4.2. This entails that the distance between the two outer
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bounds of all properties have an equal distance. The distance between the char-
acters body properties are then given by the euclidean distance as follows:

db(c1, c2) =
√

(r1 − r2)2 + (mv1 −mv2)2 (4.2)

Where c1 and c2 corresponds to the two characters and ri and mvi corresponds
to the properties radius and moveVelocity for character i.

The distance between two abilities from two characters is calculated in a similar
way, but with two exceptions. The property knockbackTowardsPoint is a boolean,
so it must be converted to a number. The value is converted to 0 (false) or 1
(true), and the property range is also set to the range [0, 1]. This makes the
two values far apart in euclidean space. This is reasonable, as changing the value
of the property knockbackTowardsPoint greatly affects the ability. The other
exception is the property type, that distinguishes between a projectile ability or a
melee ability. These two types of abilities are radically different, so the distance
is set to the maximum. If the two abilities are of the same type, the distance is
given by:

da(a1, a2) =

√√√√ n∑
i=1

(a1i − a2i)
2 (4.3)

Where a1 and a2 respectively corresponds to an ability from character 1 and
character 2. a1i and a2i respectively corresponds to the ith property of ability a1
and a2.

Which two abilities from the two characters should be compared is however not
trivial. The order of abilities is unimportant, as our representation is based on a
set of abilities. Our approach was to use the shortest distance of all combinations
of two and two abilities from the two different characters, as follows:

das(c1, c2) =

3∑
i=1

da(a1i , a2i) (4.4)

Where a1i and a2i corresponds to the two abilities from character c1 and c2
that overall yields the shortest distance. The intuition behind this comparison is
that the two and two most similar abilities are compared. Abilities should have
different purposes for a character, and thus the two most similar abilities will
have the most similar purpose.

The character body distance and abilities distance are then combined to yield
the character distance function:

d(c1, c2) =
db(c1, c2) + das(c1, c2)

n
(4.5)
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Where n is the total amount of properties for the character body and the three
abilities. The distance is normalized based on the total number of properties that
are taken into account. Thus all the properties impact the distance equally.

In novelty search, novelty is calculated by the average distance to the k closest
individuals from the the combination of the given population where the individual
resides and the novel archive. k is a hyperparameter, and will be issued later:

N(c) =

∑k
i=1 d(c, ci)

k
(4.6)

Where ci is one of the k closest characters in the current population and the novel
archive.

Calculating character distance on the representation of a character is an approxi-
mation of the actual character distance. As discussed in section 4.2, the adjacency
relationship between the representation and a character in the Sol game is not
direct. It can be argued that the novelty should reside in the experienced nov-
elty by a player. Thus the novelty could be evaluated based on criteria through
simulation-based evaluation (see section 2.5). For a distance measure through
simulation, one could use criteria that assess different playing styles that a char-
acter promotes. Inspiration could be taken from Konecný [21].

4.3.3 Initial population

Evolutionary algorithms need an initial population. The initial population is
the starting point for the evolutionary search and is an import factor for the
performance of an evolutionary algorithm. The diversity over generations in evo-
lutionary search is greatly affected by the diversity of the initial population, as
discussed in section 2.2. There is no guarantee for the crossover and mutation
operators to explore the search space far outside the bounds of the initial popu-
lation.

A rather trivial way to generate the initial population is to generate random
individuals that are uniformly sampled from the search space. With a sufficiently
sized population, diversity can be expected. Another way is to use domain-specific
heuristics on desired solutions. The latter approach will usually promote faster
convergence, but have a tendency to be less diverse.

We define two different ways of generating the initial population used for our
evolution method; a random population generator, random generator, and a
heuristic-based, existing character-based generator. Both methods will later be
explored through experimentation in chapter 5. The two methods will be further
presented.
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Random generator

The random generator uniformly samples the character search space. The search
space is constrained by the prior set character properties bounds, discussed in
section 4.2.

Existing character-based generator

The existing character-based generator is based on the four existing characters in
Sol (section 4.1). The existing characters have proven interesting to the authors
and to others based on the authors’ observations. Through our experience, they
are fun and balanced to play, and seem diverse in the sense that the playing
experience is rather different depending on the given character. Thus, they are
adopted as heuristics on interesting characters. The generation process generates
an equal amount of the four existing characters. To further promote diversity,
a mutation operator is applied for each character, except one of each type. The
same mutation operator used is the same one that is applied in the evolutionary
algorithm and will be presented in the next section.

4.3.4 Parent selection and evolutionary operators

An evolutionary algorithm uses parent selection, crossover, and mutation, as
discussed in section 2.2. The parent selection scheme chooses parents among
individuals in a population. Parent selection is based on the fitness of each
individual, where novelty search uses novelty instead of fitness. Parents produce
children through a crossover scheme, and the children are issued for mutation.

Parent selection

In our method, we use novelty proportionate selection with replacement for par-
ent selection. This scheme was also used by Liapis et al. [25]. Two and two
parents are selected from a fitness proportionate distribution of a population.
Replacement of the chosen parents lets them be chosen to be paired with other
individuals later.

Crossover

The chosen parent pairs are mated through a crossover function. We apply a
crossover on two characters that is based on swapping abilities between the two
parents to produce two offspring. We call the parents cp1 and cp2, and the
offspring co1 and co2. An ability index, a, is uniformly chosen in the range [1,
3]. co1 inherits the character body properties (seen in section 4.2) of cp1 and the
abilities, abi, where i 6= a. The ability aba of co1 is inherited from cp2. The other
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offspring, co2, is constructed in a similar manner, but with the role of cp1 and
cp2 swapped.

From a design perspective, this crossover function can be seen as combining
character concepts. Each ability of a character should have a unique purpose for
the character. However, a character might have several abilities that conform
to the same purpose. Thus, combining abilities from different characters might
yield a set of complementing abilities.

Mutation

Mutation is applied to the offspring. The offspring has a probability of pm to be
mutated. A property is mutated according to the following function:

mp(v) = max(min(v ∗ r, vbu), vbl) (4.7)

Where v is the value of a given property, and r is a sample from a uniform
distribution in the range [1 − rb, 1 + rb]. vbu and vbl are respectively the upper
and lower bounds for the given property, as discussed in section 4.2. The value
of rb is distinct for character body properties and ability properties, respectively
denoted rbb and rba . mp(v) is applied to all properties of a character, with a
probability of pm, and constitutes the complete mutation function.

There are a few exceptions regarding some of the properties in the representation.
There is one boolean property in our representation (section 4.2) that is mutated
differently. In this case, the value is inverted with a probability pmb

. The type
property cannot be changed through the mutation scheme.

For our experiments, the parameters have been chosen as follows:

pm = 0.3

pmb
= 0.1

rbb = 0.2

rba = 0.5

The parameters were set based on intuition and empirical testing. From the
properties of a single ability, about 4 are mutated with this scheme on average,
with pm = 0.3. That seems reasonable from a design perspective, as a designer
would try to change a limited subset of properties to assess the outcome in the
game. The character body properties are applied a less significant mutation, with
rbb = 0.2, compared to the properties of an ability. As each of these properties has
a greater effect on a character, and thus should be issued with smaller changes.
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Feasible offspring boost

To avoid emptying the feasible population of FINS and FI2NS during evolution,
a technique called feasible offspring boosting was performed. Feasible offspring
boost ensures that the feasible population produces more offspring if the feasible
population gets too small. Specifically, the feasible population is forced to pro-
duce a number of offspring equal to 50% of the total size of both populations.
This applies if the feasible population contains at least two characters. This
technique enhanced the performance of Constrained Novelty Search performed
by Liapis et al. [25]. This technique was used for all experiments with evolution,
seen later in chapter 5.

4.4 Simulation based feasibility evaluation

Constrained novelty search by the FINS and FI2NS methods are both based on
a feasible-infeasible 2 population evolutionary algorithm. Two populations are
kept at all times, a feasible and infeasible population. We define feasibility based
on player experience through simulation-based evaluation. Generated characters
are evaluated for feasibility by simulation-based evaluation. A character is either
classified as feasible or infeasible, based on the expected player experience of the
character.

We described our notion of interestingness in the context of fighting game char-
acters in section 2.4, as novel, fun, and balanced. The search process itself has
the objective of novelty. Thus balance and fun will be the important aspects of
the player experience to evaluate. Five criteria on characters that are played in
simulation are defined for this purpose and will be presented in section 4.4.1.

The five criteria are based on measurements of games played by computer play-
ers. This is a common pattern for simulation-based evaluation in games, seen in
section 2.5. We use the term simulation to denote a single game being played
with two characters, where the output is a set of measurements. Each criterion
uses a metric that is measured within each simulation, such that a simulation
outputs five measurements for our five criteria. Criteria will either be fulfilled or
violated based on the given measurements and can be seen as constraints in the
search space.

An overview of our simulation-based feasibility evaluation can be seen in figure
4.5. An input character is simulated with each of the four existing characters,
presented in section 4.1. The games are played by two computer players, and
measurements are taken. It can further be assumed that a simulation takes one
character to be evaluated alongside an existing character. For each simulation,
5 metrics are measured, according to 5 criteria. For each metric, the average
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Figure 4.5: Simulation based feasibility evaluation in Sol.

is taken of all the corresponding measurements from the individual simulations,
which happens in the measurements combiner seen in figure 4.5. In other words, a
criterion is based on a single metric that is measured multiple times over multiple
simulations. The criterion individually outputs whether it is fulfilled or violated.
A feasibility score is given to the character based on how many of the criteria
were fulfilled. The feasibility score is given by the following equation:

fs =

5∑
i=1

{
1
5 if ci is fulfilled

0 otherwise
(4.8)

Where fs is the feasibility score and ci is the ith criteria. The feasibility score is
thus given in the range [0, 1]. A feasible character is defined to have a feasibility
score of 1. An infeasible character will have a feasibility score in the range [0, 0.8]
with a step size of 0.2. The feasibility score of infeasible characters can be seen as
the distance from feasibility. This score is used as the objective for the infeasible
population in the FINS method discussed in section 4.3.1.

The individual simulations can be repeated several times. This might be nec-
essary as the player controller is non-deterministic, such that the outcome of
multiple games played with the same characters and the same player controllers
might yield different measurements. The number of repeated simulations is con-
trolled by a parameter, rs, and is the number of times an input character is
simulated repeatedly with each of the existing characters. Thus the input char-
acter is played an equal number of times against all the existing characters. The
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value of this parameter will be further investigated through experimentation in
section 5.1.

A simulation could in theory last forever, or for an unnecessarily long time. This
can happen in cases where the characters are too weak so that neither player can
win the game. This is not desirable as a single, long, simulation may slow down
the whole system. To eliminate this issue, a fixed max length of a simulation is
defined. A parameter is defined to give a max simulation length, msl. It defines
the max length that a simulation can run, and is given as a number of game

updates. Recall that an update is 1
60

th
second when the game is played in human

speed. If a simulation exceeds this length, it is terminated. The value of msl will
be chosen based on an experiment in section 5.1.

The validity of this approach is based on the design and appeal of the four existing
characters with respect to them being balanced and fun to play. We argue that
the existing characters are suitable for this method, but can be further assessed.

We will further in this section present the criteria that were used to evaluate
generated characters for the Sol game, followed by the player controller that is
used.

4.4.1 Player experience criteria

The goal of our criteria is to capture the experience that would be perceived by a
human player. The experience will be evaluated according to what a player finds
fun and balanced. Five criteria are defined for the purpose, that are heuristics
on the player experience.

We have seen that quantitatively measuring human player experience is hard
without a human subject, from section 2.5. Successful approaches are based on
a set of criteria of a simulated game that act as heuristics for player experience,
as seen in section 3.3. However, we have not seen any attempts to do this in the
domain of fighting games. The criteria used in related works are designed for their
given domain, so a direct mapping to fighting games is not possible. We have
constructed criteria inspired by the work presented in 3.3 to create a heuristic
for player experience for the Sol game. The five criteria are game balance, game
length, stage coverage, character balance and lead change.

It should be noted that these criteria are not exhaustive for the actual player
experience model. They are heuristics, and will later be evaluated through user
studies in section 5.3.

A criterion in this work consists of a metric that can be measured through sim-
ulations and is evaluated according to a feasibility range for the given criteria.
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Figure 4.6: A fulfilled criteria for simulation based evaluation

The feasibility range is given by an upper and lower value bound. The criteria
is fulfilled if the average of its measurements fall within the feasibility range, as
seen in figure 4.6. Thus a criteria is a function given by the following equation:

ci(mi) =

{
fulfilled if fr0 ≤ mi ≤ fr1

violated otherwise
(4.9)

Where fr0 and fr1 is the lower and upper feasibility bound, respectively. mi is
the average measurement over multiple simulations, of the metric corresponding
to criteria ci. fr0 and fr1 are left as hyperparameters. They will be further
investigated in section 5.1.2.

The criteria in this work are formulated as constraints, given a feasibility range.
This differs from the work we have previously seen. Criteria have priorly been
defined as objectives issued for optimization, such as in the work of Brown and
Maire [4]. In their domain, the criteria output a number instead of acting as con-
straint, with a feasibility range. The criteria are then maximized or minimized.
This is not trivial for criteria related to fighting game characters. The characters
should preferably have different strengths and weaknesses. An example is the
stage coverage criterion, which evaluates how much of the game stage is used.
Some characters might be strong and slow, and others may be fast and weak. The
slow and strong character would naturally have less stage coverage, without that
necessarily being negative. An approach could be to optimize for multiple objec-
tives, where each criterion is an objective. This approach could be taken with
a multi-objective evolutionary algorithm, as seen in section 2.2. The feasibility
ranges we use can be seen as outer bounds of preferred player experience within
the respective criteria. Viewing the criteria as constraints also lets us prioritize
the search for novel characters through constrained novelty search.
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Browne and Marie presented distinctions between criteria based on how their
measurements are taken [4], as was discussed in section 2.5. Game balance and
game length are given by the outcome over several simulations. They correspond
to the viability criterion. The metric of a viability criterion can be seen as a
function of the outcome of a simulation, sim, yielding a measurement, m:

Mv(sim)→ m (4.10)

Stage coverage, character balance, and lead change are on the other hand directly
related to the actions and events within a simulation. They correspond toquality
criterion. A metric corresponding to a quality criterion can be seen as a function
of the game states, simsi , during a simulation, sim:

Mq(sims1 , sims2 , ..., simsi)→ m (4.11)

The game states simsi are programmatic perceptions of the game state, give by
the Sol game. We will further present the five criteria.

Game balance

The balance criterion is given by the average outcome over all simulations. This
criteria is based on the metric characterWon, that measures weather or not the
evaluated character won a simulated game, denoted wi. It takes either the value
1 or 0, where 1 indicates that the evaluated character won. The average mea-
surements of characterWon is given as follows:

Mcw =

∑n
i=1 wi

n
(4.12)

Where n is the number of simulations. The feasibility range for vgb should be
close to 0.5, with the intuition that a character should have a fair chance of
winning a game.

Game length

The game length criterion is given by the metric gameLength, which measures
the length of a simulation. The average measurement is given by:

Mgl =

∑n
n=1 li
n

(4.13)

Where n is the number of simulations, and li is the length of simulation i. The
feasibility range of vgl should be given by the desired length of a game. This is
an important criterion that might be dependent on the intentions of the game.
This criterion will also influence the overall strength of the characters. A low
game length might lead to characters eliminating each other with a few hits,
even though they are balanced.
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Stage coverage

The stage coverage criterion is based on how much of the stage is covered on
average by the evaluated character during a simulation. It is based on the metric
stageCoverage, and is measured by:

Msc =

∑n
i=1

∑k
j=1

{
1 if cj visited

0 otherwise

n
(4.14)

Where n is the number of simulations. The game stage is divided into 1400
discrete cells, cj . The lower bound of the feasibility range should be defined to
eliminate extreme camping, meaning characters that can win without moving.
This may happen with powerful long-ranged abilities.

Character balance

The character balance criterion is defined to ensure a balance within a character
with regards to its abilities. The corresponding metric, leastInteractionType, is
based on how many times the three different abilities hit the opponent during a
simulation. The amount of times an ability hit the opponent during a simulation
is denoted ahi, where i corresponds to ability i. The amount of hits by the ability
with least hits is denoted ahl. The average measurements of the metric is given
by:

Mlit =

∑n
i=1

ahl∑3
j=1 ahj

n
(4.15)

Where n is the number of simulations. Mlit measures the share of hits by the
least hit ability to the sum of hits by all abilities in simulation i. The average is
taken over all n simulations.

The feasibility bounds should be defined such that all abilities are required to
be used. Otherwise, an ability will probably be useless. It is not reasonable,
however, to assume that all abilities are used equally frequently. Some abilities
might be useful in special situations, and it is natural to assume some abilities
are used more than others.

Lead change

This criterion is based on the metric leadChange, which measures the number of
changes in lead between the two players during a simulation. The lead is given by
a player’s character being in a better state than the other character. The value
of the state of a character, c, is given by a state evaluation function, that yields
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a evaluation e as a number for a given state, s: evc(s)→ ec. The character with
the highest ec has the lead. It is measured by:

Mlc =

∑n
i=1

∑ki−1
j=1

{
1 if

ev1(sj)−ev2(sj)
|ev1(sj)−ev2(sj)| 6=

ev1(sj+1)−ev2(sj+1)
|ev1(sj+1)−ev2(sj+1)|

0 otherwise

n
(4.16)

Where n is the number of simulations, and ki is the number of states in simulation
i. sj is the jth state of simulation i. Mlc measures the number of game states
where the character in the lead changes for the next game state, according to
evc(s).

The state evaluation function is based on the programmatic game state perception
of Sol, and is given by:

evalc(s) = 0.67 ∗ stc − 1

stm − 1
+ 0.33 ∗min(

dm − dc
dm

, 1) (4.17)

Where stc is the current amount of stocks left for the character c in state s, and
stm is the maximum amount of stocks. The maximum amount of stocks in Sol is
3. Recall that stocks are the number of lives a character has before the game is
lost. dc is the current accumulated damage taken by character c in state s and
dm is the maximum damage that a character can take, and is set to 5000. In Sol,
the real maximum damage that can be taken is arbitrarily set to 9999. However,
damage above 5000 is negligible when evaluating the state.

The intuition behind the state evaluation function is that a character with more
stocks than the other character will always be in a better state. If both characters
have the same amount of stocks remaining, the character with the least amount
of damage will be in a better state.

This state evaluation is rather simple and does not capture every aspect of a state.
More complex state evaluations have been seen in the literature, for example by
Brown and Maire [4]. In their work, the state evaluation function was learned
for the evaluated content. This could be used for Sol as well, but given that
the game rules are known we can simplify the state evaluation function based on
domain knowledge.

4.4.2 Computer player

We will further present the computer player that we use in the simulations. Our
simulation criteria are heuristics on the fun and balance perceived by a human
player and are based on measurements on simulation. These heuristics are only
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valid if the computer player can play similarly to a human player. The goal for
our character generation system is to be used without human interaction, and
amounts of human play data is not available. The computer player must also
be able to play any character that can be expressed in our representation, and
are unknown during the design of the computer player. We will further discuss
the rationale for the design of our computer player along with an overview of
how it works. The player we present is used for both characters that are played
in a simulation. That is, both the character to be evaluated and the existing
character it is played against.

There are no existing AI agents that can be directly adapted to Sol. We have seen
game-playing AI created for fighting games in section 2.3.2. The superior methods
seen over the last couple of years in the Fighting game AI (FTGAI) competition
are based on Monte Carlo tree search (MCTS) or reinforcement learning (RL)
variants. These methods are rather complicated and computationally demanding.
Thus, simulations would take a long time to run. MCTS is dependent on a search
through the state space of the game while playing. This requires a forward model
of the game, a parallel version of the game that can be played forward in time
from a given state in the actual game. Sol does not have such a forward model at
this time. RL methods need a lot of training time to be able to play characters.
As the computer player is frequently exposed to different characters, a training
process would need to be performed for every character. As such, MCTS and RL
will not be in scope for this work. It should also be noted that the goal of the
FTGAI competition is to appoint the best performing AI agent. For a computer
player evaluating player experience in simulation, the player should optimally
act like a human player. This has not been an objective for the agents we have
seen in the fighting game domain, neither for the FTGAI competition nor other
fighting games.

The focus of this work is not to create an advanced computer player. We have
chosen to create our computer player based on classical rule-based agents, seen
in the context of fighting games in section 2.3.2. The rather simple player can
have an impact on the quality of our system and can be further investigated.

The rule-based agents previously seen have been tailored to the character it con-
trols, and are optimized for the behavior of a single character. A final state
machine (FSM) has usually been adopted at the core of this approach 1. A com-
puter player that can play any character in Sol is based on knowledge of the
game rules, and partially on the properties of our character representation (seen
in section 4.2). It is based on independent rules, instead of an explicit FSM. The

1A rule-based agent based on a final state machine can be seen by the Giant team’s entry
in the 2015 FTGAI competition. See slide 60 - 66 in the slides at https://www.slideshare.

net/ftgaic/2015-fighting-game-artificial-intelligence-competition

https://www.slideshare.net/ftgaic/2015-fighting-game-artificial-intelligence-competition
https://www.slideshare.net/ftgaic/2015-fighting-game-artificial-intelligence-competition
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rules are game-specific heuristics of how a player should play Sol.

The computer player is a reflex agent that can be seen as a function of a given
game state that yields inputs to the game for the character it controls:

a(s)→ INP (4.18)

Where s is the programmatic game state perception of Sol, in a given state. INP
is the set of inputs that the game accepts, where the individual inputs are denoted
inpi. Both s and INP was discussed in section 4.1.1.

The agent is based on individual rules that suggest different values for INP . We
divide INP into three categories; inpmi (movement input), inpai (ability input)
and inpaimi (aim input). inpaimi is handled by a single rule such that the agent’s
character always aims at the opponent character. Input within the two remaining
categories, or just a single category, might be suggested by each rule. A rule also
outputs an urgency, u, according to the importance of the suggested game inputs.
A rule can thus be seen as a function as follows:

r(s)→ inpmi
, inpaimi

, u (4.19)

Each rule is given a static weight, wi. The weight determines the global relative
importance of a rule, ri(s), independent of the state, s. The agent based on a set
of such rules with weights is given by the following function:

a(s) = f(r1(s), w1, r2(s), w2 . . . , ri(s), wi) (4.20)

Where ri(s) is a rule as a function of the given state s. The function f combines
the inpmi

and inpaimi
suggestions of each rule ri(s), with given weights, wi. f

yields a final INP that will be the actual input to the game.

We have defined 7 rules that will be briefly described, where the character that
the computer player controls is denoted character and the character controlled
by the opponent is denoted opponent :

• Avoid holes rule, raho: This rule prefers movement away from holes
through suggesting inpm to accomplish this task. This is accomplished by
suggesting inpa to not input any abilities. The urgency, u is given by the
distance between the controller’s character and the closest hole.

• Move random rule, rmr: This rule promotes random movement, such
that inpm is randomly set. The urgency, u, is constant.

• Retreat rule, rret: This rule prefers character movement away for the
opponent if they are close. inpm is given to move away from the opponent
character. The urgency, u, is based on how close the character is to the
opponent character.



4.4. SIMULATION BASED FEASIBILITY EVALUATION 63

• Approach rule, rapp: This rule has the opposite effect of the retreat rule.
impm is given to move towards the opponent character. The urgency, u, is
based on the distance from the other character.

• Avoid hitboxes rule, rahi: This rule promotes movement to avoid oppo-
nent hitboxes close to the character. Recall that a hitbox is the area of an
ability where it will hit an opponent character. The urgency, u, is given by
the distance from the character to the closest opponent hitbox.

• Character attack rule, rcat: This rule promotes the use of abilities that
may hit the opponent. It is based on the distance to the opponent character,
doc. A random ability is chosen among the abilities that may reach the
opponent in the given state. The preferred ability is given The reach of an
ability is given by:

reach(abi) =
si ∗ ati

60
+ dfci + ri − rc (4.21)

Where abi is the ith ability of the character. si and ati is respectively the
speed and activeTime of the ith ability, given in the character representation
(see section 4.2). The first addend of the function is only relevant for
projectiles, as any melee abilities have si = 0. dfci and ri correspond to
the properties distanceFromChar and radius of the ability, while rc is the
radius property of the character itself. These properties are also given in
the character representation. The urgency, u, is dependent on the distance
between the character and the opponent character. If the distance is short,
the urgency escalates.

• Random attack rule, rrat: This rule suggests a random ability. The ur-
gency is given by the distance from the character to the opponent, similarly
to rcat. This one rule is not used for the computer player in simulation-
based testing but used for our user tests, seen later in section 5.3.

The rules and their corresponding weights were defined based on game knowledge
and manual testing. The avoid holes rule is based on the intuition that a character
being in a position close to a hole (the outside of the stage) is not preferred as it
is eliminated if it falls into the hole. This rule keeps the agent from eliminating
its own character as well as recovering from a bad position if the opponent pushes
the character close to a hole. The rule will also promote not using any abilities,
as abilities usually have a time delay where the character can’t be controlled.
The three movement rules, move random rule, retreat rule and approach rule,
promote human-like movement. The character moves toward the opponent if it
is too far away, and move away if it is too close. The induced random movement
yields unpredictability and promotes exploration of the game stage. The avoid
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hitboxes rule lets the character have the opportunity to avoid enemy attacks.
This is especially important for long-ranged projectile attacks that would easily
hit the opponent without this rule. Only one of the two attack rules, character
attack rule and random attack rule is used for a single agent.

Two computer players are defined, cpsim and cptest, both using the rule-based
agent described. For our simulation based feasibility evaluation, cpsim is applied
for both characters that are played in the simulation. It is given by the rules and
corresponding weights:

cpsim(s) = f(raho(s), 0.31, rmr(s), 0.1, rret(s), 0.06,

rapp(s), 0.14, rahi(s), 0.27, rcat(s), 0.12)
(4.22)

Where f is the same function as defined in equation 4.20. The computer player,
cptest is used for our user studies. It act as the opponent when human testers
play the game. It is similar to cpsim, but the attack rule rcat is replaced with
rrat. The rcat rule promotes better estimation of when an ability should be used,
and approximates a player with intermediate to good skills. rrat promotes the
selection of random abilities, and approximates a beginner.

Real-time video games let players apply game input at a high rate, usually 60
times a second. The input rate is effectively reduced when humans play, due to
perception time and input inaccuracy. Our defined computer players can react
instantaneously, and can thus react much faster than a human and with greater
accuracy. This is undesired, as the computer player should play similarly to a
human player, as discussed in 2.5.2.

To make the computer players more human-like, we apply two limitations; game
state delay and input fuzziness. We delay the state perception from Sol that the
computer player can “see” by 0.2s. That corresponds to 12 game state updates
at 60 frames per second. We introduced noise on the input of our computer
player, INP . The four movement inputs, inpmi

, and the three ability input,
inpai could be flipped with a probability of respectively pm and pa. The aim
input, inpaimi , consist of an x and y coordinate that are both represented by
numbers. We denote the aim input after noise is applied as ninpaimi

. Noise were
applied to each coordinate individually. ninpaimi

is given by a sample from a
normal distribution with mean equal to inpaimi

, and a variance of vaim. The
noise parameters were set based on evaluation through observation: pm = 0.1,
pa = 0.001 and caim = 30. The value of caim represent distance units in the
game.

The state perception delay had a large impact on the computer player. Abilities
had a large chance to miss the opponent, as our computer player aims at the
position of the opponent. With the state delay, the player aimed at where the
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opponent was 0.2 seconds ago. To cope with this challenge, we introduced linear
extrapolation of the opponent’s position, inspired by Asayama et al. [1].
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Chapter 5

Experiments and results

We will in this chapter present experiments that we have constructed to examine
RQ1, RQ2, and RQ3. The experiments are conducted based on our applied
system of generating characters, from chapter 4.

We have defined four experiments. Experiment 1 is conducted to define the
parameters of our simulation-based feasibility evaluation (section 4.4) that are
left to explore.

Experiment 2 is conducted to answer RQ1. Four variations of constrained novelty
search are compared. The FINS method and FI2NS method are (presented in sec-
tion 4.3.1) both tested with a random initial population and an initial population
based on the four existing characters (presented in section 4.3.3).

Experiment 3 and experiment 4 are based on user studies to evaluate our heuris-
tics of “interesting” characters according to perceived experience by human play-
ers. Experiment 3 evaluates our feasibility criteria in simulation-based evaluation.
Thus the experiments target RQ2 to evaluate our quantification of “balance” and
“fun” according to human experience. Experiment 4 is concerned with RQ3 and
aims to evaluate the quality of generated characters from our system by compar-
ing the generated characters to existing characters

The chapter is structured according to each experiment. The experiments will be
presented along with their results and analysis of the results. Experiment 1 will
be presented in section 5.1 and experiment 2 in section 5.2. A general overview
of the user studies will be presented along with Experiments 3 and 4 in section
5.3.

67
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5.1 Experiment 1: Parameters of simulation based
feasibility evaluation

We presented the simulation-based feasibility evaluation method for our character
generation system in section 4.4. In this section, three of the parameters will be
explored through experimentation. The parameters are:

• The number of repeated simulations between a character to be evaluated,
and each of the existing characters, rs.

• The feasibility ranges for each of the five defined criteria. The ranges are
given by a lower and upper bound, respectively fr0i and fr1i , for each
criteria, ci.

• The max length of a simulation, msl.

Two separate experiments were performed to deduce a suitable value for the three
parameters. The parameter rs will first be presented. Then fr0i and fr1i will be
discussed, where the max simulation length, msl, is given based on the feasibility
ranges. The parameter values given in this section will be used for the other
experiments.

5.1.1 Repeated simulations

The simulation-based feasibility evaluation that we use is non-deterministic, due
to the computer player being non-deterministic. This affects the measurements
from a simulation and may vary between several simulations with the two same
characters. We will look at the effect on the metrics for our criteria. The criteria
with their corresponding metrics are shown in table 5.1.

Criteria Metric
Game balance characterWon
Game length gameLength

Stage coverage stageCoverage
Character balance leastInteractionType

Lead change leadChange

Table 5.1: The simulation criteria presented in section 4.4, with their correspond-
ing metrics.
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Metric rs = 1 rs = 10 rs = 50
leadChange x = 4.78

s = 1.758
x = 4.93
s = 0.628

x = 4.90
s = 0.314

characterWon x = 0.483
s = 0.255

x = 0.490
s = 0.111

x = 0.482
s = 0.082

stageCoverage x = 0.314
s = 0.053

x = 0.313
s = 0.048

x = 0.313
s = 0.048

gameLength x = 5764
s = 831

x = 5762
s = 632

x = 5764
s = 589

leastInteractionType x = 0.060
s = 0.058

x = 0.060
s = 0.055

x = 0.060
s = 0.055

Table 5.2: Variance in repeated simulations. The table shows the five metrics
measured by rs repeated simulations against the four existing characters. The
measurements are taken over 100 evaluations, and for each of the four existing
characters that are evaluated. x is the sample mean, and s is the standard
deviation.

The four existing characters were used to assess the effect of the number of
repeated simulations, where measurements by the four characters are combined.
Three separate runs of evaluation of the existing characters where performed.
For each run, the number of repeated simulations, rs, was set to 1, 10, and 50.
Each of the three runs is performed with rs simulations and the evaluation is
repeated 100 times. The results can be seen in table 5.2.

It can be seen that the standard deviation, s, of the measurements correspond-
ing to each metric is reduced (or equal) when rs grows. Preferably, a high rs
is used for precise measurements, but it greatly impacts the speed of the gen-
eration method. The performance speed of the system is greatly dependent on
the number of simulations, so a compromise has to be made. Seeing that rs = 1
yields a rather large standard deviation in the measurements, it is undesirable.
The difference between rs = 10 and rs = 50 is negligible for some of the met-
rics, stageCoverage and leastInteractionType. The leadChange metric is especially
benefiting from a higher rs. Given that the evaluation speed is approximately
increased by five times with rs = 50 compared to rs = 10, we do not consider
the benefit great enough. For the following experiments, we use rs = 10.

5.1.2 Feasibility ranges of criteria

The simulation-based feasibility evaluation described in section 4.4 is being used
in all evolution strategies we tested. A criterion was represented as a metric
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to be measured through simulation-based evaluation and a feasibility range. If
the average measurement of the metric over a set of simulations falls within the
feasibility range, the criterion is fulfilled.

We will further present the experiment conducted to determine the feasibility
ranges of the five criteria. The criteria and their corresponding metrics are shown
in table 5.1.

The feasibility ranges for our criteria are given by a lower and upper bounds,
respectively fr0 and fr1. Our rationale for choosing these parameters was to
use the set of existing characters, seen in section 4.1. They are human-designed
characters that act as heuristics of feasible characters. We consider our own
characters fun and balanced through playing experience. Thus, the feasibility
bounds will be quantified, based on this set of existing characters.

The four existing characters were measured in simulation according to the metric
of each criterion. The simulations were conducted in the same way as presented
in section 4.4, such that each of the four existing characters to be evaluated was
simulated against each of the four existing characters. For each evaluated char-
acter, 100 runs were performed. For each run, the simulation repeat was set to
sr = 10. Average measurements for each metric and character over the 100 runs
can be seen in figure 5.1. We define the feasibility range of each criterion such that
measurements for all four existing characters from a major portion of the runs
reside within the ranges. For each criterion, the lowest average measurements
from all the characters were as follows:

• leadChange: 4.483

• characterWon: 0.398

• stageCoverage: 0.231

• gameLength: 5105.37

• leastInteractionType: 0.0234

whereas the highest average results were:

• leadChange: 4.99

• characterWon: 0.6175

• stageCoverage: 0.353

• gameLength: 6598.81

• leastInteractionType: 0.154
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Figure 5.1: Box plots of all measured metric values of a simulation of the existing
characters in Sol, namely Frank, Schmathias, Brail, and Magnet. These values are
used as a baseline for the constraints given on the characters used in simulation-
based testing. Generated characters should perform as well, or better than the
existing characters to be classified as feasible.
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feasible_metric_result_ranges = {

"leadChange": (4, INF),

"characterWon": (0.3, 0.7),

"stageCoverage": (0.2, 1),

"gameLength": (3600, 7200),

"leastInteractionType": (0.02, 1)

}

Figure 5.2: Our chosen lower and upper bounds of feasible metric results. A
character is considered feasible if all measured metrics fall within their feasible
metric result bounds. The fewer measured metrics within these bounds, the lower
the feasibility score a character gets.

For the characterWon and gameLength metrics, we need both lower and upper
bounds. We do not want a character to win too little or too much, and we
not want a game to be too short or too long. For the other three metrics, we
only need lower bounds, but no upper bounds (the more the merrier!). Since
stageCoverage and leastIneractionType are metrics based on percentage, 1 is the
maximum value. For leadChange, there is in no upper boundary needed. We now
have a good basis for deciding feasible metric result ranges. The chosen values
are shown in figure 5.2.

The max simulation length parameter, msl, is determined based on the feasibility
range of gameLength. An evaluated character is defined to be infeasible if the
average simulation length is above 7200. Based on this, the max simulation length
is set at msl = 10000. The maximum length should be higher than 7200 because
the measurement is given as an average over multiple simulations.

5.2 Experiment 2: Comparing evolution variants

Experiment 2 was conducted by comparing four different strategies of constrained
novelty search. This experiment is related to RQ1:

RQ1 How can constrained novelty search be utilized to evolve interesting char-
acter mechanics?

We have seen that constrained novelty search is a promising method for evolving
novel content. Through our research, two variants of this method seem promising
for the goal of generating novel character mechanics. Thus we constrain this ex-
periment to evaluate the two feasible-infeasible 2 population constrained novelty
search variants, FINS, and FI2NS, presented in section 3.3. Each of the evo-
lutionary algorithms was evaluated with two different strategies for generating
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the initial population, namely the random generator and existing character-based
generator, as presented in section 4.3.3. The character generation system was run
20 times with each of the four variants. All runs operated with a total population
size of 40 individuals and were terminated after 30 generations.

Box plots of the evolution from one of the runs of the FI2NS algorithm with
the existing character-based initialization is displayed in figure 5.3. It can be
seen that the Novelty of characters drops steadily over generations. That was a
trend through all runs of all the variants. This is expected, since the number of
individuals in the novel archive increases over time, and thus the likelihood of
individuals being unique decreases. The number of feasible individuals decreases
initially. The methods that used the existing character-based initialization had a
trend of starting with a rather large feasible population that initially decreased.
The feasible offspring boost mechanism (see section 4.3.4) ensures that the size
of the feasible population is somewhat sustained.

To evaluate the performance of a run, we used two different metrics. The number
of feasible individuals in the last generation is the first metric. The second metric
is a diversity function of applied to the last generation. The diversity function is
defined by

D(p) =
1
N !

2!(N−2)!

∑
(c1,c2)∈pairs(p)

d(c1, c2) (5.1)

where p is the population, N is the population size and d is the distance function
between two characters. The sum of the distance between all pairs is divided by
the number of pairs. An overview of the outcomes of the different runs is found
in table 5.3.
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Figure 5.3: An example of a run of FI2NS with an initial population based on
the existing characters. The left side plots show the novelty, feasibility, and
population size of the feasible population, whereas the right side plots show the
infeasible population. The feasibility score of the feasible population is constant
at 1 for all individuals, which is expected by the very definition of feasibility. As
we see in the upper plots, the novelty of both populations is increasing the first
couple of generations but decreases as the novel archive expands. This is also
expected. The number of individuals in the feasible population is between the
5-15.
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Method Init. pop No. of runs Feasible no. Diversity Time taken
(m)

FINS random 20 x = 11.4
s = 3.87

x = 0.203
s = 0.107

x = 90.09
s = 41.48

FINS existing chars 20 x = 11.2
s = 3.70

x = 0.251
s = 0.100

x = 82.17
s = 25.26

FI2NS random 20 x = 10.8
s = 2.44

x = 0.251
s = 0.076

x = 99.11
s = 49.55

FI2NS existing chars 20 x = 9.65
s = 2.54

x = 0.268
s = 0.079

x = 92.46
s = 41.03

Table 5.3: An overview of the results of the four evolution strategies. All methods
had a total population size (feasible + infeasible population) of 40 individuals.
x is the sample mean, and s is the standard deviation. Feasible number and
diversity refers to the number of feasible individuals and the diversity of the last
generation of the evolution, respectively. The time taken is measured in minutes.
Evolutions were run using a Intel i7-8550U processor.

As we can see in table 5.3, FI2NS with an initial population based on existing
characters had the best performance with regards to diversity. FI2NS with a
random initial population was almost identical to FINS with existing characters as
with the initial population on diversity performance. The only notable difference
in diversity was FINS with a random initial population, having approximately
0.05 lower diversity than the three others. FINS with a randomly generated initial
population had 0.2 more feasible individuals in the last generation compared to
FINS based on existing characters. This difference is rather small however and
falls within the boundaries of the standard errors of the means of the feasibility
number ( s√

n
= 0.865 for FINS with random, and 0.827 for FINS with existing).

In general, FINS produced slightly more feasible individuals than FI2NS on aver-
age, whereas FI2NS produced a slightly more diverse population. This is coherent
with the argumentation laid out by Liapis et al. [25]. Since FINS’ infeasible pop-
ulation evolves towards feasibility, more individuals are likely to end up in the
feasible population. The infeasible population of FI2NS evolves toward novelty,
and some of these individuals will eventually be feasible. It is therefore to be
expected that the diversity of feasible individuals is higher than in FINS.

It should, however, be noted that all there is only a small variance between the
methods on both the feasible number and diversity. There are also uncertainties
in the utility of both the feasible number as a metric and the diversity as a
metric. Taken the small variance and these uncertainties into account, we cannot
make convincing conclusions that one method outperforms others on any of the
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metrics, only that our evolution experiments show a slight favor of FINS on
evolving a larger feasible population, and a slight favor of FI2NS for a more
diverse population.

5.3 Experiment 3 and 4: User study

In experiments 3 and 4, we used human test subjects to evaluate characters that
were generated by our system. Since the goal of the thesis is to explore the value
of generating characters, we need a way to determine the value of generated
characters. Ultimately, humans are the best judge of what humans consider
interesting. We therefore recruited human test subjects to judge our constraints
and compare the generated characters to the human-designed characters, with
regards to interestingness. We conducted two different experiments based on user
studies. Experiment 3 is related to RQ2, and Experiment 4 is related to RQ3.

5.3.1 User study overview

The user test was based on a questionnaire, seen in Appendix C. The question-
naire consists of two tests; Test1 and Test2 that corresponds to Experiment 3
and Experiment 4, respectively.

There were a total of eight test subjects used for Experiment 3, and seven test
subjects used for Experiment 4. The test subjects were students from 20 to 25
years old, and with varying prior experience with fighting games. Some of the
tests were performed with instructors present, and some were performed without.
Several sessions were organized, where one to three subjects participated in each
session. The authors acted as instructors.

The version of the game Sol that was used for the studies had minimal graphics.
All distinguishable elements of visual character aesthetics were left out, since
we wanted to isolate the character mechanics, without the interference of other
aspects of the game. A screenshot of the game used for playtesting is found in
figure 5.4.

Both user studies are based on comparisons between two or four characters. Com-
parisons are made by plying the characters, one after another. Each character
was allowed to be played multiple times. The opponent of the evaluated char-
acters was not a focus. The opponent character was in all test cases controlled
by the computer player, cptest, seen in section 4.4.2. This computer player is not
as good as the player used for the simulation-based feasibility evaluations. It is
expected that the test subjects are not familiar with the game Sol, and only a
limited time to learn the game is given. Thus, it is reasonable to use an opponent
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player that is rather easy to play against. If a test subject is in a stressed situ-
ation, it will probably be harder to explore a character, and it would probably
not seem interesting.

The studies started with a test part, lasting for about 20 minutes, to make the
subjects comfortable with the game. The subjects were presented with the rules
of the game and how it was played. Then Test 1 (related to Experiment 3)
was performed and took about 30 minutes. Lastly, Test 2 was done in about 30
minutes. The subjects were asked to test all three abilities of each character that
they played and to explore each character.

Figure 5.4: A screenshot of the Sol game used for user studies. The graphics are
simplified to focus the attention towards the mechanics of the characters.

5.3.2 Experiment 3: Feasibility evaluation

This experiment targets RQ2: Can we measure fun and balance of character
mechanics in a simulated game?

This question regards the utility of the constraints we have defined on charac-
ters based on balance and fun. The constraints are defined by criteria through
simulation-based evaluation, section 4.5. To answer the question, we evaluated
the correspondence between the feasibility score given by our criteria and the
enjoyment of human players. Recall that the feasibility score is given based on
a character’s distance from feasibility. Our hypothesis entails that the lower fea-
sibility score a character gets, the less likely this character is to be considered
interesting by humans.
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Match number Character pairs
1 1.1 vs 2.1
2 1.2 vs 2.2
3 1.3 vs 2.3
4 1.4 vs 2.4

Table 5.5: The characters that were compared to each other.

Feasible set s1 Infeasible set s2
Character number Feasibility score

1.1 1
1.2 1
1.3 1
1.4 1

Character number Feasibility score
2.1 0.2
2.2 0.4
2.3 0.6
2.4 0.8

Table 5.4: The two sets of characters compared to each other. Set s1 only contains
feasible characters. Set s2 contains infeasible characters of different feasibility
scores.

To test the hypothesis, we randomly sampled two sets of four generated characters
from the evolution runs. The first set, s1, only contained feasible characters. The
second set s2 contained infeasible characters of different feasibility scores. The
feasibility scores of s1 and s2 are found in table 5.4.

All these characters were played and compared to each other by eight human
playtesters, P1-P8. None of the testers knew anything about the feasibility score
of any of the characters. To compare two characters, each playtester was in-
structed to use both characters to play four matches versus two of the existing
characters from the Sol game. After playthrough, the playtester was asked the
question “Which of the two characters you played was more interesting to play?”,
where “fun, balanced and perceived creative” was the working definition of the
word “interesting”. The pairs of characters tested against each other is found in
table 5.5.

We will further present the quantitative results given for the character compar-
ison, followed by qualitative results based on comments and feedback from the
test subjects.

Results of Experiment 3

Summary of the responses from the playtesters is found in table 5.6. It can be
seen that the feasible characters outperformed the infeasible approximately 80%
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Match number Win % character 1
(feasible character)

Win % character 2
(infeasible character)

Character 2
Feasibility score

1 93.75% 6.25% 0.2
2 93.75% 6.25% 0.4
3 87.5% 12.5% 0.6
4 43.75% 56.25% 0.8

Average 79.6875% 20.315% 0.5

Table 5.6: The results based on the answers from P1-P8.

of the tested cases. Furthermore, infeasible characters of higher feasibility scores
were more likely to outperform feasible characters than those of lower feasibility
scores, which is in harmony with our hypothesis. The character with a feasibility
score of 0.8 outperformed its feasible counterpart in 9 out of 16 comparisons.
This suggests that the feasibility score function is flawed in certain cases.

As the random sample size of feasible and infeasible characters is relatively small,
as well as the number of playtesters, we cannot unambiguously draw conclusions
about the utility of the feasibility score function. However, the data we have
suggests that the feasibility score is rather accurate. Each pair was tested a total
of 16 times, so with 4 pairs tested, the total number of tests between feasible and
infeasible pairs is 64. In 51 out of these 64 comparisons, the feasible character
outperformed the infeasible. Applying the null hypotheses to this result gives us
a probability of

P (X ≥ 51) =

64∑
k=51

64!

(64− k)!k!
· 0.5k · 0.564−k < 0.000001 = 0.0001% (5.2)

which makes the result statistically significant. It is very unlikely that the fea-
sibility function has no value concerning the interestingness of characters. The
responses suggest that the feasibility function has a harder time distinguishing
close to feasible characters from feasible characters in accordance with what hu-
mans find interesting. It should, however, be pointed out that the character
sample set is limited, and that to be able to draw stronger conclusions, we would
need to perform several more samples of characters.

As can be seen in table 5.6, character 2.4 was preferred to character 1.4 in 56.25%
of the cases. The most common reason participants preferred character 2.4 over
character 1.4 (seen in table 5.4) was that they perceived character 1.4 to be
overpowered, that it was too easy to beat the computer player. The character
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was equipped with large and strong abilities. This points towards a weakness in
the character balance criteria seen in section 4.4.1. Thus, the feasibility ranges
defined for the criteria might be inaccurate. The criteria are also dependent on the
feasibility of the existing characters, as they are used as a basis for the simulation-
based feasibility evaluation, and thus act as heuristics on interesting characters.
This observation can also indicate that this heuristic has some downsides.

Another observation was made regarding the overall experience. In a few of the
comparisons, none of the characters were experienced as especially enjoyable.
This was discovered through feedback comments. This observation shows that
feasible characters are not guaranteed to be interesting. Our findings presented
earlier still point toward a meaningful distinction of characters based on the
feasibility score.

5.3.3 Experiment 4: Evaluating generated characters

This experiment is related to RQ3: Can constrained novelty search yield character
mechanics that humans find interesting?

To answer RQ3 through human testing, we need a reference point of what is
considered an interesting character. Therefore, we compared generated charac-
ters from evolution to the set of existing human-designed characters we consider
interesting, presented in section 4.1.

First, three runs of each of the four evolution variants, discussed in experiment 2
(section 5.2), were performed. The six most diverse and feasible characters from
the final population of any of the evolution variants where chosen. The diversity
was evaluated by the permutation of six characters that were most divers relative
to each other. The diversity was given by the average distance between all six
characters, and the distance function discussed in section 4.3.2 was used. Six
characters were taken from a single population because the generation method
promotes diversity within a single run. Thus, there is no assumption of the
novelty of characters across different runs.

For the user studies, the six chosen generated characters were compared to six
human-designed characters. Each of the seven test subjects (one test subject from
Experiment 3 could not participant in this experiment) played three batches of
four different characters. They were then asked to rank the four characters of
each batch from 1 to 4 based on how they enjoyed playing them, where 1 is
most enjoyable and 4 is least enjoyable. We further asked them to comment
on any unique or especially interesting aspects of a character, to get feedback
corresponding to the interestingness of the characters. First, we will present the
ordering feedback, then some comments that were given to the characters.
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Table 5.7 shows the character reference number and status of each character used
in Experiment 4. Each of the three batches contained two generated characters,
and two human-designed characters, as displayed in table 5.8.

Character Status
C1 Generated
C2 Human designed
C3 Generated
C4 Human designed
C5 Generated
C6 Human designed
C7 Generated
C8 Human designed
C9 Generated
C10 Human designed
C11 Generated
C12 Human designed

Table 5.7: The 12 characters used in Experiment 4. The Status column shows if
the character is generated through our system or human designed

Batch 1 Batch 2 Batch 3
Character Status

C1 G
C2 Hd
C3 G
C4 Hd

Character Status
C5 G
C6 Hd
C7 G
C8 Hd

Character Status
C9 G
C10 Hd
C11 G
C12 Hd

Table 5.8: The three character batches used in Experiment 4. The Status column
shows if the character is generated (G), or human designed (Hd)

Results of Experiment 4

The character rankings according to our test subjects P1-P7 are displayed in table
5.9. The Overall column displays the overall best ranked character, based on a
ranking score, and the Score column shows the ranking score of the best ranked
character. The ranking score is given to each character by:

scoreCj
=

7∑
i=1

(rankCj
(Pi)− 1)
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Where scoreCj
is the ranking score of the jth character. rankCj

(Pi) is the ranking
of the jth character by subject Pi.

Batch 1 character rankings
Ranking P1 P2 P3 P4 P5 P6 P7 Overall Score

1 C2 C3 C1 C2 C3 C4 C3 C3 14
2 C3 C1 C4 C4 C1 C3 C1 C1 12
3 C1 C2 C2 C3 C4 C1 C2 C2 9
4 C4 C4 C3 C1 C4 C2 C4 C4 8

Batch 2 character rankings
Ranking P1 P2 P3 P4 P5 P6 P7 Overall Score

1 C6 C7 C8 C7 C5 C7 C6 C8 12
2 C8 C8 C5 C8 C6 C8 C5 C7 11
3 C7 C5 C6 C5 C7 C5 C8 C5 10
4 C5 C6 C7 C6 C8 C6 C7 C6 9

Batch 3 character rankings
Ranking P1 P2 P3 P4 P5 P6 P7 Overall Score

1 C11 C9 C10 C9 C11 C9 C11 C11 13
2 C12 C10 C12 C10 C12 C12 C10 C9 11
3 C9 C11 C11 C11 C10 C11 C9 C10 10
4 C10 C12 C9 C12 C9 C10 C12 C12 8

Table 5.9: The character rankings by the seven test subjects, P1-P7, for the three
batches in experiment 4. The Overall column for each batch shows the character
with the best ranking score. The Score column shows the score of the best ranked
character.

The rankings show a slight positive correlation between high ranking and gen-
erated characters. The aggregated score of the generated characters was 71,
whereas the aggregated score of human-designed characters was 56.

We will mention two characters that were pointed out by several subjects to be
different from the other played characters, namely C7 and C11 seen in table 5.7.
C7 had one ability that was especially interesting, pointed out by the subjects. It
was a projectile ability with a relatively large size, really slow speed and persisted
for a long time (respectively corresponding to the ability’s radius, speed and
activeTime properties, seen in section 4.2). The subjects noted that this ability
could be used to “lay mines” that could be used to trap the opponent.
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Character C11 was pointed out because it had an intriguing mechanic. C11 also
had the best score in batch 3. The character featured a melee ability (the hitbox
did not move) that was distanced rather far from the character, along with above
average movement speed. It could be used fairly frequently, without being too
strong. The comments stated that character C11 was unique relative to the other
played characters.

Two character types were noted for several of the generated characters. Namely
the mosquito and the bully type. A mosquito character is small, moves and
attacks fast, but with low damage. The bully type on the other hand refers to
characters that are large and slow, with powerful attacks.

The composition of the characters was commented heavily throughout the user
studies. The composition is the relation between a character’s three abilities,
movement speed, and size. In most of the cases, comments were made by the
lack of composition. Some abilities were rendered useless as another ability was
always a better choice. This led to worse playing experience. Some characters
were, on the other hand, pointed out to have good composition. Another point
mentioned was the relation between the inputs to perform an ability. Each ability
corresponds to a single key on the keyboard, given by the order of the abilities in
the representation (section 4.2). It was assumed that the effectiveness (mentioned
in section 4.2) of abilities corresponding to each respective input, the key mapping,
was consistent across different characters. This was not the case for most of the
generated characters. The two character aspects, composition, and key mapping
were not directly handled by our criteria. However, the user study shows that
they might be valuable heuristics on fighting game character mechanics.

The results from Experiment 4 shows that characters generated with our applied
method can compete with, or even outperform, human-designed characters on
with regards to interestingness. Given that we consider our characters interesting,
the rankings according to the test subjects are promising to confirm RQ2.

The qualitative results based on feedback from test subjects further strengthens
the assumption that our method can generate interesting characters. Different
character types were noted along with unique, intriguing abilities. This study
also shows that our method can not guarantee high quality for all the generated
characters. However, out of the six generated characters that were evaluated,
several were confirmed interesting.

5.3.4 Discussion of the user study

There are several uncertainties related to performing user studies based on hu-
man playtesting in the Sol game. To properly evaluate the interestingness of
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a character, one should preferably have much more time familiarizing with the
game and each of the characters. That would give more certain answers than can
be captured by one session of playtesting in a little more than one hour.

In Experiment 3 (section 5.3.2), test subjects are told to compare two charac-
ters. With this feedback method, there is not much room for nuance. A third
option stating “equally enjoyable” could be provided. The characters could also
be compared on a scale stating to what degree one character is preferred over
another. Comparing on a scale might on the other hand yield inaccurate results,
as it is easier to be certain about a relative ordering.

The number of test subjects is rather small, with respectively 8 and 7 partic-
ipating in experiments 3 and 4. To reach a higher precision of the presented
results, more subjects are needed. Representation from a wider demographical
distribution of subjects would also be beneficial.

The study sessions were rather long, close to one and a half hours. A person’s
responses can vary on the person’s emotional state, which varies over the course
of a session.

Furthermore, there is no doubt that the visual and audio aspects of playing a
game play a huge role in interestingness and enjoyment. Though this is true, the
subjects seemed to appreciate the testing. Most of the subjects had prior expe-
rience with fighting games or similar games, such that they showed appreciation
for the mechanics even though the graphics were limited.

A common theme among many of the participants we observed for experiment 4
(section 5.3.3) was that ranking characters from 1st to 4th was not easy. Some of
the players said they were not comfortable enough giving a definitive ranking, as
they did not get to know some characters well enough to discover their potential.
In some of the cases of ranking characters, the participants told us that two
or more characters were hard to distinguish, so a ranking would be misleading.
Since they were instructed to make a choice regardless, the final rankings contain
uncertainties.

Some of the test subjects pointed out that the computer player was too skilled,
and that this made character evaluation harder. Mainly the subjects that were
less experienced in the fighting game genre. Another comment expressed that
the computer player seemed relatively human-like, except for the fact that it was
always moving and never stopped to think. Comments on the balance between
the played character and the opponent character were made. The comments
suggested that the perceived balance of a played character was relative to the
opponent, the computer-controlled player. The balance was observed to be an
important factor, as a character that made it too easy or too hard to win affected



5.3. EXPERIMENT 3 AND 4: USER STUDY 85

the enjoyment. This suggests that the results are related to the skill of the
individual test subjects relative to the computer player.

Other recurring comments was that characters with slow abilities and low move-
ment speed were frustrating to play. They often did not feel “smooth” in the
sense that the character felt like it was not responding to the user input. This
comment can arguably be partly explained by the lack of graphics and animations
associated with the characters. In a full-featured fighting game, the character an-
imation often indicates the strength and speed of an attack. Larger and slower
characters tend to have stronger, but slower moves. In the Sol game, anima-
tion or graphical aspects could not properly communicate the speed or power of
an attack to the players. The lack of smooth control could also be since faster
character movement and attacks tend to be preferable to slower moves.



86 CHAPTER 5. EXPERIMENTS AND RESULTS



Chapter 6

Conclusion

In this thesis, we have presented a system for generating interesting characters
in a fighting game, Sol. The research is based on the field of procedural content
generation, where evolutionary algorithms are often applied. Simulation-based
evaluation is an approach that has been used to estimate the player experience
of generated content in PCG. These concepts were presented in chapter 2, along
with the fighting game domain and theoretical background on theories of fun
and creativity in games. The system presented in this thesis is inspired by work
conducted to generate similar content in similar game domains. This was pre-
sented in chapter 3, along with the algorithms Novelty search from the class of
evolutionary algorithms.

We presented a method for generating interesting character mechanics in fighting
games in chapter 4. The method was based on feasible-infeasible 2 population
constrained novelty search with the objective of novelty. Constraints on the
search space were given through simulation-based evaluation. Criteria were de-
fined to evaluate the feasibility of a character. Criteria were based on heuristics
of what constitutes a fun and balanced character in fighting games. In chapter 5,
the proposed method was applied, and experiments were conducted to tune the
method and to examine the three research questions, RQ1, RQ2, and RQ3.

Further in this chapter, we discuss our findings with respect to the research goal
and research questions in section 6.1. The implications and value of our work
within the field of PCG and AI for fighting games is discussed in section 6.2. In
the last two sections, we reflect on the limitations of our research and suggest
how future work can improve and expand on the knowledge gained.

87
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6.1 Discussion

Our research was an ambitious attempt at exploring ways to automate the design
process of game mechanics. The Research goal was stated as follows: “Explore
generation of game mechanics in fighting games through the use of evolutionary
algorithms”. Through our research, we came across different evolutionary algo-
rithms (EAs) that could be applied in our method. Through trial and error, we
ended up with Constrained Novelty evolution. We believed the algorithm would
be valuable for generating interesting character mechanics. We found Novelty
search to be appropriate as it values diversity more than other variants of EAs
with diversity maintenance, and we considered novelty an important aspect of
what is perceived interesting (presented in section 2.4). Evaluation of player ex-
perience, i.e., what is considered balanced and fun had promising applications in
related work through simulation-based evaluation. We wanted to end up with a
set of diverse and interesting characters. Encouraging diversity to a high degree
through constrained novelty search with constraints on player experience was
therefore believed to be appropriate for our proposed method.

To further examine the research goal, three research questions where defined.
Given our system to generate interesting fighting game mechanics, the research
questions were defined to evaluate the system. The system could then indicate
that interesting character mechanics can be generated for fighting games, based
on obtained results. First, an experiment was conducted to define parameter
values of the generation method in which the four existing characters in the Sol
game were used as heuristics on interesting characters. This experiment was
necessary to tune the method.

The first research question was examined through Experiment 2, and was stated
as follows.
RQ1: How can constrained novelty search be utilized to evolve interesting char-
acter mechanics?
Through our research, two methods of constrained novelty search showed the most
promise, namely the FINS and FI2NS algorithms, discussed in section 4.3.1. An
assumption was made, that the initial population used in the generation method
could have a great impact. Thus, the two initial population variants discussed in
section 4.3.3 were evaluated with each of the two search algorithms and forms four
variants that were compared. The variants were compared on diversity and fea-
sible number (number of feasible characters) in the final population. The results
of the experiments showed that FI2NS with an existing character-based initial
population had the best performance on diversity. FINS with a random initial
population and FINS with an existing character-based initial population showed
the highest number of feasible individuals. However, none of the four variants
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performed remarkably better than the others on any metrics and no statistical
significance could be proven.

We refer to the result of experiment 3 (section 5.3.2) to examine RQ2.
RQ2: Can we measure fun and balance of character mechanics in a simulated
game?
Based on the responses of the test subjects, the feasible characters from the
simulation-based evaluation outperformed the infeasible characters in approxi-
mately 80% of tested cases. This suggests that it is possible to quantify fun and
balance of characters using simulation-based evaluation somewhat consistently.
The quantification was based on constraints in the search, rather than a fitness
function that could be optimized for. The constraints were given by a feasibility
evaluation, defined by criteria on simulated games. The feasibility evaluation
function we used had many similarities with more traditional fitness functions.
One of the differences between them, however, are how the functions typically are
used in EAs. Fitness functions are used as the objective for evolution, whereas
our feasibility evaluation function is used as a constraint on individuals. Another
common difference is that fitness functions often return a continuous range of
values, in contrast to the discrete values assigned by our feasibility evaluation
function. We believe that continuous fitness functions require a more precise
evaluation of our criteria. Quantifying a fine-grained fitness function based on
interestingness is not a trivial task.

RQ3 was formulated as follows.
RQ3: Can constrained novelty search yield character mechanics that humans find
interesting?
Experiment 4 in section 5.3.3 was conducted to examine RQ3 by comparing the
interestingness of generated characters to the existing, human-designed charac-
ters, based on the experience of test subjects. The results of experiment 4 show
that the applied generation system is capable of producing interesting characters,
but not consistently, however.

The results from our experiments indicate that the generation method is capable
of generating interesting fighting game character mechanics to a certain degree.
The results also showed that there is room for improvement in the method. The
constraints on player experience, given through the criteria are not capable to
distinguish fun and balanced characters in all cases. This is further shown in
experiment 4, where some of the generated characters seemed uninteresting by
the test subjects. There are several reasons why this may be. Possible reasons
will be further presented in section 6.3.
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6.2 Implications

The research conducted in this thesis has shown that interesting character me-
chanics can to some degree be generated for fighting games. The work presented
can be seen as an initial attempt to combine content generation through con-
straint novelty search with constraints based on simulation-based evaluation in
the domain of fighting games. To our knowledge, this is also a first attempt at
generating character mechanics in a fighting game.

In the field of automating design for video games, this work can be seen as a
contribution to expanding the application of existing methods. As discussed
in chapter 3, several other researchers have succeeded in developing algorithms
and systems for generating game levels and game rules through the use of fully
autonomous PCG. This work show results in applying a similar approach to
fighting game mechanics.

Mixed-initiative systems (explained in section 2.1) have been created for generat-
ing character weapons and character abilities using interactive fitness evaluation
in role-playing games. We have shown a method for generating character me-
chanics through autonomous PCG. Simulation-based evaluation was used, and
thus removed the need for human involvement in the generation process.

Our results indicate that the generation method can not guarantee quality for all
generated characters. Thus, the approach is not suitable to be used for generating
characters that can be used directly in a game. The method could be suitable as
a design tool that a game designer could use for inspiration. This could promote
better character designs and a more efficient design process.

The generation method presented can be applied to other fighting games, as the
Sol game is similar to other fighting games (shown in section 4.1). However, our
system is heavily based on technical aspects of the Sol game. Several heuristics
in the simulation-based evaluation and especially the computer player are also
based on this game. The presented method is dependent on four priorly existing
characters that were human designed for the Sol game. They were used in the
game simulations and for generating the initial population for the novelty search.
This entails dependence on human-designed characters that must be present in
a game. The main takeaway of our applied method is the promising concept of
constrained novelty search with simulation-based feasibility evaluation, with the
presented criteria.
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6.3 Limitations

There are several limitations to our work. We will discuss those we consider the
most relevant.

Only a few variants of evolutionary algorithms were tested for the proposed
method. Testing and comparing more evolution strategies could produce bet-
ter results. There are several different evolutionary search strategies that could
be used. If the simulation-based criteria (from section 4.4) that are used as heuris-
tics on fun and balance were formulated as objectives, several other evolutionary
search approaches could be tested. Novelty could be achieved by methods such
as niching (presented in section 2.2). Multi-objective evolutionary algorithms
could also be tested, where criteria could be used as different objectives. Further
experimentation is needed to examine the presented approach. Furthermore, we
could also research the effect of the different parameters used in for the evolution
to determine their effect on the outcome.

The results from Experiment 4 (section 5.3.3) suggest that several generated
characters are perceived as similar. There are several reasons that may explain
this effect. The evolutionary operators, presented in section 4.3.4, can be limited
in their capability of generating character offspring that are sufficiently diverse.
The four variants of the novelty search algorithms that were evaluated in Experi-
ment 2 (section 5.2) showed little variance in the possibility of generating diverse
characters. This result might be affected by the potential limited capabilities of
the mutational operators to produce diverse offspring.

The distance function that was applied (seen in section 4.3.2) might also affect
the novelty of generated characters. The distance function was applied directly to
the character genotype. Thus, the distance may not reflect the actual distance of
two characters perceived by a human player. The relation between the genotype
of a character and a character presented in the Sol game was discussed in section
4.2.

The existing characters in the Sol game were used as heuristics on interesting
characters in multiple parts of our generation method. The feasibility ranges of
our criteria were defined based on the performance of the existing characters, seen
in Experiment 1 (section 5.1). The evaluation of generated characters was also
made by playing them against the existing characters (seen in section 4.4). One
of the initial population generators was also based on the existing characters.
The strong dependence on the existing characters is not optimal, as we have
no results proving that they are interesting, except for the authors’ experience.
Thus, this dependency on the existing characters should preferably be removed,
or the characters should be further evaluated. For the feasibility ranges, user
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studies could be applied to determine the values.

The criteria that were applied can not be assumed to evaluate all aspects of
what constitutes an interesting character. Further exploration of criteria suitable
for a fighting game is necessary to define more accurate heuristics of characters
in fighting games. The capability of each criterion to estimate interestingness
was not investigated but could be done to improve the accuracy. Inspiration
could be taken from Brown and Maire, who performed user studies to evaluate
the importance of their criteria for simulation-based evaluation [4]. Qualitative
results from our user studies show aspects of character mechanics that were not
accounted for in our criteria, seen in section 5.3.3. These aspects include character
composition (the relation between a character’s abilities, movement speed, and
size) and the key binding (the relation between the effect of abilities and the
player’s input keys). These observations could be used to define further heuristics
on interesting fighting game characters.

We want to point out that the Sol game used in this study is a relatively simple
game. The representation of the generated character mechanics is limited relative
to more complex fighting games seen in the industry. Many other games may
have vastly different characters that might be hard to represent with a simple pa-
rameterized representation, as done in this research (see section 4.2). With larger
and more complex representations, the search will be much larger. Performing a
search on such domains can be very time consuming, such that more heuristics
are needed for the search.

6.4 Future work

In section 6.3 we pointed out several limitations that can be considered for fu-
ture work. Other evolution strategies and the effect of the different evolution
parameters can be further researched. To evaluate the value of this work in the
general field of fighting games and AI, the system should be implemented for a
well known fighting game.

Other suggestions for improvement and future work is to utilize more sophisti-
cated AI methods for the computer player used in the simulation-based evalua-
tion. For example Monte Carlo tree search or variants of reinforcement learning,
that have previously been used for game-playing AI in fighting games (see sec-
tion 2.3.2). More focus on human-like play styles for the computer player could
improve the value of the simulation-based evaluation.
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1 {

2 "name": "Frank",

3 "radius": 32,

4 "moveVelocity": 500,

5 "abilities": [

6 {

7 "name": "rapid shot",

8 "type": "PROJECTILE",

9 "radius": 8,

10 "distanceFromChar": 32,

11 "speed": 1200,

12 "activeTime": 30,

13 "startupTime": 2,

14 "executionTime": 0,

15 "endlagTime": 2,

16 "rechargeTime": 30,

17 "damage": 100,

18 "baseKnockback": 200,

19 "knockbackRatio": 0.5,

20 "knockbackPoint": -128,

21 "knockbackTowardPoint": false

22 },

23 {

24 "name": "hyper beam",

25 "type": "PROJECTILE",

26 "radius": 20,

27 "distanceFromChar": 32,

28 "speed": 1500,

29 "startupTime": 15,

30 "activeTime": 120,

31 "executionTime": 1,

32 "endlagTime": 10,

33 "rechargeTime": 120,

34 "damage": 300,

35 "baseKnockback": 400,

36 "knockbackRatio": 0.8,

37 "knockbackPoint": -256,

38 "knockbackTowardPoint": false

39 },

40 {

41 "name": "puffer",

42 "type": "MELEE",

43 "radius": 98,

44 "distanceFromChar": 0,

45 "speed": 0,

46 "activeTime": 2,

47 "startupTime": 8,

48 "executionTime": 2,

49 "endlagTime": 8,

50 "rechargeTime": 180,

51 "damage": 20,

52 "baseKnockback": 1300,

53 "knockbackRatio": 0.1,

54 "knockbackPoint": 0,

55 "knockbackTowardPoint": false

56 }

57 ]

58 }
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1 {

2 "name": "Schmathias",

3 "radius": 32,

4 "moveVelocity": 600,

5 "abilities": [

6 {

7 "name": "Frog Punch",

8 "type": "MELEE",

9 "radius": 64,

10 "distanceFromChar": 48,

11 "speed": 0,

12 "activeTime": 5,

13 "startupTime": 3,

14 "executionTime": 5,

15 "endlagTime": 3,

16 "rechargeTime": 20,

17 "damage": 150,

18 "baseKnockback": 700,

19 "knockbackRatio": 0.8,

20 "knockbackPoint": -48,

21 "knockbackTowardPoint": false

22 },

23 {

24 "name": "Hook",

25 "type": "PROJECTILE",

26 "radius": 24,

27 "distanceFromChar": 32,

28 "speed": 900,

29 "startupTime": 5,

30 "activeTime": 30,

31 "executionTime": 0,

32 "endlagTime": 18,

33 "rechargeTime": 50,

34 "damage": 200,

35 "baseKnockback": 1400,

36 "knockbackRatio": 0.2,

37 "knockbackPoint": -128,

38 "knockbackTowardPoint": true

39 },

40 {

41 "name": "Meteor Punch",

42 "type": "MELEE",

43 "radius": 32,

44 "distanceFromChar": 64,

45 "speed": 0,

46 "activeTime": 3,

47 "startupTime": 15,

48 "executionTime": 3,

49 "endlagTime": 4,

50 "rechargeTime": 60,

51 "damage": 500,

52 "baseKnockback": 1000,

53 "knockbackRatio": 1.5,

54 "knockbackPoint": -128,

55 "knockbackTowardPoint": false

56 }

57 ]

58 }
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1 {

2 "name": "Brail",

3 "radius": 44,

4 "moveVelocity": 600,

5 "abilities": [

6 {

7 "name": "Chagger",

8 "type": "MELEE",

9 "radius": 70,

10 "distanceFromChar": 64,

11 "speed": 0,

12 "activeTime": 6,

13 "startupTime": 6,

14 "executionTime": 6,

15 "endlagTime": 6,

16 "rechargeTime": 30,

17 "damage": 150,

18 "baseKnockback": 600,

19 "knockbackRatio": 1.2,

20 "knockbackPoint": 400,

21 "knockbackTowardPoint": true

22 },

23 {

24 "name": "Light Force",

25 "type": "PROJECTILE",

26 "radius": 64,

27 "distanceFromChar": 44,

28 "speed": 650,

29 "startupTime": 12,

30 "activeTime": 30,

31 "executionTime": 0,

32 "endlagTime": 6,

33 "rechargeTime": 120,

34 "damage": 300,

35 "baseKnockback": 400,

36 "knockbackRatio": 0.8,

37 "knockbackPoint": 64,

38 "knockbackTowardPoint": false

39 },

40 {

41 "name": "Merge",

42 "type": "MELEE",

43 "radius": 160,

44 "distanceFromChar": 128,

45 "speed": 0,

46 "activeTime": 2,

47 "startupTime": 10,

48 "executionTime": 2,

49 "endlagTime": 8,

50 "rechargeTime": 60,

51 "damage": 20,

52 "baseKnockback": 800,

53 "knockbackRatio": 0.4,

54 "knockbackPoint": 0,

55 "knockbackTowardPoint": true

56 }

57 ]

58 }
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1 {

2 "name": "MagneT",

3 "radius": 36,

4 "moveVelocity": 600,

5 "abilities": [

6 {

7 "name": "Spear Poke",

8 "type": "MELEE",

9 "radius": 30,

10 "distanceFromChar": 100,

11 "speed": 0,

12 "activeTime": 6,

13 "startupTime": 8,

14 "executionTime": 3,

15 "endlagTime": 0,

16 "rechargeTime": 13,

17 "damage": 150,

18 "baseKnockback": 600,

19 "knockbackRatio": 0.7,

20 "knockbackPoint": -100,

21 "knockbackTowardPoint": false

22 },

23 {

24 "name": "Spear Throw",

25 "type": "PROJECTILE",

26 "radius": 32,

27 "distanceFromChar": 36,

28 "speed": 1500,

29 "startupTime": 30,

30 "activeTime": 40,

31 "executionTime": 0,

32 "endlagTime": 18,

33 "rechargeTime": 50,

34 "damage": 200,

35 "baseKnockback": 250,

36 "knockbackRatio": 1,

37 "knockbackPoint": -64,

38 "knockbackTowardPoint": false

39 },

40 {

41 "name": "Spirit of the Wild",

42 "type": "PROJECTILE",

43 "radius": 64,

44 "distanceFromChar": 0,

45 "speed": 200,

46 "activeTime": 240,

47 "startupTime": 30,

48 "executionTime": 0,

49 "endlagTime": 12,

50 "rechargeTime": 120,

51 "damage": 450,

52 "baseKnockback": 200,

53 "knockbackRatio": 0.5,

54 "knockbackPoint": 0,

55 "knockbackTowardPoint": false

56 }

57 ]

58 }
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Appendix B: Predefined
character constraints

Character body properties constraints

1 character_properties_ranges = {

2 "radius": (28.0, 50.0),

3 "moveVelocity": (200.0, 800.0)

4 }

Melee ability properties constraints

1 melee_ability_ranges = {

2 "radius": (16.0, 200.0),

3 "distanceFromChar": (0.0, 200.0),

4 "speed": (0.0, 0.0),

5 "startupTime": (1, 30),

6 "activeTime": (1, 60),

7 "executionTime": (1, 30),

8 "endlagTime": (1, 30),

9 "rechargeTime": (10, 30),

10 "damage": (100.0, 1000.0),

11 "baseKnockback": (10.0, 1000.0),

12 "knockbackRatio": (0.1, 1.0),

13 "knockbackPoint": (-500.0, 500.0),

14 "knockbackTowardPoint": (False, True)

15 }
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Projectile ability properties constraints

1 projectile_ability_ranges = {

2 "radius": (5, 50),

3 "distanceFromChar": (0, 200),

4 "speed": (100, 800),

5 "startupTime": (1, 60),

6 "activeTime": (20, 1000),

7 "executionTime": (1, 30),

8 "endlagTime": (1, 30),

9 "rechargeTime": (10, 120),

10 "damage": (15, 500),

11 "baseKnockback": (50, 1000),

12 "knockbackRatio": (0.1, 1.0),

13 "knockbackPoint": (-500, 500),

14 "knockbackTowardPoint": (False, True)

15 }
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User testing of generated characters in 
the Sol game 
 
Sol is a fighting game where you control a character and play against another character. The 
other character will always be computer controlled for this test. The goal is to use attacks to 
push (knockback) the other character off the stage. 
 

Set up 
- First you need a java 11 runtime. It can be downloaded from here: 

https://adoptopenjdk.net/. Select the options OpenJDK 11 (LTS) and HotSpot. 
- Then you need to download the game. You need git installed, then run 

git clone --recurse-submodules https://github.com/sol-ai/solai_project.git 
in a terminal. 

- Then do cd solai_project/solai_game_simulator, you should now be in the game 
simulator directory. 

- To play, you need to input the following command: 
./gradlew bootRun --args="--experiment [experiment type],[experiment number]" 

(no whitespace around the comma). [experiment type] and [experiment number] will be 
replaced as stated later. 

- To test that everything works, run  
./gradlew bootRun --args="--experiment test,0" 

Hold the w button on the keyboard to die three times and let the game end. 
- Note that in the terminal, you can use the arrow key up to get the last typed command. 
- You should preferably have no other windows open on your pc when running the 

command, as the game will start behind the other windows 

Game instructions 
- The movement of your character is controlled by four directional keys: a (left), d (right), w 

(up) and s (down). 
- A character has three attack abilities that may be executed by: left mouse button, right 

mouse button and the space bar. 
- The character will always aim towards the mouse cursor. 

The input buttons are seen in the following image: 
 



 
 
 

Get familiar with the game 
In the game you will see four kinds of objects. The pointy blue circles are the characters. You 
always control the character on the left. The other blue areas are walls that are impassable. The 
red area indicates where a character can fall off the stage. If a character’s collides with a red 
area, it dies. If a character dies 3 times, the player that controls the character loses. When you 
perform abilities, they are displayed as blue pointy circles as well. 
 
All abilities are used in the direction that the character aims (towards the mouse cursor). Abilities 
come in two variants, melee attacks and projectile attacks. Melee attacks do not move after 
they are used, while projectile attacks move forward. Different attacks have varying damage, 
knockback, size speed among other varying properties. Knockback can also be applied in 
the opposite direction of the attack. Abilities also have different delays on your character. That 
means that you might not be able to move for a brief period of time before and after an attack is 
used. No animations are present, but think of this as the time it takes for a character to perform 
a punch, kick or to shoot a bullet. There might also be some time before the same ability can be 
used in succession. Some abilities may be suitable to perform after another, so look for ability 
combinations. 
 
The computer player is meant to approximate a pretty good player, so don’t feel bad if you 
cannot defeat it, that is not the main goal of this test. 
 
Test the game by running the command --args="--experiment test,[experiment number]" with 
the experiment number set to: 0, 1, 2 or 3. The different experiment numbers will let you play 
with different characters. Repeat each character if you’d like. 
 
 



Test 
You will be presented with different characters during the test. Try out all the three abilities, 
and look for ability combinations that might work. You can repeat the games with the same 
character multiple times if you would like to. 
 
 
Please fill in the following: 

Name (optional):  

Prior experience with 
fighting games from 1 
(none) to 3 (much) 

 

 
 

Test 1 
In test 1, we ask you to play two and two characters after each other. Then write down which 
one you enjoy the most. There is a total amount of 8 pairs. Enjoyment is subjective, so no 
answer is wrong. We would also like you to leave comments on each character, e.g. why you 
enjoy it why not. 
 
Tu run the test, run the following command with experiment number as stated in the table 
below: --args="--experiment e1,[experiment number]" (“test” from the last section is changed to 
e1) 

Experiment 
number 

Comments on a character (optional) Which one do you prefer? 

0   

1  

2   

3  

4   

5  

6   

7  



8   

9  

10   

11  

12   

13  

14   

15  

 

Test 2 
In this test we would like you to order 4 and four characters according to how you enjoy playing 
them. There are a total of 3 blocks of 4 characters. Comment if you found any interesting or 
unique aspects of a character. 
 
Tu run the test, run the following command with experiment number as stated in the table 
below: --args="--experiment e2,[experiment number]" (e1 from the last test is changed to e2) 
 

Experiment number Comments on a character 
(optional) 

Which one do you prefer? ( 
0,1,2,3 for example) 

0   

1  

2  

3  

 
 

Experiment number Comments on a character 
(optional) 

Which one do you prefer? 

4   

5  

6  



7  

 
 

Experiment number Comments on a character 
(optional) 

Which one do you prefer? 

8   

9  

10  

11  
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