
Received September 15, 2020, accepted October 23, 2020, date of publication November 2, 2020,
date of current version November 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3035256

Two-Stage Optimized Trajectory Planning for
ASVs Under Polygonal Obstacle Constraints:
Theory and Experiments
GLENN BITAR , ANDREAS B. MARTINSEN , ANASTASIOS M. LEKKAS, (Member, IEEE),
AND MORTEN BREIVIK , (Member, IEEE)
Centre for Autonomous Marine Operations and Systems, Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU),
7491 Trondheim, Norway

Corresponding author: Glenn Bitar (glennbitar@outlook.com)

This work was supported in part by the Research Council of Norway under Project 269116, and in part by the Centres of Excellence
Funding Scheme under Project 223254.

ABSTRACT Wepropose amethod for energy-optimized trajectory planning for autonomous surface vehicles
(ASVs), which can handle arbitrary polygonal maps as obstacle constraints. The method comprises two
stages: The first is a hybrid A? search that finds a dynamically feasible trajectory in a polygonal map on a
discretized configuration space using optimal motion primitives. The second stage uses the resulting hybrid
A? trajectory as an initial guess to an optimal control problem (OCP) solver. In addition to providing the
OCP with a warm start, we use the initial guess to create convex regions encoded as halfspace descriptions,
which converts the inherent nonconvex obstacle constraints into a convex and smooth representation. The
OCP uses this representation in order to optimize the initial guess within a collision-free corridor. The OCP
solves the trajectory planning problem in continuous state space. Our approach solves two challenges related
to optimization-based trajectory planning: The need for a dynamically feasible initial guess that can guide the
solver away from undesirable local optima and the ability to represent arbitrary obstacle shapes as smooth
constraints. The method can take into account external disturbances such as wind or ocean currents. We
compare our method to two similar trajectory planning methods in simulation and have found significant
computation time improvements. Additionally, we have validated the method in full-scale experiments in
the Trondheim harbor area.

INDEX TERMS Autonomous vehicles, collision avoidance, marine vehicles, motion planning, polygonal
collision-avoidance constraints, trajectory optimization, trajectory planning.

I. INTRODUCTION
In marine applications, we see efforts to increase the level of
autonomy in research, defense, and commercial applications.
Motivated by benefits to costs, safety, and environmental
impact, many actors consider using autonomous vessels in
their operations. In 2018, both Wärtsilä and Rolls-Royce
Marine (acquired by Kongsberg Maritime) demonstrated
autonomous capabilities with the ferriesFolgefonn andFalco,
respectively.1 Both tests included automatic transit and
docking. Another example of commercial use of maritime
autonomous technology is when the Japanese shipping com-

The associate editor coordinating the review of this manuscript and

approving it for publication was Heng Wang .
1https://www.maritime-executive.com/article/rolls-royce-and-wartsila-

in-close-race-with-autonomous-ferries (accessed September 14, 2020).

pany NYK completed the world’s first maritime autonomous
surface ship trial in 2019.2

An essential part of an autonomous marine system is path
and trajectory planning, where the goal is to plan how the
vessel will move from its start location to the goal location.
Path planning finds a sequence of collision-free configura-
tions without temporal constraints, while trajectory planning
adds temporal constraints, often via a time-parametrized state
trajectory. Our interests lie within energy-optimized opera-
tions, and since energy consumption is highly sensitive to
velocity, we focus on trajectory planning.

2https://www.nyk.com/english/news/2019/20190930_01.html (accessed
August 31, 2020).

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 199953

https://orcid.org/0000-0002-2989-8542
https://orcid.org/0000-0002-6047-1715
https://orcid.org/0000-0002-0457-1850
https://orcid.org/0000-0002-4408-9153

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

A. BACKGROUND AND RELEVANT WORK
Maritime agencies and research institutions actively research
autonomous technology for, e.g., underwater operations for
ocean mapping and monitoring [1], and autonomous trans-
portation, focusing on the international regulations for pre-
venting collisions at sea (COLREGs) [2]. Seto [3] gives an
overview of autonomous technologies for maritime systems,
and Pendleton et al. [4] give an overview of autonomy in
vehicles in general. Pendleton Path and trajectory planning
is a crucial technology for enabling autonomy at sea.

In robotics, there are numerous methods developed for
path and trajectory planning. A general introduction to
path planning is written by LaValle [5], who looks at the
topic from the perspective of computer science while intro-
ducing widespread notation and nomenclature. Wolek and
Woolsey [6] give an overview of model-based approaches to
path planning for ground, surface, underwater, and air vehi-
cles. We can coarsely divide planning methods into roadmap
methods that explore points in the configuration space that,
when connected, build a path between start and goal, and
optimization-based methods that produce connected paths
or trajectories using analytical or approximate optimization.
Some advantages of roadmap methods include quickly find-
ing the global solution of a path planning problem, and they
allow for flexible obstacle representations, e.g., polygonal
constraints. On the other hand, roadmap methods are discrete
and are not generally able to find an optimal path or trajectory
in a continuous domain. Optimization-based methods are
often slower and subject to finding local optima. However,
they naturally search in the continuous domain. Additionally,
gradient-based methods for solving optimization problems
require continuously differentiable representations of con-
straints, restricting how we can represent obstacles.

A simple example of roadmap methods is the A? search
algorithm [7]. A? is a graph search algorithm commonly
used as a path planner by discretizing a continuous map,
often into a uniform, rectangular grid. A? quickly pro-
vides a piecewise linear path from start to goal. A more
involved roadmap method comes from Candeloro et al. [8],
where the authors discretize a map using a Voronoi dia-
gram, subsequently refining and smoothing the result to
give a curvature-continuous path. These methods are fast,
but lack dynamic feasibility3, and can only be optimal in
terms of the employed map discretization. Roadmap meth-
ods also include sampling-based methods. These methods
explore random points to build a roadmap between start
and goal. Examples include the probabilistic roadmap [9],
as well as rapidly-exploring random trees [10] and variations
of those. Sampling-based methods are shown to be useful
for planning in high-dimensional configuration spaces, where

3We use the term ‘‘dynamically feasible’’ to indicate that a trajectory sat-
isfies dynamic constraints in the form of model-based differential equations.
A path that consists of a smoothed roadmap is usually feasible in terms of
specified a turning radius. This turning radius is dependent on vessel speed,
and the path is thus not dynamically feasible since it is not based on a model
that includes speed.

combinatorial roadmap methods often run into the so-called
curse of dimensionality [11].

Model-based optimization-based methods are researched
in automotive, aerial, and marine applications to create
dynamically feasible paths or trajectories. Optimization-
based methods are sometimes used to refine the result of a
roadmap search or used as the primary tool to plan a tra-
jectory. In [12]–[14], the authors present optimization-based
trajectory planning methods that use smooth representations
of rectangles and ellipses to approximate the obstacle map.
This type of representation makes the optimization problem
feasible to solve using gradient-based methods. However,
there is an impractical tradeoff between the representa-
tion accuracy and number of constraints in the optimiza-
tion problem. Additionally, these shapes may not be generic
enough to represent detailed obstacle maps. By reformulat-
ing the obstacle avoidance constraint and introducing aux-
iliary optimization variables, Zhang et al. [15] have devel-
oped an alternative method for representing obstacles. This
method allows the encoding of arbitrary convex polygons
as smooth optimization constraints by introducing auxiliary
optimization variables. The method works well for a low
number of obstacles, but the optimization problem grows
significantly with the number of obstacles and the number
of polygon edges, to the point where it is not feasible to
use it for marine applications with detailed obstacle maps.
Bergman et al. [16] propose to bypass the inherent
non-convexity of static obstacle avoidance by calculat-
ing a series of convex polytopes where their vehicle
is allowed to move. The method gives smooth, convex
obstacle avoidance constraints for their optimization-based
planner, but lacks consideration of environmental distur-
bances. An optimization-based trajectory planning method
for autonomous driving developed by Chen et al. [17] can
represent polygonal obstacle constraints. Their method is
based on linear quadratic control with an iterative optimiza-
tion solver. A prerequisite for their method is an initial
dynamically feasible trajectory in order to perform the opti-
mization. However, their method does not provide a way of
determining such a trajectory. This issue is common with
optimization-based methods, and without an initial guess,
they are prone to locking into solutions that represent unde-
sirable local optima, i.e., solutions that may be far away from
the globally optimal solution, as demonstrated in, e.g., [14].
In that example, the optimization-based planner finds a poor
solution in the absence of a helpful initial guess. Depending
on the objective function, finding a good initial guess to
warm-start an optimization-based planner can be straight-
forward. In the case of finding a minimum-distance path,
simple roadmap-based methods may quickly find paths in the
discrete domain that lie close to the optimal solution in the
continuous domain. Optimization-based methods can use this
type of path as an initial guess. For energy-based objective
functions, for instance, or when introducing dynamic con-
straints, creating feasible trajectories to use as initial guesses
is more challenging, and suggests alternative approaches.

199954 VOLUME 8, 2020

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

Zhang et al. [15] propose using the hybrid A? algorithm [18]
to find such a trajectory for an optimization-based solver.
Their application is autonomous parking of a car, described
with a dynamical model, and using a cost function that blends
minimum time and control effort. A simplified dynamical
model and cost function is used in the hybrid A? search
stage, and the search solution is used as an initial guess
for the optimization-based planner. The method does not
take into account external disturbances. Bergman et al. [16]
have developed a receding-horizon optimization-based plan-
ner warm-started by using a graph search method. The graph
search method works on a lattice of a marine vessel’s dis-
cretized state space with optimal state transitions. To facili-
tate motion in confined harbor areas, the authors use a cost
function that blends distance to obstacles, minimum time,
control effort, and control smoothness. Zhang et al. [19]
and Meng et al. [20] propose optimization-based trajec-
tory planning methods for autonomous driving that utilize
roadmap methods to generate nominal trajectories for geo-
metrical paths and subsequently use optimization to improve
them. In both papers, speed profiles are handled separately
from the geometrical path planning.

B. CONTRIBUTIONS
We have developed a method that plans energy-optimized
trajectories in an environment defined by polygonal obsta-
cles for an autonomous surface vehicle (ASV) under the
influence of external disturbances. Our method is based on
continuous optimal control, and the optimal control problem
(OCP) solver is warm-started by the solution of a hybrid A?

search algorithm. The method’s proposed use case is to plan
an ASV voyage’s transit stage before the voyage starts. The
method handles only static obstacles, and is thus suitable for
use as the top layer in a hybrid collision avoidance scheme,
as proposed in [2], [21], [22]. Figure 1 shows a high-level
block diagram of the trajectory planning method. The main
differences between our method and the planner described
in [16] are that we use a hybrid A? search to calculate
the initial guess, which allows us to account for estimated
external disturbances, such as wind. Additionally, we use
an alternative method to calculate the convex envelopes in
preparation for the trajectory optimization stage. Like the
method in [15], we also use hybrid A? to generate an initial
guess before optimizing. However, we propose an alternative
obstacle representation, which scales more efficiently with
the number of polygons and polygon edges in the obsta-
cle map, in terms of the number of optimization variables.
Our method shares similarities with [23] as well, where the
workspace is decomposed into triangular cells to account for
static, polygonal obstacles, and an optimization-based search
finds sub-trajectories in each of the triangular cells. However,
that method does not include an initial guess to warm-start the
OCP solver.

Our contributions are as follows:

• We have extended the hybrid A? search developed by
Dolgov et al. [18] to the ASV application by using an

FIGURE 1. A block diagram of the high-level functionality of our
proposed trajectory planning method.

energy-based cost function that depends on the velocity
relative to external disturbances such as wind.

• We use a trajectory of pose, velocity, and force from
the hybrid A? solution as an initial guess to a general
OCP solver.

• In the OCP, we utilize a sequence of convex polygons to
generate a state corridor in a nonconvex obstacle map.
This representation of obstacles causes the OCP’s obsta-
cle avoidance constraint to be convex, rather than non-
convex. Additionally, it allows us to easily use polygonal
obstacle maps in the gradient-based OCP solver, which
is generally hard due to their piecewise linear and non-
convex nature.

• We have compared our method to similar trajectory
planning methods and found significant improvements
in terms of run time, with equivalent energy use.

• We have performed full-scale experiments that have
validated our method based on the experimental vessel’s
capability to track the resulting trajectory.

C. OUTLINE
In Section II we cover preliminary information about notation
and vessel modeling. Sections III and IV present the devel-
opment of our trajectory planning method. In Section III,
we describe the hybrid A? method that generates the initial
guess. The section covers the generation of motion primi-
tives, two different search heuristics, and the search algorithm
itself. In Section IV, we present the OCP, how we convert
the obstacle map to a sequence of convex polygons, the tran-
scription of the OCP to a nonlinear program (NLP), and
how we solve the NLP Section V contains simulations and
comparisons to other trajectory planningmethods. The results
are compared in quantitative measures of planning time and
energy-usage when tracking the trajectories. In Section VI,
we present results from full-scale experiments, which serve as

VOLUME 8, 2020 199955

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

validation of the method and show howwell the experimental
vessel can track the produced trajectories. Section VII gives
concluding remarks.

II. PRELIMINARIES
A. NOTATION
From LaValle [5], we have widely used notation related to
path planning. As opposed to trajectories, a path places no
temporal constraints on the following vehicle. Except for this,
the two topics of planning paths and trajectories are similar.
We let W := R2 denote the world that contains our vessel
and obstacles. The union of obstacles is O ⊂ W . The free
workspace is defined to beWfree :=W \O.
Our vessel lives in W , but its configuration is better

described in the configuration space

η =
[
x y ψ

]>
∈ C := R2

× S. (1)

Here, x and y are the vessel’s position coordinates North and
East of some origin, respectively, and ψ is its heading angle
relative toNorth. The position coordinates refer to the vessel’s
center of gravity, which is at its centroid. The vector η is
referred to as the vessel’s pose. We denote its footprint in the
workspace as a set of points A(η) ⊂ W , which defines the
vessel’s shape. The set of noncolliding configurations is thus

Cfree := {η ∈ C |A(η) ∩O = ∅} . (2)

Most path planning algorithms operate on a discretized
version of the configuration space, denoted by Cd ⊂ C.
In our work we uniformly discretize the configuration space
on a grid with resolution

rC :=
[
rp rp rh

]>
, (3)

where rp > 0 is the positional resolution and rh > 0 is
the angular heading resolution. Similarly, the discrete free
configuration space is denoted Cd,free. While points in the
continuous configuration space are denoted by η, we use a
tilde for points in the discrete configuration space: η̃. The
mapping from C to Cd is denoted KEY : C 7→ Cd and is done
by rounding η to its closest multiple of rC .
The formal goal of path planning is to find a continuous

path, entirely in Cfree, from a start pose η0 ∈ Cfree to a goal
pose ηf ∈ Cfree. In discrete algorithms, the paths are often
piecewise linear, with connections on Cd,free. Generally, this
problem has many solutions, however, we usually also asso-
ciate the problem with a definition of an optimal path, e.g.,
the shortest. In trajectory planning, the goal is similar, but
we have additional kinodynamic constraints to satisfy, e.g.,
a set of time-parametrized differential equations. Section II-
B introduces such constraints in the form of a mathematical
vessel model.

B. ASV MODELING
Our ASV is modeled as a surge-decoupled three-degree-of-
freedom displacement vessel, with the state vector

x :=
[
η> ν>

]>
∈ X := C × R3 (4)

with η being the pose described in (1), and ν := [u, v, r]>

the body-fixed velocity vector, where u is the surge velocity,
v sway velocity and r yaw rate. The state space is denoted X .
The kinematic relationship between the pose and velocity is
described by

η̇ = R(ψ)ν, (5)

where

R(ψ) :=

 cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 . (6)

The kinetics of the ASV is described by

Mν̇ + C(ν)ν + D(ν)ν = τ + τ env. (7)

This notation is widely used for vessel models in the mar-
itime control literature [24]. Here, M ∈ R3×3 is the pos-
itive definite system inertia matrix, C(ν) ∈ R3×3 is the
skew-symmetrix Coriolis and centripetal matrix, and D(ν) ∈
R3×3 is the positive definite dampingmatrix. The force vector
τ = [X ,Y ,N]> ∈ T ⊂ R3 are the control forces produced
by the ASV’s actuators in surge, sway and yaw, respectively,
where T denotes the space of valid inputs. These are in turn
governed by dynamical models of the actuators. For simu-
lation purposes we include those models, but for planning
and control we have simplified the model to let τ be directly
controllable. The environmental forces τ env can come from
wind, ocean current and waves. We have only modeled wind
effects for our experimental vessel, and the environmental
forces are a function of relative wind velocity:

τ env = τ env(ψ, ν,Vw), (8)

where Vw ∈ R2 is the wind velocity in North and East
components. Matrices M, C and D, along with the actuator
models, as well as a wind model are defined in [25].

The model is concatenated to

ẋ = f (x, τ ,Vw)

:=

[
R(ψ)ν

M−1
[
−
(
C(ν)+ D(ν)

)
ν + τ + τ env(ψ, ν,Vw)

]]
(9)

for ease of reference when discussing OCPs later in the paper.

III. STAGE 1: GENERATING A DYNAMICALLY FEASIBLE
INITIAL GUESS
As we mention in the introduction, our trajectory planning
method comprises two stages. The entire method, its subcom-
ponents, and their interconnections are illustrated in Figure 2.
Each subcomponent will be described in this section and the
next. Stage 1 of our method is to find a dynamically feasible
trajectory using the hybrid A? search.

199956 VOLUME 8, 2020

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

FIGURE 2. Block diagram of the trajectory planning method. Stage 1 refers to the generation of the initial guess, described in Section III, and
Stage 2 refers to the trajectory optimization from Section IV.

FIGURE 3. Comparison of traditional A? search space to the hybrid A?
search space in a two-dimensional grid. To the left is the commonly found
eight-connected uniform grid associated with A?, where states are
associated with grid cell centers. To the right is the search space of
hybrid A?, where states can lie anywhere in the cells.

A. HYBRID A?

Dolgov et al. [18] developed the hybrid A? algorithm to
plan paths for autonomous cars. Hybrid A? is a variant of
the well-known A? algorithm that captures continuous-state
data in discrete search nodes. The search space is discretized,
but a continuous state is associated with each discrete node,
as illustrated in Figure 3. An advantage of the hybrid A?

search space is that it does not require the connections
between two states in different nodes to be exact, which
allows us to be flexible when using motion primitives in the
discrete search. A disadvantage is that the optimality from
traditional A? is no longer strictly guaranteed due to the
merging of continuous and discrete states.

Algorithm 1 is pseudocode for the hybrid A? search. Like
an A? search, it uses a priority queue to keep track of the open
set. In Algorithm 1, that functionality is maintained by the
PUSH and POP functions. PUSH adds a key with a priority value
to the open setO, while POP removes and returns the key with
the lowest associated priority. The mappings STATE, COST,
and PARENT keep track of continuous states, cost values, and
parents associated with discrete keys η̃ ∈ Cd . The mappings
are updated as the search progresses. The function PRIMITIVES

returns a set of motion primitives, COLLISION checks
whether there is a collision, and HEURISTICS returns heuris-
tic cost estimates. These functions are further described in
sections III-B, III-D, and III-E, respectively.

B. MOTION PRIMITIVES
In the hybrid A? search algorithm, new configurations are
discovered by propagatingmotion primitives from an existing
configuration. A motion primitive is a dynamically feasible
state trajectory between two configurations in C. Dynamic
feasibility, as discussed in Section II-A, is inherently satisfied
by using motion primitives with trajectories that satisfy (9).
While we search in C, the trajectories are in X , which means
that to feasibly connect two configurations with state trajec-
tories in X , they must start and end with the same velocities.
Motion primitives with varying lengths and turn angles are

precomputed using an OCP. During the search, the primitives
are translated and rotated to fit with the originating configu-
ration. The motion primitives used in our results are shown
in Figure 4.

VOLUME 8, 2020 199957

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

Algorithm 1 Hybrid A? Search Pseudocode
1: function HYBRID A?(η0, ηf ,Vw,O)
2: η̃0← KEY(η0), η̃f ← KEY(ηf)
3: O← ∅, C ← ∅
4: PUSH(O, η̃0, 0)
5: STATE(η̃0)← η0, COST(η̃0)← 0
6: while O 6= ∅ do
7: η̃← POP(O)
8: C ← C ∪ {η̃}
9: if η̃ = η̃f then

10: return sequence from η̃0 to η̃f
11: η← STATE(η̃)
12: for all P, c, ηn ∈ PRIMITIVES(η,Vw) do
13: η̃n← KEY(ηn)
14: if COLLISION(P,O) or η̃n ∈ C then
15: continue
16: f ← COST(η̃)+ c
17: if η̃n /∈ C ∪ O then
18: COST(η̃n)←∞
19: if f < COST(η̃n) then
20: COST(η̃n)← f
21: PARENT(η̃n)← η̃

22: STATE(η̃n)← ηn
23: O← O \

{
η̃n
}

24: h← f + HEURISTICS(ηn, ηf ,Vw)
25: PUSH(O, η̃n, h)
26: return error, no path found

FIGURE 4. Motion primitives used in our results.

The OCP used to generate motion primitives is

min
x(·),τ (·)

∫ tf

0
F(x(τ), τ (τ))dτ (10a)

subject to ẋ(t) = f (x(t), τ (t),02) t ∈ [0, tf] (10b)

xlb ≤ x(t) ≤ xub t ∈ [0, tf] (10c)

τ lb ≤ τ (t) ≤ τ ub t ∈ [0, tf] (10d)

x(0) = x0 (10e)

x(tf) = xf . (10f)

The OCP is equal for every primitive, except for the final
time tf , the state bounds (10c) and the final condition (10f),
all of which depend on the motion primitive length L > 0
and direction angle χ . The vessel is assumed to travel with
a nominal speed Unom, which in our results is 1.5m s−1. For
a specific primitive defined by (L, χ), the parameters of (10)
are

tf = L/Unom (11a)

xlb =


min(0,L cosχ)
min(0,L sinχ)

min(0, χ)
ulb
−vub
−rub

 (11b)

xub =


max(0,L cosχ)
max(0,L sinχ)

max(0, χ)
uub
vub
rub

 (11c)

τ lb =
[
Xlb −Yub −Nub

]> (11d)

τ ub =
[
Xub Yub Nub

]> (11e)

x0 =
[
0 0 0 Unom 0 0

]> (11f)

xf =
[
L cosχ L sinχ χ Unom 0 0

]>
. (11g)

The values ulb, uub, vub and rub are velocity bounds, and Xlb,
Xub, Yub, and Nub are bounds on surge force, sway force, and
yaw moment, respectively. Table 1 specifies the parameters
(L, χ) in our results, and Table 2 gives the boundary values.

TABLE 1. Motion primitive parameters.

The OCP (10) contains a cost-to-go function:

F(x, τ) =

energy︷ ︸︸ ︷
|ν|> · |τ | +1000

(
(v/vub)2 + (r/rub)2

)
+ 100

(
(X/Xub)2+(Y/Yub)2+(N/Nub)2

)
. (12)

The cost’s main contributor is energy spent but includes
quadratic costs on velocity states and input forces. Without

199958 VOLUME 8, 2020

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

TABLE 2. OCP boundary values for motion primitives.

these quadratic costs, the OCP becomes significantly harder
to solve. The pure energy part of the cost function makes up
∼95% of the straight motion primitives’ costs and ∼80% of
the costs in turns.

The choice of length and direction parameters L and χ of
the primitives are tightly connected to the resolutions defined
in (3). At least one of the motion primitives must have a
length longer than the diagonal of the grid cells defined by the
positional resolution rp in order to be guaranteed to traverse
from one cell to another. We use a positional resolution of
rp = 10m, so we need at least one primitive longer than
√
2 · 10m ≈ 14.14m. Additionally, one of the primitives

should have a length equal to rp, so that the search does not
‘‘jump over’’ the goal cell. It will also ease the discrete search
if the motion primitives’ direction angles are multiples of the
angular resolution rh. The primitives in Table 1 include these
important properties.

The positional resolution greatly affects the performance
of the hybrid A? search. A smaller resolution rp makes the
search space denser, which increases the computational load
and time to find a solution, but improves the accuracy of the
search.

The OCPs are transcribed to NLPs using direct collocation,
and then solved using an interior point algorithm [26] offline
prior to performing any search. The details of the transcrip-
tion and solving are the same as in the main OCP-stage of our
planning method – those details are found in Section IV-B.
In Algorithm 1, motion primitives from a configuration

η ∈ C are returned by the function PRIMITIVES. This func-
tion returns a sequence of geometrical paths P ∈ W ,
the cost of the maneuver c whose calculation is described in
Section III-C, and the new neighboring state ηn ∈ C. The
cost is dependent on the wind velocity Vw. A mathematical
description of the function is

PRIMITIVES : C × R2
7→ [W × R+ × C]1,...,M , (13)

whereM is the number of motion primitives.

C. COST FUNCTION
While the OCP that generates the motion primitives uses
the generic cost-to-go function (12), these OCPs are solved
offline and have no information about environmental distur-
bances. Therefore, we need an alternative method to quickly
calculate the energy usage of each maneuver online, when the

disturbances are known or estimated. For calculating energy
exerted to overcome environmental disturbances, we use the
definition of mechanical work:

Wr =

∫ tf

0
|τ r |
>
· |νr | dt, (14)

where we use the absolute values since there is no energy
regeneration in the ASV’s propulsion system. In this calcula-
tion, the subscript (·)r denotes relative values, e.g., the force
needed to overcome relative wind velocity. Thework required
to move through the wind is

Wwind =

∫ tf

0
|τw|

>
·

∣∣∣∣ν − R(ψ)>
[
Vw
0

]∣∣∣∣ dt, (15)

where τw is the force needed to overcome wind effects,
calculated with our windmodel.We have assumed zero ocean
currents for moving through the water since the vessel we are
working with has a very shallow and flat hull. Additionally,
we do not have access to accurate information about ocean
currents in our test areas. The work required to move through
the water is then

Wwater =

∫ tf

0
|D(ν)ν|> · |ν| dt. (16)

The total energy cost c = Wwind + Wwater is calculated
by propagating the integrands of (15) and (16) over the dis-
cretized solution trajectories from (10) with the appropriate
wind velocity. This relative energy formulation is inspired
by [27].

D. COLLISION CHECKING
For each solution trajectory generated by (10), the position
state trajectories x(·) and y(·) make up the vessel’s geometri-
cal footprint in W . After translating and rotating a motion
primitive, the geometrical footprint is checked for overlap
with O, and a collision is reported if that is the case. The
geometrical footprint is diluted by a clearance radius rc to
account for the shape of the vessel and additional clearance
to keep a proper distance from obstacles. The clearance radius
and footprint are illustrated in Figure 5. Our vessel is rectan-
gular with a shape of 5m by 2.8m, and we use a clearance

FIGURE 5. Vessel shape along with the clearance radius rc which defines
the footprint A used for collision checking.

VOLUME 8, 2020 199959

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

radius of rc = 10m. The COLLISION function in Algorithm 1
performs the collision checking:

COLLISION :W ×W 7→ {true, false} . (17)

E. SEARCH HEURISTICS
To guide the hybridA? search, we use heuristic cost functions.
These are functions that estimate the remaining cost from
a node in Cd to the goal node. The search will prioritize
exploring nodes with the lowest estimated total cost. In a
traditional A? search, using admissible heuristic functions,
i.e., functions that never overestimate the true cost, maintains
a Dijkstra search’s optimality guarantee. However, hybrid A?

does not have any optimality guarantees due to the merging
of continuous states in discrete ‘‘bins,’’ so the heuristic func-
tions’ admissibility is not as important.

Similar to [18], we combine two different heuristic func-
tions. We employ a holonomic with obstacles heuristic that
guides the search towards the two-dimensional cheapest
path, and a nonholonomic without obstacles heuristic that
avoids trajectories that the ASV cannot feasibly follow. Their
designs are described in the following, and they are combined
using the maximum of the two heuristics.

The description of the HEURISTICS function from
Algorithm 1 is

HEURISTICS : C × C × R2
7→ R+, (18)

where the function maps the current state η, the goal state ηf ,
and the wind velocity Vw to a positive scalar.

1) HOLONOMIC WITH OBSTACLES
The holonomic with obstacles heuristic uses a simple model
that can move in any direction without the nonholonomic
constraint of moving along the vessel’s heading angle. It con-
siders the obstacle map O and assigns costs to nodes using
a breadth-first search on a two-dimensional grid with res-
olution rp. Instead of the standard eight-connected graph
illustrated in Figure 3, we use a 16-connected graph, as seen
in Figure 6, to allowmore movement angles. We use the same
cost function described in Section III-C, which results in a
mapping from every node in Cd,free to a positive scalar that
estimates the remaining cost to navigate to the goal node.
Figure 7 shows an example of the mapping near a harbor.
The 16-connected breadth-first search is limiting since it

biases towards paths with the same directions as the graph

FIGURE 6. 16-connected graph. In this connectivity scheme, edges are
added to all nodes two layers from the center node, unless the travel
direction already exists in an inner layer.

FIGURE 7. Example of the holonomic with obstacles heuristic function
on a map. Brighter squares are more costly.

connectivity in Figure 6, i.e., on ∼22◦ increments. With-
out disturbances, the error between the real cost function
and the heuristic averages 1.8% in an obstacle-free map
of 1 km by 1 km.

Alternative heuristics include the fast marching method,
which can calculate a cost function in the presence of obsta-
cles without bias to particular directions. Standard implemen-
tations of the fast marching method [28] do not support the
inclusion of a directional component in the cost function,
on which we rely. Implementations of the fast marching
method subject to a vector field are available [29], [30]. Fur-
thermore, graph searches with simplifiedmodels can function
as guiding heuristics, demonstrated in [15].

Since the calculation of our holonomic-with-obstacle
heuristic requires information about the goal location and
disturbances, the mapping has to be calculated online.

2) NONHOLONOMIC WITHOUT OBSTACLES
The dual to the holonomic with obstacles heuristic is one
that considers nonholonomic movements without obstacles.
This heuristic places high costs on nodes that lead to trajec-
tories the ASV cannot feasibly follow. It utilizes the motion
primitives from Section III-B and performs a breadth-first
hybrid A? search from every node in a limited, rectangular,
collision-free grid around the origin of Cd . This results in a
mapping from the included nodes in Cd to a positive scalar
and is precomputed offline. The mapping is translated and
rotated to the desired goal node when used in the search.
Figure 8 shows the heuristic mapping for different initial
heading angles.

Since the environmental disturbances are unknown at the
time of precomputation, we cannot say anything about the
effects these disturbances have on the cost. However, this
heuristic is only active in the final part of the search, and
we argue that the energy-optimality criterion is less critical
in this stage. Additionally, the optimization stage described

199960 VOLUME 8, 2020

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

FIGURE 8. Plot of the nonholonomic without obstacles heuristic function
for initial heading angles 0◦, 45◦, 90◦ and 180◦. Brighter squares are
more costly.

in Section IV locally optimizes the trajectory accounting for
known or estimated disturbances.

F. SEARCH OUTPUT
A search is completed when the goal node is discovered by a
motion primitive. The result is a chain of nodes from the goal
node towards the start node by following their parents. This
chain is reversed, and the resulting sequence of motion prim-
itives are concatenated into forming the solution trajectories

x? : [0, t?f] 7→ X (19a)

τ ? : [0, t?f] 7→ T , (19b)

which are valid on the time interval [0, t?f], where t
?
f is the

sum of the motion primitive durations. In practice, these
mappings are a discrete sequence of points in the state and
input spaces (X and T), interpolated to form time-continuous
trajectories. The points’ density depends on the number of
shooting intervals used when solving (10).

To summarize Stage 1, it consists of a hybrid A? search
guided by two heuristics, propagating motion primitives that
lead from the start pose to the desired end pose. Since the
trajectory so far consists of only the motion primitive maneu-
vers, it must be improved to find an optimized trajectory in
the continuous search space.

IV. STAGE 2: TRAJECTORY OPTIMIZATION
The second stage of the trajectory planner is to solve an OCP
that describes the trajectory planning problem. Stage 2 in

Figure 2 shows the subcomponents of this trajectory opti-
mization. The OCP is similar to (10) in Section III-B.
The initial and final conditions are different, we include
external disturbances, and we have added obstacle avoid-
ance constraints. Additionally, the final time is a free opti-
mization variable. We restate the OCP, including the stated
changes:

min
x(·),τ (·),tf

∫ tf

0
F(x(τ), τ (τ))dτ (20a)

subject to ẋ(t) = f (x(t), τ (t),Vw) t ∈ [0, tf] (20b)

xlb ≤ x(t) ≤ xub t ∈ [0, tf] (20c)

τ lb ≤ τ (t) ≤ τ ub t ∈ [0, tf] (20d)

x(0) = x0 (20e)

x(tf) = xf (20f)

Ak ·
[
x(tk) y(tk)

]>
≤bk−rc k=1, . . . ,N

(20g)

0 ≤ tf ≤ t?f . (20h)

The initial and final conditions are replaced with the ini-
tial and final desired pose, with zero velocities. The cost-
to-go function is the same, as are the velocity and force
bounds. Equation (20g) encodes obstacle avoidance con-
straints, which will be described in Section IV-A. Since
the final time is a free variable, we place bounds on it
in (20h). The transcription and solution process is described
in Section IV-B.

A. CONVEX COLLISION AVOIDANCE CONSTRAINTS
The OCP contains obstacle avoidance constraints in the form
of halfspaces in the matrix-vector form (20g). The halfspaces
are defined for the points in time tk , k = 1, . . . ,N , where N
is the number of shooting intervals used in the transcription
of (20). With h = tf /N being the shooting interval duration,
we have tk = h·k . The convex regions that define the obstacle
avoidance constraints are generated along the solution of the
hybrid A? trajectory, i.e., the initial guess. The positional part
of the state trajectory x?(·) from (19a) is denoted p?(·) =
[x?(·), y?(·)]>. For the points in time tk , k = 1, . . . ,N ,
the parameters Ak ∈ Rmk×2 and bk ∈ Rmk are generated
based on the obstacle map O with p?(tk) being the generator
points.

To create the convex region constraints, we use an algo-
rithm that calculates an inner approximation of the obstacle
map based on the polygons’ edges in that map. The process is
summarized as follows: Given a generator point p?(tk), grow
a circle centered at p?(tk) until it reaches a point pc,k where
it touches an obstacle, and then create a constraint tangent
to the expansion circle at the point at pc,k . Continue growing
and create constraints until no further growth is possible. The
process is illustrated in Figure 9. The parameters Ak and bk

VOLUME 8, 2020 199961

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

FIGURE 9. Illustration of how to compute the convex spatial constraints.

are defined by

(pc,k,1 − p
?(tk))>

||(pc,k,1 − p?(tk))||2
(pc,k,2 − p

?(tk))>

||(pc,k,2 − p?(tk))||2
...

(pc,k,mk − p
?(tk))>

||(pc,k,mk − p
?(tk)||2


︸ ︷︷ ︸

Ak

p≤



(pc,k,1 − p
?(tk))>pc,k,1

||(pc,k,1 − p?(tk))||2
(pc,k,2 − p

?(tk))>pc,k,2
||(pc,k,2 − p?(tk))||2

...

(pc,k,mk − p
?(tk))>pc,k,mk

||(pc,k,mk − p
?(tk))||2


︸ ︷︷ ︸

bk

.

(21)

A point p ∈ R2 is inside the convex region if the inequality
constraints are satisfied, which is (20g) in the OCP. The num-
ber of halfspaces that make up a specific region is denoted
mk , k = 1, . . . ,N , and has an upper limit, in our case 12. The
unit dimension of this inequality is distance, and a subtraction
of the right-hand side of (21) shrinks the convex regions,
implicitly increasing the clearance by, e.g., rc, which is the
clearance radius from Figure 5, used in (20g).

Figure 10 shows an example of convex regions using an
arbitrary path as the basis for generator points. For each point
in time tk , the OCP may freely adjust the ASV’s position
inside the respective convex region. With dense overlapping,
this allows the ASV to travel inside a corridor along the initial
guess.

The convex regions constrain only a discrete set of points
in the state trajectory (x(tk), k = 1, . . . ,N). This limita-
tion means that the points in between can violate the colli-
sion avoidance constraints. However, the vessel’s dynamics
restrict the trajectory’s velocity, thus limiting the movement
in a neighborhood around x(tk). Having a short shooting

FIGURE 10. Example of convex regions along an arbitrary path with
generator points spaced by 100 m. In the OCP the spacing would be
∼1.5 m, causing dense overlapping, resulting in a corridor as depicted in
the figure.

interval duration h gives satisfactory collision avoidance
behavior. In our results, we use a density of h ≈ 1 s.

B. TRANSCRIPTION AND SOLVER
To solve the continuous OCP (20), we discretize it into an
NLP. We use direct collocation with three Legendre collo-
cation points per shooting interval to discretize the dynam-
ics (20b). Both the state and input trajectories are encoded
as polynomials over N shooting intervals. In our results,
the number of shooting intervals is determined by the esti-
mated final time t?f from the hybrid A? results in Section III-
F. An initial shooting interval duration of h? = 1 s determines
N = bt?f /h

?
c + 1, while since the final time tf is a free

variable with upper bound t?f , the actual shooting interval
duration can be shorter. The cost function is determined by
propagating the quadrature integral (20a) along the state and
input polynomials. The resulting NLP is

min
w
φ(w) (22a)

subject to wlb ≤ w ≤ wub (22b)

glb ≤ g(w) ≤ gub. (22c)

The decision variables w include states and inputs at all
collocation points, and the final time tf . The bounds (22b)
are box bounds on all the decision variables and encode the
state and input constraints (20c) through (20f), and (20h). The
function g and its bounds in (22c) encode the dynamics (20b)
in addition to the obstacle avoidance constraints (20g).

The NLP is solved using the interior point algorithm
‘‘Ipopt’’ by Wächter and Biegler [26]. Since the initial guess
provided by the hybrid A? algorithm results in minimal vio-
lations of the constraints, the initial value of the auxiliary
boundary parameter µ in Ipopt is set quite low to 1× 10−6,
compared to its default value of 1× 10−1. This reduction
causes fast convergence of the solution.

199962 VOLUME 8, 2020

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

Solving (22) provides the optimal decision variables w�.
These are converted to optimal trajectories

x� : [0, t�f] 7→ X (23a)

τ� : [0, t�f] 7→ T , (23b)

where t�f is the optimal final time. Accurate interpolation
of the discrete values returned from the solver is achieved
by using the polynomial definition of the state and input
trajectories.

C. METHOD SUMMARY
Figure 2 illustrates how all the subcomponents of our method
are connected. Stage 1 performs a discrete search with con-
tinuous states using the hybrid A? algorithm guided by two
heuristics and propagating the states with motion primitives.
This results in a dynamically feasible initial guess for an
energy-optimized trajectory between the start and goal poses.
The resulting trajectory consists of a sequence of the motion
primitives from Section III-B, limiting the search space to
only those maneuvers. Therefore the trajectory cannot be
optimal with respect to our cost functional. Stage 2 is a
trajectory optimization step that uses the initial guess for two
purposes: 1) To provide a sequence of convex and smooth
polygonal constraints that represent a collision-free corridor
from start to goal, and 2) to warm-start the OCP solver.
The convex polygonal constraints are constructed with the
process shown in Figure 9 and allow the OCP solver to handle
the inherently nonconvex obstacle avoidance problem easily.
Combined, this gives us a fast solution to (20), which is a
locally optimal and dynamically feasible trajectory between
the start and goal poses.

V. SIMULATION RESULTS
In this section, we describe the simulation and control setup
used to evaluate our planning method and present the evalu-
ation itself. We evaluate our method by performing planning
and simulation in various scenarios and wind conditions and
comparing our planner to other methods.

A. SIMULATOR AND CONTROL SYSTEM
The different trajectory planning methods are tested in a
software-in-the-loop vessel simulator. The simulator com-
prises dynamic models of the vessel, its actuators, and its
control systems. The vessel model is described in Section II-
B, and the simulator performs Runge-Kutta 4 integration to
propagate the differential equations. Additionally, the actua-
tors’ propeller and azimuth dynamics are simulated, whose
models are available in [25].

The vessel’s control system for trajectory tracking
is divided into two layers, as seen in Figure 11:
A trajectory-tracking dynamic positioning (DP) controller
and a thrust allocation algorithm. The DP controller consists
of a PID feedback term and a model-based feed-forward
term for velocity and acceleration. Its details are available
in [31, Section 3.4]. The controller sends the desired force

FIGURE 11. Vessel control system architecture.

output to the thrust allocation algorithm, which in turn sends
thruster commands to the vessel’s actuators. This thrust
allocation algorithm is described in [32].

For evaluation, energy use is measured by integrating the
simulated power output, similar to the energy-part of (12):

E =
∫ tf

t0
|ν(t)|> · |τ (t)| dt. (24)

B. EVALUATING THE EFFECT OF INCLUDING
DISTURBANCE INFORMATION
One of the goals while developing the method was the ability
to include known or estimated disturbance effects in both
planning stages. To magnify the effects of wind on planning,
we have designed a scenario where the starting point and
goal are far apart, and the vessel is under the influence of
crosswinds. Figure 12 shows the scenario where the plan is
to sail from south to north.

The scenario is planned twice. Once when no wind infor-
mation is included in the search, assuming that the wind
velocity is Vw = [0, 0] when it is, in fact, Vw = [0, 3] m s−1,
and once using the correct wind velocity. The warm start
solutions from the hybrid A? search differ significantly in
the two cases, as shown Figure 12. However, the optimized
trajectories of the two plans are nearly identical. Additionally,
the power outputs from the simulated trackings are not that
different – the total energy use for the two scenarios are
170Wh when not accounting for wind in the planning, com-
pared to 164Wh when including wind information, a mere
3.5% improvement, attributed mainly to a difference in head-
ing during transit.
In practice, models of how wind affects a ship are uncer-

tain. For such a low improvement, it might not be beneficial
to include wind effects when planning a long-term trajectory.
Adding this information may worsen the result if the wind
model or wind velocity estimates are erroneous. Including
environmental disturbances may be more appropriate for
other types of vessels or other types of disturbances, such as
waves and ocean currents.

C. COMPARISONS TO OTHER TRAJECTORY PLANNING
METHODS
Our method is compared to two other trajectory planning
methods by planning a trajectory in the same scenario with
all three methods. The two other planning methods are a

VOLUME 8, 2020 199963

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

FIGURE 12. Comparison of trajectories planned without and with
knowledge of simulated wind conditions. Described in Section V-B.

warm-started optimization scheme developed in [14], labeled
C1 in the plots, and an optimal control-based complete cell
decomposition method from [23] labeled C2. Our method is
labeled TP. These two methods are selected for comparison
because they are both optimization-based methods. C1 is
similar in terms of the warm-starting methodology, and C2 is
interesting because of the map discretization’s completeness.

FIGURE 13. Elliptic obstacles that approximately match our map. Used
when planning with the C1 method in Section V-C1.

1) C1: ALTERNATIVE WARM-STARTED OPTIMIZATION
METHOD
The method developed in [14] uses a similar approach to our
method. The main difference is how the warm start is gener-
ated and how the obstacles are represented in the optimization
stage. C1 uses a standard A? search on an 8-connected uni-
formly discretized grid to search for the shortest path. That
search results in a piecewise linear path which is converted
to a trajectory by smoothing the connections with circular
arcs and adding artificial dynamic information. The trajec-
tory is not dynamically feasible with respect to the ASV’s
model, but it is used as the initial guess for an OCP solver.
The OCP solver represents obstacles as inequalities in the
form of ellipses, which are smooth representations, suitable
for an optimization problem, but cannot accurately represent
polygonal maps.

To compare TP to C1, we adjust the cost-to-go function
in [14] to be equivalent to (12). Additionally, we have cre-
ated elliptic obstacles to approximately match the polygonal
obstacles which define our map, seen in Figure 13. We plan
and simulate with zero wind, and with the initial and final
poses, as shown in Figure 14. From the figure, we see that
the resulting trajectories differ only slightly, mainly due to the
different obstacle constraints. In the simulation, the trajecto-
ries give equal energy consumption, both at 52Wh. Figure 15
shows significant positional tracking error at the start and end
of the transit, for both TP and C1. The vessel and its control
system cannot track the acceleration that happens from and
to a standstill. The models used in trajectory planning do
not consider actuator dynamics or the control system, which
probably is the cause of these errors. The positional tracking
errors are comparable between TP and C1 for the remainder
of the transit, with an error of 1m around the turn and negligi-
ble error for the straights. Similar deviations are also evident
in the heading, due to the coupling between linear and angular
velocities. The positional error in Figure 15 is calculated
as ||[x(t), y(t)] − [x�(t), y�(t)]||2, while the heading error is
ψ(t)− ψ�(t).

2) C2: COMPLETE OPTIMIZATION-BASED CELL
DECOMPOSITION
Martinsen et al. [23] have developed an optimization-based
trajectory planner that searches for a trajectory by

199964 VOLUME 8, 2020

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

FIGURE 14. Comparison of trajectories planned with different methods
from Section V-C. Results from our method are labeled TP, while C1 and
C2 denote the other planning methods.

FIGURE 15. Tracking errors from the simulation comparisons. Results
from our method are labeled TP, while C1 and C2 denote the other
planning methods.

considering sequences of collision-free triangles from a con-
strained Delaunay triangulation of the workspace. C2 finds a
globally optimal trajectory for linear models regardless of the
inherent non-convex obstacles due to the cell decomposition
by triangulation.

A trajectory with the same initial and final positions,
as described in Section V-C1, is generated using a sim-
ilar cost-to-go function and a simplified dynamic model.
Figure 14 shows that also with C2, the trajectory difference
is minimal. The differing cost-to-go function and dynamic
model may cause the small differences we see. The slight
difference may be caused by the differing cost-to-go func-
tion and the dynamic model used. As TP and C1, C2 gives
an energy consumption of 52Wh. The tracking errors are
similar between TP and C2, with better performance at the
start of the trajectory for C2, as we see in Figure 15.

D. COMPLEX SCENARIO
The previous planning scenarios have been simple, with
obvious routing choices. Figure 16 shows a more complex

FIGURE 16. Planning in a map of Sjernarøyane, Norway – a more
complex scenario with multiple routing options. Described in Section V-D.

scenario with multiple routing options. Our method was able
to find the most direct and energy-efficient routing and opti-
mized a trajectory from start to goal in 75 s. The figure also
shows the corridor composed of the union of convex regions
that allow the OCP to optimize freely. The resulting trajectory
is dynamically feasible and adheres to the obstacle clearance
constraints.

E. CONCLUSION
Including available wind information when planning a sce-
nario yielded negligible improvements, shown
in Section V-B. Only minor differences are found in the
state trajectories. We conclude that there is no benefit to
energy consumption for our application and vessel model
when including wind estimates in trajectory planning. This
conclusion is supported by the fact that there will be sig-
nificant uncertainties in both wind estimates and wind force
models.

Compared to two other optimization-based trajectory plan-
ning methods in Section V-C, we have shown that our method
produced a similar trajectory with equal energy consumption.
This similarity verifies that our method can find a desirable
optimized trajectory with good energy performance. Signif-
icant improvements in runtime are achieved by using our
method in this scenario, highlighted in Table 3.

TABLE 3. Performance comparisons for simulated planning scenarios
in Section V-C.

VOLUME 8, 2020 199965

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

As we show in Section V-D, our method can find
the most reasonable trajectory in a complex routing envi-
ronment, which is a major challenge when using purely
optimization-based trajectory planning methods.

VI. EXPERIMENTAL VALIDATION
To validate that our method will produce collision-free,
dynamically feasible trajectories, we have applied it in a
full-scale experiment with milliAmpere, an experimental
autonomous ferry developed at NTNU, depicted in Figure 17.
The specifications of milliAmpere, its sensors, and control
systems are found in Table 4, and it uses the same control
setup as described in Section V. We tested the planning
method and tracking capabilities in the Trondheim harbor
area, using the same scenario as in Section V-C. On the day
of testing, we measured a light breeze from North-northeast,
but we were shielded by a breakwater for most of the route,
causing us to experience almost no wind. We tested plan-
ning with zero wind and with the measured wind, finding a
difference in measured energy use of 2%, which we deem
insignificant given the measurement uncertainties, and thus
we only present the results from planning with zero wind.
Energy use is measured by integrating power as determined
by the voltage and current measured on both the azimuth
thrusters’ propeller motors:

E =
∫ tf

t0
(|I1(t) · U1(t)| + |I2(t) · U2(t)|) dt, (25)

where Ii and Ui are motor current and voltage, respectively,
for i ∈ {1, 2}.

FIGURE 17. Picture of the experimental autonomous ferry milliAmpere.

TABLE 4. milliAmpere specifications.

FIGURE 18. Measured and planned trajectories from validation
experiment in Section VI.

FIGURE 19. Tracking errors from the validation experiment in Section VI.

Figure 18 shows an overview of the scenario, including
the measured and planned trajectories, and the warm start.
The planned trajectory was naturally equivalent to the one in
Section V-C, as nothing in the scenario was changed.

Figure 19 shows tracking errors for the tests. The positional
error stayed within 1.5m, with an exception at 160 s, which
stems from a jump in the GNSS measurement experienced
during the experiment. The positional tracking error was
large at the beginning of the experiment, where milliAmpere
and its control system struggled to follow the trajectory’s
acceleration. The unmodeled thruster dynamics and control
systems can explain this initial lag. Large positional errors
were also induced during the turn near the end of the exper-
iments, which can be explained by the control system’s poor
tracking performance. Heading errors also occurred during
the beginning of the experiment, as well as during the turn.
These errors can be attributed to the coupling between linear
and angular velocity, which is unaccounted for in the control
system. milliAmpere’s physical properties, with its shallow
and flat hull, make it hard to control its heading.

Figure 20 shows the distances from the measured and
planned positions to the nearest obstacle. Of course,

199966 VOLUME 8, 2020

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

FIGURE 20. Measured and planned obstacle distances from the
validation experiments in Section VI.

FIGURE 21. Measured and planned state trajectories from the validation
experiment in Section VI.

the planned distance is more than the clearance of rc = 10m
away from obstacles at all times. The measured distance
was 9.9m from the closest obstacle at the nearest, which we
consider safe.

Figure 21 shows the measured and planned state trajecto-
ries. The referenced jump in GNSS measurement at 160 s is
clearly visible in this plot, where the error propagates into the
velocity estimates. While the plots show jumps in velocity,
no such jump was experienced during the experiment – this
is a measurement error. The sway velocity and yaw rate
measurements oscillate, making hard to determine tracking
error for these states. This oscillation may be due to the
ship’s natural frequency – it is not filtered out in the onboard
navigation system, but we can see that the measurements lie
around the planned trajectories.

During the experiment, the measured energy use was
245Wh, which is almost five times the simulated energy
estimate. This discrepancy is due to the completely different
approaches used to estimate the energy in simulation and
experiments.

VII. CONCLUSION
Solving the continuous optimal control problem for trajec-
tory planning is difficult and requires an initial guess close
to the globally optimal solution to be a feasible option.
Moreover, since the trajectory planning problem is inherently
nonconvex, some clever encoding of obstacles is needed to
reduce complexity, especially when dealing with polyhedral
shapes with discontinuous gradients. We propose a contin-
uous, model-based method for energy-optimized trajectory
planning for ASVs that leverages a discrete search’s desirable
advantages to generate a good initial guess and performs con-
vex encoding of obstacles to achieve collision avoidance. Our
method is based on continuous optimal control, and the warm
starting is provided by the hybridA? algorithm.We have com-
pared the method with an optimal control-based complete
cell decomposition method with a similar cost function to
find comparable performance in terms of optimality and sig-
nificantly improved computational time. A comparison with
a warm-started optimal control-based method from earlier
work by us has shown improved performance, in addition to
being able to use more general obstacle representations.

There are several areas where we can improve our method
in further work:

• The search space can be extended to include surge veloc-
ity. This extension would allow the hybrid A? search to
look for variations in the speed profile that could benefit
energy efficiency.

• Including velocity in the search space will require mod-
ifications to the heuristic functions. Additionally, to pre-
vent the search from always choosing the slowest veloc-
ity which would be energy optimal, we need to limit the
trajectory’s maximum duration. This constraint could be
introduced by computing a map with the shortest path,
similar to the holonomic with obstacles heuristic, and
constrain the search from selecting nodes that cannot
reach the goal within the time limit with the highest
velocity. The fast marching method is appropriate for
this distance map.

• The hybrid A? search is currently a naive Python imple-
mentation and contributes significantly to computa-
tion time. Improvements to this implementation would
increase the performance of our method. This issue is
also the case for the construction of the NLP.

• In our work, we have included external disturbances in
terms of wind velocity. We have found that it does not
affect the optimized trajectory or energy consumption in
a significant manner. Other environmental effects, such
as waves or ocean currents, can have more of an impact
on energy consumption and should be explored.

VOLUME 8, 2020 199967

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

• Including the COLREGs in trajectory planning for
marine vessels should also be a priority to further work
on this topic.

ACKNOWLEDGMENT
The authors thank Emil H. Thyri at NTNU for his help during
the experiments with milliAmpere. Glenn Bitar also thanks
Marius Thoresen at the Norwegian Defence Research Estab-
lishment for helpful discussions during algorithm implemen-
tation.

REFERENCES
[1] M. Ludvigsen and A. J. Sørensen, ‘‘Towards integrated autonomous under-

water operations for ocean mapping and monitoring,’’ Annu. Rev. Control,
vol. 42, pp. 145–157, Dec. 2016.

[2] B.-O.-H. Eriksen, G. Bitar, M. Breivik, and A. M. Lekkas, ‘‘Hybrid colli-
sion avoidance for ASVs compliant with COLREGs rules 8 and 13–17,’’
Frontiers Robot., vol. 7, pp. 1–11, Feb. 2020.

[3] M. L. Seto, Marine Robot Autonomy. New York, NY, USA:
Springer-Verlag, 2013.

[4] S. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. Eng,
D. Rus, and M. Ang, ‘‘Perception, planning, control, and coordination for
autonomous vehicles,’’Machines, vol. 5, no. 1, p. 6, Feb. 2017.

[5] S. M. LaValle, ‘‘Motion planning. Part I: The essentials,’’ IEEE Robot.
Autom. Mag., vol. 18, no. 1, pp. 79–89, 2011. [Online]. Available: https://
ieeexplore.ieee.org/document/5751929, doi: 10.1109/MRA.2011.940276.

[6] A. Wolek and C. A. Woolsey, ‘‘Model-based path planning,’’ in Sensing
and Control for Autonomous Vehicles, T. I. Fossen, K. Y. Pettersen, and
H. Nijmeijer, Eds. Cham, Switzerland: Springer, 2017, pp. 183–206.

[7] P. Hart, N. Nilsson, and B. Raphael, ‘‘A formal basis for the heuristic
determination of minimum cost paths,’’ IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100–107, 1968.

[8] M. Candeloro, A. M. Lekkas, and A. J. Sørensen, ‘‘A Voronoi-diagram-
based dynamic path-planning system for underactuated marine vessels,’’
Control Eng. Pract., vol. 61, pp. 41–54, Apr. 2017.

[9] L. E. Kavraki, P. Svestka, J.-C. Latombe, andM.H.Overmars, ‘‘Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,’’
IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, Dec. 1996.

[10] S. M. LaValle, ‘‘Rapidly-exploring random trees: A new tool for path
plannning,’’ Iowa State Univ., Ames, IA, USA, Tech. Rep., 1998.

[11] R. Bellman,Dynamic Programming. New York, NY, USA: Courier Dover,
2003.

[12] Q. Gong, L. R. Lewis, and I. M. Ross, ‘‘Pseudospectral motion plan-
ning for autonomous vehicles,’’ J. Guid., Control, Dyn., vol. 32, no. 3,
pp. 1039–1045, May 2009.

[13] G. Bitar, M. Breivik, and A. M. Lekkas, ‘‘Energy-optimized path planning
for autonomous ferries,’’ in Proc. 11th IFAC CAMS, 2018, pp. 389–394.

[14] G. Bitar, V. N. Vestad, A. M. Lekkas, and M. Breivik, ‘‘Warm-started opti-
mized trajectory planning for ASVs,’’ in Proc. IFAC Conf. Control Appl.
Mar. Syst., Robot. Veh. (IFAC CAMS), 2019, vol. 52, no. 21, pp. 308–314.

[15] X. Zhang, A. Liniger, A. Sakai, and F. Borrelli, ‘‘Autonomous parking
using optimization-based collision avoidance,’’ in Proc. IEEE Conf. Deci-
sion Control (CDC), Dec. 2018, pp. 4327–4332.

[16] K. Bergman, O. Ljungqvist, J. Linder, and D. Axehill, ‘‘An optimization-
based motion planner for autonomous maneuvering of marine vessels
in complex environments,’’ 2020, arXiv:2005.02674. [Online]. Available:
https://arxiv.org/abs/2005.02674

[17] J. Chen, W. Zhan, and M. Tomizuka, ‘‘Autonomous driving motion plan-
ningwith constrained iterative LQR,’’ IEEE Trans. Intell. Veh., vol. 4, no. 2,
pp. 244–254, Jun. 2019, doi: 10.1109/TIV.2019.2904385.

[18] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, ‘‘Practical search
techniques in path planning for autonomous driving,’’ Amer. Assoc. Artif.
Intell., Tech. Rep. 1001.48105, 2008.

[19] Y. Zhang, H. Chen, S. L. Waslander, J. Gong, G. Xiong, T. Yang, and
K. Liu, ‘‘Hybrid trajectory planning for autonomous driving in highly
constrained environments,’’ IEEE Access, vol. 6, pp. 32800–32819, 2018.

[20] Y. Meng, Y. Wu, Q. Gu, and L. Liu, ‘‘A decoupled trajectory planning
framework based on the integration of lattice searching and convex opti-
mization,’’ IEEE Access, vol. 7, pp. 130530–130551, 2019.

[21] G. Casalino, A. Turetta, and E. Simetti, ‘‘A three-layered architecture
for real time path planning and obstacle avoidance for surveillance
USVs operating in harbour fields,’’ in Proc. Oceans-Europe, May 2009,
pp. 1–8.

[22] P. Svec, B. C. Shah, I. R. Bertaska, J. Alvarez, A. J. Sinisterra, K. von Ellen-
rieder, M. Dhanak, and S. K. Gupta, ‘‘Dynamics-aware target following
for an autonomous surface vehicle operating under COLREGs in civilian
traffic,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Nov. 2013,
pp. 3871–3878.

[23] A. B.Martinsen, A.M. Lekkas, and S. Gros, ‘‘Optimal model-based trajec-
tory planning with static polygonal constraints,’’ 2020, arXiv:2010.14428.
[Online]. Available: https://arxiv.org/abs/2010.14428

[24] T. I. Fossen,Handbook Mar. Craft Hydrodynamics Motion Control. Hobo-
ken, NJ, USA: Wiley, 2011.

[25] A. A. Pedersen, ‘‘Optimization based system identification for the mil-
liAmpere ferry,’’ M.S. thesis, Norwegian Univ. Sci. Technol., Trondheim,
Norway, 2019. [Online]. Available: http://hdl.handle.net/11250/2625699

[26] A. Wächter and L. T. Biegler, ‘‘On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming,’’Math.
Program., vol. 106, no. 1, pp. 25–57, May 2005, doi: 10.1007/s10107-004-
0559-y.

[27] T. Lee, H. Chung, and H. Myung, ‘‘Multi-resolution path planning
for marine surface vehicle considering environmental effects,’’ in Proc.
OCEANS IEEE, Jun. 2011, pp. 1–9.

[28] J. A. Sethian, ‘‘A fast marching level set method for monotonically advanc-
ing fronts,’’Proc. Nat. Acad. Sci. USA, vol. 93, no. 4, pp. 1591–1595, 1996.

[29] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, and D. Lane,
‘‘Path planning for autonomous underwater vehicles,’’ IEEE Trans. Robot.,
vol. 23, no. 2, pp. 331–341, Apr. 2007.

[30] S. Garrido, L. Moreno, F. Martín, and D. Álvarez, ‘‘Fast marching sub-
jected to a vector field–path planningmethod for mars rovers,’’Expert Syst.
Appl., vol. 78, pp. 334–346, Jul. 2017.

[31] G. Bitar, A. B. Martinsen, A. M. Lekkas, and M. Breivik, ‘‘Trajectory
planning and control for automatic docking of ASVs with full-scale exper-
iments,’’ in Proc. 1st Virtual IFAC World Congress, 2020, pp. 1–5.

[32] T. R. Torben, A. H. Brodtkorb, and A. J. Sørensen, ‘‘Control allocation for
double-ended ferries with full-scale experimental results,’’ in Proc. 12th
IFAC Conf. Control Appl. Mar. Syst., Robot. Veh. (IFAC CAMS), 2019,
pp. 556–563.

GLENN BITAR received the B.S. degree in com-
puter science and industrial automation from the
Telemark University College, Porsgrunn, Nor-
way, in 2015, and the M.S. degree in cybernet-
ics and robotics from the Department of Engi-
neering Cybernetics, NTNU, Trondheim, Norway,
in 2017, where he is currently pursuing the Ph.D.
degree.

His research interests include energy-optimized
autonomous motion control for ships, automatic

docking, and optimization-based path and trajectory planning.

ANDREAS B. MARTINSEN received the M.S.
degree in engineering cybernetics from NTNU,
Trondheim, Norway, in 2018, where he is cur-
rently pursuing the Ph.D. degree in engineering
cybernetics.

His research interests include reinforcement
learning, optimal control, and machine learning,
with a focus on marine and maritime applications.

199968 VOLUME 8, 2020

http://dx.doi.org/10.1109/MRA.2011.940276
http://dx.doi.org/10.1109/TIV.2019.2904385
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y

G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

ANASTASIOS M. LEKKAS (Member, IEEE)
received the M.S. degree in mechanical and aero-
nautical engineering from the University of Patras,
Greece, in 2008, and the Ph.D. degree in engineer-
ing cybernetics from NTNU, Trondheim, Norway,
in 2014.

From 2015 to 2017, he has worked as a
Science Officer at JPI OCEANS, Brussels,
Belgium. He is currently an Associate Professor
of autonomous systems with the Department of

Engineering Cybernetics, NTNU, where he is also affiliated with the Centre
for Autonomous Marine Operations and Systems. He participates in projects
focusing on the autonomy of marine vehicles (Autoferry, SEAVENTION)
and is the Project Manager of the EXAIGON Project, where the main
goal is to develop explainable AI methods for safety- and business-critical
applications. His research interest includes merging artificial intelligence
with control engineering in order to develop cyber-physical systems with
increased autonomy.

MORTEN BREIVIK (Member, IEEE) received the
M.S. and Ph.D. degrees in engineering cybernetics
from the Department of Engineering Cybernetics,
NTNU, Trondheim, Norway, in 2003 and 2010,
respectively.

He is currently the Head of the Department
of Engineering Cybernetics, NTNU. He is also
an Associate Researcher with the Centre for
Autonomous Marine Operations and Systems.
He has previously worked as an Assistant Pro-

fessor and a Researcher with NTNU, a Scientific Advisor for Maritime
Robotics, and a Principal Engineer and the Department Manager in applied
cybernetics at Kongsberg Maritime. His research interests include nonlin-
ear and adaptive motion control of unmanned vehicles in general and in
autonomous ships in particular. He is also a member of the Norwegian Board
of Technology.

VOLUME 8, 2020 199969

